/* Exercise mpz_*_kronecker_*() and mpz_jacobi() functions. Copyright 1999-2004, 2013 Free Software Foundation, Inc. This file is part of the GNU MP Library test suite. The GNU MP Library test suite is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MP Library test suite is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */ /* With no arguments the various Kronecker/Jacobi symbol routines are checked against some test data and a lot of derived data. To check the test data against PARI-GP, run t-jac -p | gp -q Enhancements: More big test cases than those given by check_squares_zi would be good. */ #include #include #include #include "gmp-impl.h" #include "tests.h" #ifdef _LONG_LONG_LIMB #define LL(l,ll) ll #else #define LL(l,ll) l #endif int option_pari = 0; unsigned long mpz_mod4 (mpz_srcptr z) { mpz_t m; unsigned long ret; mpz_init (m); mpz_fdiv_r_2exp (m, z, 2); ret = mpz_get_ui (m); mpz_clear (m); return ret; } int mpz_fits_ulimb_p (mpz_srcptr z) { return (SIZ(z) == 1 || SIZ(z) == 0); } mp_limb_t mpz_get_ulimb (mpz_srcptr z) { if (SIZ(z) == 0) return 0; else return PTR(z)[0]; } void try_base (mp_limb_t a, mp_limb_t b, int answer) { int got; if ((b & 1) == 0 || b == 1 || a > b) return; got = mpn_jacobi_base (a, b, 0); if (got != answer) { printf (LL("mpn_jacobi_base (%lu, %lu) is %d should be %d\n", "mpn_jacobi_base (%llu, %llu) is %d should be %d\n"), a, b, got, answer); abort (); } } void try_zi_ui (mpz_srcptr a, unsigned long b, int answer) { int got; got = mpz_kronecker_ui (a, b); if (got != answer) { printf ("mpz_kronecker_ui ("); mpz_out_str (stdout, 10, a); printf (", %lu) is %d should be %d\n", b, got, answer); abort (); } } void try_zi_si (mpz_srcptr a, long b, int answer) { int got; got = mpz_kronecker_si (a, b); if (got != answer) { printf ("mpz_kronecker_si ("); mpz_out_str (stdout, 10, a); printf (", %ld) is %d should be %d\n", b, got, answer); abort (); } } void try_ui_zi (unsigned long a, mpz_srcptr b, int answer) { int got; got = mpz_ui_kronecker (a, b); if (got != answer) { printf ("mpz_ui_kronecker (%lu, ", a); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } void try_si_zi (long a, mpz_srcptr b, int answer) { int got; got = mpz_si_kronecker (a, b); if (got != answer) { printf ("mpz_si_kronecker (%ld, ", a); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } /* Don't bother checking mpz_jacobi, since it only differs for b even, and we don't have an actual expected answer for it. tests/devel/try.c does some checks though. */ void try_zi_zi (mpz_srcptr a, mpz_srcptr b, int answer) { int got; got = mpz_kronecker (a, b); if (got != answer) { printf ("mpz_kronecker ("); mpz_out_str (stdout, 10, a); printf (", "); mpz_out_str (stdout, 10, b); printf (") is %d should be %d\n", got, answer); abort (); } } void try_pari (mpz_srcptr a, mpz_srcptr b, int answer) { printf ("try("); mpz_out_str (stdout, 10, a); printf (","); mpz_out_str (stdout, 10, b); printf (",%d)\n", answer); } void try_each (mpz_srcptr a, mpz_srcptr b, int answer) { #if 0 fprintf(stderr, "asize = %d, bsize = %d\n", mpz_sizeinbase (a, 2), mpz_sizeinbase (b, 2)); #endif if (option_pari) { try_pari (a, b, answer); return; } if (mpz_fits_ulimb_p (a) && mpz_fits_ulimb_p (b)) try_base (mpz_get_ulimb (a), mpz_get_ulimb (b), answer); if (mpz_fits_ulong_p (b)) try_zi_ui (a, mpz_get_ui (b), answer); if (mpz_fits_slong_p (b)) try_zi_si (a, mpz_get_si (b), answer); if (mpz_fits_ulong_p (a)) try_ui_zi (mpz_get_ui (a), b, answer); if (mpz_fits_sint_p (a)) try_si_zi (mpz_get_si (a), b, answer); try_zi_zi (a, b, answer); } /* Try (a/b) and (a/-b). */ void try_pn (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b; mpz_init_set (b, b_orig); try_each (a, b, answer); mpz_neg (b, b); if (mpz_sgn (a) < 0) answer = -answer; try_each (a, b, answer); mpz_clear (b); } /* Try (a+k*p/b) for various k, using the fact (a/b) is periodic in a with period p. For b>0, p=b if b!=2mod4 or p=4*b if b==2mod4. */ void try_periodic_num (mpz_srcptr a_orig, mpz_srcptr b, int answer) { mpz_t a, a_period; int i; if (mpz_sgn (b) <= 0) return; mpz_init_set (a, a_orig); mpz_init_set (a_period, b); if (mpz_mod4 (b) == 2) mpz_mul_ui (a_period, a_period, 4); /* don't bother with these tests if they're only going to produce even/even */ if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (a_period)) goto done; for (i = 0; i < 6; i++) { mpz_add (a, a, a_period); try_pn (a, b, answer); } mpz_set (a, a_orig); for (i = 0; i < 6; i++) { mpz_sub (a, a, a_period); try_pn (a, b, answer); } done: mpz_clear (a); mpz_clear (a_period); } /* Try (a/b+k*p) for various k, using the fact (a/b) is periodic in b of period p. period p a==0,1mod4 a a==2mod4 4*a a==3mod4 and b odd 4*a a==3mod4 and b even 8*a In Henri Cohen's book the period is given as 4*a for all a==2,3mod4, but a counterexample would seem to be (3/2)=-1 which with (3/14)=+1 doesn't have period 4*a (but rather 8*a with (3/26)=-1). Maybe the plain 4*a is to be read as applying to a plain Jacobi symbol with b odd, rather than the Kronecker extension to b even. */ void try_periodic_den (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b, b_period; int i; if (mpz_sgn (a) == 0 || mpz_sgn (b_orig) == 0) return; mpz_init_set (b, b_orig); mpz_init_set (b_period, a); if (mpz_mod4 (a) == 3 && mpz_even_p (b)) mpz_mul_ui (b_period, b_period, 8L); else if (mpz_mod4 (a) >= 2) mpz_mul_ui (b_period, b_period, 4L); /* don't bother with these tests if they're only going to produce even/even */ if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (b_period)) goto done; for (i = 0; i < 6; i++) { mpz_add (b, b, b_period); try_pn (a, b, answer); } mpz_set (b, b_orig); for (i = 0; i < 6; i++) { mpz_sub (b, b, b_period); try_pn (a, b, answer); } done: mpz_clear (b); mpz_clear (b_period); } static const unsigned long ktable[] = { 0, 1, 2, 3, 4, 5, 6, 7, GMP_NUMB_BITS-1, GMP_NUMB_BITS, GMP_NUMB_BITS+1, 2*GMP_NUMB_BITS-1, 2*GMP_NUMB_BITS, 2*GMP_NUMB_BITS+1, 3*GMP_NUMB_BITS-1, 3*GMP_NUMB_BITS, 3*GMP_NUMB_BITS+1 }; /* Try (a/b*2^k) for various k. */ void try_2den (mpz_srcptr a, mpz_srcptr b_orig, int answer) { mpz_t b; int kindex; int answer_a2, answer_k; unsigned long k; /* don't bother when b==0 */ if (mpz_sgn (b_orig) == 0) return; mpz_init_set (b, b_orig); /* (a/2) is 0 if a even, 1 if a==1 or 7 mod 8, -1 if a==3 or 5 mod 8 */ answer_a2 = (mpz_even_p (a) ? 0 : (((SIZ(a) >= 0 ? PTR(a)[0] : -PTR(a)[0]) + 2) & 7) < 4 ? 1 : -1); for (kindex = 0; kindex < numberof (ktable); kindex++) { k = ktable[kindex]; /* answer_k = answer*(answer_a2^k) */ answer_k = (answer_a2 == 0 && k != 0 ? 