summaryrefslogtreecommitdiff
path: root/doc/gmp.texi
blob: 2379813e3a4e5660bdb83b954a3751ed232d1bda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
\input texinfo    @c -*-texinfo-*-
@c %**start of header
@setfilename gmp.info
@documentencoding ISO-8859-1
@include version.texi
@settitle GNU MP @value{VERSION}
@synindex tp fn
@iftex
@afourpaper
@end iftex
@comment %**end of header

@copying
This manual describes how to install and use the GNU multiple precision
arithmetic library, version @value{VERSION}.

Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software
Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being ``A GNU Manual'', and with the Back-Cover
Texts being ``You have freedom to copy and modify this GNU Manual, like GNU
software''.  A copy of the license is included in
@ref{GNU Free Documentation License}.
@end copying
@c  Note the @ref above must be on one line, a line break in an @ref within
@c  @copying will bomb in recent texinfo.tex (eg. 2004-04-07.08 which comes
@c  with texinfo 4.7), with messages about missing @endcsname.


@c  Texinfo version 4.2 or up will be needed to process this file.
@c
@c  The version number and edition number are taken from version.texi provided
@c  by automake (note that it's regenerated only if you configure with
@c  --enable-maintainer-mode).
@c
@c  Notes discussing the present version number of GMP in relation to previous
@c  ones (for instance in the "Compatibility" section) must be updated at
@c  manually though.
@c
@c  @cindex entries have been made for function categories and programming
@c  topics.  The "mpn" section is not included in this, because a beginner
@c  looking for "GCD" or something is only going to be confused by pointers to
@c  low level routines.
@c
@c  @cindex entries are present for processors and systems when there's
@c  particular notes concerning them, but not just for everything GMP
@c  supports.
@c
@c  Index entries for files use @code rather than @file, @samp or @option,
@c  since the latter come out with quotes in TeX, which are nice in the text
@c  but don't look so good in index columns.
@c
@c  Tex:
@c
@c  A suitable texinfo.tex is supplied, a newer one should work equally well.
@c
@c  HTML:
@c
@c  Nothing special is done for links to external manuals, they just come out
@c  in the usual makeinfo style, eg. "../libc/Locales.html".  If you have
@c  local copies of such manuals then this is a good thing, if not then you
@c  may want to search-and-replace to some online source.
@c

@dircategory GNU libraries
@direntry
* gmp: (gmp).                   GNU Multiple Precision Arithmetic Library.
@end direntry

@c  html <meta name="description" content="...">
@documentdescription
How to install and use the GNU multiple precision arithmetic library, version @value{VERSION}.
@end documentdescription

@c smallbook
@finalout
@setchapternewpage on

@ifnottex
@node Top, Copying, (dir), (dir)
@top GNU MP
@end ifnottex

@iftex
@titlepage
@title GNU MP
@subtitle The GNU Multiple Precision Arithmetic Library
@subtitle Edition @value{EDITION}
@subtitle @value{UPDATED}

@author by Torbj@"orn Granlund and the GMP development team
@c @email{tg@@gmplib.org}

@c Include the Distribution inside the titlepage so
@c that headings are turned off.

@tex
\global\parindent=0pt
\global\parskip=8pt
\global\baselineskip=13pt
@end tex

@page
@vskip 0pt plus 1filll
@end iftex

@insertcopying
@ifnottex
@sp 1
@end ifnottex

@iftex
@end titlepage
@headings double
@end iftex

@c  Don't bother with contents for html, the menus seem adequate.
@ifnothtml
@contents
@end ifnothtml

@menu
* Copying::                    GMP Copying Conditions (LGPL).
* Introduction to GMP::        Brief introduction to GNU MP.
* Installing GMP::             How to configure and compile the GMP library.
* GMP Basics::                 What every GMP user should know.
* Reporting Bugs::             How to usefully report bugs.
* Integer Functions::          Functions for arithmetic on signed integers.
* Rational Number Functions::  Functions for arithmetic on rational numbers.
* Floating-point Functions::   Functions for arithmetic on floats.
* Low-level Functions::        Fast functions for natural numbers.
* Random Number Functions::    Functions for generating random numbers.
* Formatted Output::           @code{printf} style output.
* Formatted Input::            @code{scanf} style input.
* C++ Class Interface::        Class wrappers around GMP types.
* Custom Allocation::          How to customize the internal allocation.
* Language Bindings::          Using GMP from other languages.
* Algorithms::                 What happens behind the scenes.
* Internals::                  How values are represented behind the scenes.

* Contributors::               Who brings you this library?
* References::                 Some useful papers and books to read.
* GNU Free Documentation License::
* Concept Index::
* Function Index::
@end menu


@c  @m{T,N} is $T$ in tex or @math{N} otherwise.  This is an easy way to give
@c  different forms for math in tex and info.  Commas in N or T don't work,
@c  but @C{} can be used instead.  \, works in info but not in tex.
@iftex
@macro m {T,N}
@tex$\T\$@end tex
@end macro
@end iftex
@ifnottex
@macro m {T,N}
@math{\N\}
@end macro
@end ifnottex

@macro C {}
,
@end macro

@c  @ms{V,N} is $V_N$ in tex or just vn otherwise.  This suits simple
@c  subscripts like @ms{x,0}.
@iftex
@macro ms {V,N}
@tex$\V\_{\N\}$@end tex
@end macro
@end iftex
@ifnottex
@macro ms {V,N}
\V\\N\
@end macro
@end ifnottex

@c  @nicode{S} is plain S in info, or @code{S} elsewhere.  This can be used
@c  when the quotes that @code{} gives in info aren't wanted, but the
@c  fontification in tex or html is wanted.  Doesn't work as @nicode{'\\0'}
@c  though (gives two backslashes in tex).
@ifinfo
@macro nicode {S}
\S\
@end macro
@end ifinfo
@ifnotinfo
@macro nicode {S}
@code{\S\}
@end macro
@end ifnotinfo

@c  @nisamp{S} is plain S in info, or @samp{S} elsewhere.  This can be used
@c  when the quotes that @samp{} gives in info aren't wanted, but the
@c  fontification in tex or html is wanted.
@ifinfo
@macro nisamp {S}
\S\
@end macro
@end ifinfo
@ifnotinfo
@macro nisamp {S}
@samp{\S\}
@end macro
@end ifnotinfo

@c  Usage: @GMPtimes{}
@c  Give either \times or the word "times".
@tex
\gdef\GMPtimes{\times}
@end tex
@ifnottex
@macro GMPtimes
times
@end macro
@end ifnottex

@c  Usage: @GMPmultiply{}
@c  Give * in info, or nothing in tex.
@tex
\gdef\GMPmultiply{}
@end tex
@ifnottex
@macro GMPmultiply
*
@end macro
@end ifnottex

@c  Usage: @GMPabs{x}
@c  Give either |x| in tex, or abs(x) in info or html.
@tex
\gdef\GMPabs#1{|#1|}
@end tex
@ifnottex
@macro GMPabs {X}
@abs{}(\X\)
@end macro
@end ifnottex

@c  Usage: @GMPfloor{x}
@c  Give either \lfloor x\rfloor in tex, or floor(x) in info or html.
@tex
\gdef\GMPfloor#1{\lfloor #1\rfloor}
@end tex
@ifnottex
@macro GMPfloor {X}
floor(\X\)
@end macro
@end ifnottex

@c  Usage: @GMPceil{x}
@c  Give either \lceil x\rceil in tex, or ceil(x) in info or html.
@tex
\gdef\GMPceil#1{\lceil #1 \rceil}
@end tex
@ifnottex
@macro GMPceil {X}
ceil(\X\)
@end macro
@end ifnottex

@c  Math operators already available in tex, made available in info too.
@c  For example @bmod{} can be used in both tex and info.
@ifnottex
@macro bmod
mod
@end macro
@macro gcd
gcd
@end macro
@macro ge
>=
@end macro
@macro le
<=
@end macro
@macro log
log
@end macro
@macro min
min
@end macro
@macro leftarrow
<-
@end macro
@macro rightarrow
->
@end macro
@end ifnottex

@c  New math operators.
@c  @abs{} can be used in both tex and info, or just \abs in tex.
@tex
\gdef\abs{\mathop{\rm abs}}
@end tex
@ifnottex
@macro abs
abs
@end macro
@end ifnottex

@c  @cross{} is a \times symbol in tex, or an "x" in info.  In tex it works
@c  inside or outside $ $.
@tex
\gdef\cross{\ifmmode\times\else$\times$\fi}
@end tex
@ifnottex
@macro cross
x
@end macro
@end ifnottex

@c  @times{} made available as a "*" in info and html (already works in tex).
@ifnottex
@macro times
*
@end macro
@end ifnottex

@c  Usage: @W{text}
@c  Like @w{} but working in math mode too.
@tex
\gdef\W#1{\ifmmode{#1}\else\w{#1}\fi}
@end tex
@ifnottex
@macro W {S}
@w{\S\}
@end macro
@end ifnottex

@c  Usage: \GMPdisplay{text}
@c  Put the given text in an @display style indent, but without turning off
@c  paragraph reflow etc.
@tex
\gdef\GMPdisplay#1{%
\noindent
\advance\leftskip by \lispnarrowing
#1\par}
@end tex

@c  Usage: \GMPhat
@c  A new \hat that will work in math mode, unlike the texinfo redefined
@c  version.
@tex
\gdef\GMPhat{\mathaccent"705E}
@end tex

@c  Usage: \GMPraise{text}
@c  For use in a $ $ math expression as an alternative to "^".  This is good
@c  for @code{} in an exponent, since there seems to be no superscript font
@c  for that.
@tex
\gdef\GMPraise#1{\mskip0.5\thinmuskip\hbox{\raise0.8ex\hbox{#1}}}
@end tex

@c  Usage: @texlinebreak{}
@c  A line break as per @*, but only in tex.
@iftex
@macro texlinebreak
@*
@end macro
@end iftex
@ifnottex
@macro texlinebreak
@end macro
@end ifnottex

@c  Usage: @maybepagebreak
@c  Allow tex to insert a page break, if it feels the urge.
@c  Normally blocks of @deftypefun/funx are kept together, which can lead to
@c  some poor page break positioning if it's a big block, like the sets of
@c  division functions etc.
@tex
\gdef\maybepagebreak{\penalty0}
@end tex
@ifnottex
@macro maybepagebreak
@end macro
@end ifnottex

@c  Usage: @GMPreftop{info,title}
@c  Usage: @GMPpxreftop{info,title}
@c
@c  Like @ref{} and @pxref{}, but designed for a reference to the top of a
@c  document, not a particular section.  The TeX output for plain @ref insists
@c  on printing a particular section, GMPreftop gives just the title.
@c
@c  The texinfo manual recommends putting a likely section name in references
@c  like this, eg. "Introduction", but it seems better to just give the title.
@c
@iftex
@macro GMPreftop{info,title}
@i{\title\}
@end macro
@macro GMPpxreftop{info,title}
see @i{\title\}
@end macro
@end iftex
@c
@ifnottex
@macro GMPreftop{info,title}
@ref{Top,\title\,\title\,\info\,\title\}
@end macro
@macro GMPpxreftop{info,title}
@pxref{Top,\title\,\title\,\info\,\title\}
@end macro
@end ifnottex


@node Copying, Introduction to GMP, Top, Top
@comment  node-name, next, previous,  up
@unnumbered GNU MP Copying Conditions
@cindex Copying conditions
@cindex Conditions for copying GNU MP
@cindex License conditions

This library is @dfn{free}; this means that everyone is free to use it and
free to redistribute it on a free basis.  The library is not in the public
domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating
citizen would want to do.  What is not allowed is to try to prevent others
from further sharing any version of this library that they might get from
you.@refill

Specifically, we want to make sure that you have the right to give away copies
of the library, that you receive source code or else can get it if you want
it, that you can change this library or use pieces of it in new free programs,
and that you know you can do these things.@refill

To make sure that everyone has such rights, we have to forbid you to deprive
anyone else of these rights.  For example, if you distribute copies of the GNU
MP library, you must give the recipients all the rights that you have.  You
must make sure that they, too, receive or can get the source code.  And you
must tell them their rights.@refill

Also, for our own protection, we must make certain that everyone finds out
that there is no warranty for the GNU MP library.  If it is modified by
someone else and passed on, we want their recipients to know that what they
have is not what we distributed, so that any problems introduced by others
will not reflect on our reputation.@refill

The precise conditions of the license for the GNU MP library are found in the
Lesser General Public License version 3 that accompanies the source code,
see @file{COPYING.LIB}.  Certain demonstration programs are provided under the
terms of the plain General Public License version 3, see @file{COPYING}.


@node Introduction to GMP, Installing GMP, Copying, Top
@comment  node-name,  next,  previous,  up
@chapter Introduction to GNU MP
@cindex Introduction

GNU MP is a portable library written in C for arbitrary precision arithmetic
on integers, rational numbers, and floating-point numbers.  It aims to provide
the fastest possible arithmetic for all applications that need higher
precision than is directly supported by the basic C types.

Many applications use just a few hundred bits of precision; but some
applications may need thousands or even millions of bits.  GMP is designed to
give good performance for both, by choosing algorithms based on the sizes of
the operands, and by carefully keeping the overhead at a minimum.

The speed of GMP is achieved by using fullwords as the basic arithmetic type,
by using sophisticated algorithms, by including carefully optimized assembly
code for the most common inner loops for many different CPUs, and by a general
emphasis on speed (as opposed to simplicity or elegance).

There is assembly code for these CPUs:
@cindex CPU types
ARM,
DEC Alpha 21064, 21164, and 21264,
AMD 29000,
AMD K6, K6-2, Athlon, and Athlon64,
Hitachi SuperH and SH-2,
HPPA 1.0, 1.1 and 2.0,
Intel Pentium, Pentium Pro/II/III, Pentium 4, generic x86,
Intel IA-64, i960,
Motorola MC68000, MC68020, MC88100, and MC88110,
Motorola/IBM PowerPC 32 and 64,
National NS32000,
IBM POWER,
MIPS R3000, R4000,
SPARCv7, SuperSPARC, generic SPARCv8, UltraSPARC,
DEC VAX,
and
Zilog Z8000.
Some optimizations also for
Cray vector systems,
Clipper,
IBM ROMP (RT),
and
Pyramid AP/XP.

@cindex Home page
@cindex Web page
@noindent
For up-to-date information on GMP, please see the GMP web pages at

@display
@uref{http://gmplib.org/}
@end display

@cindex Latest version of GMP
@cindex Anonymous FTP of latest version
@cindex FTP of latest version
@noindent
The latest version of the library is available at

@display
@uref{ftp://ftp.gnu.org/gnu/gmp/}
@end display

Many sites around the world mirror @samp{ftp.gnu.org}, please use a mirror
near you, see @uref{http://www.gnu.org/order/ftp.html} for a full list.

@cindex Mailing lists
There are three public mailing lists of interest.  One for release
announcements, one for general questions and discussions about usage of the GMP
library and one for bug reports.  For more information, see

@display
@uref{http://gmplib.org/mailman/listinfo/}.
@end display

The proper place for bug reports is @email{gmp-bugs@@gmplib.org}.  See
@ref{Reporting Bugs} for information about reporting bugs.

@sp 1
@section How to use this Manual
@cindex About this manual

Everyone should read @ref{GMP Basics}.  If you need to install the library
yourself, then read @ref{Installing GMP}.  If you have a system with multiple
ABIs, then read @ref{ABI and ISA}, for the compiler options that must be used
on applications.

The rest of the manual can be used for later reference, although it is
probably a good idea to glance through it.


@node Installing GMP, GMP Basics, Introduction to GMP, Top
@comment  node-name,  next,  previous,  up
@chapter Installing GMP
@cindex Installing GMP
@cindex Configuring GMP
@cindex Building GMP

GMP has an autoconf/automake/libtool based configuration system.  On a
Unix-like system a basic build can be done with

@example
./configure
make
@end example

@noindent
Some self-tests can be run with

@example
make check
@end example

@noindent
And you can install (under @file{/usr/local} by default) with

@example
make install
@end example

If you experience problems, please report them to @email{gmp-bugs@@gmplib.org}.
See @ref{Reporting Bugs}, for information on what to include in useful bug
reports.

@menu
* Build Options::
* ABI and ISA::
* Notes for Package Builds::
* Notes for Particular Systems::
* Known Build Problems::
* Performance optimization::
@end menu


@node Build Options, ABI and ISA, Installing GMP, Installing GMP
@section Build Options
@cindex Build options

All the usual autoconf configure options are available, run @samp{./configure
--help} for a summary.  The file @file{INSTALL.autoconf} has some generic
installation information too.

@table @asis
@item Tools
@cindex Non-Unix systems
@samp{configure} requires various Unix-like tools.  See @ref{Notes for
Particular Systems}, for some options on non-Unix systems.

It might be possible to build without the help of @samp{configure}, certainly
all the code is there, but unfortunately you'll be on your own.

@item Build Directory
@cindex Build directory
To compile in a separate build directory, @command{cd} to that directory, and
prefix the configure command with the path to the GMP source directory.  For
example

@example
cd /my/build/dir
/my/sources/gmp-@value{VERSION}/configure
@end example

Not all @samp{make} programs have the necessary features (@code{VPATH}) to
support this.  In particular, SunOS and Slowaris @command{make} have bugs that
make them unable to build in a separate directory.  Use GNU @command{make}
instead.

@item @option{--prefix} and @option{--exec-prefix}
@cindex Prefix
@cindex Exec prefix
@cindex Install prefix
@cindex @code{--prefix}
@cindex @code{--exec-prefix}
The @option{--prefix} option can be used in the normal way to direct GMP to
install under a particular tree.  The default is @samp{/usr/local}.

@option{--exec-prefix} can be used to direct architecture-dependent files like
@file{libgmp.a} to a different location.  This can be used to share
architecture-independent parts like the documentation, but separate the
dependent parts.  Note however that @file{gmp.h} and @file{mp.h} are
architecture-dependent since they encode certain aspects of @file{libgmp}, so
it will be necessary to ensure both @file{$prefix/include} and
@file{$exec_prefix/include} are available to the compiler.

@item @option{--disable-shared}, @option{--disable-static}
@cindex @code{--disable-shared}
@cindex @code{--disable-static}
By default both shared and static libraries are built (where possible), but
one or other can be disabled.  Shared libraries result in smaller executables
and permit code sharing between separate running processes, but on some CPUs
are slightly slower, having a small cost on each function call.

@item Native Compilation, @option{--build=CPU-VENDOR-OS}
@cindex Native compilation
@cindex Build system
@cindex @code{--build}
For normal native compilation, the system can be specified with
@samp{--build}.  By default @samp{./configure} uses the output from running
@samp{./config.guess}.  On some systems @samp{./config.guess} can determine
the exact CPU type, on others it will be necessary to give it explicitly.  For
example,

@example
./configure --build=ultrasparc-sun-solaris2.7
@end example

In all cases the @samp{OS} part is important, since it controls how libtool
generates shared libraries.  Running @samp{./config.guess} is the simplest way
to see what it should be, if you don't know already.

@item Cross Compilation, @option{--host=CPU-VENDOR-OS}
@cindex Cross compiling
@cindex Host system
@cindex @code{--host}
When cross-compiling, the system used for compiling is given by @samp{--build}
and the system where the library will run is given by @samp{--host}.  For
example when using a FreeBSD Athlon system to build GNU/Linux m68k binaries,

@example
./configure --build=athlon-pc-freebsd3.5 --host=m68k-mac-linux-gnu
@end example

Compiler tools are sought first with the host system type as a prefix.  For
example @command{m68k-mac-linux-gnu-ranlib} is tried, then plain
@command{ranlib}.  This makes it possible for a set of cross-compiling tools
to co-exist with native tools.  The prefix is the argument to @samp{--host},
and this can be an alias, such as @samp{m68k-linux}.  But note that tools
don't have to be setup this way, it's enough to just have a @env{PATH} with a
suitable cross-compiling @command{cc} etc.

Compiling for a different CPU in the same family as the build system is a form
of cross-compilation, though very possibly this would merely be special
options on a native compiler.  In any case @samp{./configure} avoids depending
on being able to run code on the build system, which is important when
creating binaries for a newer CPU since they very possibly won't run on the
build system.

In all cases the compiler must be able to produce an executable (of whatever
format) from a standard C @code{main}.  Although only object files will go to
make up @file{libgmp}, @samp{./configure} uses linking tests for various
purposes, such as determining what functions are available on the host system.

Currently a warning is given unless an explicit @samp{--build} is used when
cross-compiling, because it may not be possible to correctly guess the build
system type if the @env{PATH} has only a cross-compiling @command{cc}.

Note that the @samp{--target} option is not appropriate for GMP@.  It's for use
when building compiler tools, with @samp{--host} being where they will run,
and @samp{--target} what they'll produce code for.  Ordinary programs or
libraries like GMP are only interested in the @samp{--host} part, being where
they'll run.  (Some past versions of GMP used @samp{--target} incorrectly.)

@item CPU types
@cindex CPU types
In general, if you want a library that runs as fast as possible, you should
configure GMP for the exact CPU type your system uses.  However, this may mean
the binaries won't run on older members of the family, and might run slower on
other members, older or newer.  The best idea is always to build GMP for the
exact machine type you intend to run it on.

The following CPUs have specific support.  See @file{configure.in} for details
of what code and compiler options they select.

@itemize @bullet

@c Keep this formatting, it's easy to read and it can be grepped to
@c automatically test that CPUs listed get through ./config.sub

@item
Alpha:
@nisamp{alpha},
@nisamp{alphaev5},
@nisamp{alphaev56},
@nisamp{alphapca56},
@nisamp{alphapca57},
@nisamp{alphaev6},
@nisamp{alphaev67},
@nisamp{alphaev68}
@nisamp{alphaev7}

@item
Cray:
@nisamp{c90},
@nisamp{j90},
@nisamp{t90},
@nisamp{sv1}

@item
HPPA:
@nisamp{hppa1.0},
@nisamp{hppa1.1},
@nisamp{hppa2.0},
@nisamp{hppa2.0n},
@nisamp{hppa2.0w},
@nisamp{hppa64}

@item
IA-64:
@nisamp{ia64},
@nisamp{itanium},
@nisamp{itanium2}

@item
MIPS:
@nisamp{mips},
@nisamp{mips3},
@nisamp{mips64}

@item
Motorola:
@nisamp{m68k},
@nisamp{m68000},
@nisamp{m68010},
@nisamp{m68020},
@nisamp{m68030},
@nisamp{m68040},
@nisamp{m68060},
@nisamp{m68302},
@nisamp{m68360},
@nisamp{m88k},
@nisamp{m88110}

@item
POWER:
@nisamp{power},
@nisamp{power1},
@nisamp{power2},
@nisamp{power2sc}

@item
PowerPC:
@nisamp{powerpc},
@nisamp{powerpc64},
@nisamp{powerpc401},
@nisamp{powerpc403},
@nisamp{powerpc405},
@nisamp{powerpc505},
@nisamp{powerpc601},
@nisamp{powerpc602},
@nisamp{powerpc603},
@nisamp{powerpc603e},
@nisamp{powerpc604},
@nisamp{powerpc604e},
@nisamp{powerpc620},
@nisamp{powerpc630},
@nisamp{powerpc740},
@nisamp{powerpc7400},
@nisamp{powerpc7450},
@nisamp{powerpc750},
@nisamp{powerpc801},
@nisamp{powerpc821},
@nisamp{powerpc823},
@nisamp{powerpc860},
@nisamp{powerpc970}

@item
SPARC:
@nisamp{sparc},
@nisamp{sparcv8},
@nisamp{microsparc},
@nisamp{supersparc},
@nisamp{sparcv9},
@nisamp{ultrasparc},
@nisamp{ultrasparc2},
@nisamp{ultrasparc2i},
@nisamp{ultrasparc3},
@nisamp{sparc64}

@item
x86 family:
@nisamp{i386},
@nisamp{i486},
@nisamp{i586},
@nisamp{pentium},
@nisamp{pentiummmx},
@nisamp{pentiumpro},
@nisamp{pentium2},
@nisamp{pentium3},
@nisamp{pentium4},
@nisamp{k6},
@nisamp{k62},
@nisamp{k63},
@nisamp{athlon},
@nisamp{amd64},
@nisamp{viac3},
@nisamp{viac32}

@item
Other:
@nisamp{a29k},
@nisamp{arm},
@nisamp{clipper},
@nisamp{i960},
@nisamp{ns32k},
@nisamp{pyramid},
@nisamp{sh},
@nisamp{sh2},
@nisamp{vax},
@nisamp{z8k}
@end itemize

CPUs not listed will use generic C code.

@item Generic C Build
@cindex Generic C
If some of the assembly code causes problems, or if otherwise desired, the
generic C code can be selected with the configure @option{--disable-assembly}.

Note that this will run quite slowly, but it should be portable and should at
least make it possible to get something running if all else fails.

@item Fat binary, @option{--enable-fat}
@cindex Fat binary
@cindex @option{--enable-fat}
Using @option{--enable-fat} selects a ``fat binary'' build on x86, where
optimized low level subroutines are chosen at runtime according to the CPU
detected.  This means more code, but gives good performance on all x86 chips.
(This option might become available for more architectures in the future.)

@item @option{ABI}
@cindex ABI
On some systems GMP supports multiple ABIs (application binary interfaces),
meaning data type sizes and calling conventions.  By default GMP chooses the
best ABI available, but a particular ABI can be selected.  For example

@example
./configure --host=mips64-sgi-irix6 ABI=n32
@end example

See @ref{ABI and ISA}, for the available choices on relevant CPUs, and what
applications need to do.

@item @option{CC}, @option{CFLAGS}
@cindex C compiler
@cindex @code{CC}
@cindex @code{CFLAGS}
By default the C compiler used is chosen from among some likely candidates,
with @command{gcc} normally preferred if it's present.  The usual
@samp{CC=whatever} can be passed to @samp{./configure} to choose something
different.

For various systems, default compiler flags are set based on the CPU and
compiler.  The usual @samp{CFLAGS="-whatever"} can be passed to
@samp{./configure} to use something different or to set good flags for systems
GMP doesn't otherwise know.

The @samp{CC} and @samp{CFLAGS} used are printed during @samp{./configure},
and can be found in each generated @file{Makefile}.  This is the easiest way
to check the defaults when considering changing or adding something.

Note that when @samp{CC} and @samp{CFLAGS} are specified on a system
supporting multiple ABIs it's important to give an explicit
@samp{ABI=whatever}, since GMP can't determine the ABI just from the flags and
won't be able to select the correct assembly code.

If just @samp{CC} is selected then normal default @samp{CFLAGS} for that
compiler will be used (if GMP recognises it).  For example @samp{CC=gcc} can
be used to force the use of GCC, with default flags (and default ABI).

@item @option{CPPFLAGS}
@cindex @code{CPPFLAGS}
Any flags like @samp{-D} defines or @samp{-I} includes required by the
preprocessor should be set in @samp{CPPFLAGS} rather than @samp{CFLAGS}.
Compiling is done with both @samp{CPPFLAGS} and @samp{CFLAGS}, but
preprocessing uses just @samp{CPPFLAGS}.  This distinction is because most
preprocessors won't accept all the flags the compiler does.  Preprocessing is
done separately in some configure tests.

@item @option{CC_FOR_BUILD}
@cindex @code{CC_FOR_BUILD}
Some build-time programs are compiled and run to generate host-specific data
tables.  @samp{CC_FOR_BUILD} is the compiler used for this.  It doesn't need
to be in any particular ABI or mode, it merely needs to generate executables
that can run.  The default is to try the selected @samp{CC} and some likely
candidates such as @samp{cc} and @samp{gcc}, looking for something that works.

No flags are used with @samp{CC_FOR_BUILD} because a simple invocation like
@samp{cc foo.c} should be enough.  If some particular options are required
they can be included as for instance @samp{CC_FOR_BUILD="cc -whatever"}.

