/* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas primality test on n, using parameters as suggested by the BPSW test. THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN FUTURE GNU MP RELEASES. Copyright 2018, 2020 Free Software Foundation, Inc. Contributed by Marco Bodrato. This file is part of the GNU MP Library. The GNU MP Library is free software; you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. The GNU MP Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with the GNU MP Library. If not, see https://www.gnu.org/licenses/. */ #include "gmp-impl.h" #include "longlong.h" /* Returns an approximation of the sqare root of x. * It gives: * limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2 * or * x <= limb_apprsqrt (x) ^ 2 <= x * 9/8 */ static mp_limb_t limb_apprsqrt (mp_limb_t x) { int s; ASSERT (x > 2); count_leading_zeros (s, x); s = (GMP_LIMB_BITS - s) >> 1; return ((CNST_LIMB(1) << (s - 1)) + (x >> 1 >> s)); } static int mpz_oddjacobi_ui (mpz_t b, mp_limb_t a) { mp_limb_t b_rem; int result_bit1; ASSERT (a & 1); ASSERT (a > 1); ASSERT (SIZ (b) > 0); ASSERT ((*PTR (b) & 1) == 1); result_bit1 = 0; JACOBI_MOD_OR_MODEXACT_1_ODD (result_bit1, b_rem, PTR (b), SIZ (b), a); if (UNLIKELY (b_rem == 0)) return 0; else return mpn_jacobi_base (b_rem, a, result_bit1); } /* Performs strong Lucas' test on x, with parameters suggested */ /* for the BPSW test. Qk and V are passed to recycle variables. */ /* Requires GCD (x,6) = 1.*/ int mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk) { mp_bitcnt_t b0; mpz_t n; mp_limb_t D; /* The absolute value is stored. */ mp_limb_t g; long Q; mpz_t T1, T2; /* Test on the absolute value. */ mpz_roinit_n (n, PTR (x), ABSIZ (x)); ASSERT (mpz_odd_p (n)); /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1); */ #if GMP_NUMB_BITS % 16 == 0 /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ g = mpn_mod_34lsub1 (PTR (n), SIZ (n)); /* (2^12 - 1) = 3^2 * 5 * 7 * 13 */ ASSERT (g % 3 != 0 && g % 5 != 0 && g % 7 != 0); if ((g % 5 & 2) != 0) /* (5/n) = -1, iff n = 2 or 3 (mod 5) */ /* D = 5; Q = -1 */ return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); else if (! POW2_P (g % 7)) /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7) */ D = 7; /* Q = 2 */ /* (9/n) = -1, never: 9 = 3^2 */ else if (mpz_oddjacobi_ui (n, 11) == -1) /* (-11/n) = (n/11) */ D = 11; /* Q = 3 */ else if ((((g % 13 - (g % 13 >> 3)) & 7) > 4) || (((g % 13 - (g % 13 >> 3)) & 7) == 2)) /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13) */ D = 13; /* Q = -3 */ else if (g % 3 == 2) /* (-15/n) = (n/15) = (n/5)*(n/3) */ /* Here, (n/5) = 1, and */ /* (n/3) = -1, iff n = 2 (mod 3) */ D = 15; /* Q = 4 */ #if GMP_NUMB_BITS % 32 == 0 /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1) */ /* (2^24 - 1) = (2^12 - 1) * 17 * 241 */ else if (! POW2_P (g % 17) && ! POW2_P (17 - g % 17)) /* (17/n) = -1, iff n != +-1,+-2,+-4,+-8 (mod 17) */ D = 17; /* Q = -4 */ #endif #else if (mpz_oddjacobi_ui (n, 5) == -1) return mpn_strongfibo (PTR (n), SIZ (n), PTR (V)); #endif else { mp_limb_t maxD; int jac; /* n is odd, to possibly be a square, n % 8 = 1 is needed. */ if (((*PTR (n) & 6) == 0) && UNLIKELY (mpz_perfect_square_p (n))) return 0; /* A square is composite. */ /* Check Ds up to square root (in case, n is prime) or avoid overflows */ if (SIZ (n) == 1) maxD = limb_apprsqrt (* PTR (n)); else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2) mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2); else maxD = GMP_NUMB_MAX; maxD = MIN (maxD, ULONG_MAX); unsigned Ddiff = 2; #if GMP_NUMB_BITS % 16 == 0 const unsigned D2 = 6; #if GMP_NUMB_BITS % 32 == 0 D = 19; Ddiff = 4; #else D = 17; #endif #else const unsigned D2 = 4; D = 7; #endif /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */ /* For those Ds we have (D/n) = (n/|D|) */ /* FIXME: Should we loop only on prime Ds? */ /* The only interesting composite D is 15, because 3 is not tested. */ for (;;) { jac = mpz_oddjacobi_ui (n, D); if (jac != 1) break; if (UNLIKELY (D >= maxD)) return 1; D += Ddiff; Ddiff = D2 - Ddiff; } if (UNLIKELY (jac == 0)) return 0; } /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */ Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2); /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */ /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */ b0 = mpz_scan0 (n, 0); mpz_init (T1); mpz_init (T2); /* If Ud != 0 && Vd != 0 */ if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0) if (LIKELY (--b0 != 0)) for (;;) { /* V_{2k} <- V_k ^ 2 - 2Q^k */ mpz_mul (T2, V, V); mpz_submul_ui (T2, Qk, 2); mpz_tdiv_r (V, T2, n); if (SIZ (V) == 0 || UNLIKELY (--b0 == 0)) break; /* Q^{2k} = (Q^k)^2 */ mpz_mul (T2, Qk, Qk); mpz_tdiv_r (Qk, T2, n); } mpz_clear (T1); mpz_clear (T2); return (b0 != 0); }