0 : (k & 1) == 1 && answer_a2 == -1 ? -answer : answer); mpz_mul_2exp (b, b_orig, k); try_pn (a, b, answer_k); } mpz_clear (b); } /* Try (a*2^k/b) for various k. If it happens mpz_ui_kronecker() gets (2/b) wrong it will show up as wrong answers demanded. */ void try_2num (mpz_srcptr a_orig, mpz_srcptr b, int answer) { mpz_t a; int kindex; int answer_2b, answer_k; unsigned long k; /* don't bother when a==0 */ if (mpz_sgn (a_orig) == 0) return; mpz_init (a); /* (2/b) is 0 if b even, 1 if b==1 or 7 mod 8, -1 if b==3 or 5 mod 8 */ answer_2b = (mpz_even_p (b) ? 0 : (((SIZ(b) >= 0 ? PTR(b)[0] : -PTR(b)[0]) + 2) & 7) < 4 ? 1 : -1); for (kindex = 0; kindex < numberof (ktable); kindex++) { k = ktable[kindex]; /* answer_k = answer*(answer_2b^k) */ answer_k = (answer_2b == 0 && k != 0 ? 0 : (k & 1) == 1 && answer_2b == -1 ? -answer : answer); mpz_mul_2exp (a, a_orig, k); try_pn (a, b, answer_k); } mpz_clear (a); } /* The try_2num() and try_2den() routines don't in turn call try_periodic_num() and try_periodic_den() because it hugely increases the number of tests performed, without obviously increasing coverage. Useful extra derived cases can be added here. */ void try_all (mpz_t a, mpz_t b, int answer) { try_pn (a, b, answer); try_periodic_num (a, b, answer); try_periodic_den (a, b, answer); try_2num (a, b, answer); try_2den (a, b, answer); } void check_data (void) { static const struct { const char *a; const char *b; int answer; } data[] = { /* Note that the various derived checks in try_all() reduce the cases that need to be given here. */ /* some zeros */ { "0", "0", 0 }, { "0", "2", 0 }, { "0", "6", 0 }, { "5", "0", 0 }, { "24", "60", 0 }, /* (a/1) = 1, any a In particular note (0/1)=1 so that (a/b)=(a mod b/b). */ { "0", "1", 1 }, { "1", "1", 1 }, { "2", "1", 1 }, { "3", "1", 1 }, { "4", "1", 1 }, { "5", "1", 1 }, /* (0/b) = 0, b != 1 */ { "0", "3", 0 }, { "0", "5", 0 }, { "0", "7", 0 }, { "0", "9", 0 }, { "0", "11", 0 }, { "0", "13", 0 }, { "0", "15", 0 }, /* (1/b) = 1 */ { "1", "1", 1 }, { "1", "3", 1 }, { "1", "5", 1 }, { "1", "7", 1 }, { "1", "9", 1 }, { "1", "11", 1 }, /* (-1/b) = (-1)^((b-1)/2) which is -1 for b==3 mod 4 */ { "-1", "1", 1 }, { "-1", "3", -1 }, { "-1", "5", 1 }, { "-1", "7", -1 }, { "-1", "9", 1 }, { "-1", "11", -1 }, { "-1", "13", 1 }, { "-1", "15", -1 }, { "-1", "17", 1 }, { "-1", "19", -1 }, /* (2/b) = (-1)^((b^2-1)/8) which is -1 for b==3,5 mod 8. try_2num() will exercise multiple powers of 2 in the numerator. */ { "2", "1", 1 }, { "2", "3", -1 }, { "2", "5", -1 }, { "2", "7", 1 }, { "2", "9", 1 }, { "2", "11", -1 }, { "2", "13", -1 }, { "2", "15", 1 }, { "2", "17", 1 }, /* (-2/b) = (-1)^((b^2-1)/8)*(-1)^((b-1)/2) which is -1 for b==5,7mod8. try_2num() will exercise multiple powers of 2 in the numerator, which will test that the shift in mpz_si_kronecker() uses unsigned not signed. */ { "-2", "1", 1 }, { "-2", "3", 1 }, { "-2", "5", -1 }, { "-2", "7", -1 }, { "-2", "9", 1 }, { "-2", "11", 1 }, { "-2", "13", -1 }, { "-2", "15", -1 }, { "-2", "17", 1 }, /* (a/2)=(2/a). try_2den() will exercise multiple powers of 2 in the denominator. */ { "3", "2", -1 }, { "5", "2", -1 }, { "7", "2", 1 }, { "9", "2", 1 }, { "11", "2", -1 }, /* Harriet Griffin, "Elementary Theory of Numbers", page 155, various examples. */ { "2", "135", 1 }, { "135", "19", -1 }, { "2", "19", -1 }, { "19", "135", 1 }, { "173", "135", 1 }, { "38", "135", 1 }, { "135", "173", 1 }, { "173", "5", -1 }, { "3", "5", -1 }, { "5", "173", -1 }, { "173", "3", -1 }, { "2", "3", -1 }, { "3", "173", -1 }, { "253", "21", 1 }, { "1", "21", 1 }, { "21", "253", 1 }, { "21", "11", -1 }, { "-1", "11", -1 }, /* Griffin page 147 */ { "-1", "17", 1 }, { "2", "17", 1 }, { "-2", "17", 1 }, { "-1", "89", 1 }, { "2", "89", 1 }, /* Griffin page 148 */ { "89", "11", 1 }, { "1", "11", 1 }, { "89", "3", -1 }, { "2", "3", -1 }, { "3", "89", -1 }, { "11", "89", 1 }, { "33", "89", -1 }, /* H. Davenport, "The Higher Arithmetic", page 65, the quadratic residues and non-residues mod 19. */ { "1", "19", 1 }, { "4", "19", 1 }, { "5", "19", 1 }, { "6", "19", 1 }, { "7", "19", 1 }, { "9", "19", 1 }, { "11", "19", 1 }, { "16", "19", 1 }, { "17", "19", 1 }, { "2", "19", -1 }, { "3", "19", -1 }, { "8", "19", -1 }, { "10", "19", -1 }, { "12", "19", -1 }, { "13", "19", -1 }, { "14", "19", -1 }, { "15", "19", -1 }, { "18", "19", -1 }, /* Residues and non-residues mod 13 */ { "0", "13", 0 }, { "1", "13", 1 }, { "2", "13", -1 }, { "3", "13", 1 }, { "4", "13", 1 }, { "5", "13", -1 }, { "6", "13", -1 }, { "7", "13", -1 }, { "8", "13", -1 }, { "9", "13", 1 }, { "10", "13", 1 }, { "11", "13", -1 }, { "12", "13", 1 }, /* various */ { "5", "7", -1 }, { "15", "17", 1 }, { "67", "89", 1 }, /* special values inducing a==b==1 at the end of jac_or_kron() */ { "0x10000000000000000000000000000000000000000000000001", "0x10000000000000000000000000000000000000000000000003", 1 }, /* Test for previous bugs in jacobi_2. */ { "0x43900000000", "0x42400000439", -1 }, /* 32-bit limbs */ { "0x4390000000000000000", "0x4240000000000000439", -1 }, /* 64-bit limbs */ { "198158408161039063", "198158360916398807", -1 }, /* Some tests involving large quotients in the continued fraction expansion. */ { "37200210845139167613356125645445281805", "451716845976689892447895811408978421929", -1 }, { "67674091930576781943923596701346271058970643542491743605048620644676477275152701774960868941561652032482173612421015", "4902678867794567120224500687210807069172039735", 0 }, { "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683283672592", "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683290481773", 1 }, /* Exercises the case asize == 1, btwos > 0 in mpz_jacobi. */ { "804609", "421248363205206617296534688032638102314410556521742428832362659824", 1 } , { "4190209", "2239744742177804210557442048984321017460028974602978995388383905961079286530650825925074203175536427000", 1 }, /* Exercises the case asize == 1, btwos = 63 in mpz_jacobi (relevant when GMP_LIMB_BITS == 64). */ { "17311973299000934401", "1675975991242824637446753124775689449936871337036614677577044717424700351103148799107651171694863695242089956242888229458836426332300124417011114380886016", 1 }, { "3220569220116583677", "41859917623035396746", -1 }, /* Other test cases that triggered bugs during development. */ { "37200210845139167613356125645445281805", "340116213441272389607827434472642576514", -1 }, { "74400421690278335226712251290890563610", "451716845976689892447895811408978421929", -1 }, }; int i; mpz_t a, b; mpz_init (a); mpz_init (b); for (i = 0; i < numberof (data); i++) { mpz_set_str_or_abort (a, data[i].a, 0); mpz_set_str_or_abort (b, data[i].b, 0); try_all (a, b, data[i].answer); } mpz_clear (a); mpz_clear (b); } /* (a^2/b)=1 if gcd(a,b)=1, or (a^2/b)=0 if gcd(a,b)!