@item C++ Support, @option{--enable-cxx}
@cindex C++ support
@cindex @code{--enable-cxx}
C++ support in GMP can be enabled with @samp{--enable-cxx}, in which case a
C++ compiler will be required.  As a convenience @samp{--enable-cxx=detect}
can be used to enable C++ support only if a compiler can be found.  The C++
support consists of a library @file{libgmpxx.la} and header file
@file{gmpxx.h} (@pxref{Headers and Libraries}).

A separate @file{libgmpxx.la} has been adopted rather than having C++ objects
within @file{libgmp.la} in order to ensure dynamic linked C programs aren't
bloated by a dependency on the C++ standard library, and to avoid any chance
that the C++ compiler could be required when linking plain C programs.

@file{libgmpxx.la} will use certain internals from @file{libgmp.la} and can
only be expected to work with @file{libgmp.la} from the same GMP version.
Future changes to the relevant internals will be accompanied by renaming, so a
mismatch will cause unresolved symbols rather than perhaps mysterious
misbehaviour.

In general @file{libgmpxx.la} will be usable only with the C++ compiler that
built it, since name mangling and runtime support are usually incompatible
between different compilers.

@item @option{CXX}, @option{CXXFLAGS}
@cindex C++ compiler
@cindex @code{CXX}
@cindex @code{CXXFLAGS}
When C++ support is enabled, the C++ compiler and its flags can be set with
variables @samp{CXX} and @samp{CXXFLAGS} in the usual way.  The default for
@samp{CXX} is the first compiler that works from a list of likely candidates,
with @command{g++} normally preferred when available.  The default for
@samp{CXXFLAGS} is to try @samp{CFLAGS}, @samp{CFLAGS} without @samp{-g}, then
for @command{g++} either @samp{-g -O2} or @samp{-O2}, or for other compilers
@samp{-g} or nothing.  Trying @samp{CFLAGS} this way is convenient when using
@samp{gcc} and @samp{g++} together, since the flags for @samp{gcc} will
usually suit @samp{g++}.

It's important that the C and C++ compilers match, meaning their startup and
runtime support routines are compatible and that they generate code in the
same ABI (if there's a choice of ABIs on the system).  @samp{./configure}
isn't currently able to check these things very well itself, so for that
reason @samp{--disable-cxx} is the default, to avoid a build failure due to a
compiler mismatch.  Perhaps this will change in the future.

Incidentally, it's normally not good enough to set @samp{CXX} to the same as
@samp{CC}.  Although @command{gcc} for instance recognises @file{foo.cc} as
C++ code, only @command{g++} will invoke the linker the right way when
building an executable or shared library from C++ object files.

@item Temporary Memory, @option{--enable-alloca=<choice>}
@cindex Temporary memory
@cindex Stack overflow
@cindex @code{alloca}
@cindex @code{--enable-alloca}
GMP allocates temporary workspace using one of the following three methods,
which can be selected with for instance
@samp{--enable-alloca=malloc-reentrant}.

@itemize @bullet
@item
@samp{alloca} - C library or compiler builtin.
@item
@samp{malloc-reentrant} - the heap, in a re-entrant fashion.
@item
@samp{malloc-notreentrant} - the heap, with global variables.
@end itemize

For convenience, the following choices are also available.
@samp{--disable-alloca} is the same as @samp{no}.

@itemize @bullet
@item
@samp{yes} - a synonym for @samp{alloca}.
@item
@samp{no} - a synonym for @samp{malloc-reentrant}.
@item
@samp{reentrant} - @code{alloca} if available, otherwise
@samp{malloc-reentrant}.  This is the default.
@item
@samp{notreentrant} - @code{alloca} if available, otherwise
@samp{malloc-notreentrant}.
@end itemize

@code{alloca} is reentrant and fast, and is recommended.  It actually allocates
just small blocks on the stack; larger ones use malloc-reentrant.

@samp{malloc-reentrant} is, as the name suggests, reentrant and thread safe,
but @samp{malloc-notreentrant} is faster and should be used if reentrancy is
not required.

The two malloc methods in fact use the memory allocation functions selected by
@code{mp_set_memory_functions}, these being @code{malloc} and friends by
default.  @xref{Custom Allocation}.

An additional choice @samp{--enable-alloca=debug} is available, to help when
debugging memory related problems (@pxref{Debugging}).

@item FFT Multiplication, @option{--disable-fft}
@cindex FFT multiplication
@cindex @code{--disable-fft}
By default multiplications are done using Karatsuba, 3-way Toom, and
Fermat FFT@.  The FFT is only used on large to very large operands and can be
disabled to save code size if desired.

@item Assertion Checking, @option{--enable-assert}
@cindex Assertion checking
@cindex @code{--enable-assert}
This option enables some consistency checking within the library.  This can be
of use while debugging, @pxref{Debugging}.

@item Execution Profiling, @option{--enable-profiling=prof/gprof/instrument}
@cindex Execution profiling
@cindex @code{--enable-profiling}
Enable profiling support, in one of various styles, @pxref{Profiling}.

@item @option{MPN_PATH}
@cindex @code{MPN_PATH}
Various assembly versions of each mpn subroutines are provided.  For a given
CPU, a search is made though a path to choose a version of each.  For example
@samp{sparcv8} has

@example
MPN_PATH="sparc32/v8 sparc32 generic"
@end example

which means look first for v8 code, then plain sparc32 (which is v7), and
finally fall back on generic C@.  Knowledgeable users with special requirements
can specify a different path.  Normally this is completely unnecessary.

@item Documentation
@cindex Documentation formats
@cindex Texinfo
The source for the document you're now reading is @file{doc/gmp.texi}, in
Texinfo format, see @GMPreftop{texinfo, Texinfo}.

@cindex Postscript
@cindex DVI
@cindex PDF
Info format @samp{doc/gmp.info} is included in the distribution.  The usual
automake targets are available to make PostScript, DVI, PDF and HTML (these
will require various @TeX{} and Texinfo tools).

@cindex DocBook
@cindex XML
DocBook and XML can be generated by the Texinfo @command{makeinfo} program
too, see @ref{makeinfo options,, Options for @command{makeinfo}, texinfo,
Texinfo}.

Some supplementary notes can also be found in the @file{doc} subdirectory.

@end table


@need 2000
@node ABI and ISA, Notes for Package Builds, Build Options, Installing GMP
@section ABI and ISA
@cindex ABI
@cindex Application Binary Interface
@cindex ISA
@cindex Instruction Set Architecture

ABI (Application Binary Interface) refers to the calling conventions between
functions, meaning what registers are used and what sizes the various C data
types are.  ISA (Instruction Set Architecture) refers to the instructions and
registers a CPU has available.

Some 64-bit ISA CPUs have both a 64-bit ABI and a 32-bit ABI defined, the
latter for compatibility with older CPUs in the family.  GMP supports some
CPUs like this in both ABIs.  In fact within GMP @samp{ABI} means a
combination of chip ABI, plus how GMP chooses to use it.  For example in some
32-bit ABIs, GMP may support a limb as either a 32-bit @code{long} or a 64-bit
@code{long long}.

By default GMP chooses the best ABI available for a given system, and this
generally gives significantly greater speed.  But an ABI can be chosen
explicitly to make GMP compatible with other libraries, or particular
application requirements.  For example,

@example
./configure ABI=32
@end example

In all cases it's vital that all object code used in a given program is
compiled for the same ABI.

Usually a limb is implemented as a @code{long}.  When a @code{long long} limb
is used this is encoded in the generated @file{gmp.h}.  This is convenient for
applications, but it does mean that @file{gmp.h} will vary, and can't be just
copied around.  @file{gmp.h} remains compiler independent though, since all
compilers for a particular ABI will be expected to use the same limb type.

Currently no attempt is made to follow whatever conventions a system has for
installing library or header files built for a particular ABI@.  This will
probably only matter when installing multiple builds of GMP, and it might be
as simple as configuring with a special @samp{libdir}, or it might require
more than that.  Note that builds for different ABIs need to done separately,
with a fresh @command{./configure} and @command{make} each.

@sp 1
@table @asis
@need 1000
@item AMD64 (@samp{x86_64})
@cindex AMD64
On AMD64 systems supporting both 32-bit and 64-bit modes for applications, the
following ABI choices are available.

@table @asis
@item @samp{ABI=64}
The 64-bit ABI uses 64-bit limbs and pointers and makes full use of the chip
architecture.  This is the default.  Applications will usually not need
special compiler flags, but for reference the option is

@example
gcc  -m64
@end example

@item @samp{ABI=32}
The 32-bit ABI is the usual i386 conventions.  This will be slower, and is not
recommended except for inter-operating with other code not yet 64-bit capable.
Applications must be compiled with

@example
gcc  -m32
@end example

(In GCC 2.95 and earlier there's no @samp{-m32} option, it's the only mode.)
@end table

@sp 1
@need 1000
@item HPPA 2.0 (@samp{hppa2.0*}, @samp{hppa64})
@cindex HPPA
@cindex HP-UX
@table @asis
@item @samp{ABI=2.0w}
The 2.0w ABI uses 64-bit limbs and pointers and is available on HP-UX 11 or
up.  Applications must be compiled with

@example
gcc [built for 2.0w]
cc  +DD64
@end example

@item @samp{ABI=2.0n}
The 2.0n ABI means the 32-bit HPPA 1.0 ABI and all its normal calling
conventions, but with 64-bit instructions permitted within functions.  GMP
uses a 64-bit @code{long long} for a limb.  This ABI is available on hppa64
GNU/Linux and on HP-UX 10 or higher.  Applications must be compiled with

@example
gcc [built for 2.0n]
cc  +DA2.0 +e
@end example

Note that current versions of GCC (eg.@: 3.2) don't generate 64-bit
instructions for @code{long long} operations and so may be slower than for
2.0w.  (The GMP assembly code is the same though.)

@item @samp{ABI=1.0}
HPPA 2.0 CPUs can run all HPPA 1.0 and 1.1 code in the 32-bit HPPA 1.0 ABI@.
No special compiler options are needed for applications.
@end table

All three ABIs are available for CPU types @samp{hppa2.0w}, @samp{hppa2.0} and
@samp{hppa64}, but for CPU type @samp{hppa2.0n} only 2.0n or 1.0 are
considered.

Note that GCC on HP-UX has no options to choose between 2.0n and 2.0w modes,
unlike HP @command{cc}.  Instead it must be built for one or the other ABI@.
GMP will detect how it was built, and skip to the corresponding @samp{ABI}.

@sp 1
@need 1500
@item IA-64 under HP-UX (@samp{ia64*-*-hpux*}, @samp{itanium*-*-hpux*})
@cindex IA-64
@cindex HP-UX
HP-UX supports two ABIs for IA-64.  GMP performance is the same in both.

@table @asis
@item @samp{ABI=32}
In the 32-bit ABI, pointers, @code{int}s and @code{long}s are 32 bits and GMP
uses a 64 bit @code{long long} for a limb.  Applications can be compiled
without any special flags since this ABI is the default in both HP C and GCC,
but for reference the flags are

@example
gcc  -milp32
cc   +DD32
@end example

@item @samp{ABI=64}
In the 64-bit ABI, @code{long}s and pointers are 64 bits and GMP uses a
@code{long} for a limb.  Applications must be compiled with

@example
gcc  -mlp64
cc   +DD64
@end example
@end table

On other IA-64 systems, GNU/Linux for instance, @samp{ABI=64} is the only
choice.

@sp 1
@need 1000
@item MIPS under IRIX 6 (@samp{mips*-*-irix[6789]})
@cindex MIPS
@cindex IRIX
IRIX 6 always has a 64-bit MIPS 3 or better CPU, and supports ABIs o32, n32,
and 64.  n32 or 64 are recommended, and GMP performance will be the same in
each.  The default is n32.

@table @asis
@item @samp{ABI=o32}
The o32 ABI is 32-bit pointers and integers, and no 64-bit operations.  GMP
will be slower than in n32 or 64, this option only exists to support old
compilers, eg.@: GCC 2.7.2.  Applications can be compiled with no special
flags on an old compiler, or on a newer compiler with

@example
gcc  -mabi=32
cc   -32
@end example

@item @samp{ABI=n32}
The n32 ABI is 32-bit pointers and integers, but with a 64-bit limb using a
@code{long long}.  Applications must be compiled with

@example
gcc  -mabi=n32
cc   -n32
@end example

@item @samp{ABI=64}
The 64-bit ABI is 64-bit pointers and integers.  Applications must be compiled
with

@example
gcc  -mabi=64
cc   -64
@end example
@end table

Note that MIPS GNU/Linux, as of kernel version 2.2, doesn't have the necessary
support for n32 or 64 and so only gets a 32-bit limb and the MIPS 2 code.

@sp 1
@need 1000
@item PowerPC 64 (@samp{powerpc64}, @samp{powerpc620}, @samp{powerpc630}, @samp{powerpc970}, @samp{power4}, @samp{power5})
@cindex PowerPC
@table @asis
@item @samp{ABI=mode64}
@cindex AIX
The AIX 64 ABI uses 64-bit limbs and pointers and is the default on PowerPC 64
@samp{*-*-aix*} systems.  Applications must be compiled with

@example
gcc  -maix64
xlc  -q64
@end example

On 64-bit GNU/Linux, BSD, and Mac OS X/Darwin systems, the applications must
be compiled with

@example
gcc  -m64
@end example

@item @samp{ABI=mode32}
The @samp{mode32} ABI uses a 64-bit @code{long long} limb but with the chip
still in 32-bit mode and using 32-bit calling conventions.  This is the default
for systems where the true 64-bit ABI is unavailable.  No special compiler
options are typically needed for applications.  This ABI is not available under
AIX.

@item @samp{ABI=32}
This is the basic 32-bit PowerPC ABI, with a 32-bit limb.  No special compiler
options are needed for applications.
@end table

GMP's speed is greatest for the @samp{mode64} ABI, the @samp{mode32} ABI is 2nd
best.  In @samp{ABI=32} only the 32-bit ISA is used and this doesn't make full
use of a 64-bit chip.

@sp 1
@need 1000
@item Sparc V9 (@samp{sparc64}, @samp{sparcv9}, @samp{ultrasparc*})
@cindex Sparc V9
@cindex Solaris
@cindex Sun
@table @asis
@item @samp{ABI=64}
The 64-bit V9 ABI is available on the various BSD sparc64 ports, recent
versions of Sparc64 GNU/Linux, and Solaris 2.7 and up (when the kernel is in
64-bit mode).  GCC 3.2 or higher, or Sun @command{cc} is required.  On
GNU/Linux, depending on the default @command{gcc} mode, applications must be
compiled with

@example
gcc  -m64
@end example

On Solaris applications must be compiled with

@example
gcc  -m64 -mptr64 -Wa,-xarch=v9 -mcpu=v9
cc   -xarch=v9
@end example

On the BSD sparc64 systems no special options are required, since 64-bits is
the only ABI available.

@item @samp{ABI=32}
For the basic 32-bit ABI, GMP still uses as much of the V9 ISA as it can.  In
the Sun documentation this combination is known as ``v8plus''.  On GNU/Linux,
depending on the default @command{gcc} mode, applications may need to be
compiled with

@example
gcc  -m32
@end example

On Solaris, no special compiler options are required for applications, though
using something like the following is recommended.  (@command{gcc} 2.8 and
earlier only support @samp{-mv8} though.)

@example
gcc  -mv8plus
cc   -xarch=v8plus
@end example
@end table

GMP speed is greatest in @samp{ABI=64}, so it's the default where available.
The speed is partly because there are extra registers available and partly
because 64-bits is considered the more important case and has therefore had
better code written for it.

Don't be confused by the names of the @samp{-m} and @samp{-x} compiler
options, they're called @samp{arch} but effectively control both ABI and ISA@.

On Solaris 2.6 and earlier, only @samp{ABI=32} is available since the kernel
doesn't save all registers.

On Solaris 2.7 with the kernel in 32-bit mode, a normal native build will
reject @samp{ABI=64} because the resulting executables won't run.
@samp{ABI=64} can still be built if desired by making it look like a
cross-compile, for example

@example
./configure --build=none --host=sparcv9-sun-solaris2.7 ABI=64
@end example
@end table


@need 2000
@node Notes for Package Builds, Notes for Particular Systems, ABI and ISA, Installing GMP
@section Notes for Package Builds
@cindex Build notes for binary packaging
@cindex Packaged builds

GMP should present no great difficulties for packaging in a binary
distribution.

@cindex Libtool versioning
@cindex Shared library versioning
Libtool is used to build the library and @samp{-version-info} is set
appropriately, having started from @samp{3:0:0} in GMP 3.0 (@pxref{Versioning,
Library interface versions, Library interface versions, libtool, GNU
Libtool}).

The GMP 4 series will be upwardly binary compatible in each release and will
be upwardly binary compatible with all of the GMP 3 series.  Additional
function interfaces may be added in each release, so on systems where libtool
versioning is not fully checked by the loader an auxiliary mechanism may be
needed to express that a dynamic linked application depends on a new enough
GMP.

An auxiliary mechanism may also be needed to express that @file{libgmpxx.la}
(from @option{--enable-cxx}, @pxref{Build Options}) requires @file{libgmp.la}
from the same GMP version, since this is not done by the libtool versioning,
nor otherwise.  A mismatch will result in unresolved symbols from the linker,
or perhaps the loader.

When building a package for a CPU family, care should be taken to use
@samp{--host} (or @samp{--build}) to choose the least common denominator among
the CPUs which might use the package.  For example this might mean plain
@samp{sparc} (meaning V7) for SPARCs.

For x86s, @option{--enable-fat} sets things up for a fat binary build, making a
runtime selection of optimized low level routines.  This is a good choice for
packaging to run on a range of x86 chips.

Users who care about speed will want GMP built for their exact CPU type, to
make best use of the available optimizations.  Providing a way to suitably
rebuild a package may be useful.  This could be as simple as making it
possible for a user to omit @samp{--build} (and @samp{--host}) so
@samp{./config.guess} will detect the CPU@.  But a way to manually specify a
@samp{--build} will be wanted for systems where @samp{./config.guess} is
inexact.

On systems with multiple ABIs, a packaged build will need to decide which
among the choices is to be provided, see @ref{ABI and ISA}.  A given run of
@samp{./configure} etc will only build one ABI@.  If a second ABI is also
required then a second run of @samp{./configure} etc must be made, starting
from a clean directory tree (@samp{make distclean}).

As noted under ``ABI and ISA'', currently no attempt is made to follow system
conventions for install locations that vary with ABI, such as
@file{/usr/lib/sparcv9} for @samp{ABI=64} as opposed to @file{/usr/lib} for
@samp{ABI=32}.  A package build can override @samp{libdir} and other standard
variables as necessary.

Note that @file{gmp.h} is a generated file, and will be architecture and ABI
dependent.  When attempting to install two ABIs simultaneously it will be
important that an application compile gets the correct @file{gmp.h} for its
desired ABI@.  If compiler include paths don't vary with ABI options then it
might be necessary to create a @file{/usr/include/gmp.h} which tests
preprocessor symbols and chooses the correct actual @file{gmp.h}.


@need 2000
@node Notes for Particular Systems, Known Build Problems, Notes for Package Builds, Installing GMP
@section Notes for Particular Systems
@cindex Build notes for particular systems
@cindex Particular systems
@cindex Systems
@table @asis

@c This section is more or less meant for notes about performance or about
@c build problems that have been worked around but might leave a user
@c scratching their head.  Fun with different ABIs on a system belongs in the
@c above section.

@item AIX 3 and 4
@cindex AIX
On systems @samp{*-*-aix[34]*} shared libraries are disabled by default, since
some versions of the native @command{ar} fail on the convenience libraries
used.  A shared build can be attempted with

@example
./configure --enable-shared --disable-static
@end example

Note that the @samp{--disable-static} is necessary because in a shared build
libtool makes @file{libgmp.a} a symlink to @file{libgmp.so}, apparently for
the benefit of old versions of @command{ld} which only recognise @file{.a},
but unfortunately this is done even if a fully functional @command{ld} is
available.

@item ARM
@cindex ARM
On systems @samp{arm*-*-*}, versions of GCC up to and including 2.95.3 have a
bug in unsigned division, giving wrong results for some operands.  GMP
@samp{./configure} will demand GCC 2.95.4 or later.

@item Compaq C++
@cindex Compaq C++
Compaq C++ on OSF 5.1 has two flavours of @code{iostream}, a standard one and
an old pre-standard one (see @samp{man iostream_intro}).  GMP can only use the
standard one, which unfortunately is not the default but must be selected by
defining @code{__USE_STD_IOSTREAM}.  Configure with for instance

@example
./configure --enable-cxx CPPFLAGS=-D__USE_STD_IOSTREAM
@end example

@item Floating Point Mode
@cindex Floating point mode
@cindex Hardware floating point mode
@cindex Precision of hardware floating point
@cindex x87
On some systems, the hardware floating point has a control mode which can set
all operations to be done in a particular precision, for instance single,
double or extended on x86 systems (x87 floating point).  The GMP functions
involving a @code{double} cannot be expected to operate to their full
precision when the hardware is in single precision mode.  Of course this
affects all code, including application code, not just GMP.

@item MS-DOS and MS Windows
@cindex MS-DOS
@cindex MS Windows
@cindex Windows
@cindex Cygwin
@cindex DJGPP
@cindex MINGW
On an MS-DOS system DJGPP can be used to build GMP, and on an MS Windows
system Cygwin, DJGPP and MINGW can be used.  All three are excellent ports of
GCC and the various GNU tools.

@display
@uref{http://www.cygwin.com/}
@uref{http://www.delorie.com/djgpp/}
@uref{http://www.mingw.org/}
@end display

@cindex Interix
@cindex Services for Unix
Microsoft also publishes an Interix ``Services for Unix'' which can be used to
build GMP on Windows (with a normal @samp{./configure}), but it's not free
software.

@item MS Windows DLLs
@cindex DLLs
@cindex MS Windows
@cindex Windows
On systems @samp{*-*-cygwin*}, @samp{*-*-mingw*} and @samp{*-*-pw32*} by
default GMP builds only a static library, but a DLL can be built instead using

@example
./configure --disable-static --enable-shared
@end example

Static and DLL libraries can't both be built, since certain export directives
in @file{gmp.h} must be different.

A MINGW DLL build of GMP can be used with Microsoft C@.  Libtool doesn't
install a @file{.lib} format import library, but it can be created with MS
@command{lib} as follows, and copied to the install directory.  Similarly for
@file{libmp} and @file{libgmpxx}.

@example
cd .libs
lib /def:libgmp-3.dll.def /out:libgmp-3.lib
@end example

MINGW uses the C runtime library @samp{msvcrt.dll} for I/O, so applications
wanting to use the GMP I/O routines must be compiled with @samp{cl /MD} to do
the same.  If one of the other C runtime library choices provided by MS C is
desired then the suggestion is to use the GMP string functions and confine I/O
to the application.

@item Motorola 68k CPU Types
@cindex 68000
@samp{m68k} is taken to mean 68000.  @samp{m68020} or higher will give a
performance boost on applicable CPUs.  @samp{m68360} can be used for CPU32
series chips.  @samp{m68302} can be used for ``Dragonball'' series chips,
though this is merely a synonym for @samp{m68000}.

@item OpenBSD 2.6
@cindex OpenBSD
@command{m4} in this release of OpenBSD has a bug in @code{eval} that makes it
unsuitable for @file{.asm} file processing.  @samp{./configure} will detect
the problem and either abort or choose another m4 in the @env{PATH}.  The bug
is fixed in OpenBSD 2.7, so either upgrade or use GNU m4.

@item Power CPU Types
@cindex Power/PowerPC
In GMP, CPU types @samp{power*} and @samp{powerpc*} will each use instructions
not available on the other, so it's important to choose the right one for the
CPU that will be used.  Currently GMP has no assembly code support for using
just the common instruction subset.  To get executables that run on both, the
current suggestion is to use the generic C code (@option{--disable-assembly}),
possibly with appropriate compiler options (like @samp{-mcpu=common} for
@command{gcc}).  CPU @samp{rs6000} (which is not a CPU but a family of
workstations) is accepted by @file{config.sub}, but is currently equivalent to
@option{--disable-assembly}.

@item Sparc CPU Types
@cindex Sparc
@samp{sparcv8} or @samp{supersparc} on relevant systems will give a
significant performance increase over the V7 code selected by plain
@samp{sparc}.

@item Sparc App Regs
@cindex Sparc
The GMP assembly code for both 32-bit and 64-bit Sparc clobbers the
``application registers'' @code{g2}, @code{g3} and @code{g4}, the same way
that the GCC default @samp{-mapp-regs} does (@pxref{SPARC Options,, SPARC
Options, gcc, Using the GNU Compiler Collection (GCC)}).

This makes that code unsuitable for use with the special V9
@samp{-mcmodel=embmedany} (which uses @code{g4} as a data segment pointer), and
for applications wanting to use those registers for special purposes.  In these
cases the only suggestion currently is to build GMP with
@option{--disable-assembly} to avoid the assembly code.

@item SunOS 4
@cindex SunOS
@command{/usr/bin/m4} lacks various features needed to process @file{.asm}
files, and instead @samp{./configure} will automatically use
@command{/usr/5bin/m4}, which we believe is always available (if not then use
GNU m4).

@item x86 CPU Types
@cindex x86
@cindex 80x86
@cindex i386
@samp{i586}, @samp{pentium} or @samp{pentiummmx} code is good for its intended
P5 Pentium chips, but quite slow when run on Intel P6 class chips (PPro, P-II,
P-III)@.  @samp{i386} is a better choice when making binaries that must run on
both.

@item x86 MMX and SSE2 Code
@cindex MMX
@cindex SSE2
If the CPU selected has MMX code but the assembler doesn't support it, a
warning is given and non-MMX code is used instead.  This will be an inferior
build, since the MMX code that's present is there because it's faster than the
corresponding plain integer code.  The same applies to SSE2.

Old versions of @samp{gas} don't support MMX instructions, in particular
version 1.92.3 that comes with FreeBSD 2.2.8 or the more recent OpenBSD 3.1
doesn't.

Solaris 2.6 and 2.7 @command{as} generate incorrect object code for register
to register @code{movq} instructions, and so can't be used for MMX code.
Install a recent @command{gas} if MMX code is wanted on these systems.
@end table


@need 2000
@node Known Build Problems, Performance optimization, Notes for Particular Systems, Installing GMP
@section Known Build Problems
@cindex Build problems known

@c This section is more or less meant for known build problems that are not
@c otherwise worked around and require some sort of manual intervention.

You might find more up-to-date information at @uref{http://gmplib.org/}.

@table @asis
@item Compiler link options
The version of libtool currently in use rather aggressively strips compiler
options when linking a shared library.  This will hopefully be relaxed in the
future, but for now if this is a problem the suggestion is to create a little
script to hide them, and for instance configure with

@example
./configure CC=gcc-with-my-options
@end example

@item DJGPP (@samp{*-*-msdosdjgpp*})
@cindex DJGPP
The DJGPP port of @command{bash} 2.03 is unable to run the @samp{configure}
script, it exits silently, having died writing a preamble to
@file{config.log}.  Use @command{bash} 2.04 or higher.

@samp{make all} was found to run out of memory during the final
@file{libgmp.la} link on one system tested, despite having 64Mb available.
Running @samp{make libgmp.la} directly helped, perhaps recursing into the
various subdirectories uses up memory.

@item GNU binutils @command{strip} prior to 2.12
@cindex Stripped libraries
@cindex Binutils @command{strip}
@cindex GNU @command{strip}
@command{strip} from GNU binutils 2.11 and earlier should not be used on the
static libraries @file{libgmp.a} and @file{libmp.a} since it will discard all
but the last of multiple archive members with the same name, like the three
versions of @file{init.o} in @file{libgmp.a}.  Binutils 2.12 or higher can be
used successfully.

