/* hgcd2.c THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. Copyright 1996, 1998, 2000-2004, 2008, 2012, 2019 Free Software Foundation, Inc. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp-impl.h" #include "longlong.h" #include "mpn/generic/hgcd2-div.h" #if GMP_NAIL_BITS != 0 #error Nails not implemented #endif /* Reduces a,b until |a-b| (almost) fits in one limb + 1 bit. Constructs matrix M. Returns 1 if we make progress, i.e. can perform at least one subtraction. Otherwise returns zero. */ /* FIXME: Possible optimizations: The div2 function starts with checking the most significant bit of the numerator. We can maintained normalized operands here, call hgcd with normalized operands only, which should make the code simpler and possibly faster. Experiment with table lookups on the most significant bits. This function is also a candidate for assembler implementation. */ int mpn_hgcd2 (mp_limb_t ah, mp_limb_t al, mp_limb_t bh, mp_limb_t bl, struct hgcd_matrix1 *M) { mp_limb_t u00, u01, u10, u11; if (ah < 2 || bh < 2) return 0; if (ah > bh || (ah == bh && al > bl)) { sub_ddmmss (ah, al, ah, al, bh, bl); if (ah < 2) return 0; u00 = u01 = u11 = 1; u10 = 0; } else { sub_ddmmss (bh, bl, bh, bl, ah, al); if (bh < 2) return 0; u00 = u10 = u11 = 1; u01 = 0; } if (ah < bh) goto subtract_a; for (;;) { ASSERT (ah >= bh); if (ah == bh) goto done; if (ah < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2))) { ah = (ah << (GMP_LIMB_BITS / 2) ) + (al >> (GMP_LIMB_BITS / 2)); bh = (bh << (GMP_LIMB_BITS / 2) ) + (bl >> (GMP_LIMB_BITS / 2)); break; } /* Subtract a -= q b, and multiply M from the right by (1 q ; 0 1), affecting the second column of M. */ ASSERT (ah > bh); sub_ddmmss (ah, al, ah, al, bh, bl); if (ah < 2) goto done; if (ah <= bh) { /* Use q = 1 */ u01 += u00; u11 += u10; } else { mp_limb_t r[2]; mp_limb_t q = div2 (r, ah, al, bh, bl); al = r[0]; ah = r[1]; if (ah < 2) { /* A is too small, but q is correct. */ u01 += q * u00; u11 += q * u10; goto done; } q++; u01 += q * u00; u11 += q * u10; } subtract_a: ASSERT (bh >= ah); if (ah == bh) goto done; if (bh < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2))) { ah = (ah << (GMP_LIMB_BITS / 2) ) + (al >> (GMP_LIMB_BITS / 2)); bh = (bh << (GMP_LIMB_BITS / 2) ) + (bl >> (GMP_LIMB_BITS / 2)); goto subtract_a1; } /* Subtract b -= q a, and multiply M from the right by (1 0 ; q 1), affecting the first column of M. */ sub_ddmmss (bh, bl, bh, bl, ah, al); if (bh < 2) goto done; if (bh <= ah) { /* Use q = 1 */ u00 += u01; u10 += u11; } else { mp_limb_t r[2]; mp_limb_t q = div2 (r, bh, bl, ah, al); bl = r[0]; bh = r[1]; if (bh < 2) { /* B is too small, but q is correct. */ u00 += q * u01; u10 += q * u11; goto done; } q++; u00 += q * u01; u10 += q * u11; } } /* NOTE: Since we discard the least significant half limb, we don't get a truly maximal M (corresponding to |a - b| < 2^{GMP_LIMB_BITS +1}). */ /* Single precision loop */ for (;;) { ASSERT (ah >= bh); ah -= bh; if (ah < (CNST_LIMB (1) << (GMP_LIMB_BITS / 2 + 1))) break; if (ah <= bh) { /* Use q = 1 */ u01 += u00; u11 += u10; } else { mp_double_limb_t rq = div1 (ah, bh); mp_limb_t q = rq.d1; ah = rq.d0; if (ah < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2 + 1))) { /* A is too small, but q is correct. */ u01 += q * u00; u11 += q * u10; break; } q++; u01 += q * u00; u11 += q * u10; } subtract_a1: ASSERT (bh >= ah); bh -= ah; if (bh < (CNST_LIMB (1) << (GMP_LIMB_BITS / 2 + 1))) break; if (bh <= ah) { /* Use q = 1 */ u00 += u01; u10 += u11; } else { mp_double_limb_t rq = div1 (bh, ah); mp_limb_t q = rq.d1; bh = rq.d0; if (bh < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2 + 1))) { /* B is too small, but q is correct. */ u00 += q * u01; u10 += q * u11; break; } q++; u00 += q * u01; u10 += q * u11; } } done: M->u[0][0] = u00; M->u[0][1] = u01; M->u[1][0] = u10; M->u[1][1] = u11; return 1; } /* Sets (r;b) = (a;b) M, with M = (u00, u01; u10, u11). Vector must * have space for n + 1 limbs. Uses three buffers to avoid a copy*/ mp_size_t mpn_hgcd_mul_matrix1_vector (const struct hgcd_matrix1 *M, mp_ptr rp, mp_srcptr ap, mp_ptr bp, mp_size_t n) { mp_limb_t ah, bh; /* Compute (r,b) <-- (u00 a + u10 b, u01 a + u11 b) as r = u00 * a r += u10 * b b *= u11 b += u01 * a */ #if HAVE_NATIVE_mpn_addaddmul_1msb0 ah = mpn_addaddmul_1msb0 (rp, ap, bp, n, M->u[0][0], M->u[1][0]); bh = mpn_addaddmul_1msb0 (bp, bp, ap, n, M->u[1][1], M->u[0][1]); #else ah = mpn_mul_1 (rp, ap, n, M->u[0][0]); ah += mpn_addmul_1 (rp, bp, n, M->u[1][0]); bh = mpn_mul_1 (bp, bp, n, M->u[1][1]); bh += mpn_addmul_1 (bp, ap, n, M->u[0][1]); #endif rp[n] = ah; bp[n] = bh; n += (ah | bh) > 0; return n; }