=1. This includes when a=0 or b=0. */ void check_squares_zi (void) { gmp_randstate_ptr rands = RANDS; mpz_t a, b, g; int i, answer; mp_size_t size_range, an, bn; mpz_t bs; mpz_init (bs); mpz_init (a); mpz_init (b); mpz_init (g); for (i = 0; i < 50; i++) { mpz_urandomb (bs, rands, 32); size_range = mpz_get_ui (bs) % 10 + i/8 + 2; mpz_urandomb (bs, rands, size_range); an = mpz_get_ui (bs); mpz_rrandomb (a, rands, an); mpz_urandomb (bs, rands, size_range); bn = mpz_get_ui (bs); mpz_rrandomb (b, rands, bn); mpz_gcd (g, a, b); if (mpz_cmp_ui (g, 1L) == 0) answer = 1; else answer = 0; mpz_mul (a, a, a); try_all (a, b, answer); } mpz_clear (bs); mpz_clear (a); mpz_clear (b); mpz_clear (g); } /* Check the handling of asize==0, make sure it isn't affected by the low limb. */ void check_a_zero (void) { mpz_t a, b; mpz_init_set_ui (a, 0); mpz_init (b); mpz_set_ui (b, 1L); PTR(a)[0] = 0; try_all (a, b, 1); /* (0/1)=1 */ PTR(a)[0] = 1; try_all (a, b, 1); /* (0/1)=1 */ mpz_set_si (b, -1L); PTR(a)[0] = 0; try_all (a, b, 1); /* (0/-1)=1 */ PTR(a)[0] = 1; try_all (a, b, 1); /* (0/-1)=1 */ mpz_set_ui (b, 0); PTR(a)[0] = 0; try_all (a, b, 0); /* (0/0)=0 */ PTR(a)[0] = 1; try_all (a, b, 0); /* (0/0)=0 */ mpz_set_ui (b, 2); PTR(a)[0] = 0; try_all (a, b, 0); /* (0/2)=0 */ PTR(a)[0] = 1; try_all (a, b, 0); /* (0/2)=0 */ mpz_clear (a); mpz_clear (b); } /* Assumes that b = prod p_k^e_k */ int ref_jacobi (mpz_srcptr a, mpz_srcptr b, unsigned nprime, mpz_t prime[], unsigned *exp) { unsigned i; int res; for (i = 0, res = 1; i < nprime; i++) if (exp[i]) { int legendre = refmpz_legendre (a, prime[i]); if (!legendre) return 0; if (exp[i] & 1) res *= legendre; } return res; } void check_jacobi_factored (void) { #define PRIME_N 10 #define PRIME_MAX_SIZE 50 #define PRIME_MAX_EXP 4 #define PRIME_A_COUNT 10 #define PRIME_B_COUNT 5 #define PRIME_MAX_B_SIZE 2000 gmp_randstate_ptr rands = RANDS; mpz_t prime[PRIME_N]; unsigned exp[PRIME_N]; mpz_t a, b, t, bs; unsigned i; mpz_init (a); mpz_init (b); mpz_init (t); mpz_init (bs); /* Generate primes */ for (i = 0; i < PRIME_N; i++) { mp_size_t size; mpz_init (prime[i]); mpz_urandomb (bs, rands, 32); size = mpz_get_ui (bs) % PRIME_MAX_SIZE + 2; mpz_rrandomb (prime[i], rands, size); if (mpz_cmp_ui (prime[i], 3) <= 0) mpz_set_ui (prime[i], 3); else mpz_nextprime (prime[i], prime[i]); } for (i = 0; i < PRIME_B_COUNT; i++) { unsigned j, k; mp_bitcnt_t bsize; mpz_set_ui (b, 1); bsize = 1; for (j = 0; j < PRIME_N && bsize < PRIME_MAX_B_SIZE; j++) { mpz_urandomb (bs, rands, 32); exp[j] = mpz_get_ui (bs) % PRIME_MAX_EXP; mpz_pow_ui (t, prime[j], exp[j]); mpz_mul (b, b, t); bsize = mpz_sizeinbase (b, 2); } for (k = 0; k < PRIME_A_COUNT; k++) { int answer; mpz_rrandomb (a, rands, bsize + 2); answer = ref_jacobi (a, b, j, prime, exp); try_all (a, b, answer); } } for (i = 0; i < PRIME_N; i++) mpz_clear (prime[i]); mpz_clear (a); mpz_clear (b); mpz_clear (t); mpz_clear (bs); #undef PRIME_N #undef PRIME_MAX_SIZE #undef PRIME_MAX_EXP #undef PRIME_A_COUNT #undef PRIME_B_COUNT #undef PRIME_MAX_B_SIZE } /* These tests compute (a|n), where the quotient sequence includes large quotients, and n has a known factorization. Such inputs are generated as follows. First, construct a large n, as a power of a prime p