The shared libraries @file{libgmp.so} and @file{libmp.so} are not affected by
this and any version of @command{strip} can be used on them.

@item @command{make} syntax error
@cindex SCO
@cindex IRIX
On certain versions of SCO OpenServer 5 and IRIX 6.5 the native @command{make}
is unable to handle the long dependencies list for @file{libgmp.la}.  The
symptom is a ``syntax error'' on the following line of the top-level
@file{Makefile}.

@example
libgmp.la: $(libgmp_la_OBJECTS) $(libgmp_la_DEPENDENCIES)
@end example

Either use GNU Make, or as a workaround remove
@code{$(libgmp_la_DEPENDENCIES)} from that line (which will make the initial
build work, but if any recompiling is done @file{libgmp.la} might not be
rebuilt).

@item MacOS X (@samp{*-*-darwin*})
@cindex MacOS X
@cindex Darwin
Libtool currently only knows how to create shared libraries on MacOS X using
the native @command{cc} (which is a modified GCC), not a plain GCC@.  A
static-only build should work though (@samp{--disable-shared}).

@item NeXT prior to 3.3
@cindex NeXT
The system compiler on old versions of NeXT was a massacred and old GCC, even
if it called itself @file{cc}.  This compiler cannot be used to build GMP, you
need to get a real GCC, and install that.  (NeXT may have fixed this in
release 3.3 of their system.)

@item POWER and PowerPC
@cindex Power/PowerPC
Bugs in GCC 2.7.2 (and 2.6.3) mean it can't be used to compile GMP on POWER or
PowerPC@.  If you want to use GCC for these machines, get GCC 2.7.2.1 (or
later).

@item Sequent Symmetry
@cindex Sequent Symmetry
Use the GNU assembler instead of the system assembler, since the latter has
serious bugs.

@item Solaris 2.6
@cindex Solaris
The system @command{sed} prints an error ``Output line too long'' when libtool
builds @file{libgmp.la}.  This doesn't seem to cause any obvious ill effects,
but GNU @command{sed} is recommended, to avoid any doubt.

@item Sparc Solaris 2.7 with gcc 2.95.2 in @samp{ABI=32}
@cindex Solaris
A shared library build of GMP seems to fail in this combination, it builds but
then fails the tests, apparently due to some incorrect data relocations within
@code{gmp_randinit_lc_2exp_size}.  The exact cause is unknown,
@samp{--disable-shared} is recommended.
@end table


@need 2000
@node Performance optimization, , Known Build Problems, Installing GMP
@section Performance optimization
@cindex Optimizing performance

@c At some point, this should perhaps move to a separate chapter on optimizing
@c performance.

For optimal performance, build GMP for the exact CPU type of the target
computer, see @ref{Build Options}.

Unlike what is the case for most other programs, the compiler typically
doesn't matter much, since GMP uses assembly language for the most critical
operation.

In particular for long-running GMP applications, and applications demanding
extremely large numbers, building and running the @code{tuneup} program in the
@file{tune} subdirectory, can be important.  For example,

@example
cd tune
make tuneup
./tuneup
@end example

will generate better contents for the @file{gmp-mparam.h} parameter file.

To use the results, put the output in the file indicated in the
@samp{Parameters for ...} header.  Then recompile from scratch.

The @code{tuneup} program takes one useful parameter, @samp{-f NNN}, which
instructs the program how long to check FFT multiply parameters.  If you're
going to use GMP for extremely large numbers, you may want to run @code{tuneup}
with a large NNN value.


@node GMP Basics, Reporting Bugs, Installing GMP, Top
@comment  node-name,  next,  previous,  up
@chapter GMP Basics
@cindex Basics

@strong{Using functions, macros, data types, etc.@: not documented in this
manual is strongly discouraged.  If you do so your application is guaranteed
to be incompatible with future versions of GMP.}

@menu
* Headers and Libraries::
* Nomenclature and Types::
* Function Classes::
* Variable Conventions::
* Parameter Conventions::
* Memory Management::
* Reentrancy::
* Useful Macros and Constants::
* Compatibility with older versions::
* Demonstration Programs::
* Efficiency::
* Debugging::
* Profiling::
* Autoconf::
* Emacs::
@end menu

@node Headers and Libraries, Nomenclature and Types, GMP Basics, GMP Basics
@section Headers and Libraries
@cindex Headers

@cindex @file{gmp.h}
@cindex Include files
@cindex @code{#include}
All declarations needed to use GMP are collected in the include file
@file{gmp.h}.  It is designed to work with both C and C++ compilers.

@example
#include <gmp.h>
@end example

@cindex @code{stdio.h}
Note however that prototypes for GMP functions with @code{FILE *} parameters
are only provided if @code{<stdio.h>} is included too.

@example
#include <stdio.h>
#include <gmp.h>
@end example

@cindex @code{stdarg.h}
Likewise @code{<stdarg.h>} (or @code{<varargs.h>}) is required for prototypes
with @code{va_list} parameters, such as @code{gmp_vprintf}.  And
@code{<obstack.h>} for prototypes with @code{struct obstack} parameters, such
as @code{gmp_obstack_printf}, when available.

@cindex Libraries
@cindex Linking
@cindex @code{libgmp}
All programs using GMP must link against the @file{libgmp} library.  On a
typical Unix-like system this can be done with @samp{-lgmp}, for example

@example
gcc myprogram.c -lgmp
@end example

@cindex @code{libgmpxx}
GMP C++ functions are in a separate @file{libgmpxx} library.  This is built
and installed if C++ support has been enabled (@pxref{Build Options}).  For
example,

@example
g++ mycxxprog.cc -lgmpxx -lgmp
@end example

@cindex Libtool
GMP is built using Libtool and an application can use that to link if desired,
@GMPpxreftop{libtool, GNU Libtool}.

If GMP has been installed to a non-standard location then it may be necessary
to use @samp{-I} and @samp{-L} compiler options to point to the right
directories, and some sort of run-time path for a shared library.


@node Nomenclature and Types, Function Classes, Headers and Libraries, GMP Basics
@section Nomenclature and Types
@cindex Nomenclature
@cindex Types

@cindex Integer
@tindex @code{mpz_t}
In this manual, @dfn{integer} usually means a multiple precision integer, as
defined by the GMP library.  The C data type for such integers is @code{mpz_t}.
Here are some examples of how to declare such integers:

@example
mpz_t sum;

struct foo @{ mpz_t x, y; @};

mpz_t vec[20];
@end example

@cindex Rational number
@tindex @code{mpq_t}
@dfn{Rational number} means a multiple precision fraction.  The C data type
for these fractions is @code{mpq_t}.  For example:

@example
mpq_t quotient;
@end example

@cindex Floating-point number
@tindex @code{mpf_t}
@dfn{Floating point number} or @dfn{Float} for short, is an arbitrary precision
mantissa with a limited precision exponent.  The C data type for such objects
is @code{mpf_t}.  For example:

@example
mpf_t fp;
@end example

@tindex @code{mp_exp_t}
The floating point functions accept and return exponents in the C type
@code{mp_exp_t}.  Currently this is usually a @code{long}, but on some systems
it's an @code{int} for efficiency.

@cindex Limb
@tindex @code{mp_limb_t}
A @dfn{limb} means the part of a multi-precision number that fits in a single
machine word.  (We chose this word because a limb of the human body is
analogous to a digit, only larger, and containing several digits.)  Normally a
limb is 32 or 64 bits.  The C data type for a limb is @code{mp_limb_t}.

@tindex @code{mp_size_t}
Counts of limbs of a multi-precision number represented in the C type
@code{mp_size_t}.  Currently this is normally a @code{long}, but on some
systems it's an @code{int} for efficiency, and on some systems it will be
@code{long long} in the future.

@tindex @code{mp_bitcnt_t}
Counts of bits of a multi-precision number are represented in the C type
@code{mp_bitcnt_t}.  Currently this is always an @code{unsigned long}, but on
some systems it will be an @code{unsigned long long} in the future.

@cindex Random state
@tindex @code{gmp_randstate_t}
@dfn{Random state} means an algorithm selection and current state data.  The C
data type for such objects is @code{gmp_randstate_t}.  For example:

@example
gmp_randstate_t rstate;
@end example

Also, in general @code{mp_bitcnt_t} is used for bit counts and ranges, and
@code{size_t} is used for byte or character counts.


@node Function Classes, Variable Conventions, Nomenclature and Types, GMP Basics
@section Function Classes
@cindex Function classes

There are six classes of functions in the GMP library:

@enumerate
@item
Functions for signed integer arithmetic, with names beginning with
@code{mpz_}.  The associated type is @code{mpz_t}.  There are about 150
functions in this class.  (@pxref{Integer Functions})

@item
Functions for rational number arithmetic, with names beginning with
@code{mpq_}.  The associated type is @code{mpq_t}.  There are about 40
functions in this class, but the integer functions can be used for arithmetic
on the numerator and denominator separately.  (@pxref{Rational Number
Functions})

@item
Functions for floating-point arithmetic, with names beginning with
@code{mpf_}.  The associated type is @code{mpf_t}.  There are about 60
functions is this class.  (@pxref{Floating-point Functions})

@item
Fast low-level functions that operate on natural numbers.  These are used by
the functions in the preceding groups, and you can also call them directly
from very time-critical user programs.  These functions' names begin with
@code{mpn_}.  The associated type is array of @code{mp_limb_t}.  There are
about 30 (hard-to-use) functions in this class.  (@pxref{Low-level Functions})

@item
Miscellaneous functions.  Functions for setting up custom allocation and
functions for generating random numbers.  (@pxref{Custom Allocation}, and
@pxref{Random Number Functions})
@end enumerate


@node Variable Conventions, Parameter Conventions, Function Classes, GMP Basics
@section Variable Conventions
@cindex Variable conventions
@cindex Conventions for variables

GMP functions generally have output arguments before input arguments.  This
notation is by analogy with the assignment operator.  The BSD MP compatibility
functions are exceptions, having the output arguments last.

GMP lets you use the same variable for both input and output in one call.  For
example, the main function for integer multiplication, @code{mpz_mul}, can be
used to square @code{x} and put the result back in @code{x} with

@example
mpz_mul (x, x, x);
@end example

Before you can assign to a GMP variable, you need to initialize it by calling
one of the special initialization functions.  When you're done with a
variable, you need to clear it out, using one of the functions for that
purpose.  Which function to use depends on the type of variable.  See the
chapters on integer functions, rational number functions, and floating-point
functions for details.

A variable should only be initialized once, or at least cleared between each
initialization.  After a variable has been initialized, it may be assigned to
any number of times.

For efficiency reasons, avoid excessive initializing and clearing.  In
general, initialize near the start of a function and clear near the end.  For
example,

@example
void
foo (void)
@{
  mpz_t  n;
  int    i;
  mpz_init (n);
  for (i = 1; i < 100; i++)
    @{
      mpz_mul (n, @dots{});
      mpz_fdiv_q (n, @dots{});
      @dots{}
    @}
  mpz_clear (n);
@}
@end example


@node Parameter Conventions, Memory Management, Variable Conventions, GMP Basics
@section Parameter Conventions
@cindex Parameter conventions
@cindex Conventions for parameters

When a GMP variable is used as a function parameter, it's effectively a
call-by-reference, meaning if the function stores a value there it will change
the original in the caller.  Parameters which are input-only can be designated
@code{const} to provoke a compiler error or warning on attempting to modify
them.

When a function is going to return a GMP result, it should designate a
parameter that it sets, like the library functions do.  More than one value
can be returned by having more than one output parameter, again like the
library functions.  A @code{return} of an @code{mpz_t} etc doesn't return the
object, only a pointer, and this is almost certainly not what's wanted.

Here's an example accepting an @code{mpz_t} parameter, doing a calculation,
and storing the result to the indicated parameter.

@example
void
foo (mpz_t result, const mpz_t param, unsigned long n)
@{
  unsigned long  i;
  mpz_mul_ui (result, param, n);
  for (i = 1; i < n; i++)
    mpz_add_ui (result, result, i*7);
@}

int
main (void)
@{
  mpz_t  r, n;
  mpz_init (r);
  mpz_init_set_str (n, "123456", 0);
  foo (r, n, 20L);
  gmp_printf ("%Zd\n", r);
  return 0;
@}
@end example

@code{foo} works even if the mainline passes the same variable for
@code{param} and @code{result}, just like the library functions.  But
sometimes it's tricky to make that work, and an application might not want to
bother supporting that sort of thing.

For interest, the GMP types @code{mpz_t} etc are implemented as one-element
arrays of certain structures.  This is why declaring a variable creates an
object with the fields GMP needs, but then using it as a parameter passes a
pointer to the object.  Note that the actual fields in each @code{mpz_t} etc
are for internal use only and should not be accessed directly by code that
expects to be compatible with future GMP releases.


@need 1000
@node Memory Management, Reentrancy, Parameter Conventions, GMP Basics
@section Memory Management
@cindex Memory management

The GMP types like @code{mpz_t} are small, containing only a couple of sizes,
and pointers to allocated data.  Once a variable is initialized, GMP takes
care of all space allocation.  Additional space is allocated whenever a
variable doesn't have enough.

@code{mpz_t} and @code{mpq_t} variables never reduce their allocated space.
Normally this is the best policy, since it avoids frequent reallocation.
Applications that need to return memory to the heap at some particular point
can use @code{mpz_realloc2}, or clear variables no longer needed.

@code{mpf_t} variables, in the current implementation, use a fixed amount of
space, determined by the chosen precision and allocated at initialization, so
their size doesn't change.

All memory is allocated using @code{malloc} and friends by default, but this
can be changed, see @ref{Custom Allocation}.  Temporary memory on the stack is
also used (via @code{alloca}), but this can be changed at build-time if
desired, see @ref{Build Options}.


@node Reentrancy, Useful Macros and Constants, Memory Management, GMP Basics
@section Reentrancy
@cindex Reentrancy
@cindex Thread safety
@cindex Multi-threading

@noindent
GMP is reentrant and thread-safe, with some exceptions:

@itemize @bullet
@item
If configured with @option{--enable-alloca=malloc-notreentrant} (or with
@option{--enable-alloca=notreentrant} when @code{alloca} is not available),
then naturally GMP is not reentrant.

@item
@code{mpf_set_default_prec} and @code{mpf_init} use a global variable for the
selected precision.  @code{mpf_init2} can be used instead, and in the C++
interface an explicit precision to the @code{mpf_class} constructor.

@item
@code{mpz_random} and the other old random number functions use a global
random state and are hence not reentrant.  The newer random number functions
that accept a @code{gmp_randstate_t} parameter can be used instead.

@item
@code{gmp_randinit} (obsolete) returns an error indication through a global
variable, which is not thread safe.  Applications are advised to use
@code{gmp_randinit_default} or @code{gmp_randinit_lc_2exp} instead.

@item
@code{mp_set_memory_functions} uses global variables to store the selected
memory allocation functions.

@item
If the memory allocation functions set by a call to
@code{mp_set_memory_functions} (or @code{malloc} and friends by default) are
not reentrant, then GMP will not be reentrant either.

@item
If the standard I/O functions such as @code{fwrite} are not reentrant then the
GMP I/O functions using them will not be reentrant either.

@item
It's safe for two threads to read from the same GMP variable simultaneously,
but it's not safe for one to read while the another might be writing, nor for
two threads to write simultaneously.  It's not safe for two threads to
generate a random number from the same @code{gmp_randstate_t} simultaneously,
since this involves an update of that variable.
@end itemize


@need 2000
@node Useful Macros and Constants, Compatibility with older versions, Reentrancy, GMP Basics
@section Useful Macros and Constants
@cindex Useful macros and constants
@cindex Constants

@deftypevr {Global Constant} {const int} mp_bits_per_limb
@findex mp_bits_per_limb
@cindex Bits per limb
@cindex Limb size
The number of bits per limb.
@end deftypevr

@defmac __GNU_MP_VERSION
@defmacx __GNU_MP_VERSION_MINOR
@defmacx __GNU_MP_VERSION_PATCHLEVEL
@cindex Version number
@cindex GMP version number
The major and minor GMP version, and patch level, respectively, as integers.
For GMP i.j, these numbers will be i, j, and 0, respectively.
For GMP i.j.k, these numbers will be i, j, and k, respectively.
@end defmac

@deftypevr {Global Constant} {const char * const} gmp_version
@findex gmp_version
The GMP version number, as a null-terminated string, in the form ``i.j.k''.
This release is @nicode{"@value{VERSION}"}.  Note that the format ``i.j'' was
used when k was zero was used before version 4.3.0.
@end deftypevr

@defmac __GMP_CC
@defmacx __GMP_CFLAGS
The compiler and compiler flags, respectively, used when compiling GMP, as
strings.
@end defmac


@node Compatibility with older versions, Demonstration Programs, Useful Macros and Constants, GMP Basics
@section Compatibility with older versions
@cindex Compatibility with older versions
@cindex Past GMP versions
@cindex Upward compatibility

This version of GMP is upwardly binary compatible with all 4.x and 3.x
versions, and upwardly compatible at the source level with all 2.x versions,
with the following exceptions.

@itemize @bullet
@item
@code{mpn_gcd} had its source arguments swapped as of GMP 3.0, for consistency
with other @code{mpn} functions.

@item
@code{mpf_get_prec} counted precision slightly differently in GMP 3.0 and
3.0.1, but in 3.1 reverted to the 2.x style.
@end itemize

There are a number of compatibility issues between GMP 1 and GMP 2 that of
course also apply when porting applications from GMP 1 to GMP 4.  Please
see the GMP 2 manual for details.

@c @item Integer division functions round the result differently.  The obsolete
@c functions (@code{mpz_div}, @code{mpz_divmod}, @code{mpz_mdiv},
@c @code{mpz_mdivmod}, etc) now all use floor rounding (i.e., they round the
@c quotient towards
@c @ifinfo
@c @minus{}infinity).
@c @end ifinfo
@c @iftex
@c @tex
@c $-\infty$).
@c @end tex
@c @end iftex
@c There are a lot of functions for integer division, giving the user better
@c control over the rounding.

@c @item The function @code{mpz_mod} now compute the true @strong{mod} function.

@c @item The functions @code{mpz_powm} and @code{mpz_powm_ui} now use
@c @strong{mod} for reduction.

@c @item The assignment functions for rational numbers do no longer canonicalize
@c their results.  In the case a non-canonical result could arise from an
@c assignment, the user need to insert an explicit call to
@c @code{mpq_canonicalize}.  This change was made for efficiency.

@c @item Output generated by @code{mpz_out_raw} in this release cannot be read
@c by @code{mpz_inp_raw} in previous releases.  This change was made for making
@c the file format truly portable between machines with different word sizes.

@c @item Several @code{mpn} functions have changed.  But they were intentionally
@c undocumented in previous releases.

@c @item The functions @code{mpz_cmp_ui}, @code{mpz_cmp_si}, and @code{mpq_cmp_ui}
@c are now implemented as macros, and thereby sometimes evaluate their
@c arguments multiple times.

@c @item The functions @code{mpz_pow_ui} and @code{mpz_ui_pow_ui} now yield 1
@c for 0^0.  (In version 1, they yielded 0.)

@c In version 1 of the library, @code{mpq_set_den} handled negative
@c denominators by copying the sign to the numerator.  That is no longer done.

@c Pure assignment functions do not canonicalize the assigned variable.  It is
@c the responsibility of the user to canonicalize the assigned variable before
@c any arithmetic operations are performed on that variable.
@c Note that this is an incompatible change from version 1 of the library.

@c @end enumerate


@need 1000
@node Demonstration Programs, Efficiency, Compatibility with older versions, GMP Basics
@section Demonstration programs
@cindex Demonstration programs
@cindex Example programs
@cindex Sample programs
The @file{demos} subdirectory has some sample programs using GMP@.  These
aren't built or installed, but there's a @file{Makefile} with rules for them.
For instance,

@example
make pexpr
./pexpr 68^975+10
@end example

@noindent
The following programs are provided

@itemize @bullet
@item
@cindex Expression parsing demo
@cindex Parsing expressions demo
@samp{pexpr} is an expression evaluator, the program used on the GMP web page.
@item
@cindex Expression parsing demo
@cindex Parsing expressions demo
The @samp{calc} subdirectory has a similar but simpler evaluator using
@command{lex} and @command{yacc}.
@item
@cindex Expression parsing demo
@cindex Parsing expressions demo
The @samp{expr} subdirectory is yet another expression evaluator, a library
designed for ease of use within a C program.  See @file{demos/expr/README} for
more information.
@item
@cindex Factorization demo
@samp{factorize} is a Pollard-Rho factorization program.
@item
@samp{isprime} is a command-line interface to the @code{mpz_probab_prime_p}
function.
@item
@samp{primes} counts or lists primes in an interval, using a sieve.
@item
@samp{qcn} is an example use of @code{mpz_kronecker_ui} to estimate quadratic
class numbers.
@item
@cindex @code{perl}
@cindex GMP Perl module
@cindex Perl module
The @samp{perl} subdirectory is a comprehensive perl interface to GMP@.  See
@file{demos/perl/INSTALL} for more information.  Documentation is in POD
format in @file{demos/perl/GMP.pm}.
@end itemize

As an aside, consideration has been given at various times to some sort of
expression evaluation within the main GMP library.  Going beyond something
minimal quickly leads to matters like user-defined functions, looping, fixnums
for control variables, etc, which are considered outside the scope of GMP
(much closer to language interpreters or compilers, @xref{Language Bindings}.)
Something simple for program input convenience may yet be a possibility, a
combination of the @file{expr} demo and the @file{pexpr} tree back-end
perhaps.  But for now the above evaluators are offered as illustrations.


@need 1000
@node Efficiency, Debugging, Demonstration Programs, GMP Basics
@section Efficiency
@cindex Efficiency

@table @asis
@item Small Operands
@cindex Small operands
On small operands, the time for function call overheads and memory allocation
can be significant in comparison to actual calculation.  This is unavoidable
in a general purpose variable precision library, although GMP attempts to be
as efficient as it can on both large and small operands.

@item Static Linking
@cindex Static linking
On some CPUs, in particular the x86s, the static @file{libgmp.a} should be
used for maximum speed, since the PIC code in the shared @file{libgmp.so} will
have a small overhead on each function call and global data address.  For many
programs this will be insignificant, but for long calculations there's a gain
to be had.

@item Initializing and Clearing
@cindex Initializing and clearing
Avoid excessive initializing and clearing of variables, since this can be
quite time consuming, especially in comparison to otherwise fast operations
like addition.

A language interpreter might want to keep a free list or stack of
initialized variables ready for use.  It should be possible to integrate
something like that with a garbage collector too.

@item Reallocations
@cindex Reallocations
An @code{mpz_t} or @code{mpq_t} variable used to hold successively increasing
values will have its memory repeatedly @code{realloc}ed, which could be quite
slow or could fragment memory, depending on the C library.  If an application
can estimate the final size then @code{mpz_init2} or @code{mpz_realloc2} can
be called to allocate the necessary space from the beginning
(@pxref{Initializing Integers}).

It doesn't matter if a size set with @code{mpz_init2} or @code{mpz_realloc2}
is too small, since all functions will do a further reallocation if necessary.
Badly overestimating memory required will waste space though.

@item @code{2exp} Functions
@cindex @code{2exp} functions
It's up to an application to call functions like @code{mpz_mul_2exp} when
appropriate.  General purpose functions like @code{mpz_mul} make no attempt to
identify powers of two or other special forms, because such inputs will
usually be very rare and testing every time would be wasteful.

@item @code{ui} and @code{si} Functions
@cindex @code{ui} and @code{si} functions
The @code{ui} functions and the small number of @code{si} functions exist for
convenience and should be used where applicable.  But if for example an
@code{mpz_t} contains a value that fits in an @code{unsigned long} there's no
need extract it and call a @code{ui} function, just use the regular @code{mpz}
function.

@item In-Place Operations
@cindex In-place operations
@code{mpz_abs}, @code{mpq_abs}, @code{mpf_abs}, @code{mpz_neg}, @code{mpq_neg}
and @code{mpf_neg} are fast when used for in-place operations like
@code{mpz_abs(x,x)}, since in the current implementation only a single field
of @code{x} needs changing.  On suitable compilers (GCC for instance) this is
inlined too.

@code{mpz_add_ui}, @code{mpz_sub_ui}, @code{mpf_add_ui} and @code{mpf_sub_ui}
benefit from an in-place operation like @code{mpz_add_ui(x,x,y)}, since
usually only one or two limbs of @code{x} will need to be changed.  The same
applies to the full precision @code{mpz_add} etc if @code{y} is small.  If
@code{y} is big then cache locality may be helped, but that's all.

@code{mpz_mul} is currently the opposite, a separate destination is slightly
better.  A call like @code{mpz_mul(x,x,y)} will, unless @code{y} is only one
limb, make a temporary copy of @code{x} before forming the result.  Normally
that copying will only be a tiny fraction of the time for the multiply, so
this is not a particularly important consideration.

@code{mpz_set}, @code{mpq_set}, @code{mpq_set_num}, @code{mpf_set}, etc, make
no attempt to recognise a copy of something to itself, so a call like
@code{mpz_set(x,x)} will be wasteful.  Naturally that would never be written
deliberately, but if it might arise from two pointers to the same object then
a test to avoid it might be desirable.

@example
if (x != y)
  mpz_set (x, y);
@end example

Note that it's never worth introducing extra @code{mpz_set} calls just to get
in-place operations.  If a result should go to a particular variable then just
direct it there and let GMP take care of data movement.

@item Divisibility Testing (Small Integers)
@cindex Divisibility testing
@code{mpz_divisible_ui_p} and @code{mpz_congruent_ui_p} are the best functions
for testing whether an @code{mpz_t} is divisible by an individual small
integer.  They use an algorithm which is faster than @code{mpz_tdiv_ui}, but
which gives no useful information about the actual remainder, only whether
it's zero (or a particular value).

However when testing divisibility by several small integers, it's best to take
a remainder modulo their product, to save multi-precision operations.  For
instance to test whether a number is divisible by any of 23, 29 or 31 take a
remainder modulo @math{23@times{}29@times{}31 = 20677} and then test that.

The division functions like @code{mpz_tdiv_q_ui} which give a quotient as well
as a remainder are generally a little slower than the remainder-only functions
like @code{mpz_tdiv_ui}.  If the quotient is only rarely wanted then it's
probably best to just take a remainder and then go back and calculate the
quotient if and when it's wanted (@code{mpz_divexact_ui} can be used if the
remainder is zero).

@item Rational Arithmetic
@cindex Rational arithmetic
The @code{mpq} functions operate on @code{mpq_t} values with no common factors
in the numerator and denominator.  Common factors are checked-for and cast out
as necessary.  In general, cancelling factors every time is the best approach
since it minimizes the sizes for subsequent operations.

However, applications that know something about the factorization of the
values they're working with might be able to avoid some of the GCDs used for
canonicalization, or swap them for divisions.  For example when multiplying by
a prime it's enough to check for factors of it in the denominator instead of
doing a full GCD@.  Or when forming a big product it might be known that very
little cancellation will be possible, and so canonicalization can be left to
the end.

The @code{mpq_numref} and @code{mpq_denref} macros give access to the
numerator and denominator to do things outside the scope of the supplied
@code{mpq} functions.  @xref{Applying Integer Functions}.

The canonical form for rationals allows mixed-type @code{mpq_t} and integer
additions or subtractions to be done directly with multiples of the
denominator.  This will be somewhat faster than @code{mpq_add}.  For example,

@example
/* mpq increment */
mpz_add (mpq_numref(q), mpq_numref(q), mpq_denref(q));

/* mpq += unsigned long */
mpz_addmul_ui (mpq_numref(q), mpq_denref(q), 123UL);

/* mpq -= mpz */
mpz_submul (mpq_numref(q), mpq_denref(q), z);
@end example

@item Number Sequences
@cindex Number sequences
Functions like @code{mpz_fac_ui}, @code{mpz_fib_ui} and @code{mpz_bin_uiui}
are designed for calculating isolated values.  If a range of values is wanted
it's probably best to call to get a starting point and iterate from there.

@item Text Input/Output
@cindex Text input/output
Hexadecimal or octal are suggested for input or output in text form.
Power-of-2 bases like these can be converted much more efficiently than other
bases, like decimal.  For big numbers there's usually nothing of particular
interest to be seen in the digits, so the base doesn't matter much.

Maybe we can hope octal will one day become the normal base for everyday use,
as proposed by King Charles XII of Sweden and later reformers.
@c Reference: Knuth volume 2 section 4.1, page 184 of second edition.  :-)
@end table


@node Debugging, Profiling, Efficiency, GMP Basics
@section Debugging
@cindex Debugging

@table @asis
@item Stack Overflow
@cindex Stack overflow
@cindex Segmentation violation
@cindex Bus error
Depending on the system, a segmentation violation or bus error might be the
only indication of stack overflow.  See @samp{--enable-alloca} choices in
@ref{Build Options}, for how to address this.

In new enough versions of GCC, @samp{-fstack-check} may be able to ensure an
overflow is recognised by the system before too much damage is done, or
@samp{-fstack-limit-symbol} or @samp{-fstack-limit-register} may be able to
add checking if the system itself doesn't do any (@pxref{Code Gen Options,,
Options for Code Generation, gcc, Using the GNU Compiler Collection (GCC)}).
These options must be added to the @samp{CFLAGS} used in the GMP build
(@pxref{Build Options}), adding them just to an application will have no
effect.  Note also they're a slowdown, adding overhead to each function call
and each stack allocation.

@item Heap Problems
@cindex Heap problems
@cindex Malloc problems
The most likely cause of application problems with GMP is heap corruption.
Failing to @code{init} GMP variables will have unpredictable effects, and
corruption arising elsewhere in a program may well affect GMP@.  Initializing
GMP variables more than once or failing to clear them will cause memory leaks.

@cindex Malloc debugger
In all such cases a @code{malloc} debugger is recommended.  On a GNU or BSD
system the standard C library @code{malloc} has some diagnostic facilities,
see @ref{Allocation Debugging,, Allocation Debugging, libc, The GNU C Library
Reference Manual}, or @samp{man 3 malloc}.  Other possibilities, in no
particular order, include

@display
@uref{http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/}
@uref{http://dmalloc.com/}
@uref{http://www.perens.com/FreeSoftware/} @ (electric fence)
@uref{http://packages.debian.org/stable/devel/fda}
@uref{http://www.gnupdate.org/components/leakbug/}
@uref{http://people.redhat.com/~otaylor/memprof/}
@uref{http://www.cbmamiga.demon.co.uk/mpatrol/}
@end display

The GMP default allocation routines in @file{memory.c} also have a simple
sentinel scheme which can be enabled with @code{#define DEBUG} in that file.
This is mainly designed for detecting buffer overruns during GMP development,
but might find other uses.

@item Stack Backtraces
@cindex Stack backtrace
On some systems the compiler options GMP uses by default can interfere with
debugging.  In particular on x86 and 68k systems @samp{-fomit-frame-pointer}
is used and this generally inhibits stack backtracing.  Recompiling without
such options may help while debugging, though the usual caveats about it
potentially moving a memory problem or hiding a compiler bug will apply.

@item GDB, the GNU Debugger
@cindex GDB
@cindex GNU Debugger
A sample @file{.gdbinit} is included in the distribution, showing how to call
some undocumented dump functions to print GMP variables from within GDB@.  Note
that these functions shouldn't be used in final application code since they're
undocumented and may be subject to incompatible changes in future versions of
GMP.

@item Source File Paths
GMP has multiple source files with the same name, in different directories.
For example @file{mpz}, @file{mpq} and @file{mpf} each have an
@file{init.c}.  If the debugger can't already determine the right one it may
help to build with absolute paths on each C file.  One way to do that is to
use a separate object directory with an absolute path to the source directory.

@example
cd /my/build/dir
/my/source/dir/gmp-@value{VERSION}/configure
@end example

This works via @code{VPATH}, and might require GNU @command{make}.
Alternately it might be possible to change the @code{.c.lo} rules
appropriately.

@item Assertion Checking
@cindex Assertion checking
The build option @option{--enable-assert} is available to add some consistency
checks to the library (see @ref{Build Options}).  These are likely to be of
limited value to most applications.  Assertion failures are just as likely to
indicate memory corruption as a library or compiler bug.

Applications using the low-level @code{mpn} functions, however, will benefit
from @option{--enable-assert} since it adds checks on the parameters of most
such functions, many of which have subtle restrictions on their usage.  Note
however that only the generic C code has checks, not the assembly code, so
@option{--disable-assembly} should be used for maximum checking.

@item Temporary Memory Checking
The build option @option{--enable-alloca=debug} arranges that each block of
temporary memory in GMP is allocated with a separate call to @code{malloc} (or
the allocation function set with @code{mp_set_memory_functions}).

This can help a malloc debugger detect accesses outside the intended bounds,
or detect memory not released.  In a normal build, on the other hand,
temporary memory is allocated in blocks which GMP divides up for its own use,
or may be allocated with a compiler builtin @code{alloca} which will go
nowhere near any malloc debugger hooks.

@item Maximum Debuggability
To summarize the above, a GMP build for maximum debuggability would be

@example
./configure --disable-shared --enable-assert \
  --enable-alloca=debug --disable-assembly CFLAGS=-g
@end example

For C++, add @samp{--enable-cxx CXXFLAGS=-g}.

@item Checker
@cindex Checker
@cindex GCC Checker
The GCC checker (@uref{http://savannah.nongnu.org/projects/checker/}) can be
used with GMP@.  It contains a stub library which means GMP applications
compiled with checker can use a normal GMP build.

A build of GMP with checking within GMP itself can be made.  This will run
very very slowly.  On GNU/Linux for example,

@cindex @command{checkergcc}
@example
./configure --disable-assembly CC=checkergcc
@end example

@option{--disable-assembly} must be used, since the GMP assembly code doesn't
support the checking scheme.  The GMP C++ features cannot be used, since
current versions of checker (0.9.9.1) don't yet support the standard C++
library.

@item Valgrind
@cindex Valgrind
The valgrind program (@uref{http://valgrind.org/}) is a memory
checker for x86s.  It translates and emulates machine instructions to do
strong checks for uninitialized data (at the level of individual bits), memory
accesses through bad pointers, and memory leaks.

Recent versions of Valgrind are getting support for MMX and SSE/SSE2
instructions, for past versions GMP will need to be configured not to use
those, i.e.@: for an x86 without them (for instance plain @samp{i486}).

GMP's assembly code sometimes promotes a read of the limbs to some larger size,
for efficiency.  GMP will do this even at the start and end of a multilimb
operand, using naturaly aligned operations on the larger type.  This may lead
to benign reads outside of allocated areas, triggering complants from Valgrind.

@item Other Problems
Any suspected bug in GMP itself should be isolated to make sure it's not an
application problem, see @ref{Reporting Bugs}.
@end table


@node Profiling, Autoconf, Debugging, GMP Basics
@section Profiling
@cindex Profiling
@cindex Execution profiling
@cindex @code{--enable-profiling}

Running a program under a profiler is a good way to find where it's spending
most time and where improvements can be best sought.  The profiling choices
for a GMP build are as follows.

@table @asis
@item @samp{--disable-profiling}
The default is to add nothing special for profiling.

It should be possible to just compile the mainline of a program with @code{-p}
and use @command{prof} to get a profile consisting of timer-based sampling of
the program counter.  Most of the GMP assembly code has the necessary symbol
information.

This approach has the advantage of minimizing interference with normal program
operation, but on most systems the resolution of the sampling is quite low (10
milliseconds for instance), requiring long runs to get accurate information.

@item @samp{--enable-profiling=prof}
@cindex @code{prof}
Build with support for the system @command{prof}, which means @samp{-p} added
to the @samp{CFLAGS}.

This provides call counting in addition to program counter sampling, which
allows the most frequently called routines to be identified, and an average
time spent in each routine to be determined.

The x86 assembly code has support for this option, but on other processors
the assembly routines will be as if compiled without @samp{-p} and therefore
won't appear in the call counts.

On some systems, such as GNU/Linux, @samp{-p} in fact means @samp{-pg} and in
this case @samp{--enable-profiling=gprof} described below should be used
instead.

@item @samp{--enable-profiling=gprof}
@cindex @code{gprof}
Build with support for @command{gprof}, which means @samp{-pg} added to the
@samp{CFLAGS}.

This provides call graph construction in addition to call counting and program
counter sampling, which makes it possible to count calls coming from different
locations.  For example the number of calls to @code{mpn_mul} from
@code{mpz_mul} versus the number from @code{mpf_mul}.  The program counter
sampling is still flat though, so only a total time in @code{mpn_mul} would be
accumulated, not a separate amount for each call site.

The x86 assembly code has support for this option, but on other processors
the assembly routines will be as if compiled without @samp{-pg} and therefore
not be included in the call counts.

On x86 and m68k systems @samp{-pg} and @samp{-fomit-frame-pointer} are
incompatible, so the latter is omitted from the default flags in that case,
which might result in poorer code generation.

Incidentally, it should be possible to use the @command{gprof} program with a
plain @samp{--enable-profiling=prof} build.  But in that case only the
@samp{gprof -p} flat profile and call counts can be expected to be valid, not
the @samp{gprof -q} call graph.

@item @samp{--enable-profiling=instrument}
@cindex @code{-finstrument-functions}
@cindex @code{instrument-functions}
Build with the GCC option @samp{-finstrument-functions} added to the
@samp{CFLAGS} (@pxref{Code Gen Options,, Options for Code Generation, gcc,
Using the GNU Compiler Collection (GCC)}).

This inserts special instrumenting calls at the start and end of each
function, allowing exact timing and full call graph construction.

This instrumenting is not normally a standard system feature and will require
support from an external library, such as

@cindex FunctionCheck
@cindex fnccheck
@display
@uref{http://sourceforge.net/projects/fnccheck/}
@end display

This should be included in @samp{LIBS} during the GMP configure so that test
programs will link.  For example,

@example
./configure --enable-profiling=instrument LIBS=-lfc
@end example

On a GNU system the C library provides dummy instrumenting functions, so
programs compiled with this option will link.  In this case it's only
necessary to ensure the correct library is added when linking an application.

The x86 assembly code supports this option, but on other processors the
assembly routines will be as if compiled without
@samp{-finstrument-functions} meaning time spent in them will effectively be
attributed to their caller.
@end table


@node Autoconf, Emacs, Profiling, GMP Basics
@section Autoconf
@cindex Autoconf

Autoconf based applications can easily check whether GMP is installed.  The
only thing to be noted is that GMP library symbols from version 3 onwards have
prefixes like @code{__gmpz}.  The following therefore would be a simple test,

@cindex @code{AC_CHECK_LIB}
@example
AC_CHECK_LIB(gmp, __gmpz_init)
@end example

This just uses the default @code{AC_CHECK_LIB} actions for found or not found,
but an application that must have GMP would want to generate an error if not
found.  For example,

@example
AC_CHECK_LIB(gmp, __gmpz_init, ,
  [AC_MSG_ERROR([GNU MP not found, see http://gmplib.org/])])
@end example

If functions added in some particular version of GMP are required, then one of
those can be used when checking.  For example @code{mpz_mul_si} was added in
GMP 3.1,

@example
AC_CHECK_LIB(gmp, __gmpz_mul_si, ,
  [AC_MSG_ERROR(
  [GNU MP not found, or not 3.1 or up, see http://gmplib.org/])])
@end example

An alternative would be to test the version number in @file{gmp.h} using say
@code{AC_EGREP_CPP}.  That would make it possible to test the exact version,
if some particular sub-minor release is known to be necessary.

In general it's recommended that applications should simply demand a new
enough GMP rather than trying to provide supplements for features not
available in past versions.

Occasionally an application will need or want to know the size of a type at
configuration or preprocessing time, not just with @code{sizeof} in the code.
This can be done in the normal way with @code{mp_limb_t} etc, but GMP 4.0 or
up is best for this, since prior versions needed certain @samp{-D} defines on
systems using a @code{long long} limb.  The following would suit Autoconf 2.50
or up,

@example
AC_CHECK_SIZEOF(mp_limb_t, , [#include <gmp.h>])
@end example


@node Emacs,  , Autoconf, GMP Basics
@section Emacs
@cindex Emacs
@cindex @code{info-lookup-symbol}

@key{C-h C-i} (@code{info-lookup-symbol}) is a good way to find documentation
on C functions while editing (@pxref{Info Lookup, , Info Documentation Lookup,
emacs, The Emacs Editor}).

The GMP manual can be included in such lookups by putting the following in
your @file{.emacs},

@c  This isn't pretty, but there doesn't seem to be a better way (in emacs
@c  21.2 at least).  info-lookup->mode-value could be used for the "assoc"s,
@c  but that function isn't documented, whereas info-lookup-alist is.
@c
@example
(eval-after-load "info-look"
  '(let ((mode-value (assoc 'c-mode (assoc 'symbol info-lookup-alist))))
     (setcar (nthcdr 3 mode-value)
             (cons '("(gmp)Function Index" nil "^ -.* " "\\>")
                   (nth 3 mode-value)))))
@end example


@node Reporting Bugs, Integer Functions, GMP Basics, Top
@comment  node-name,  next,  previous,  up
@chapter Reporting Bugs
@cindex Reporting bugs
@cindex Bug reporting

If you think you have found a bug in the GMP library, please investigate it
and report it.  We have made this library available to you, and it is not too
much to ask you to report the bugs you find.

Before you report a bug, check it's not already addressed in @ref{Known Build
Problems}, or perhaps @ref{Notes for Particular Systems}.  You may also want
to check @uref{http://gmplib.org/} for patches for this release.

Please include the following in any report,

@itemize @bullet
@item
The GMP version number, and if pre-packaged or patched then say so.

@item
A test program that makes it possible for us to reproduce the bug.  Include
instructions on how to run the program.

@item
A description of what is wrong.  If the results are incorrect, in what way.
If you get a crash, say so.

@item
If you get a crash, include a stack backtrace from the debugger if it's
informative (@samp{where} in @command{gdb}, or @samp{$C} in @command{adb}).

@item
Please do not send core dumps, executables or @command{strace}s.

@item
The configuration options you used when building GMP, if any.

@item
The name of the compiler and its version.  For @command{gcc}, get the version
with @samp{gcc -v}, otherwise perhaps @samp{what `which cc`}, or similar.

@item
The output from running @samp{uname -a}.

@item
The output from running @samp{./config.guess}, and from running
@samp{./configfsf.guess} (might be the same).

@item
If the bug is related to @samp{configure}, then the compressed contents of
@file{config.log}.

@item
If the bug is related to an @file{asm} file not assembling, then the contents
of @file{config.m4} and the offending line or lines from the temporary
@file{mpn/tmp-<file>.s}.
@end itemize

Please make an effort to produce a self-contained report, with something
definite that can be tested or debugged.  Vague queries or piecemeal messages
are difficult to act on and don't help the development effort.

It is not uncommon that an observed problem is actually due to a bug in the
compiler; the GMP code tends to explore interesting corners in compilers.

If your bug report is good, we will do our best to help you get a corrected
version of the library; if the bug report is poor, we won't do anything about
it (except maybe ask you to send a better report).

Send your report to: @email{gmp-bugs@@gmplib.org}.

If you think something in this manual is unclear, or downright incorrect, or if
the language needs to be improved, please send a note to the same address.


@node Integer Functions, Rational Number Functions, Reporting Bugs, Top
@comment  node-name,  next,  previous,  up
@chapter Integer Functions
@cindex Integer functions

This chapter describes the GMP functions for performing integer arithmetic.
These functions start with the prefix @code{mpz_}.

GMP integers are stored in objects of type @code{mpz_t}.

@menu
* Initializing Integers::
* Assigning Integers::
* Simultaneous Integer Init & Assign::
* Converting Integers::
* Integer Arithmetic::
* Integer Division::
* Integer Exponentiation::
* Integer Roots::
* Number Theoretic Functions::
* Integer Comparisons::
* Integer Logic and Bit Fiddling::
* I/O of Integers::
* Integer Random Numbers::
* Integer Import and Export::
* Miscellaneous Integer Functions::
* Integer Special Functions::
@end menu

@node Initializing Integers, Assigning Integers, Integer Functions, Integer Functions
@comment  node-name,  next,  previous,  up
@section Initialization Functions
@cindex Integer initialization functions
@cindex Initialization functions

The functions for integer arithmetic assume that all integer objects are
initialized.  You do that by calling the function @code{mpz_init}.  For
example,

@example
@{
  mpz_t integ;
  mpz_init (integ);
  @dots{}
  mpz_add (integ, @dots{});
  @dots{}
  mpz_sub (integ, @dots{});

  /* Unless the program is about to exit, do ... */
  mpz_clear (integ);
@}
@end example

As you can see, you can store new values any number of times, once an
object is initialized.

@deftypefun void mpz_init (mpz_t @var{x})
Initialize @var{x}, and set its value to 0.
@end deftypefun

@deftypefun void mpz_inits (mpz_t @var{x}, ...)
Initialize a NULL-terminated list of @code{mpz_t} variables, and set their
values to 0.
@end deftypefun

@deftypefun void mpz_init2 (mpz_t @var{x}, mp_bitcnt_t @var{n})
Initialize @var{x}, with space for @var{n}-bit numbers, and set its value to 0.
Calling this function instead of @code{mpz_init} or @code{mpz_inits} is never
necessary; reallocation is handled automatically by GMP when needed.

@var{n} is only the initial space, @var{x} will grow automatically in
the normal way, if necessary, for subsequent values stored.  @code{mpz_init2}
makes it possible to avoid such reallocations if a maximum size is known in
advance.
@end deftypefun

@deftypefun void mpz_clear (mpz_t @var{x})
Free the space occupied by @var{x}.  Call this function for all @code{mpz_t}
variables when you are done with them.
@end deftypefun

@deftypefun void mpz_clears (mpz_t @var{x}, ...)
Free the space occupied by a NULL-terminated list of @code{mpz_t} variables.
@end deftypefun

@deftypefun void mpz_realloc2 (mpz_t @var{x}, mp_bitcnt_t @var{n})
Change the space allocated for @var{x} to @var{n} bits.  The value in @var{x}
is preserved if it fits, or is set to 0 if not.

Calling this function is never necessary; reallocation is handled automatically
by GMP when needed.  But this function can be used to increase the space for a
variable in order to avoid repeated automatic reallocations, or to decrease it
to give memory back to the heap.
@end deftypefun


@node Assigning Integers, Simultaneous Integer Init & Assign, Initializing Integers, Integer Functions
@comment  node-name,  next,  previous,  up
@section Assignment Functions
@cindex Integer assignment functions
@cindex Assignment functions

These functions assign new values to already initialized integers
(@pxref{Initializing Integers}).

@deftypefun void mpz_set (mpz_t @var{rop}, mpz_t @var{op})
@deftypefunx void mpz_set_ui (mpz_t @var{rop}, unsigned long int @var{op})
@deftypefunx void mpz_set_si (mpz_t @var{rop}, signed long int @var{op})
@deftypefunx void mpz_set_d (mpz_t @var{rop}, double @var{op})
@deftypefunx void mpz_set_q (mpz_t @var{rop}, mpq_t @var{op})
@deftypefunx void mpz_set_f (mpz_t @var{rop}, mpf_t @var{op})
Set the value of @var{rop} from @var{op}.

@code{mpz_set_d}, @code{mpz_set_q} and @code{mpz_set_f} truncate @var{op} to
make it an integer.
@end deftypefun

@deftypefun int mpz_set_str (mpz_t @var{rop}, char *@var{str}, int @var{base})
Set the value of @var{rop} from @var{str}, a null-terminated C string in base
@var{base}.  White space is allowed in the string, and is simply ignored.

The @var{base} may vary from 2 to 62, or if @var{base} is 0, then the leading
characters are used: @code{0x} and @code{0X} for hexadecimal, @code{0b} and
@code{0B} for binary, @code{0} for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have
the same value.  For bases 37 to 62, upper-case letter represent the usual
10..35 while lower-case letter represent 36..61.

This function returns 0 if the entire string is a valid number in base
@var{base}.  Otherwise it returns @minus{}1.
@c
@c  It turns out that it is not entirely true that this function ignores
@c  white-space.  It does ignore it between digits, but not after a minus sign
@c  or within or after ``0x''.  Some thought was given to disallowing all
@c  whitespace, but that would be an incompatible change, whitespace has been
@c  documented as ignored ever since GMP 1.
@c
@end deftypefun

@deftypefun void mpz_swap (mpz_t @var{rop1}, mpz_t @var{rop2})
Swap the values @var{rop1} and @var{rop2} efficiently.
@end deftypefun


@node Simultaneous Integer Init & Assign, Converting Integers, Assigning Integers, Integer Functions
@comment  node-name,  next,  previous,  up
@section Combined Initialization and Assignment Functions
@cindex Integer assignment functions
@cindex Assignment functions
@cindex Integer initialization functions
@cindex Initialization functions

For convenience, GMP provides a parallel series of initialize-and-set functions
which initialize the output and then store the value there.  These functions'
names have the form @code{mpz_init_set@dots{}}

Here is an example of using one:

@example
@{
  mpz_t pie;
  mpz_init_set_str (pie, "3141592653589793238462643383279502884", 10);
  @dots{}
  mpz_sub (pie, @dots{});
  @dots{}
  mpz_clear (pie);
@}
@end example

@noindent
Once the integer has been initialized by any of the @code{mpz_init_set@dots{}}
functions, it can be used as the source or destination operand for the ordinary
integer functions.  Don't use an initialize-and-set function on a variable
already initialized!

@deftypefun void mpz_init_set (mpz_t @var{rop}, mpz_t @var{op})
@deftypefunx void mpz_init_set_ui (mpz_t @var{rop}, unsigned long int @var{op})
@deftypefunx void mpz_init_set_si (mpz_t @var{rop}, signed long int @var{op})
@deftypefunx void mpz_init_set_d (mpz_t @var{rop}, double @var{op})
Initialize @var{rop} with limb space and set the initial numeric value from
@var{op}.
@end deftypefun

@deftypefun int mpz_init_set_str (mpz_t @var{rop}, char *@var{str}, int @var{base})
Initialize @var{rop} and set its value like @code{mpz_set_str} (see its
documentation above for details).

If the string is a correct base @var{base} number, the function returns 0;
if an error occurs it returns @minus{}1.  @var{rop} is initialized even if
an error occurs.  (I.e., you have to call @code{mpz_clear} for it.)
@end deftypefun


@node Converting Integers, Integer Arithmetic, Simultaneous Integer Init & Assign, Integer Functions
@comment  node-name,  next,  previous,  up
@section Conversion Functions
@cindex Integer conversion functions
@cindex Conversion functions

This section describes functions for converting GMP integers to standard C
types.  Functions for converting @emph{to} GMP integers are described in
@ref{Assigning Integers} and @ref{I/O of Integers}.

@deftypefun {unsigned long int} mpz_get_ui (mpz_t @var{op})
Return the value of @var{op} as an @code{unsigned long}.

If @var{op} is too big to fit an @code{unsigned long} then just the least
significant bits that do fit are returned.  The sign of @var{op} is ignored,
only the absolute value is used.
@end deftypefun

@deftypefun {signed long int} mpz_get_si (mpz_t @var{op})
If @var{op} fits into a @code{signed long int} return the value of @var{op}.
Otherwise return the least significant part of @var{op}, with the same sign
as @var{op}.

If @var{op} is too big to fit in a @code{signed long int}, the returned
result is probably not very useful.  To find out if the value will fit, use
the function @code{mpz_fits_slong_p}.
@end deftypefun

@deftypefun double mpz_get_d (mpz_t @var{op})
Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding
towards zero).

If the exponent from the conversion is too big, the result is system
dependent.  An infinity is returned where available.  A hardware overflow trap
may or may not occur.
@end deftypefun

@deftypefun double mpz_get_d_2exp (signed long int *@var{exp}, mpz_t @var{op})
Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding
towards zero), and returning the exponent separately.

The return value is in the range @math{0.5@le{}@GMPabs{@var{d}}<1} and the
exponent is stored to @code{*@var{exp}}.  @m{@var{d} * 2^{exp}, @var{d} *
2^@var{exp}} is the (truncated) @var{op} value.  If @var{op} is zero, the
return is @math{0.0} and 0 is stored to @code{*@var{exp}}.

@cindex @code{frexp}
This is similar to the standard C @code{frexp} function (@pxref{Normalization
Functions,,, libc, The GNU C Library Reference Manual}).
@end deftypefun

@deftypefun {char *} mpz_get_str (char *@var{str}, int @var{base}, mpz_t @var{op})
Convert @var{op} to a string of digits in base @var{base}.  The base argument
may vary from 2 to 62 or from @minus{}2 to @minus{}36.

For @var{base} in the range 2..36, digits and lower-case letters are used; for
@minus{}2..@minus{}36, digits and upper-case letters are used; for 37..62,
digits, upper-case letters, and lower-case letters (in that significance order)
are used.

If @var{str} is @code{NULL}, the result string is allocated using the current
allocation function (@pxref{Custom Allocation}).  The block will be
@code{strlen(str)+1} bytes, that being exactly enough for the string and
null-terminator.

If @var{str} is not @code{NULL}, it should point to a block of storage large
enough for the result, that being @code{mpz_sizeinbase (@var{op}, @var{base})
+ 2}.  The two extra bytes are for a possible minus sign, and the
null-terminator.

A pointer to the result string is returned, being either the allocated block,
or the given @var{str}.
@end deftypefun


@need 2000
@node Integer Arithmetic, Integer Division, Converting Integers, Integer Functions
@comment  node-name,  next,  previous,  up
@section Arithmetic Functions
@cindex Integer arithmetic functions
@cindex Arithmetic functions

@deftypefun void mpz_add (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_add_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{op1} + @var{op2}}.
@end deftypefun

@deftypefun void mpz_sub (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_sub_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
@deftypefunx void mpz_ui_sub (mpz_t @var{rop}, unsigned long int @var{op1}, mpz_t @var{op2})
Set @var{rop} to @var{op1} @minus{} @var{op2}.
@end deftypefun

@deftypefun void mpz_mul (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_mul_si (mpz_t @var{rop}, mpz_t @var{op1}, long int @var{op2})
@deftypefunx void mpz_mul_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{op1} @GMPtimes{} @var{op2}}.
@end deftypefun

@deftypefun void mpz_addmul (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_addmul_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{rop} + @var{op1} @GMPtimes{} @var{op2}}.
@end deftypefun

@deftypefun void mpz_submul (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_submul_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{rop} - @var{op1} @GMPtimes{} @var{op2}}.
@end deftypefun

@deftypefun void mpz_mul_2exp (mpz_t @var{rop}, mpz_t @var{op1}, mp_bitcnt_t @var{op2})
@cindex Bit shift left
Set @var{rop} to @m{@var{op1} \times 2^{op2}, @var{op1} times 2 raised to
@var{op2}}.  This operation can also be defined as a left shift by @var{op2}
bits.
@end deftypefun

@deftypefun void mpz_neg (mpz_t @var{rop}, mpz_t @var{op})
Set @var{rop} to @minus{}@var{op}.
@end deftypefun

@deftypefun void mpz_abs (mpz_t @var{rop}, mpz_t @var{op})
Set @var{rop} to the absolute value of @var{op}.
@end deftypefun


@need 2000
@node Integer Division, Integer Exponentiation, Integer Arithmetic, Integer Functions
@section Division Functions
@cindex Integer division functions
@cindex Division functions

Division is undefined if the divisor is zero.  Passing a zero divisor to the
division or modulo functions (including the modular powering functions
@code{mpz_powm} and @code{mpz_powm_ui}), will cause an intentional division by
zero.  This lets a program handle arithmetic exceptions in these functions the
same way as for normal C @code{int} arithmetic.