of moderate size. Next, compute a matrix from factors (q,1;1,0), with q chosen with uniformly distributed size. We must stop with matrix elements of roughly half the size of n. Denote elements of M as M = (m00, m01; m10, m11). We now look for solutions to n = m00 x + m01 y a = m10 x + m11 y with x,y > 0. Since n >= m00 * m01, there exists a positive solution to the first equation. Find those x, y, and substitute in the second equation to get a. Then the quotient sequence for (a|n) is precisely the quotients used when constructing M, followed by the quotient sequence for (x|y). Numbers should also be large enough that we exercise hgcd_jacobi, which means that they should be larger than max (GCD_DC_THRESHOLD, 3 * HGCD_THRESHOLD) With an n of roughly 40000 bits, this should hold on most machines. */ void check_large_quotients (void) { #define COUNT 50 #define PBITS 200 #define PPOWER 201 #define MAX_QBITS 500 gmp_randstate_ptr rands = RANDS; mpz_t p, n, q, g, s, t, x, y, bs; mpz_t M[2][2]; mp_bitcnt_t nsize; unsigned i; mpz_init (p); mpz_init (n); mpz_init (q); mpz_init (g); mpz_init (s); mpz_init (t); mpz_init (x); mpz_init (y); mpz_init (bs); mpz_init (M[0][0]); mpz_init (M[0][1]); mpz_init (M[1][0]); mpz_init (M[1][1]); /* First generate a number with known factorization, as a random smallish prime raised to an odd power. Then (a|n) = (a|p). */ mpz_rrandomb (p, rands, PBITS); mpz_nextprime (p, p); mpz_pow_ui (n, p, PPOWER); nsize = mpz_sizeinbase (n, 2); for (i = 0; i < COUNT; i++) { int answer; mp_bitcnt_t msize; mpz_set_ui (M[0][0], 1); mpz_set_ui (M[0][1], 0); mpz_set_ui (M[1][0], 0); mpz_set_ui (M[1][1], 1); for (msize = 1; 2*(msize + MAX_QBITS) + 1 < nsize ;) { unsigned i; mpz_rrandomb (bs, rands, 32); mpz_rrandomb (q, rands, 1 + mpz_get_ui (bs) % MAX_QBITS); /* Multiply by (q, 1; 1,0) from the right */ for (i = 0; i < 2; i++) { mp_bitcnt_t size; mpz_swap (M[i][0], M[i][1]); mpz_addmul (M[i][0], M[i][1], q); size = mpz_sizeinbase (M[i][0], 2); if (size > msize) msize = size; } } mpz_gcdext (g, s, t, M[0][0], M[0][1]); ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0); /* Solve n = M[0][0] * x + M[0][1] * y */ if (mpz_sgn (s) > 0) { mpz_mul (x, n, s); mpz_fdiv_qr (q, x, x, M[0][1]); mpz_mul (y, q, M[0][0]); mpz_addmul (y, t, n); ASSERT_ALWAYS (mpz_sgn (y) > 0); } else { mpz_mul (y, n, t); mpz_fdiv_qr (q, y, y, M[0][0]); mpz_mul (x, q, M[0][1]); mpz_addmul (x, s, n); ASSERT_ALWAYS (mpz_sgn (x) > 0); } mpz_mul (x, x, M[1][0]); mpz_addmul (x, y, M[1][1]); /* Now (x|n) has the selected large quotients */ answer = refmpz_legendre (x, p); try_zi_zi (x, n, answer); } mpz_clear (p); mpz_clear (n); mpz_clear (q); mpz_clear (g); mpz_clear (s); mpz_clear (t); mpz_clear (x); mpz_clear (y); mpz_clear (bs); mpz_clear (M[0][0]); mpz_clear (M[0][1]); mpz_clear (M[1][0]); mpz_clear (M[1][1]); #undef COUNT #undef PBITS #undef PPOWER #undef MAX_QBITS } int main (int argc, char *argv[]) { tests_start (); if (argc >= 2 && strcmp (argv[1], "-p") == 0) { option_pari = 1; printf ("\ try(a,b,answer) =\n\ {\n\ if (kronecker(a,b) != answer,\n\ print(\"wrong at \", a, \",\", b,\n\ \" expected \", answer,\n\ \" pari says \", kronecker(a,b)))\n\ }\n"); } check_data (); check_squares_zi (); check_a_zero (); check_jacobi_factored (); check_large_quotients (); tests_end (); exit (0); }