@c  Separate deftypefun groups for cdiv, fdiv and tdiv produce a blank line
@c  between each, and seem to let tex do a better job of page breaks than an
@c  @sp 1 in the middle of one big set.

@deftypefun void mpz_cdiv_q (mpz_t @var{q}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_cdiv_r (mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_cdiv_qr (mpz_t @var{q}, mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@maybepagebreak
@deftypefunx {unsigned long int} mpz_cdiv_q_ui (mpz_t @var{q}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_cdiv_r_ui (mpz_t @var{r}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_cdiv_qr_ui (mpz_t @var{q}, mpz_t @var{r}, @w{mpz_t @var{n}}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_cdiv_ui (mpz_t @var{n}, @w{unsigned long int @var{d}})
@maybepagebreak
@deftypefunx void mpz_cdiv_q_2exp (mpz_t @var{q}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@deftypefunx void mpz_cdiv_r_2exp (mpz_t @var{r}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@end deftypefun

@deftypefun void mpz_fdiv_q (mpz_t @var{q}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_fdiv_r (mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_fdiv_qr (mpz_t @var{q}, mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@maybepagebreak
@deftypefunx {unsigned long int} mpz_fdiv_q_ui (mpz_t @var{q}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_fdiv_r_ui (mpz_t @var{r}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_fdiv_qr_ui (mpz_t @var{q}, mpz_t @var{r}, @w{mpz_t @var{n}}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_fdiv_ui (mpz_t @var{n}, @w{unsigned long int @var{d}})
@maybepagebreak
@deftypefunx void mpz_fdiv_q_2exp (mpz_t @var{q}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@deftypefunx void mpz_fdiv_r_2exp (mpz_t @var{r}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@end deftypefun

@deftypefun void mpz_tdiv_q (mpz_t @var{q}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_tdiv_r (mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_tdiv_qr (mpz_t @var{q}, mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@maybepagebreak
@deftypefunx {unsigned long int} mpz_tdiv_q_ui (mpz_t @var{q}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_tdiv_r_ui (mpz_t @var{r}, mpz_t @var{n}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_tdiv_qr_ui (mpz_t @var{q}, mpz_t @var{r}, @w{mpz_t @var{n}}, @w{unsigned long int @var{d}})
@deftypefunx {unsigned long int} mpz_tdiv_ui (mpz_t @var{n}, @w{unsigned long int @var{d}})
@maybepagebreak
@deftypefunx void mpz_tdiv_q_2exp (mpz_t @var{q}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@deftypefunx void mpz_tdiv_r_2exp (mpz_t @var{r}, mpz_t @var{n}, @w{mp_bitcnt_t @var{b}})
@cindex Bit shift right

@sp 1
Divide @var{n} by @var{d}, forming a quotient @var{q} and/or remainder
@var{r}.  For the @code{2exp} functions, @m{@var{d}=2^b, @var{d}=2^@var{b}}.
The rounding is in three styles, each suiting different applications.

@itemize @bullet
@item
@code{cdiv} rounds @var{q} up towards @m{+\infty, +infinity}, and @var{r} will
have the opposite sign to @var{d}.  The @code{c} stands for ``ceil''.

@item
@code{fdiv} rounds @var{q} down towards @m{-\infty, @minus{}infinity}, and
@var{r} will have the same sign as @var{d}.  The @code{f} stands for
``floor''.

@item
@code{tdiv} rounds @var{q} towards zero, and @var{r} will have the same sign
as @var{n}.  The @code{t} stands for ``truncate''.
@end itemize

In all cases @var{q} and @var{r} will satisfy
@m{@var{n}=@var{q}@var{d}+@var{r}, @var{n}=@var{q}*@var{d}+@var{r}}, and
@var{r} will satisfy @math{0@le{}@GMPabs{@var{r}}<@GMPabs{@var{d}}}.

The @code{q} functions calculate only the quotient, the @code{r} functions
only the remainder, and the @code{qr} functions calculate both.  Note that for
@code{qr} the same variable cannot be passed for both @var{q} and @var{r}, or
results will be unpredictable.

For the @code{ui} variants the return value is the remainder, and in fact
returning the remainder is all the @code{div_ui} functions do.  For
@code{tdiv} and @code{cdiv} the remainder can be negative, so for those the
return value is the absolute value of the remainder.

For the @code{2exp} variants the divisor is @m{2^b,2^@var{b}}.  These
functions are implemented as right shifts and bit masks, but of course they
round the same as the other functions.

For positive @var{n} both @code{mpz_fdiv_q_2exp} and @code{mpz_tdiv_q_2exp}
are simple bitwise right shifts.  For negative @var{n}, @code{mpz_fdiv_q_2exp}
is effectively an arithmetic right shift treating @var{n} as twos complement
the same as the bitwise logical functions do, whereas @code{mpz_tdiv_q_2exp}
effectively treats @var{n} as sign and magnitude.
@end deftypefun

@deftypefun void mpz_mod (mpz_t @var{r}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx {unsigned long int} mpz_mod_ui (mpz_t @var{r}, mpz_t @var{n}, @w{unsigned long int @var{d}})
Set @var{r} to @var{n} @code{mod} @var{d}.  The sign of the divisor is
ignored; the result is always non-negative.

@code{mpz_mod_ui} is identical to @code{mpz_fdiv_r_ui} above, returning the
remainder as well as setting @var{r}.  See @code{mpz_fdiv_ui} above if only
the return value is wanted.
@end deftypefun

@deftypefun void mpz_divexact (mpz_t @var{q}, mpz_t @var{n}, mpz_t @var{d})
@deftypefunx void mpz_divexact_ui (mpz_t @var{q}, mpz_t @var{n}, unsigned long @var{d})
@cindex Exact division functions
Set @var{q} to @var{n}/@var{d}.  These functions produce correct results only
when it is known in advance that @var{d} divides @var{n}.

These routines are much faster than the other division functions, and are the
best choice when exact division is known to occur, for example reducing a
rational to lowest terms.
@end deftypefun

@deftypefun int mpz_divisible_p (mpz_t @var{n}, mpz_t @var{d})
@deftypefunx int mpz_divisible_ui_p (mpz_t @var{n}, unsigned long int @var{d})
@deftypefunx int mpz_divisible_2exp_p (mpz_t @var{n}, mp_bitcnt_t @var{b})
@cindex Divisibility functions
Return non-zero if @var{n} is exactly divisible by @var{d}, or in the case of
@code{mpz_divisible_2exp_p} by @m{2^b,2^@var{b}}.

@var{n} is divisible by @var{d} if there exists an integer @var{q} satisfying
@math{@var{n} = @var{q}@GMPmultiply{}@var{d}}.  Unlike the other division
functions, @math{@var{d}=0} is accepted and following the rule it can be seen
that only 0 is considered divisible by 0.
@end deftypefun

@deftypefun int mpz_congruent_p (mpz_t @var{n}, mpz_t @var{c}, mpz_t @var{d})
@deftypefunx int mpz_congruent_ui_p (mpz_t @var{n}, unsigned long int @var{c}, unsigned long int @var{d})
@deftypefunx int mpz_congruent_2exp_p (mpz_t @var{n}, mpz_t @var{c}, mp_bitcnt_t @var{b})
@cindex Divisibility functions
@cindex Congruence functions
Return non-zero if @var{n} is congruent to @var{c} modulo @var{d}, or in the
case of @code{mpz_congruent_2exp_p} modulo @m{2^b,2^@var{b}}.

@var{n} is congruent to @var{c} mod @var{d} if there exists an integer @var{q}
satisfying @math{@var{n} = @var{c} + @var{q}@GMPmultiply{}@var{d}}.  Unlike
the other division functions, @math{@var{d}=0} is accepted and following the
rule it can be seen that @var{n} and @var{c} are considered congruent mod 0
only when exactly equal.
@end deftypefun


@need 2000
@node Integer Exponentiation, Integer Roots, Integer Division, Integer Functions
@section Exponentiation Functions
@cindex Integer exponentiation functions
@cindex Exponentiation functions
@cindex Powering functions

@deftypefun void mpz_powm (mpz_t @var{rop}, mpz_t @var{base}, mpz_t @var{exp}, mpz_t @var{mod})
@deftypefunx void mpz_powm_ui (mpz_t @var{rop}, mpz_t @var{base}, unsigned long int @var{exp}, mpz_t @var{mod})
Set @var{rop} to @m{base^{exp} \bmod mod, (@var{base} raised to @var{exp})
modulo @var{mod}}.

Negative @var{exp} is supported if an inverse @math{@var{base}^@W{-1} @bmod
@var{mod}} exists (see @code{mpz_invert} in @ref{Number Theoretic Functions}).
If an inverse doesn't exist then a divide by zero is raised.
@end deftypefun

@deftypefun void mpz_powm_sec (mpz_t @var{rop}, mpz_t @var{base}, mpz_t @var{exp}, mpz_t @var{mod})
Set @var{rop} to @m{base^{exp} \bmod mod, (@var{base} raised to @var{exp})
modulo @var{mod}}.

It is required that @math{@var{exp} > 0} and that @var{mod} is odd.

This function is designed to take the same time and have the same cache access
patterns for any two same-size arguments, assuming that function arguments are
placed at the same position and that the machine state is identical upon
function entry.  This function is intended for cryptographic purposes, where
resilience to side-channel attacks is desired.
@end deftypefun

@deftypefun void mpz_pow_ui (mpz_t @var{rop}, mpz_t @var{base}, unsigned long int @var{exp})
@deftypefunx void mpz_ui_pow_ui (mpz_t @var{rop}, unsigned long int @var{base}, unsigned long int @var{exp})
Set @var{rop} to @m{base^{exp}, @var{base} raised to @var{exp}}.  The case
@math{0^0} yields 1.
@end deftypefun


@need 2000
@node Integer Roots, Number Theoretic Functions, Integer Exponentiation, Integer Functions
@section Root Extraction Functions
@cindex Integer root functions
@cindex Root extraction functions

@deftypefun int mpz_root (mpz_t @var{rop}, mpz_t @var{op}, unsigned long int @var{n})
Set @var{rop} to @m{\lfloor\root n \of {op}\rfloor@C{},} the truncated integer
part of the @var{n}th root of @var{op}.  Return non-zero if the computation
was exact, i.e., if @var{op} is @var{rop} to the @var{n}th power.
@end deftypefun

@deftypefun void mpz_rootrem (mpz_t @var{root}, mpz_t @var{rem}, mpz_t @var{u}, unsigned long int @var{n})
Set @var{root} to @m{\lfloor\root n \of {u}\rfloor@C{},} the truncated
integer part of the @var{n}th root of @var{u}.  Set @var{rem} to the
remainder, @m{(@var{u} - @var{root}^n),
@var{u}@minus{}@var{root}**@var{n}}.
@end deftypefun

@deftypefun void mpz_sqrt (mpz_t @var{rop}, mpz_t @var{op})
Set @var{rop} to @m{\lfloor\sqrt{@var{op}}\rfloor@C{},} the truncated
integer part of the square root of @var{op}.
@end deftypefun

@deftypefun void mpz_sqrtrem (mpz_t @var{rop1}, mpz_t @var{rop2}, mpz_t @var{op})
Set @var{rop1} to @m{\lfloor\sqrt{@var{op}}\rfloor, the truncated integer part
of the square root of @var{op}}, like @code{mpz_sqrt}.  Set @var{rop2} to the
remainder @m{(@var{op} - @var{rop1}^2),
@var{op}@minus{}@var{rop1}*@var{rop1}}, which will be zero if @var{op} is a
perfect square.

If @var{rop1} and @var{rop2} are the same variable, the results are
undefined.
@end deftypefun

@deftypefun int mpz_perfect_power_p (mpz_t @var{op})
@cindex Perfect power functions
@cindex Root testing functions
Return non-zero if @var{op} is a perfect power, i.e., if there exist integers
@m{a,@var{a}} and @m{b,@var{b}}, with @m{b>1, @var{b}>1}, such that
@m{@var{op}=a^b, @var{op} equals @var{a} raised to the power @var{b}}.

Under this definition both 0 and 1 are considered to be perfect powers.
Negative values of @var{op} are accepted, but of course can only be odd
perfect powers.
@end deftypefun

@deftypefun int mpz_perfect_square_p (mpz_t @var{op})
@cindex Perfect square functions
@cindex Root testing functions
Return non-zero if @var{op} is a perfect square, i.e., if the square root of
@var{op} is an integer.  Under this definition both 0 and 1 are considered to
be perfect squares.
@end deftypefun


@need 2000
@node Number Theoretic Functions, Integer Comparisons, Integer Roots, Integer Functions
@section Number Theoretic Functions
@cindex Number theoretic functions

@deftypefun int mpz_probab_prime_p (mpz_t @var{n}, int @var{reps})
@cindex Prime testing functions
@cindex Probable prime testing functions
Determine whether @var{n} is prime.  Return 2 if @var{n} is definitely prime,
return 1 if @var{n} is probably prime (without being certain), or return 0 if
@var{n} is definitely composite.

This function does some trial divisions, then some Miller-Rabin probabilistic
primality tests.  @var{reps} controls how many such tests are done, 5 to 10 is
a reasonable number, more will reduce the chances of a composite being
returned as ``probably prime''.

Miller-Rabin and similar tests can be more properly called compositeness
tests.  Numbers which fail are known to be composite but those which pass
might be prime or might be composite.  Only a few composites pass, hence those
which pass are considered probably prime.
@end deftypefun

@deftypefun void mpz_nextprime (mpz_t @var{rop}, mpz_t @var{op})
@cindex Next prime function
Set @var{rop} to the next prime greater than @var{op}.

This function uses a probabilistic algorithm to identify primes.  For
practical purposes it's adequate, the chance of a composite passing will be
extremely small.
@end deftypefun

@c mpz_prime_p not implemented as of gmp 3.0.

@c @deftypefun int mpz_prime_p (mpz_t @var{n})
@c Return non-zero if @var{n} is prime and zero if @var{n} is a non-prime.
@c This function is far slower than @code{mpz_probab_prime_p}, but then it
@c never returns non-zero for composite numbers.

@c (For practical purposes, using @code{mpz_probab_prime_p} is adequate.
@c The likelihood of a programming error or hardware malfunction is orders
@c of magnitudes greater than the likelihood for a composite to pass as a
@c prime, if the @var{reps} argument is in the suggested range.)
@c @end deftypefun

@deftypefun void mpz_gcd (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@cindex Greatest common divisor functions
@cindex GCD functions
Set @var{rop} to the greatest common divisor of @var{op1} and @var{op2}.  The
result is always positive even if one or both input operands are negative.
Except if both inputs are zero; then this function defines @math{gcd(0,0) = 0}.
@end deftypefun

@deftypefun {unsigned long int} mpz_gcd_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long int @var{op2})
Compute the greatest common divisor of @var{op1} and @var{op2}.  If
@var{rop} is not @code{NULL}, store the result there.

If the result is small enough to fit in an @code{unsigned long int}, it is
returned.  If the result does not fit, 0 is returned, and the result is equal
to the argument @var{op1}.  Note that the result will always fit if @var{op2}
is non-zero.
@end deftypefun

@deftypefun void mpz_gcdext (mpz_t @var{g}, mpz_t @var{s}, mpz_t @var{t}, mpz_t @var{a}, mpz_t @var{b})
@cindex Extended GCD
@cindex GCD extended
Set @var{g} to the greatest common divisor of @var{a} and @var{b}, and in
addition set @var{s} and @var{t} to coefficients satisfying
@math{@var{a}@GMPmultiply{}@var{s} + @var{b}@GMPmultiply{}@var{t} = @var{g}}.
The value in @var{g} is always positive, even if one or both of @var{a} and
@var{b} are negative (or zero if both inputs are zero).  The values in @var{s} and @var{t} are chosen such that
normally, @math{@GMPabs{@var{s}} < @GMPabs{@var{b}} / (2 @var{g})} and
@math{@GMPabs{@var{t}} < @GMPabs{@var{a}} / (2 @var{g})}. The exceptional
cases are that @math{@var{s} = sgn(@var{a})} if @math{@var{b} = 0} and
@math{@var{t} = sgn(@var{b})} if @var{a = 0}.

If @var{t} is @code{NULL} then that value is not computed.
@end deftypefun

@deftypefun void mpz_lcm (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@deftypefunx void mpz_lcm_ui (mpz_t @var{rop}, mpz_t @var{op1}, unsigned long @var{op2})
@cindex Least common multiple functions
@cindex LCM functions
Set @var{rop} to the least common multiple of @var{op1} and @var{op2}.
@var{rop} is always positive, irrespective of the signs of @var{op1} and
@var{op2}.  @var{rop} will be zero if either @var{op1} or @var{op2} is zero.
@end deftypefun

@deftypefun int mpz_invert (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
@cindex Modular inverse functions
@cindex Inverse modulo functions
Compute the inverse of @var{op1} modulo @var{op2} and put the result in
@var{rop}.  If the inverse exists, the return value is non-zero and @var{rop}
will satisfy @math{0 @le{} @var{rop} < @var{op2}}.  If an inverse doesn't exist
the return value is zero and @var{rop} is undefined.
@end deftypefun

@deftypefun int mpz_jacobi (mpz_t @var{a}, mpz_t @var{b})
@cindex Jacobi symbol functions
Calculate the Jacobi symbol @m{\left(a \over b\right),
(@var{a}/@var{b})}.  This is defined only for @var{b} odd.
@end deftypefun

@deftypefun int mpz_legendre (mpz_t @var{a}, mpz_t @var{p})
@cindex Legendre symbol functions
Calculate the Legendre symbol @m{\left(a \over p\right),
(@var{a}/@var{p})}.  This is defined only for @var{p} an odd positive
prime, and for such @var{p} it's identical to the Jacobi symbol.
@end deftypefun

@deftypefun int mpz_kronecker (mpz_t @var{a}, mpz_t @var{b})
@deftypefunx int mpz_kronecker_si (mpz_t @var{a}, long @var{b})
@deftypefunx int mpz_kronecker_ui (mpz_t @var{a}, unsigned long @var{b})
@deftypefunx int mpz_si_kronecker (long @var{a}, mpz_t @var{b})
@deftypefunx int mpz_ui_kronecker (unsigned long @var{a}, mpz_t @var{b})
@cindex Kronecker symbol functions
Calculate the Jacobi symbol @m{\left(a \over b\right),
(@var{a}/@var{b})} with the Kronecker extension @m{\left(a \over
2\right) = \left(2 \over a\right), (a/2)=(2/a)} when @math{a} odd, or
@m{\left(a \over 2\right) = 0, (a/2)=0} when @math{a} even.

When @var{b} is odd the Jacobi symbol and Kronecker symbol are
identical, so @code{mpz_kronecker_ui} etc can be used for mixed
precision Jacobi symbols too.

For more information see Henri Cohen section 1.4.2 (@pxref{References}),
or any number theory textbook.  See also the example program
@file{demos/qcn.c} which uses @code{mpz_kronecker_ui}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpz_remove (mpz_t @var{rop}, mpz_t @var{op}, mpz_t @var{f})
@cindex Remove factor functions
@cindex Factor removal functions
Remove all occurrences of the factor @var{f} from @var{op} and store the
result in @var{rop}.  The return value is how many such occurrences were
removed.
@end deftypefun

@deftypefun void mpz_fac_ui (mpz_t @var{rop}, unsigned long int @var{op})
@cindex Factorial functions
Set @var{rop} to @var{op}!, the factorial of @var{op}.
@end deftypefun

@deftypefun void mpz_bin_ui (mpz_t @var{rop}, mpz_t @var{n}, unsigned long int @var{k})
@deftypefunx void mpz_bin_uiui (mpz_t @var{rop}, unsigned long int @var{n}, @w{unsigned long int @var{k}})
@cindex Binomial coefficient functions
Compute the binomial coefficient @m{\left({n}\atop{k}\right), @var{n} over
@var{k}} and store the result in @var{rop}.  Negative values of @var{n} are
supported by @code{mpz_bin_ui}, using the identity
@m{\left({-n}\atop{k}\right) = (-1)^k \left({n+k-1}\atop{k}\right),
bin(-n@C{}k) = (-1)^k * bin(n+k-1@C{}k)}, see Knuth volume 1 section 1.2.6
part G.
@end deftypefun

@deftypefun void mpz_fib_ui (mpz_t @var{fn}, unsigned long int @var{n})
@deftypefunx void mpz_fib2_ui (mpz_t @var{fn}, mpz_t @var{fnsub1}, unsigned long int @var{n})
@cindex Fibonacci sequence functions
@code{mpz_fib_ui} sets @var{fn} to to @m{F_n,F[n]}, the @var{n}'th Fibonacci
number.  @code{mpz_fib2_ui} sets @var{fn} to @m{F_n,F[n]}, and @var{fnsub1} to
@m{F_{n-1},F[n-1]}.

These functions are designed for calculating isolated Fibonacci numbers.  When
a sequence of values is wanted it's best to start with @code{mpz_fib2_ui} and
iterate the defining @m{F_{n+1} = F_n + F_{n-1}, F[n+1]=F[n]+F[n-1]} or
similar.
@end deftypefun

@deftypefun void mpz_lucnum_ui (mpz_t @var{ln}, unsigned long int @var{n})
@deftypefunx void mpz_lucnum2_ui (mpz_t @var{ln}, mpz_t @var{lnsub1}, unsigned long int @var{n})
@cindex Lucas number functions
@code{mpz_lucnum_ui} sets @var{ln} to to @m{L_n,L[n]}, the @var{n}'th Lucas
number.  @code{mpz_lucnum2_ui} sets @var{ln} to @m{L_n,L[n]}, and @var{lnsub1}
to @m{L_{n-1},L[n-1]}.

These functions are designed for calculating isolated Lucas numbers.  When a
sequence of values is wanted it's best to start with @code{mpz_lucnum2_ui} and
iterate the defining @m{L_{n+1} = L_n + L_{n-1}, L[n+1]=L[n]+L[n-1]} or
similar.

The Fibonacci numbers and Lucas numbers are related sequences, so it's never
necessary to call both @code{mpz_fib2_ui} and @code{mpz_lucnum2_ui}.  The
formulas for going from Fibonacci to Lucas can be found in @ref{Lucas Numbers
Algorithm}, the reverse is straightforward too.
@end deftypefun


@node Integer Comparisons, Integer Logic and Bit Fiddling, Number Theoretic Functions, Integer Functions
@comment  node-name,  next,  previous,  up
@section Comparison Functions
@cindex Integer comparison functions
@cindex Comparison functions

@deftypefn Function int mpz_cmp (mpz_t @var{op1}, mpz_t @var{op2})
@deftypefnx Function int mpz_cmp_d (mpz_t @var{op1}, double @var{op2})
@deftypefnx Macro int mpz_cmp_si (mpz_t @var{op1}, signed long int @var{op2})
@deftypefnx Macro int mpz_cmp_ui (mpz_t @var{op1}, unsigned long int @var{op2})
Compare @var{op1} and @var{op2}.  Return a positive value if @math{@var{op1} >
@var{op2}}, zero if @math{@var{op1} = @var{op2}}, or a negative value if
@math{@var{op1} < @var{op2}}.

@code{mpz_cmp_ui} and @code{mpz_cmp_si} are macros and will evaluate their
arguments more than once.  @code{mpz_cmp_d} can be called with an infinity,
but results are undefined for a NaN.
@end deftypefn

@deftypefn Function int mpz_cmpabs (mpz_t @var{op1}, mpz_t @var{op2})
@deftypefnx Function int mpz_cmpabs_d (mpz_t @var{op1}, double @var{op2})
@deftypefnx Function int mpz_cmpabs_ui (mpz_t @var{op1}, unsigned long int @var{op2})
Compare the absolute values of @var{op1} and @var{op2}.  Return a positive
value if @math{@GMPabs{@var{op1}} > @GMPabs{@var{op2}}}, zero if
@math{@GMPabs{@var{op1}} = @GMPabs{@var{op2}}}, or a negative value if
@math{@GMPabs{@var{op1}} < @GMPabs{@var{op2}}}.

@code{mpz_cmpabs_d} can be called with an infinity, but results are undefined
for a NaN.
@end deftypefn

@deftypefn Macro int mpz_sgn (mpz_t @var{op})
@cindex Sign tests
@cindex Integer sign tests
Return @math{+1} if @math{@var{op} > 0}, 0 if @math{@var{op} = 0}, and
@math{-1} if @math{@var{op} < 0}.

This function is actually implemented as a macro.  It evaluates its argument
multiple times.
@end deftypefn


@node Integer Logic and Bit Fiddling, I/O of Integers, Integer Comparisons, Integer Functions
@comment  node-name,  next,  previous,  up
@section Logical and Bit Manipulation Functions
@cindex Logical functions
@cindex Bit manipulation functions
@cindex Integer logical functions
@cindex Integer bit manipulation functions

These functions behave as if twos complement arithmetic were used (although
sign-magnitude is the actual implementation).  The least significant bit is
number 0.

@deftypefun void mpz_and (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
Set @var{rop} to @var{op1} bitwise-and @var{op2}.
@end deftypefun

@deftypefun void mpz_ior (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
Set @var{rop} to @var{op1} bitwise inclusive-or @var{op2}.
@end deftypefun

@deftypefun void mpz_xor (mpz_t @var{rop}, mpz_t @var{op1}, mpz_t @var{op2})
Set @var{rop} to @var{op1} bitwise exclusive-or @var{op2}.
@end deftypefun

@deftypefun void mpz_com (mpz_t @var{rop}, mpz_t @var{op})
Set @var{rop} to the one's complement of @var{op}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpz_popcount (mpz_t @var{op})
If @math{@var{op}@ge{}0}, return the population count of @var{op}, which is the
number of 1 bits in the binary representation.  If @math{@var{op}<0}, the
number of 1s is infinite, and the return value is the largest possible
@code{mp_bitcnt_t}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpz_hamdist (mpz_t @var{op1}, mpz_t @var{op2})
If @var{op1} and @var{op2} are both @math{@ge{}0} or both @math{<0}, return the
hamming distance between the two operands, which is the number of bit positions
where @var{op1} and @var{op2} have different bit values.  If one operand is
@math{@ge{}0} and the other @math{<0} then the number of bits different is
infinite, and the return value is the largest possible @code{mp_bitcnt_t}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpz_scan0 (mpz_t @var{op}, mp_bitcnt_t @var{starting_bit})
@deftypefunx {mp_bitcnt_t} mpz_scan1 (mpz_t @var{op}, mp_bitcnt_t @var{starting_bit})
@cindex Bit scanning functions
@cindex Scan bit functions
Scan @var{op}, starting from bit @var{starting_bit}, towards more significant
bits, until the first 0 or 1 bit (respectively) is found.  Return the index of
the found bit.

If the bit at @var{starting_bit} is already what's sought, then
@var{starting_bit} is returned.

If there's no bit found, then the largest possible @code{mp_bitcnt_t} is
returned.  This will happen in @code{mpz_scan0} past the end of a negative
number, or @code{mpz_scan1} past the end of a nonnegative number.
@end deftypefun

@deftypefun void mpz_setbit (mpz_t @var{rop}, mp_bitcnt_t @var{bit_index})
Set bit @var{bit_index} in @var{rop}.
@end deftypefun

@deftypefun void mpz_clrbit (mpz_t @var{rop}, mp_bitcnt_t @var{bit_index})
Clear bit @var{bit_index} in @var{rop}.
@end deftypefun

@deftypefun void mpz_combit (mpz_t @var{rop}, mp_bitcnt_t @var{bit_index})
Complement bit @var{bit_index} in @var{rop}.
@end deftypefun

@deftypefun int mpz_tstbit (mpz_t @var{op}, mp_bitcnt_t @var{bit_index})
Test bit @var{bit_index} in @var{op} and return 0 or 1 accordingly.
@end deftypefun

@node I/O of Integers, Integer Random Numbers, Integer Logic and Bit Fiddling, Integer Functions
@comment  node-name,  next,  previous,  up
@section Input and Output Functions
@cindex Integer input and output functions
@cindex Input functions
@cindex Output functions
@cindex I/O functions

Functions that perform input from a stdio stream, and functions that output to
a stdio stream, of @code{mpz} numbers.  Passing a @code{NULL} pointer for a
@var{stream} argument to any of these functions will make them read from
@code{stdin} and write to @code{stdout}, respectively.

When using any of these functions, it is a good idea to include @file{stdio.h}
before @file{gmp.h}, since that will allow @file{gmp.h} to define prototypes
for these functions.

See also @ref{Formatted Output} and @ref{Formatted Input}.

@deftypefun size_t mpz_out_str (FILE *@var{stream}, int @var{base}, mpz_t @var{op})
Output @var{op} on stdio stream @var{stream}, as a string of digits in base
@var{base}.  The base argument may vary from 2 to 62 or from @minus{}2 to
@minus{}36.

For @var{base} in the range 2..36, digits and lower-case letters are used; for
@minus{}2..@minus{}36, digits and upper-case letters are used; for 37..62,
digits, upper-case letters, and lower-case letters (in that significance order)
are used.

Return the number of bytes written, or if an error occurred, return 0.
@end deftypefun

@deftypefun size_t mpz_inp_str (mpz_t @var{rop}, FILE *@var{stream}, int @var{base})
Input a possibly white-space preceded string in base @var{base} from stdio
stream @var{stream}, and put the read integer in @var{rop}.

The @var{base} may vary from 2 to 62, or if @var{base} is 0, then the leading
characters are used: @code{0x} and @code{0X} for hexadecimal, @code{0b} and
@code{0B} for binary, @code{0} for octal, or decimal otherwise.

For bases up to 36, case is ignored; upper-case and lower-case letters have
the same value.  For bases 37 to 62, upper-case letter represent the usual
10..35 while lower-case letter represent 36..61.

Return the number of bytes read, or if an error occurred, return 0.
@end deftypefun

@deftypefun size_t mpz_out_raw (FILE *@var{stream}, mpz_t @var{op})
Output @var{op} on stdio stream @var{stream}, in raw binary format.  The
integer is written in a portable format, with 4 bytes of size information, and
that many bytes of limbs.  Both the size and the limbs are written in
decreasing significance order (i.e., in big-endian).

The output can be read with @code{mpz_inp_raw}.

Return the number of bytes written, or if an error occurred, return 0.

The output of this can not be read by @code{mpz_inp_raw} from GMP 1, because
of changes necessary for compatibility between 32-bit and 64-bit machines.
@end deftypefun

@deftypefun size_t mpz_inp_raw (mpz_t @var{rop}, FILE *@var{stream})
Input from stdio stream @var{stream} in the format written by
@code{mpz_out_raw}, and put the result in @var{rop}.  Return the number of
bytes read, or if an error occurred, return 0.

This routine can read the output from @code{mpz_out_raw} also from GMP 1, in
spite of changes necessary for compatibility between 32-bit and 64-bit
machines.
@end deftypefun


@need 2000
@node Integer Random Numbers, Integer Import and Export, I/O of Integers, Integer Functions
@comment  node-name,  next,  previous,  up
@section Random Number Functions
@cindex Integer random number functions
@cindex Random number functions

The random number functions of GMP come in two groups; older function
that rely on a global state, and newer functions that accept a state
parameter that is read and modified.  Please see the @ref{Random Number
Functions} for more information on how to use and not to use random
number functions.

@deftypefun void mpz_urandomb (mpz_t @var{rop}, gmp_randstate_t @var{state}, mp_bitcnt_t @var{n})
Generate a uniformly distributed random integer in the range 0 to @m{2^n-1,
2^@var{n}@minus{}1}, inclusive.

The variable @var{state} must be initialized by calling one of the
@code{gmp_randinit} functions (@ref{Random State Initialization}) before
invoking this function.
@end deftypefun

@deftypefun void mpz_urandomm (mpz_t @var{rop}, gmp_randstate_t @var{state}, mpz_t @var{n})
Generate a uniform random integer in the range 0 to @math{@var{n}-1},
inclusive.

The variable @var{state} must be initialized by calling one of the
@code{gmp_randinit} functions (@ref{Random State Initialization})
before invoking this function.
@end deftypefun

@deftypefun void mpz_rrandomb (mpz_t @var{rop}, gmp_randstate_t @var{state}, mp_bitcnt_t @var{n})
Generate a random integer with long strings of zeros and ones in the
binary representation.  Useful for testing functions and algorithms,
since this kind of random numbers have proven to be more likely to
trigger corner-case bugs.  The random number will be in the range
0 to @m{2^n-1, 2^@var{n}@minus{}1}, inclusive.

The variable @var{state} must be initialized by calling one of the
@code{gmp_randinit} functions (@ref{Random State Initialization})
before invoking this function.
@end deftypefun

@deftypefun void mpz_random (mpz_t @var{rop}, mp_size_t @var{max_size})
Generate a random integer of at most @var{max_size} limbs.  The generated
random number doesn't satisfy any particular requirements of randomness.
Negative random numbers are generated when @var{max_size} is negative.

This function is obsolete.  Use @code{mpz_urandomb} or
@code{mpz_urandomm} instead.
@end deftypefun

@deftypefun void mpz_random2 (mpz_t @var{rop}, mp_size_t @var{max_size})
Generate a random integer of at most @var{max_size} limbs, with long strings
of zeros and ones in the binary representation.  Useful for testing functions
and algorithms, since this kind of random numbers have proven to be more
likely to trigger corner-case bugs.  Negative random numbers are generated
when @var{max_size} is negative.

This function is obsolete.  Use @code{mpz_rrandomb} instead.
@end deftypefun


@node Integer Import and Export, Miscellaneous Integer Functions, Integer Random Numbers, Integer Functions
@section Integer Import and Export

@code{mpz_t} variables can be converted to and from arbitrary words of binary
data with the following functions.

@deftypefun void mpz_import (mpz_t @var{rop}, size_t @var{count}, int @var{order}, size_t @var{size}, int @var{endian}, size_t @var{nails}, const void *@var{op})
@cindex Integer import
@cindex Import
Set @var{rop} from an array of word data at @var{op}.

The parameters specify the format of the data.  @var{count} many words are
read, each @var{size} bytes.  @var{order} can be 1 for most significant word
first or -1 for least significant first.  Within each word @var{endian} can be
1 for most significant byte first, -1 for least significant first, or 0 for
the native endianness of the host CPU@.  The most significant @var{nails} bits
of each word are skipped, this can be 0 to use the full words.

There is no sign taken from the data, @var{rop} will simply be a positive
integer.  An application can handle any sign itself, and apply it for instance
with @code{mpz_neg}.

There are no data alignment restrictions on @var{op}, any address is allowed.

Here's an example converting an array of @code{unsigned long} data, most
significant element first, and host byte order within each value.

@example
unsigned long  a[20];
/* Initialize @var{z} and @var{a} */
mpz_import (z, 20, 1, sizeof(a[0]), 0, 0, a);
@end example

This example assumes the full @code{sizeof} bytes are used for data in the
given type, which is usually true, and certainly true for @code{unsigned long}
everywhere we know of.  However on Cray vector systems it may be noted that
@code{short} and @code{int} are always stored in 8 bytes (and with
@code{sizeof} indicating that) but use only 32 or 46 bits.  The @var{nails}
feature can account for this, by passing for instance
@code{8*sizeof(int)-INT_BIT}.
@end deftypefun

@deftypefun {void *} mpz_export (void *@var{rop}, size_t *@var{countp}, int @var{order}, size_t @var{size}, int @var{endian}, size_t @var{nails}, mpz_t @var{op})
@cindex Integer export
@cindex Export
Fill @var{rop} with word data from @var{op}.

The parameters specify the format of the data produced.  Each word will be
@var{size} bytes and @var{order} can be 1 for most significant word first or
-1 for least significant first.  Within each word @var{endian} can be 1 for
most significant byte first, -1 for least significant first, or 0 for the
native endianness of the host CPU@.  The most significant @var{nails} bits of
each word are unused and set to zero, this can be 0 to produce full words.

The number of words produced is written to @code{*@var{countp}}, or
@var{countp} can be @code{NULL} to discard the count.  @var{rop} must have
enough space for the data, or if @var{rop} is @code{NULL} then a result array
of the necessary size is allocated using the current GMP allocation function
(@pxref{Custom Allocation}).  In either case the return value is the
destination used, either @var{rop} or the allocated block.

If @var{op} is non-zero then the most significant word produced will be
non-zero.  If @var{op} is zero then the count returned will be zero and
nothing written to @var{rop}.  If @var{rop} is @code{NULL} in this case, no
block is allocated, just @code{NULL} is returned.

The sign of @var{op} is ignored, just the absolute value is exported.  An
application can use @code{mpz_sgn} to get the sign and handle it as desired.
(@pxref{Integer Comparisons})

There are no data alignment restrictions on @var{rop}, any address is allowed.

When an application is allocating space itself the required size can be
determined with a calculation like the following.  Since @code{mpz_sizeinbase}
always returns at least 1, @code{count} here will be at least one, which
avoids any portability problems with @code{malloc(0)}, though if @code{z} is
zero no space at all is actually needed (or written).

@example
numb = 8*size - nail;
count = (mpz_sizeinbase (z, 2) + numb-1) / numb;
p = malloc (count * size);
@end example
@end deftypefun


@need 2000
@node Miscellaneous Integer Functions, Integer Special Functions, Integer Import and Export, Integer Functions
@comment  node-name,  next,  previous,  up
@section Miscellaneous Functions
@cindex Miscellaneous integer functions
@cindex Integer miscellaneous functions

@deftypefun int mpz_fits_ulong_p (mpz_t @var{op})
@deftypefunx int mpz_fits_slong_p (mpz_t @var{op})
@deftypefunx int mpz_fits_uint_p (mpz_t @var{op})
@deftypefunx int mpz_fits_sint_p (mpz_t @var{op})
@deftypefunx int mpz_fits_ushort_p (mpz_t @var{op})
@deftypefunx int mpz_fits_sshort_p (mpz_t @var{op})
Return non-zero iff the value of @var{op} fits in an @code{unsigned long int},
@code{signed long int}, @code{unsigned int}, @code{signed int}, @code{unsigned
short int}, or @code{signed short int}, respectively.  Otherwise, return zero.
@end deftypefun

@deftypefn Macro int mpz_odd_p (mpz_t @var{op})
@deftypefnx Macro int mpz_even_p (mpz_t @var{op})
Determine whether @var{op} is odd or even, respectively.  Return non-zero if
yes, zero if no.  These macros evaluate their argument more than once.
@end deftypefn

@deftypefun size_t mpz_sizeinbase (mpz_t @var{op}, int @var{base})
@cindex Size in digits
@cindex Digits in an integer
Return the size of @var{op} measured in number of digits in the given
@var{base}.  @var{base} can vary from 2 to 62.  The sign of @var{op} is
ignored, just the absolute value is used.  The result will be either exact or
1 too big.  If @var{base} is a power of 2, the result is always exact.  If
@var{op} is zero the return value is always 1.

This function can be used to determine the space required when converting
@var{op} to a string.  The right amount of allocation is normally two more
than the value returned by @code{mpz_sizeinbase}, one extra for a minus sign
and one for the null-terminator.

@cindex Most significant bit
It will be noted that @code{mpz_sizeinbase(@var{op},2)} can be used to locate
the most significant 1 bit in @var{op}, counting from 1.  (Unlike the bitwise
functions which start from 0, @xref{Integer Logic and Bit Fiddling,, Logical
and Bit Manipulation Functions}.)
@end deftypefun


@node Integer Special Functions,  , Miscellaneous Integer Functions, Integer Functions
@section Special Functions
@cindex Special integer functions
@cindex Integer special functions

The functions in this section are for various special purposes.  Most
applications will not need them.

@deftypefun void mpz_array_init (mpz_t @var{integer_array}, mp_size_t @var{array_size}, @w{mp_size_t @var{fixed_num_bits}})
This is a special type of initialization.  @strong{Fixed} space of
@var{fixed_num_bits} is allocated to each of the @var{array_size} integers in
@var{integer_array}.  There is no way to free the storage allocated by this
function.  Don't call @code{mpz_clear}!

The @var{integer_array} parameter is the first @code{mpz_t} in the array.  For
example,

@example
mpz_t  arr[20000];
mpz_array_init (arr[0], 20000, 512);
@end example

@c  In case anyone's wondering, yes this parameter style is a bit anomalous,
@c  it'd probably be nicer if it was "arr" instead of "arr[0]".  Obviously the
@c  two differ only in the declaration, not the pointer value, but changing is
@c  not possible since it'd provoke warnings or errors in existing sources.

This function is only intended for programs that create a large number
of integers and need to reduce memory usage by avoiding the overheads of
allocating and reallocating lots of small blocks.  In normal programs this
function is not recommended.

The space allocated to each integer by this function will not be automatically
increased, unlike the normal @code{mpz_init}, so an application must ensure it
is sufficient for any value stored.  The following space requirements apply to
various routines,

@itemize @bullet
@item
@code{mpz_abs}, @code{mpz_neg}, @code{mpz_set}, @code{mpz_set_si} and
@code{mpz_set_ui} need room for the value they store.

@item
@code{mpz_add}, @code{mpz_add_ui}, @code{mpz_sub} and @code{mpz_sub_ui} need
room for the larger of the two operands, plus an extra
@code{mp_bits_per_limb}.

@item
@code{mpz_mul}, @code{mpz_mul_ui} and @code{mpz_mul_si} need room for the sum
of the number of bits in their operands, but each rounded up to a multiple of
@code{mp_bits_per_limb}.

@item
@code{mpz_swap} can be used between two array variables, but not between an
array and a normal variable.
@end itemize

For other functions, or if in doubt, the suggestion is to calculate in a
regular @code{mpz_init} variable and copy the result to an array variable with
@code{mpz_set}.
@end deftypefun

@deftypefun {void *} _mpz_realloc (mpz_t @var{integer}, mp_size_t @var{new_alloc})
Change the space for @var{integer} to @var{new_alloc} limbs.  The value in
@var{integer} is preserved if it fits, or is set to 0 if not.  The return
value is not useful to applications and should be ignored.

@code{mpz_realloc2} is the preferred way to accomplish allocation changes like
this.  @code{mpz_realloc2} and @code{_mpz_realloc} are the same except that
@code{_mpz_realloc} takes its size in limbs.
@end deftypefun

@deftypefun mp_limb_t mpz_getlimbn (mpz_t @var{op}, mp_size_t @var{n})
Return limb number @var{n} from @var{op}.  The sign of @var{op} is ignored,
just the absolute value is used.  The least significant limb is number 0.

@code{mpz_size} can be used to find how many limbs make up @var{op}.
@code{mpz_getlimbn} returns zero if @var{n} is outside the range 0 to
@code{mpz_size(@var{op})-1}.
@end deftypefun

@deftypefun size_t mpz_size (mpz_t @var{op})
Return the size of @var{op} measured in number of limbs.  If @var{op} is zero,
the returned value will be zero.
@c (@xref{Nomenclature}, for an explanation of the concept @dfn{limb}.)
@end deftypefun



@node Rational Number Functions, Floating-point Functions, Integer Functions, Top
@comment  node-name,  next,  previous,  up
@chapter Rational Number Functions
@cindex Rational number functions

This chapter describes the GMP functions for performing arithmetic on rational
numbers.  These functions start with the prefix @code{mpq_}.

Rational numbers are stored in objects of type @code{mpq_t}.

All rational arithmetic functions assume operands have a canonical form, and
canonicalize their result.  The canonical from means that the denominator and
the numerator have no common factors, and that the denominator is positive.
Zero has the unique representation 0/1.

Pure assignment functions do not canonicalize the assigned variable.  It is
the responsibility of the user to canonicalize the assigned variable before
any arithmetic operations are performed on that variable.

@deftypefun void mpq_canonicalize (mpq_t @var{op})
Remove any factors that are common to the numerator and denominator of
@var{op}, and make the denominator positive.
@end deftypefun

@menu
* Initializing Rationals::
* Rational Conversions::
* Rational Arithmetic::
* Comparing Rationals::
* Applying Integer Functions::
* I/O of Rationals::
@end menu

@node Initializing Rationals, Rational Conversions, Rational Number Functions, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Initialization and Assignment Functions
@cindex Rational assignment functions
@cindex Assignment functions
@cindex Rational initialization functions
@cindex Initialization functions

@deftypefun void mpq_init (mpq_t @var{x})
Initialize @var{x} and set it to 0/1.  Each variable should normally only be
initialized once, or at least cleared out (using the function @code{mpq_clear})
between each initialization.
@end deftypefun

@deftypefun void mpq_inits (mpq_t @var{x}, ...)
Initialize a NULL-terminated list of @code{mpq_t} variables, and set their
values to 0/1.
@end deftypefun

@deftypefun void mpq_clear (mpq_t @var{x})
Free the space occupied by @var{x}.  Make sure to call this function for all
@code{mpq_t} variables when you are done with them.
@end deftypefun

@deftypefun void mpq_clears (mpq_t @var{x}, ...)
Free the space occupied by a NULL-terminated list of @code{mpq_t} variables.
@end deftypefun

@deftypefun void mpq_set (mpq_t @var{rop}, mpq_t @var{op})
@deftypefunx void mpq_set_z (mpq_t @var{rop}, mpz_t @var{op})
Assign @var{rop} from @var{op}.
@end deftypefun

@deftypefun void mpq_set_ui (mpq_t @var{rop}, unsigned long int @var{op1}, unsigned long int @var{op2})
@deftypefunx void mpq_set_si (mpq_t @var{rop}, signed long int @var{op1}, unsigned long int @var{op2})
Set the value of @var{rop} to @var{op1}/@var{op2}.  Note that if @var{op1} and
@var{op2} have common factors, @var{rop} has to be passed to
@code{mpq_canonicalize} before any operations are performed on @var{rop}.
@end deftypefun

@deftypefun int mpq_set_str (mpq_t @var{rop}, char *@var{str}, int @var{base})
Set @var{rop} from a null-terminated string @var{str} in the given @var{base}.

The string can be an integer like ``41'' or a fraction like ``41/152''.  The
fraction must be in canonical form (@pxref{Rational Number Functions}), or if
not then @code{mpq_canonicalize} must be called.

The numerator and optional denominator are parsed the same as in
@code{mpz_set_str} (@pxref{Assigning Integers}).  White space is allowed in
the string, and is simply ignored.  The @var{base} can vary from 2 to 62, or
if @var{base} is 0 then the leading characters are used: @code{0x} or @code{0X} for hex,
@code{0b} or @code{0B} for binary,
@code{0} for octal, or decimal otherwise.  Note that this is done separately
for the numerator and denominator, so for instance @code{0xEF/100} is 239/100,
whereas @code{0xEF/0x100} is 239/256.

The return value is 0 if the entire string is a valid number, or @minus{}1 if
not.
@end deftypefun

@deftypefun void mpq_swap (mpq_t @var{rop1}, mpq_t @var{rop2})
Swap the values @var{rop1} and @var{rop2} efficiently.
@end deftypefun


@need 2000
@node Rational Conversions, Rational Arithmetic, Initializing Rationals, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Conversion Functions
@cindex Rational conversion functions
@cindex Conversion functions

@deftypefun double mpq_get_d (mpq_t @var{op})
Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding
towards zero).

If the exponent from the conversion is too big or too small to fit a
@code{double} then the result is system dependent.  For too big an infinity is
returned when available.  For too small @math{0.0} is normally returned.
Hardware overflow, underflow and denorm traps may or may not occur.
@end deftypefun

@deftypefun void mpq_set_d (mpq_t @var{rop}, double @var{op})
@deftypefunx void mpq_set_f (mpq_t @var{rop}, mpf_t @var{op})
Set @var{rop} to the value of @var{op}.  There is no rounding, this conversion
is exact.
@end deftypefun

@deftypefun {char *} mpq_get_str (char *@var{str}, int @var{base}, mpq_t @var{op})
Convert @var{op} to a string of digits in base @var{base}.  The base may vary
from 2 to 36.  The string will be of the form @samp{num/den}, or if the
denominator is 1 then just @samp{num}.

If @var{str} is @code{NULL}, the result string is allocated using the current
allocation function (@pxref{Custom Allocation}).  The block will be
@code{strlen(str)+1} bytes, that being exactly enough for the string and
null-terminator.

If @var{str} is not @code{NULL}, it should point to a block of storage large
enough for the result, that being

@example
mpz_sizeinbase (mpq_numref(@var{op}), @var{base})
+ mpz_sizeinbase (mpq_denref(@var{op}), @var{base}) + 3
@end example

The three extra bytes are for a possible minus sign, possible slash, and the
null-terminator.

A pointer to the result string is returned, being either the allocated block,
or the given @var{str}.
@end deftypefun


@node Rational Arithmetic, Comparing Rationals, Rational Conversions, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Arithmetic Functions
@cindex Rational arithmetic functions
@cindex Arithmetic functions

@deftypefun void mpq_add (mpq_t @var{sum}, mpq_t @var{addend1}, mpq_t @var{addend2})
Set @var{sum} to @var{addend1} + @var{addend2}.
@end deftypefun

@deftypefun void mpq_sub (mpq_t @var{difference}, mpq_t @var{minuend}, mpq_t @var{subtrahend})
Set @var{difference} to @var{minuend} @minus{} @var{subtrahend}.
@end deftypefun

@deftypefun void mpq_mul (mpq_t @var{product}, mpq_t @var{multiplier}, mpq_t @var{multiplicand})
Set @var{product} to @math{@var{multiplier} @GMPtimes{} @var{multiplicand}}.
@end deftypefun

@deftypefun void mpq_mul_2exp (mpq_t @var{rop}, mpq_t @var{op1}, mp_bitcnt_t @var{op2})
Set @var{rop} to @m{@var{op1} \times 2^{op2}, @var{op1} times 2 raised to
@var{op2}}.
@end deftypefun

@deftypefun void mpq_div (mpq_t @var{quotient}, mpq_t @var{dividend}, mpq_t @var{divisor})
@cindex Division functions
Set @var{quotient} to @var{dividend}/@var{divisor}.
@end deftypefun

@deftypefun void mpq_div_2exp (mpq_t @var{rop}, mpq_t @var{op1}, mp_bitcnt_t @var{op2})
Set @var{rop} to @m{@var{op1}/2^{op2}, @var{op1} divided by 2 raised to
@var{op2}}.
@end deftypefun

@deftypefun void mpq_neg (mpq_t @var{negated_operand}, mpq_t @var{operand})
Set @var{negated_operand} to @minus{}@var{operand}.
@end deftypefun

@deftypefun void mpq_abs (mpq_t @var{rop}, mpq_t @var{op})
Set @var{rop} to the absolute value of @var{op}.
@end deftypefun

@deftypefun void mpq_inv (mpq_t @var{inverted_number}, mpq_t @var{number})
Set @var{inverted_number} to 1/@var{number}.  If the new denominator is
zero, this routine will divide by zero.
@end deftypefun

@node Comparing Rationals, Applying Integer Functions, Rational Arithmetic, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Comparison Functions
@cindex Rational comparison functions
@cindex Comparison functions

@deftypefun int mpq_cmp (mpq_t @var{op1}, mpq_t @var{op2})
Compare @var{op1} and @var{op2}.  Return a positive value if @math{@var{op1} >
@var{op2}}, zero if @math{@var{op1} = @var{op2}}, and a negative value if
@math{@var{op1} < @var{op2}}.

To determine if two rationals are equal, @code{mpq_equal} is faster than
@code{mpq_cmp}.
@end deftypefun

@deftypefn Macro int mpq_cmp_ui (mpq_t @var{op1}, unsigned long int @var{num2}, unsigned long int @var{den2})
@deftypefnx Macro int mpq_cmp_si (mpq_t @var{op1}, long int @var{num2}, unsigned long int @var{den2})
Compare @var{op1} and @var{num2}/@var{den2}.  Return a positive value if
@math{@var{op1} > @var{num2}/@var{den2}}, zero if @math{@var{op1} =
@var{num2}/@var{den2}}, and a negative value if @math{@var{op1} <
@var{num2}/@var{den2}}.

@var{num2} and @var{den2} are allowed to have common factors.

These functions are implemented as a macros and evaluate their arguments
multiple times.
@end deftypefn

@deftypefn Macro int mpq_sgn (mpq_t @var{op})
@cindex Sign tests
@cindex Rational sign tests
Return @math{+1} if @math{@var{op} > 0}, 0 if @math{@var{op} = 0}, and
@math{-1} if @math{@var{op} < 0}.

This function is actually implemented as a macro.  It evaluates its
arguments multiple times.
@end deftypefn

@deftypefun int mpq_equal (mpq_t @var{op1}, mpq_t @var{op2})
Return non-zero if @var{op1} and @var{op2} are equal, zero if they are
non-equal.  Although @code{mpq_cmp} can be used for the same purpose, this
function is much faster.
@end deftypefun

@node Applying Integer Functions, I/O of Rationals, Comparing Rationals, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Applying Integer Functions to Rationals
@cindex Rational numerator and denominator
@cindex Numerator and denominator

The set of @code{mpq} functions is quite small.  In particular, there are few
functions for either input or output.  The following functions give direct
access to the numerator and denominator of an @code{mpq_t}.

Note that if an assignment to the numerator and/or denominator could take an
@code{mpq_t} out of the canonical form described at the start of this chapter
(@pxref{Rational Number Functions}) then @code{mpq_canonicalize} must be
called before any other @code{mpq} functions are applied to that @code{mpq_t}.

@deftypefn Macro mpz_t mpq_numref (mpq_t @var{op})
@deftypefnx Macro mpz_t mpq_denref (mpq_t @var{op})
Return a reference to the numerator and denominator of @var{op}, respectively.
The @code{mpz} functions can be used on the result of these macros.
@end deftypefn

@deftypefun void mpq_get_num (mpz_t @var{numerator}, mpq_t @var{rational})
@deftypefunx void mpq_get_den (mpz_t @var{denominator}, mpq_t @var{rational})
@deftypefunx void mpq_set_num (mpq_t @var{rational}, mpz_t @var{numerator})
@deftypefunx void mpq_set_den (mpq_t @var{rational}, mpz_t @var{denominator})
Get or set the numerator or denominator of a rational.  These functions are
equivalent to calling @code{mpz_set} with an appropriate @code{mpq_numref} or
@code{mpq_denref}.  Direct use of @code{mpq_numref} or @code{mpq_denref} is
recommended instead of these functions.
@end deftypefun


@need 2000
@node I/O of Rationals,  , Applying Integer Functions, Rational Number Functions
@comment  node-name,  next,  previous,  up
@section Input and Output Functions
@cindex Rational input and output functions
@cindex Input functions
@cindex Output functions
@cindex I/O functions

Functions that perform input from a stdio stream, and functions that output to
a stdio stream, of @code{mpq} numbers.  Passing a @code{NULL} pointer for a
@var{stream} argument to any of these functions will make them read from
@code{stdin} and write to @code{stdout}, respectively.

When using any of these functions, it is a good idea to include @file{stdio.h}
before @file{gmp.h}, since that will allow @file{gmp.h} to define prototypes
for these functions.

See also @ref{Formatted Output} and @ref{Formatted Input}.

@deftypefun size_t mpq_out_str (FILE *@var{stream}, int @var{base}, mpq_t @var{op})
Output @var{op} on stdio stream @var{stream}, as a string of digits in base
@var{base}.  The base may vary from 2 to 36.  Output is in the form
@samp{num/den} or if the denominator is 1 then just @samp{num}.

Return the number of bytes written, or if an error occurred, return 0.
@end deftypefun

@deftypefun size_t mpq_inp_str (mpq_t @var{rop}, FILE *@var{stream}, int @var{base})
Read a string of digits from @var{stream} and convert them to a rational in
@var{rop}.  Any initial white-space characters are read and discarded.  Return
the number of characters read (including white space), or 0 if a rational
could not be read.

The input can be a fraction like @samp{17/63} or just an integer like
@samp{123}.  Reading stops at the first character not in this form, and white
space is not permitted within the string.  If the input might not be in
canonical form, then @code{mpq_canonicalize} must be called (@pxref{Rational
Number Functions}).

The @var{base} can be between 2 and 36, or can be 0 in which case the leading
characters of the string determine the base, @samp{0x} or @samp{0X} for
hexadecimal, @samp{0} for octal, or decimal otherwise.  The leading characters
are examined separately for the numerator and denominator of a fraction, so
for instance @samp{0x10/11} is @math{16/11}, whereas @samp{0x10/0x11} is
@math{16/17}.
@end deftypefun


@node Floating-point Functions, Low-level Functions, Rational Number Functions, Top
@comment  node-name,  next,  previous,  up
@chapter Floating-point Functions
@cindex Floating-point functions
@cindex Float functions
@cindex User-defined precision
@cindex Precision of floats

GMP floating point numbers are stored in objects of type @code{mpf_t} and
functions operating on them have an @code{mpf_} prefix.

The mantissa of each float has a user-selectable precision, limited only by
available memory.  Each variable has its own precision, and that can be
increased or decreased at any time.

The exponent of each float is a fixed precision, one machine word on most
systems.  In the current implementation the exponent is a count of limbs, so
for example on a 32-bit system this means a range of roughly
@math{2^@W{-68719476768}} to @math{2^@W{68719476736}}, or on a 64-bit system
this will be greater.  Note however @code{mpf_get_str} can only return an
exponent which fits an @code{mp_exp_t} and currently @code{mpf_set_str}
doesn't accept exponents bigger than a @code{long}.

Each variable keeps a size for the mantissa data actually in use.  This means
that if a float is exactly represented in only a few bits then only those bits
will be used in a calculation, even if the selected precision is high.

All calculations are performed to the precision of the destination variable.
Each function is defined to calculate with ``infinite precision'' followed by
a truncation to the destination precision, but of course the work done is only
what's needed to determine a result under that definition.

The precision selected for a variable is a minimum value, GMP may increase it
a little to facilitate efficient calculation.  Currently this means rounding
up to a whole limb, and then sometimes having a further partial limb,
depending on the high limb of the mantissa.  But applications shouldn't be
concerned by such details.

The mantissa in stored in binary, as might be imagined from the fact
precisions are expressed in bits.  One consequence of this is that decimal
fractions like @math{0.1} cannot be represented exactly.  The same is true of
plain IEEE @code{double} floats.  This makes both highly unsuitable for
calculations involving money or other values that should be exact decimal
fractions.  (Suitably scaled integers, or perhaps rationals, are better
choices.)

@code{mpf} functions and variables have no special notion of infinity or
not-a-number, and applications must take care not to overflow the exponent or
results will be unpredictable.  This might change in a future release.

Note that the @code{mpf} functions are @emph{not} intended as a smooth
extension to IEEE P754 arithmetic.  In particular results obtained on one
computer often differ from the results on a computer with a different word
size.

@menu
* Initializing Floats::
* Assigning Floats::
* Simultaneous Float Init & Assign::
* Converting Floats::
* Float Arithmetic::
* Float Comparison::
* I/O of Floats::
* Miscellaneous Float Functions::
@end menu

@node Initializing Floats, Assigning Floats, Floating-point Functions, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Initialization Functions
@cindex Float initialization functions
@cindex Initialization functions

@deftypefun void mpf_set_default_prec (mp_bitcnt_t @var{prec})
Set the default precision to be @strong{at least} @var{prec} bits.  All
subsequent calls to @code{mpf_init} will use this precision, but previously
initialized variables are unaffected.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpf_get_default_prec (void)
Return the default precision actually used.
@end deftypefun

An @code{mpf_t} object must be initialized before storing the first value in
it.  The functions @code{mpf_init} and @code{mpf_init2} are used for that
purpose.

@deftypefun void mpf_init (mpf_t @var{x})
Initialize @var{x} to 0.  Normally, a variable should be initialized once only
or at least be cleared, using @code{mpf_clear}, between initializations.  The
precision of @var{x} is undefined unless a default precision has already been
established by a call to @code{mpf_set_default_prec}.
@end deftypefun

@deftypefun void mpf_init2 (mpf_t @var{x}, mp_bitcnt_t @var{prec})
Initialize @var{x} to 0 and set its precision to be @strong{at least}
@var{prec} bits.  Normally, a variable should be initialized once only or at
least be cleared, using @code{mpf_clear}, between initializations.
@end deftypefun

@deftypefun void mpf_inits (mpf_t @var{x}, ...)
Initialize a NULL-terminated list of @code{mpf_t} variables, and set their
values to 0.  The precision of the initialized variables is undefined unless a
default precision has already been established by a call to
@code{mpf_set_default_prec}.
@end deftypefun

@deftypefun void mpf_clear (mpf_t @var{x})
Free the space occupied by @var{x}.  Make sure to call this function for all
@code{mpf_t} variables when you are done with them.
@end deftypefun

@deftypefun void mpf_clears (mpf_t @var{x}, ...)
Free the space occupied by a NULL-terminated list of @code{mpf_t} variables.
@end deftypefun

@need 2000
Here is an example on how to initialize floating-point variables:
@example
@{
  mpf_t x, y;
  mpf_init (x);           /* use default precision */
  mpf_init2 (y, 256);     /* precision @emph{at least} 256 bits */
  @dots{}
  /* Unless the program is about to exit, do ... */
  mpf_clear (x);
  mpf_clear (y);
@}
@end example

The following three functions are useful for changing the precision during a
calculation.  A typical use would be for adjusting the precision gradually in
iterative algorithms like Newton-Raphson, making the computation precision
closely match the actual accurate part of the numbers.

@deftypefun {mp_bitcnt_t} mpf_get_prec (mpf_t @var{op})
Return the current precision of @var{op}, in bits.
@end deftypefun

@deftypefun void mpf_set_prec (mpf_t @var{rop}, mp_bitcnt_t @var{prec})
Set the precision of @var{rop} to be @strong{at least} @var{prec} bits.  The
value in @var{rop} will be truncated to the new precision.

This function requires a call to @code{realloc}, and so should not be used in
a tight loop.
@end deftypefun

@deftypefun void mpf_set_prec_raw (mpf_t @var{rop}, mp_bitcnt_t @var{prec})
Set the precision of @var{rop} to be @strong{at least} @var{prec} bits,
without changing the memory allocated.

@var{prec} must be no more than the allocated precision for @var{rop}, that
being the precision when @var{rop} was initialized, or in the most recent
@code{mpf_set_prec}.

The value in @var{rop} is unchanged, and in particular if it had a higher
precision than @var{prec} it will retain that higher precision.  New values
written to @var{rop} will use the new @var{prec}.

Before calling @code{mpf_clear} or the full @code{mpf_set_prec}, another
@code{mpf_set_prec_raw} call must be made to restore @var{rop} to its original
allocated precision.  Failing to do so will have unpredictable results.

@code{mpf_get_prec} can be used before @code{mpf_set_prec_raw} to get the
original allocated precision.  After @code{mpf_set_prec_raw} it reflects the
@var{prec} value set.

@code{mpf_set_prec_raw} is an efficient way to use an @code{mpf_t} variable at
different precisions during a calculation, perhaps to gradually increase
precision in an iteration, or just to use various different precisions for
different purposes during a calculation.
@end deftypefun


@need 2000
@node Assigning Floats, Simultaneous Float Init & Assign, Initializing Floats, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Assignment Functions
@cindex Float assignment functions
@cindex Assignment functions

These functions assign new values to already initialized floats
(@pxref{Initializing Floats}).

@deftypefun void mpf_set (mpf_t @var{rop}, mpf_t @var{op})
@deftypefunx void mpf_set_ui (mpf_t @var{rop}, unsigned long int @var{op})
@deftypefunx void mpf_set_si (mpf_t @var{rop}, signed long int @var{op})
@deftypefunx void mpf_set_d (mpf_t @var{rop}, double @var{op})
@deftypefunx void mpf_set_z (mpf_t @var{rop}, mpz_t @var{op})
@deftypefunx void mpf_set_q (mpf_t @var{rop}, mpq_t @var{op})
Set the value of @var{rop} from @var{op}.
@end deftypefun

@deftypefun int mpf_set_str (mpf_t @var{rop}, char *@var{str}, int @var{base})
Set the value of @var{rop} from the string in @var{str}.  The string is of the
form @samp{M@@N} or, if the base is 10 or less, alternatively @samp{MeN}.
@samp{M} is the mantissa and @samp{N} is the exponent.  The mantissa is always
in the specified base.  The exponent is either in the specified base or, if
@var{base} is negative, in decimal.  The decimal point expected is taken from
the current locale, on systems providing @code{localeconv}.

The argument @var{base} may be in the ranges 2 to 62, or @minus{}62 to
@minus{}2.  Negative values are used to specify that the exponent is in
decimal.

For bases up to 36, case is ignored; upper-case and lower-case letters have
the same value; for bases 37 to 62, upper-case letter represent the usual
10..35 while lower-case letter represent 36..61.

Unlike the corresponding @code{mpz} function, the base will not be determined
from the leading characters of the string if @var{base} is 0.  This is so that
numbers like @samp{0.23} are not interpreted as octal.

White space is allowed in the string, and is simply ignored.  [This is not
really true; white-space is ignored in the beginning of the string and within
the mantissa, but not in other places, such as after a minus sign or in the
exponent.  We are considering changing the definition of this function, making
it fail when there is any white-space in the input, since that makes a lot of
sense.  Please tell us your opinion about this change.  Do you really want it
to accept @nicode{"3 14"} as meaning 314 as it does now?]

This function returns 0 if the entire string is a valid number in base
@var{base}.  Otherwise it returns @minus{}1.
@end deftypefun

@deftypefun void mpf_swap (mpf_t @var{rop1}, mpf_t @var{rop2})
Swap @var{rop1} and @var{rop2} efficiently.  Both the values and the
precisions of the two variables are swapped.
@end deftypefun


@node Simultaneous Float Init & Assign, Converting Floats, Assigning Floats, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Combined Initialization and Assignment Functions
@cindex Float assignment functions
@cindex Assignment functions
@cindex Float initialization functions
@cindex Initialization functions

For convenience, GMP provides a parallel series of initialize-and-set functions
which initialize the output and then store the value there.  These functions'
names have the form @code{mpf_init_set@dots{}}

Once the float has been initialized by any of the @code{mpf_init_set@dots{}}
functions, it can be used as the source or destination operand for the ordinary
float functions.  Don't use an initialize-and-set function on a variable
already initialized!

@deftypefun void mpf_init_set (mpf_t @var{rop}, mpf_t @var{op})
@deftypefunx void mpf_init_set_ui (mpf_t @var{rop}, unsigned long int @var{op})
@deftypefunx void mpf_init_set_si (mpf_t @var{rop}, signed long int @var{op})
@deftypefunx void mpf_init_set_d (mpf_t @var{rop}, double @var{op})
Initialize @var{rop} and set its value from @var{op}.

The precision of @var{rop} will be taken from the active default precision, as
set by @code{mpf_set_default_prec}.
@end deftypefun

@deftypefun int mpf_init_set_str (mpf_t @var{rop}, char *@var{str}, int @var{base})
Initialize @var{rop} and set its value from the string in @var{str}.  See
@code{mpf_set_str} above for details on the assignment operation.

Note that @var{rop} is initialized even if an error occurs.  (I.e., you have to
call @code{mpf_clear} for it.)

The precision of @var{rop} will be taken from the active default precision, as
set by @code{mpf_set_default_prec}.
@end deftypefun


@node Converting Floats, Float Arithmetic, Simultaneous Float Init & Assign, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Conversion Functions
@cindex Float conversion functions
@cindex Conversion functions

@deftypefun double mpf_get_d (mpf_t @var{op})
Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding
towards zero).

If the exponent in @var{op} is too big or too small to fit a @code{double}
then the result is system dependent.  For too big an infinity is returned when
available.  For too small @math{0.0} is normally returned.  Hardware overflow,
underflow and denorm traps may or may not occur.
@end deftypefun

@deftypefun double mpf_get_d_2exp (signed long int *@var{exp}, mpf_t @var{op})
Convert @var{op} to a @code{double}, truncating if necessary (i.e.@: rounding
towards zero), and with an exponent returned separately.

The return value is in the range @math{0.5@le{}@GMPabs{@var{d}}<1} and the
exponent is stored to @code{*@var{exp}}.  @m{@var{d} * 2^{exp}, @var{d} *
2^@var{exp}} is the (truncated) @var{op} value.  If @var{op} is zero, the
return is @math{0.0} and 0 is stored to @code{*@var{exp}}.

@cindex @code{frexp}
This is similar to the standard C @code{frexp} function (@pxref{Normalization
Functions,,, libc, The GNU C Library Reference Manual}).
@end deftypefun

@deftypefun long mpf_get_si (mpf_t @var{op})
@deftypefunx {unsigned long} mpf_get_ui (mpf_t @var{op})
Convert @var{op} to a @code{long} or @code{unsigned long}, truncating any
fraction part.  If @var{op} is too big for the return type, the result is
undefined.

See also @code{mpf_fits_slong_p} and @code{mpf_fits_ulong_p}
(@pxref{Miscellaneous Float Functions}).
@end deftypefun

@deftypefun {char *} mpf_get_str (char *@var{str}, mp_exp_t *@var{expptr}, int @var{base}, size_t @var{n_digits}, mpf_t @var{op})
Convert @var{op} to a string of digits in base @var{base}.  The base argument
may vary from 2 to 62 or from @minus{}2 to @minus{}36.  Up to @var{n_digits}
digits will be generated.  Trailing zeros are not returned.  No more digits
than can be accurately represented by @var{op} are ever generated.  If
@var{n_digits} is 0 then that accurate maximum number of digits are generated.

For @var{base} in the range 2..36, digits and lower-case letters are used; for
@minus{}2..@minus{}36, digits and upper-case letters are used; for 37..62,
digits, upper-case letters, and lower-case letters (in that significance order)
are used.

If @var{str} is @code{NULL}, the result string is allocated using the current
allocation function (@pxref{Custom Allocation}).  The block will be
@code{strlen(str)+1} bytes, that being exactly enough for the string and
null-terminator.

If @var{str} is not @code{NULL}, it should point to a block of
@math{@var{n_digits} + 2} bytes, that being enough for the mantissa, a
possible minus sign, and a null-terminator.  When @var{n_digits} is 0 to get
all significant digits, an application won't be able to know the space
required, and @var{str} should be @code{NULL} in that case.

The generated string is a fraction, with an implicit radix point immediately
to the left of the first digit.  The applicable exponent is written through
the @var{expptr} pointer.  For example, the number 3.1416 would be returned as
string @nicode{"31416"} and exponent 1.

When @var{op} is zero, an empty string is produced and the exponent returned
is 0.

A pointer to the result string is returned, being either the allocated block
or the given @var{str}.
@end deftypefun


@node Float Arithmetic, Float Comparison, Converting Floats, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Arithmetic Functions
@cindex Float arithmetic functions
@cindex Arithmetic functions

@deftypefun void mpf_add (mpf_t @var{rop}, mpf_t @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_add_ui (mpf_t @var{rop}, mpf_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{op1} + @var{op2}}.
@end deftypefun

@deftypefun void mpf_sub (mpf_t @var{rop}, mpf_t @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_ui_sub (mpf_t @var{rop}, unsigned long int @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_sub_ui (mpf_t @var{rop}, mpf_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @var{op1} @minus{} @var{op2}.
@end deftypefun

@deftypefun void mpf_mul (mpf_t @var{rop}, mpf_t @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_mul_ui (mpf_t @var{rop}, mpf_t @var{op1}, unsigned long int @var{op2})
Set @var{rop} to @math{@var{op1} @GMPtimes{} @var{op2}}.
@end deftypefun

Division is undefined if the divisor is zero, and passing a zero divisor to the
divide functions will make these functions intentionally divide by zero.  This
lets the user handle arithmetic exceptions in these functions in the same
manner as other arithmetic exceptions.

@deftypefun void mpf_div (mpf_t @var{rop}, mpf_t @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_ui_div (mpf_t @var{rop}, unsigned long int @var{op1}, mpf_t @var{op2})
@deftypefunx void mpf_div_ui (mpf_t @var{rop}, mpf_t @var{op1}, unsigned long int @var{op2})
@cindex Division functions
Set @var{rop} to @var{op1}/@var{op2}.
@end deftypefun

@deftypefun void mpf_sqrt (mpf_t @var{rop}, mpf_t @var{op})
@deftypefunx void mpf_sqrt_ui (mpf_t @var{rop}, unsigned long int @var{op})
@cindex Root extraction functions
Set @var{rop} to @m{\sqrt{@var{op}}, the square root of @var{op}}.
@end deftypefun

@deftypefun void mpf_pow_ui (mpf_t @var{rop}, mpf_t @var{op1}, unsigned long int @var{op2})
@cindex Exponentiation functions
@cindex Powering functions
Set @var{rop} to @m{@var{op1}^{op2}, @var{op1} raised to the power @var{op2}}.
@end deftypefun

@deftypefun void mpf_neg (mpf_t @var{rop}, mpf_t @var{op})
Set @var{rop} to @minus{}@var{op}.
@end deftypefun

@deftypefun void mpf_abs (mpf_t @var{rop}, mpf_t @var{op})
Set @var{rop} to the absolute value of @var{op}.
@end deftypefun

@deftypefun void mpf_mul_2exp (mpf_t @var{rop}, mpf_t @var{op1}, mp_bitcnt_t @var{op2})
Set @var{rop} to @m{@var{op1} \times 2^{op2}, @var{op1} times 2 raised to
@var{op2}}.
@end deftypefun

@deftypefun void mpf_div_2exp (mpf_t @var{rop}, mpf_t @var{op1}, mp_bitcnt_t @var{op2})
Set @var{rop} to @m{@var{op1}/2^{op2}, @var{op1} divided by 2 raised to
@var{op2}}.
@end deftypefun

@node Float Comparison, I/O of Floats, Float Arithmetic, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Comparison Functions
@cindex Float comparison functions
@cindex Comparison functions

@deftypefun int mpf_cmp (mpf_t @var{op1}, mpf_t @var{op2})
@deftypefunx int mpf_cmp_d (mpf_t @var{op1}, double @var{op2})
@deftypefunx int mpf_cmp_ui (mpf_t @var{op1}, unsigned long int @var{op2})
@deftypefunx int mpf_cmp_si (mpf_t @var{op1}, signed long int @var{op2})
Compare @var{op1} and @var{op2}.  Return a positive value if @math{@var{op1} >
@var{op2}}, zero if @math{@var{op1} = @var{op2}}, and a negative value if
@math{@var{op1} < @var{op2}}.

@code{mpf_cmp_d} can be called with an infinity, but results are undefined for
a NaN.
@end deftypefun

@deftypefun int mpf_eq (mpf_t @var{op1}, mpf_t @var{op2}, mp_bitcnt_t op3)
Return non-zero if the first @var{op3} bits of @var{op1} and @var{op2} are
equal, zero otherwise.  I.e., test if @var{op1} and @var{op2} are approximately
equal.

Caution 1: All version of GMP up to version 4.2.4 compared just whole limbs,
meaning sometimes more than @var{op3} bits, sometimes fewer.

Caution 2: This function will consider XXX11...111 and XX100...000 different,
even if ... is replaced by a semi-infinite number of bits.  Such numbers are
really just one ulp off, and should be considered equal.
@end deftypefun

@deftypefun void mpf_reldiff (mpf_t @var{rop}, mpf_t @var{op1}, mpf_t @var{op2})
Compute the relative difference between @var{op1} and @var{op2} and store the
result in @var{rop}.  This is @math{@GMPabs{@var{op1}-@var{op2}}/@var{op1}}.
@end deftypefun

@deftypefn Macro int mpf_sgn (mpf_t @var{op})
@cindex Sign tests
@cindex Float sign tests
Return @math{+1} if @math{@var{op} > 0}, 0 if @math{@var{op} = 0}, and
@math{-1} if @math{@var{op} < 0}.

This function is actually implemented as a macro.  It evaluates its arguments
multiple times.
@end deftypefn

@node I/O of Floats, Miscellaneous Float Functions, Float Comparison, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Input and Output Functions
@cindex Float input and output functions
@cindex Input functions
@cindex Output functions
@cindex I/O functions

Functions that perform input from a stdio stream, and functions that output to
a stdio stream, of @code{mpf} numbers.  Passing a @code{NULL} pointer for a
@var{stream} argument to any of these functions will make them read from
@code{stdin} and write to @code{stdout}, respectively.

When using any of these functions, it is a good idea to include @file{stdio.h}
before @file{gmp.h}, since that will allow @file{gmp.h} to define prototypes
for these functions.

See also @ref{Formatted Output} and @ref{Formatted Input}.

@deftypefun size_t mpf_out_str (FILE *@var{stream}, int @var{base}, size_t @var{n_digits}, mpf_t @var{op})
Print @var{op} to @var{stream}, as a string of digits.  Return the number of
bytes written, or if an error occurred, return 0.

The mantissa is prefixed with an @samp{0.} and is in the given @var{base},
which may vary from 2 to 62 or from @minus{}2 to @minus{}36.  An exponent is
then printed, separated by an @samp{e}, or if the base is greater than 10 then
by an @samp{@@}.  The exponent is always in decimal.  The decimal point follows
the current locale, on systems providing @code{localeconv}.

For @var{base} in the range 2..36, digits and lower-case letters are used; for
@minus{}2..@minus{}36, digits and upper-case letters are used; for 37..62,
digits, upper-case letters, and lower-case letters (in that significance order)
are used.

Up to @var{n_digits} will be printed from the mantissa, except that no more
digits than are accurately representable by @var{op} will be printed.
@var{n_digits} can be 0 to select that accurate maximum.
@end deftypefun

@deftypefun size_t mpf_inp_str (mpf_t @var{rop}, FILE *@var{stream}, int @var{base})
Read a string in base @var{base} from @var{stream}, and put the read float in
@var{rop}.  The string is of the form @samp{M@@N} or, if the base is 10 or
less, alternatively @samp{MeN}.  @samp{M} is the mantissa and @samp{N} is the
exponent.  The mantissa is always in the specified base.  The exponent is
either in the specified base or, if @var{base} is negative, in decimal.  The
decimal point expected is taken from the current locale, on systems providing
@code{localeconv}.

The argument @var{base} may be in the ranges 2 to 36, or @minus{}36 to
@minus{}2.  Negative values are used to specify that the exponent is in
decimal.

Unlike the corresponding @code{mpz} function, the base will not be determined
from the leading characters of the string if @var{base} is 0.  This is so that
numbers like @samp{0.23} are not interpreted as octal.

Return the number of bytes read, or if an error occurred, return 0.
@end deftypefun

@c @deftypefun void mpf_out_raw (FILE *@var{stream}, mpf_t @var{float})
@c Output @var{float} on stdio stream @var{stream}, in raw binary
@c format.  The float is written in a portable format, with 4 bytes of
@c size information, and that many bytes of limbs.  Both the size and the
@c limbs are written in decreasing significance order.
@c @end deftypefun

@c @deftypefun void mpf_inp_raw (mpf_t @var{float}, FILE *@var{stream})
@c Input from stdio stream @var{stream} in the format written by
@c @code{mpf_out_raw}, and put the result in @var{float}.
@c @end deftypefun


@node Miscellaneous Float Functions,  , I/O of Floats, Floating-point Functions
@comment  node-name,  next,  previous,  up
@section Miscellaneous Functions
@cindex Miscellaneous float functions
@cindex Float miscellaneous functions

@deftypefun void mpf_ceil (mpf_t @var{rop}, mpf_t @var{op})
@deftypefunx void mpf_floor (mpf_t @var{rop}, mpf_t @var{op})
@deftypefunx void mpf_trunc (mpf_t @var{rop}, mpf_t @var{op})
@cindex Rounding functions
@cindex Float rounding functions
Set @var{rop} to @var{op} rounded to an integer.  @code{mpf_ceil} rounds to the
next higher integer, @code{mpf_floor} to the next lower, and @code{mpf_trunc}
to the integer towards zero.
@end deftypefun

@deftypefun int mpf_integer_p (mpf_t @var{op})
Return non-zero if @var{op} is an integer.
@end deftypefun

@deftypefun int mpf_fits_ulong_p (mpf_t @var{op})
@deftypefunx int mpf_fits_slong_p (mpf_t @var{op})
@deftypefunx int mpf_fits_uint_p (mpf_t @var{op})
@deftypefunx int mpf_fits_sint_p (mpf_t @var{op})
@deftypefunx int mpf_fits_ushort_p (mpf_t @var{op})
@deftypefunx int mpf_fits_sshort_p (mpf_t @var{op})
Return non-zero if @var{op} would fit in the respective C data type, when
truncated to an integer.
@end deftypefun

@deftypefun void mpf_urandomb (mpf_t @var{rop}, gmp_randstate_t @var{state}, mp_bitcnt_t @var{nbits})
@cindex Random number functions
@cindex Float random number functions
Generate a uniformly distributed random float in @var{rop}, such that @math{0
@le{} @var{rop} < 1}, with @var{nbits} significant bits in the mantissa or
less if the precision of @var{rop} is smaller.

The variable @var{state} must be initialized by calling one of the
@code{gmp_randinit} functions (@ref{Random State Initialization}) before
invoking this function.
@end deftypefun

@deftypefun void mpf_random2 (mpf_t @var{rop}, mp_size_t @var{max_size}, mp_exp_t @var{exp})
Generate a random float of at most @var{max_size} limbs, with long strings of
zeros and ones in the binary representation.  The exponent of the number is in
the interval @minus{}@var{exp} to @var{exp} (in limbs).  This function is
useful for testing functions and algorithms, since these kind of random
numbers have proven to be more likely to trigger corner-case bugs.  Negative
random numbers are generated when @var{max_size} is negative.
@end deftypefun

@c @deftypefun size_t mpf_size (mpf_t @var{op})
@c Return the size of @var{op} measured in number of limbs.  If @var{op} is
@c zero, the returned value will be zero.  (@xref{Nomenclature}, for an
@c explanation of the concept @dfn{limb}.)
@c
@c @strong{This function is obsolete.  It will disappear from future GMP
@c releases.}
@c @end deftypefun


@node Low-level Functions, Random Number Functions, Floating-point Functions, Top
@comment  node-name,  next,  previous,  up
@chapter Low-level Functions
@cindex Low-level functions

This chapter describes low-level GMP functions, used to implement the
high-level GMP functions, but also intended for time-critical user code.

These functions start with the prefix @code{mpn_}.

@c 1. Some of these function clobber input operands.
@c

The @code{mpn} functions are designed to be as fast as possible, @strong{not}
to provide a coherent calling interface.  The different functions have somewhat
similar interfaces, but there are variations that make them hard to use.  These
functions do as little as possible apart from the real multiple precision
computation, so that no time is spent on things that not all callers need.

A source operand is specified by a pointer to the least significant limb and a
limb count.  A destination operand is specified by just a pointer.  It is the
responsibility of the caller to ensure that the destination has enough space
for storing the result.

With this way of specifying operands, it is possible to perform computations on
subranges of an argument, and store the result into a subrange of a
destination.

A common requirement for all functions is that each source area needs at least
one limb.  No size argument may be zero.  Unless otherwise stated, in-place
operations are allowed where source and destination are the same, but not where
they only partly overlap.

The @code{mpn} functions are the base for the implementation of the
@code{mpz_}, @code{mpf_}, and @code{mpq_} functions.

This example adds the number beginning at @var{s1p} and the number beginning at
@var{s2p} and writes the sum at @var{destp}.  All areas have @var{n} limbs.

@example
cy = mpn_add_n (destp, s1p, s2p, n)
@end example

It should be noted that the @code{mpn} functions make no attempt to identify
high or low zero limbs on their operands, or other special forms.  On random
data such cases will be unlikely and it'd be wasteful for every function to
check every time.  An application knowing something about its data can take
steps to trim or perhaps split its calculations.
@c
@c  For reference, within gmp mpz_t operands never have high zero limbs, and
@c  we rate low zero limbs as unlikely too (or something an application should
@c  handle).  This is a prime motivation for not stripping zero limbs in say
@c  mpn_mul_n etc.
@c
@c  Other applications doing variable-length calculations will quite likely do
@c  something similar to mpz.  And even if not then it's highly likely zero
@c  limb stripping can be done at just a few judicious points, which will be
@c  more efficient than having lots of mpn functions checking every time.

@sp 1
@noindent
In the notation used below, a source operand is identified by the pointer to
the least significant limb, and the limb count in braces.  For example,
@{@var{s1p}, @var{s1n}@}.

@deftypefun mp_limb_t mpn_add_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Add @{@var{s1p}, @var{n}@} and @{@var{s2p}, @var{n}@}, and write the @var{n}
least significant limbs of the result to @var{rp}.  Return carry, either 0 or
1.

This is the lowest-level function for addition.  It is the preferred function
for addition, since it is written in assembly for most CPUs.  For addition of
a variable to itself (i.e., @var{s1p} equals @var{s2p}) use @code{mpn_lshift}
with a count of 1 for optimal speed.
@end deftypefun

@deftypefun mp_limb_t mpn_add_1 (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n}, mp_limb_t @var{s2limb})
Add @{@var{s1p}, @var{n}@} and @var{s2limb}, and write the @var{n} least
significant limbs of the result to @var{rp}.  Return carry, either 0 or 1.
@end deftypefun

@deftypefun mp_limb_t mpn_add (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{s1n}, const mp_limb_t *@var{s2p}, mp_size_t @var{s2n})
Add @{@var{s1p}, @var{s1n}@} and @{@var{s2p}, @var{s2n}@}, and write the
@var{s1n} least significant limbs of the result to @var{rp}.  Return carry,
either 0 or 1.

This function requires that @var{s1n} is greater than or equal to @var{s2n}.
@end deftypefun

@deftypefun mp_limb_t mpn_sub_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Subtract @{@var{s2p}, @var{n}@} from @{@var{s1p}, @var{n}@}, and write the
@var{n} least significant limbs of the result to @var{rp}.  Return borrow,
either 0 or 1.

This is the lowest-level function for subtraction.  It is the preferred
function for subtraction, since it is written in assembly for most CPUs.
@end deftypefun

@deftypefun mp_limb_t mpn_sub_1 (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n}, mp_limb_t @var{s2limb})
Subtract @var{s2limb} from @{@var{s1p}, @var{n}@}, and write the @var{n} least
significant limbs of the result to @var{rp}.  Return borrow, either 0 or 1.
@end deftypefun

@deftypefun mp_limb_t mpn_sub (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{s1n}, const mp_limb_t *@var{s2p}, mp_size_t @var{s2n})
Subtract @{@var{s2p}, @var{s2n}@} from @{@var{s1p}, @var{s1n}@}, and write the
@var{s1n} least significant limbs of the result to @var{rp}.  Return borrow,
either 0 or 1.

This function requires that @var{s1n} is greater than or equal to
@var{s2n}.
@end deftypefun

@deftypefun void mpn_neg (mp_limb_t *@var{rp}, const mp_limb_t *@var{sp}, mp_size_t @var{n})
Perform the negation of @{@var{sp}, @var{n}@}, and write the result to
@{@var{rp}, @var{n}@}.  Return carry-out.
@end deftypefun

@deftypefun void mpn_mul_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Multiply @{@var{s1p}, @var{n}@} and @{@var{s2p}, @var{n}@}, and write the
2*@var{n}-limb result to @var{rp}.

The destination has to have space for 2*@var{n} limbs, even if the product's
most significant limb is zero.  No overlap is permitted between the
destination and either source.

If the two input operands are the same, use @code{mpn_sqr}.
@end deftypefun

@deftypefun mp_limb_t mpn_mul (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{s1n}, const mp_limb_t *@var{s2p}, mp_size_t @var{s2n})
Multiply @{@var{s1p}, @var{s1n}@} and @{@var{s2p}, @var{s2n}@}, and write the
(@var{s1n}+@var{s2n})-limb result to @var{rp}.  Return the most significant
limb of the result.

The destination has to have space for @var{s1n} + @var{s2n} limbs, even if the
product's most significant limb is zero.  No overlap is permitted between the
destination and either source.

This function requires that @var{s1n} is greater than or equal to @var{s2n}.
@end deftypefun

@deftypefun void mpn_sqr (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n})
Compute the square of @{@var{s1p}, @var{n}@} and write the 2*@var{n}-limb
result to @var{rp}.

The destination has to have space for 2*@var{n} limbs, even if the result's
most significant limb is zero.  No overlap is permitted between the
destination and the source.
@end deftypefun

@deftypefun mp_limb_t mpn_mul_1 (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n}, mp_limb_t @var{s2limb})
Multiply @{@var{s1p}, @var{n}@} by @var{s2limb}, and write the @var{n} least
significant limbs of the product to @var{rp}.  Return the most significant
limb of the product.  @{@var{s1p}, @var{n}@} and @{@var{rp}, @var{n}@} are
allowed to overlap provided @math{@var{rp} @le{} @var{s1p}}.

This is a low-level function that is a building block for general
multiplication as well as other operations in GMP@.  It is written in assembly
for most CPUs.

Don't call this function if @var{s2limb} is a power of 2; use @code{mpn_lshift}
with a count equal to the logarithm of @var{s2limb} instead, for optimal speed.
@end deftypefun

@deftypefun mp_limb_t mpn_addmul_1 (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n}, mp_limb_t @var{s2limb})
Multiply @{@var{s1p}, @var{n}@} and @var{s2limb}, and add the @var{n} least
significant limbs of the product to @{@var{rp}, @var{n}@} and write the result
to @var{rp}.  Return the most significant limb of the product, plus carry-out
from the addition.

This is a low-level function that is a building block for general
multiplication as well as other operations in GMP@.  It is written in assembly
for most CPUs.
@end deftypefun

@deftypefun mp_limb_t mpn_submul_1 (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n}, mp_limb_t @var{s2limb})
Multiply @{@var{s1p}, @var{n}@} and @var{s2limb}, and subtract the @var{n}
least significant limbs of the product from @{@var{rp}, @var{n}@} and write the
result to @var{rp}.  Return the most significant limb of the product, plus
borrow-out from the subtraction.

This is a low-level function that is a building block for general
multiplication and division as well as other operations in GMP@.  It is written
in assembly for most CPUs.
@end deftypefun

@deftypefun void mpn_tdiv_qr (mp_limb_t *@var{qp}, mp_limb_t *@var{rp}, mp_size_t @var{qxn}, const mp_limb_t *@var{np}, mp_size_t @var{nn}, const mp_limb_t *@var{dp}, mp_size_t @var{dn})
Divide @{@var{np}, @var{nn}@} by @{@var{dp}, @var{dn}@} and put the quotient
at @{@var{qp}, @var{nn}@minus{}@var{dn}+1@} and the remainder at @{@var{rp},
@var{dn}@}.  The quotient is rounded towards 0.

No overlap is permitted between arguments, except that @var{np} might equal
@var{rp}.  The dividend size @var{nn} must be greater than or equal to divisor
size @var{dn}.  The most significant limb of the divisor must be non-zero.  The
@var{qxn} operand must be zero.
@end deftypefun

@deftypefun mp_limb_t mpn_divrem (mp_limb_t *@var{r1p}, mp_size_t @var{qxn}, mp_limb_t *@var{rs2p}, mp_size_t @var{rs2n}, const mp_limb_t *@var{s3p}, mp_size_t @var{s3n})
[This function is obsolete.  Please call @code{mpn_tdiv_qr} instead for best
performance.]

Divide @{@var{rs2p}, @var{rs2n}@} by @{@var{s3p}, @var{s3n}@}, and write the
quotient at @var{r1p}, with the exception of the most significant limb, which
is returned.  The remainder replaces the dividend at @var{rs2p}; it will be
@var{s3n} limbs long (i.e., as many limbs as the divisor).

In addition to an integer quotient, @var{qxn} fraction limbs are developed, and
stored after the integral limbs.  For most usages, @var{qxn} will be zero.

It is required that @var{rs2n} is greater than or equal to @var{s3n}.  It is
required that the most significant bit of the divisor is set.

If the quotient is not needed, pass @var{rs2p} + @var{s3n} as @var{r1p}.  Aside
from that special case, no overlap between arguments is permitted.

Return the most significant limb of the quotient, either 0 or 1.

The area at @var{r1p} needs to be @var{rs2n} @minus{} @var{s3n} + @var{qxn}
limbs large.
@end deftypefun

@deftypefn Function mp_limb_t mpn_divrem_1 (mp_limb_t *@var{r1p}, mp_size_t @var{qxn}, @w{mp_limb_t *@var{s2p}}, mp_size_t @var{s2n}, mp_limb_t @var{s3limb})
@deftypefnx Macro mp_limb_t mpn_divmod_1 (mp_limb_t *@var{r1p}, mp_limb_t *@var{s2p}, @w{mp_size_t @var{s2n}}, @w{mp_limb_t @var{s3limb}})
Divide @{@var{s2p}, @var{s2n}@} by @var{s3limb}, and write the quotient at
@var{r1p}.  Return the remainder.

The integer quotient is written to @{@var{r1p}+@var{qxn}, @var{s2n}@} and in
addition @var{qxn} fraction limbs are developed and written to @{@var{r1p},
@var{qxn}@}.  Either or both @var{s2n} and @var{qxn} can be zero.  For most
usages, @var{qxn} will be zero.

@code{mpn_divmod_1} exists for upward source compatibility and is simply a
macro calling @code{mpn_divrem_1} with a @var{qxn} of 0.

The areas at @var{r1p} and @var{s2p} have to be identical or completely
separate, not partially overlapping.
@end deftypefn

@deftypefun mp_limb_t mpn_divmod (mp_limb_t *@var{r1p}, mp_limb_t *@var{rs2p}, mp_size_t @var{rs2n}, const mp_limb_t *@var{s3p}, mp_size_t @var{s3n})
[This function is obsolete.  Please call @code{mpn_tdiv_qr} instead for best
performance.]
@end deftypefun

@deftypefn Macro mp_limb_t mpn_divexact_by3 (mp_limb_t *@var{rp}, mp_limb_t *@var{sp}, @w{mp_size_t @var{n}})
@deftypefnx Function mp_limb_t mpn_divexact_by3c (mp_limb_t *@var{rp}, mp_limb_t *@var{sp}, @w{mp_size_t @var{n}}, mp_limb_t @var{carry})
Divide @{@var{sp}, @var{n}@} by 3, expecting it to divide exactly, and writing
the result to @{@var{rp}, @var{n}@}.  If 3 divides exactly, the return value is
zero and the result is the quotient.  If not, the return value is non-zero and
the result won't be anything useful.

@code{mpn_divexact_by3c} takes an initial carry parameter, which can be the
return value from a previous call, so a large calculation can be done piece by
piece from low to high.  @code{mpn_divexact_by3} is simply a macro calling
@code{mpn_divexact_by3c} with a 0 carry parameter.

These routines use a multiply-by-inverse and will be faster than
@code{mpn_divrem_1} on CPUs with fast multiplication but slow division.

The source @math{a}, result @math{q}, size @math{n}, initial carry @math{i},
and return value @math{c} satisfy @m{cb^n+a-i=3q, c*b^n + a-i = 3*q}, where
@m{b=2\GMPraise{@code{GMP\_NUMB\_BITS}}, b=2^GMP_NUMB_BITS}.  The
return @math{c} is always 0, 1 or 2, and the initial carry @math{i} must also
be 0, 1 or 2 (these are both borrows really).  When @math{c=0} clearly
@math{q=(a-i)/3}.  When @m{c \neq 0, c!=0}, the remainder @math{(a-i) @bmod{}
3} is given by @math{3-c}, because @math{b @equiv{} 1 @bmod{} 3} (when
@code{mp_bits_per_limb} is even, which is always so currently).
@end deftypefn

@deftypefun mp_limb_t mpn_mod_1 (const mp_limb_t *@var{s1p}, mp_size_t @var{s1n}, mp_limb_t @var{s2limb})
Divide @{@var{s1p}, @var{s1n}@} by @var{s2limb}, and return the remainder.
@var{s1n} can be zero.
@end deftypefun

@deftypefun mp_limb_t mpn_lshift (mp_limb_t *@var{rp}, const mp_limb_t *@var{sp}, mp_size_t @var{n}, unsigned int @var{count})
Shift @{@var{sp}, @var{n}@} left by @var{count} bits, and write the result to
@{@var{rp}, @var{n}@}.  The bits shifted out at the left are returned in the
least significant @var{count} bits of the return value (the rest of the return
value is zero).

@var{count} must be in the range 1 to @nicode{mp_bits_per_limb}@minus{}1.  The
regions @{@var{sp}, @var{n}@} and @{@var{rp}, @var{n}@} may overlap, provided
@math{@var{rp} @ge{} @var{sp}}.

This function is written in assembly for most CPUs.
@end deftypefun

@deftypefun mp_limb_t mpn_rshift (mp_limb_t *@var{rp}, const mp_limb_t *@var{sp}, mp_size_t @var{n}, unsigned int @var{count})
Shift @{@var{sp}, @var{n}@} right by @var{count} bits, and write the result to
@{@var{rp}, @var{n}@}.  The bits shifted out at the right are returned in the
most significant @var{count} bits of the return value (the rest of the return
value is zero).

@var{count} must be in the range 1 to @nicode{mp_bits_per_limb}@minus{}1.  The
regions @{@var{sp}, @var{n}@} and @{@var{rp}, @var{n}@} may overlap, provided
@math{@var{rp} @le{} @var{sp}}.

This function is written in assembly for most CPUs.
@end deftypefun

@deftypefun int mpn_cmp (const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Compare @{@var{s1p}, @var{n}@} and @{@var{s2p}, @var{n}@} and return a
positive value if @math{@var{s1} > @var{s2}}, 0 if they are equal, or a
negative value if @math{@var{s1} < @var{s2}}.
@end deftypefun

@deftypefun mp_size_t mpn_gcd (mp_limb_t *@var{rp}, mp_limb_t *@var{xp}, mp_size_t @var{xn}, mp_limb_t *@var{yp}, mp_size_t @var{yn})
Set @{@var{rp}, @var{retval}@} to the greatest common divisor of @{@var{xp},
@var{xn}@} and @{@var{yp}, @var{yn}@}.  The result can be up to @var{yn} limbs,
the return value is the actual number produced.  Both source operands are
destroyed.

It is required that @math{@var{xn} @ge @var{yn} > 0}, and the most significant
limb of @{@var{yp}, @var{yn}@} must be non-zero.  No overlap is permitted
between @{@var{xp}, @var{xn}@} and @{@var{yp}, @var{yn}@}.
@end deftypefun

@deftypefun mp_limb_t mpn_gcd_1 (const mp_limb_t *@var{xp}, mp_size_t @var{xn}, mp_limb_t @var{ylimb})
Return the greatest common divisor of @{@var{xp}, @var{xn}@} and @var{ylimb}.
Both operands must be non-zero.
@end deftypefun

@deftypefun mp_size_t mpn_gcdext (mp_limb_t *@var{gp}, mp_limb_t *@var{sp}, mp_size_t *@var{sn}, mp_limb_t *@var{up}, mp_size_t @var{un}, mp_limb_t *@var{vp}, mp_size_t @var{vn})
Let @m{U,@var{U}} be defined by @{@var{up}, @var{un}@} and let @m{V,@var{V}} be
defined by @{@var{vp}, @var{vn}@}.

Compute the greatest common divisor @math{G} of @math{U} and @math{V}.  Compute
a cofactor @math{S} such that @math{G = US + VT}.  The second cofactor @var{T}
is not computed but can easily be obtained from @m{(G - US) / V, (@var{G} -
@var{U}*@var{S}) / @var{V}} (the division will be exact).  It is required that
@math{@var{un} @ge @var{vn} > 0}, and the most significant
limb of @{@var{vp}, @var{vn}@} must be non-zero.

@math{S} satisfies @math{S = 1} or @math{@GMPabs{S} < V / (2 G)}. @math{S =
0} if and only if @math{V} divides @math{U} (i.e., @math{G = V}).

Store @math{G} at @var{gp} and let the return value define its limb count.
Store @math{S} at @var{sp} and let |*@var{sn}| define its limb count.  @math{S}
can be negative; when this happens *@var{sn} will be negative.  The area at
@var{gp} should have room for @var{vn} limbs and the area at @var{sp} should
have room for @math{@var{vn}+1} limbs.

Both source operands are destroyed.

Compatibility notes: GMP 4.3.0 and 4.3.1 defined @math{S} less strictly.
Earlier as well as later GMP releases define @math{S} as described here.
GMP releases before GMP 4.3.0 required additional space for both input and output
areas. More precisely, the areas @{@var{up}, @math{@var{un}+1}@} and
@{@var{vp}, @math{@var{vn}+1}@} were destroyed (i.e.@: the operands plus an
extra limb past the end of each), and the areas pointed to by @var{gp} and
@var{sp} should each have room for @math{@var{un}+1} limbs.
@end deftypefun

@deftypefun mp_size_t mpn_sqrtrem (mp_limb_t *@var{r1p}, mp_limb_t *@var{r2p}, const mp_limb_t *@var{sp}, mp_size_t @var{n})
Compute the square root of @{@var{sp}, @var{n}@} and put the result at
@{@var{r1p}, @math{@GMPceil{@var{n}/2}}@} and the remainder at @{@var{r2p},
@var{retval}@}.  @var{r2p} needs space for @var{n} limbs, but the return value
indicates how many are produced.

The most significant limb of @{@var{sp}, @var{n}@} must be non-zero.  The
areas @{@var{r1p}, @math{@GMPceil{@var{n}/2}}@} and @{@var{sp}, @var{n}@} must
be completely separate.  The areas @{@var{r2p}, @var{n}@} and @{@var{sp},
@var{n}@} must be either identical or completely separate.

If the remainder is not wanted then @var{r2p} can be @code{NULL}, and in this
case the return value is zero or non-zero according to whether the remainder
would have been zero or non-zero.

A return value of zero indicates a perfect square.  See also
@code{mpz_perfect_square_p}.
@end deftypefun

@deftypefun mp_size_t mpn_get_str (unsigned char *@var{str}, int @var{base}, mp_limb_t *@var{s1p}, mp_size_t @var{s1n})
Convert @{@var{s1p}, @var{s1n}@} to a raw unsigned char array at @var{str} in
base @var{base}, and return the number of characters produced.  There may be
leading zeros in the string.  The string is not in ASCII; to convert it to
printable format, add the ASCII codes for @samp{0} or @samp{A}, depending on
the base and range.  @var{base} can vary from 2 to 256.

The most significant limb of the input @{@var{s1p}, @var{s1n}@} must be
non-zero.  The input @{@var{s1p}, @var{s1n}@} is clobbered, except when
@var{base} is a power of 2, in which case it's unchanged.

The area at @var{str} has to have space for the largest possible number
represented by a @var{s1n} long limb array, plus one extra character.
@end deftypefun

@deftypefun mp_size_t mpn_set_str (mp_limb_t *@var{rp}, const unsigned char *@var{str}, size_t @var{strsize}, int @var{base})
Convert bytes @{@var{str},@var{strsize}@} in the given @var{base} to limbs at
@var{rp}.

@math{@var{str}[0]} is the most significant byte and
@math{@var{str}[@var{strsize}-1]} is the least significant.  Each byte should
be a value in the range 0 to @math{@var{base}-1}, not an ASCII character.
@var{base} can vary from 2 to 256.

The return value is the number of limbs written to @var{rp}.  If the most
significant input byte is non-zero then the high limb at @var{rp} will be
non-zero, and only that exact number of limbs will be required there.

If the most significant input byte is zero then there may be high zero limbs
written to @var{rp} and included in the return value.

@var{strsize} must be at least 1, and no overlap is permitted between
@{@var{str},@var{strsize}@} and the result at @var{rp}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpn_scan0 (const mp_limb_t *@var{s1p}, mp_bitcnt_t @var{bit})
Scan @var{s1p} from bit position @var{bit} for the next clear bit.

It is required that there be a clear bit within the area at @var{s1p} at or
beyond bit position @var{bit}, so that the function has something to return.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpn_scan1 (const mp_limb_t *@var{s1p}, mp_bitcnt_t @var{bit})
Scan @var{s1p} from bit position @var{bit} for the next set bit.

It is required that there be a set bit within the area at @var{s1p} at or
beyond bit position @var{bit}, so that the function has something to return.
@end deftypefun

@deftypefun void mpn_random (mp_limb_t *@var{r1p}, mp_size_t @var{r1n})
@deftypefunx void mpn_random2 (mp_limb_t *@var{r1p}, mp_size_t @var{r1n})
Generate a random number of length @var{r1n} and store it at @var{r1p}.  The
most significant limb is always non-zero.  @code{mpn_random} generates
uniformly distributed limb data, @code{mpn_random2} generates long strings of
zeros and ones in the binary representation.

@code{mpn_random2} is intended for testing the correctness of the @code{mpn}
routines.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpn_popcount (const mp_limb_t *@var{s1p}, mp_size_t @var{n})
Count the number of set bits in @{@var{s1p}, @var{n}@}.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpn_hamdist (const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Compute the hamming distance between @{@var{s1p}, @var{n}@} and @{@var{s2p},
@var{n}@}, which is the number of bit positions where the two operands have
different bit values.
@end deftypefun

@deftypefun int mpn_perfect_square_p (const mp_limb_t *@var{s1p}, mp_size_t @var{n})
Return non-zero iff @{@var{s1p}, @var{n}@} is a perfect square.
The most significant limb of the input @{@var{s1p}, @var{n}@} must be
non-zero.
@end deftypefun

@deftypefun void mpn_and_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical and of @{@var{s1p}, @var{n}@} and @{@var{s2p},
@var{n}@}, and write the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_ior_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical inclusive or of @{@var{s1p}, @var{n}@} and
@{@var{s2p}, @var{n}@}, and write the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_xor_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical exclusive or of @{@var{s1p}, @var{n}@} and
@{@var{s2p}, @var{n}@}, and write the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_andn_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical and of @{@var{s1p}, @var{n}@} and the bitwise
complement of @{@var{s2p}, @var{n}@}, and write the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_iorn_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical inclusive or of @{@var{s1p}, @var{n}@} and the bitwise
complement of @{@var{s2p}, @var{n}@}, and write the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_nand_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical and of @{@var{s1p}, @var{n}@} and @{@var{s2p},
@var{n}@}, and write the bitwise complement of the result to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_nior_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical inclusive or of @{@var{s1p}, @var{n}@} and
@{@var{s2p}, @var{n}@}, and write the bitwise complement of the result to
@{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_xnor_n (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, const mp_limb_t *@var{s2p}, mp_size_t @var{n})
Perform the bitwise logical exclusive or of @{@var{s1p}, @var{n}@} and
@{@var{s2p}, @var{n}@}, and write the bitwise complement of the result to
@{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_com (mp_limb_t *@var{rp}, const mp_limb_t *@var{sp}, mp_size_t @var{n})
Perform the bitwise complement of @{@var{sp}, @var{n}@}, and write the result
to @{@var{rp}, @var{n}@}.
@end deftypefun

@deftypefun void mpn_copyi (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n})
Copy from @{@var{s1p}, @var{n}@} to @{@var{rp}, @var{n}@}, increasingly.
@end deftypefun

@deftypefun void mpn_copyd (mp_limb_t *@var{rp}, const mp_limb_t *@var{s1p}, mp_size_t @var{n})
Copy from @{@var{s1p}, @var{n}@} to @{@var{rp}, @var{n}@}, decreasingly.
@end deftypefun

@deftypefun void mpn_zero (mp_limb_t *@var{rp}, mp_size_t @var{n})
Zero @{@var{rp}, @var{n}@}.
@end deftypefun

@sp 1
@section Nails
@cindex Nails

@strong{Everything in this section is highly experimental and may disappear or
be subject to incompatible changes in a future version of GMP.}

Nails are an experimental feature whereby a few bits are left unused at the
top of each @code{mp_limb_t}.  This can significantly improve carry handling
on some processors.

All the @code{mpn} functions accepting limb data will expect the nail bits to
be zero on entry, and will return data with the nails similarly all zero.
This applies both to limb vectors and to single limb arguments.

Nails can be enabled by configuring with @samp{--enable-nails}.  By default
the number of bits will be chosen according to what suits the host processor,
but a particular number can be selected with @samp{--enable-nails=N}.

At the mpn level, a nail build is neither source nor binary compatible with a
non-nail build, strictly speaking.  But programs acting on limbs only through
the mpn functions are likely to work equally well with either build, and
judicious use of the definitions below should make any program compatible with
either build, at the source level.

For the higher level routines, meaning @code{mpz} etc, a nail build should be
fully source and binary compatible with a non-nail build.

@defmac GMP_NAIL_BITS
@defmacx GMP_NUMB_BITS
@defmacx GMP_LIMB_BITS
@code{GMP_NAIL_BITS} is the number of nail bits, or 0 when nails are not in
use.  @code{GMP_NUMB_BITS} is the number of data bits in a limb.
@code{GMP_LIMB_BITS} is the total number of bits in an @code{mp_limb_t}.  In
all cases

@example
GMP_LIMB_BITS == GMP_NAIL_BITS + GMP_NUMB_BITS
@end example
@end defmac

@defmac GMP_NAIL_MASK
@defmacx GMP_NUMB_MASK
Bit masks for the nail and number parts of a limb.  @code{GMP_NAIL_MASK} is 0
when nails are not in use.

@code{GMP_NAIL_MASK} is not often needed, since the nail part can be obtained
with @code{x >> GMP_NUMB_BITS}, and that means one less large constant, which
can help various RISC chips.
@end defmac

@defmac GMP_NUMB_MAX
The maximum value that can be stored in the number part of a limb.  This is
the same as @code{GMP_NUMB_MASK}, but can be used for clarity when doing
comparisons rather than bit-wise operations.
@end defmac

The term ``nails'' comes from finger or toe nails, which are at the ends of a
limb (arm or leg).  ``numb'' is short for number, but is also how the
developers felt after trying for a long time to come up with sensible names
for these things.

In the future (the distant future most likely) a non-zero nail might be
permitted, giving non-unique representations for numbers in a limb vector.
This would help vector processors since carries would only ever need to
propagate one or two limbs.


@node Random Number Functions, Formatted Output, Low-level Functions, Top
@chapter Random Number Functions
@cindex Random number functions

Sequences of pseudo-random numbers in GMP are generated using a variable of
type @code{gmp_randstate_t}, which holds an algorithm selection and a current
state.  Such a variable must be initialized by a call to one of the
@code{gmp_randinit} functions, and can be seeded with one of the
@code{gmp_randseed} functions.

The functions actually generating random numbers are described in @ref{Integer
Random Numbers}, and @ref{Miscellaneous Float Functions}.

The older style random number functions don't accept a @code{gmp_randstate_t}
parameter but instead share a global variable of that type.  They use a
default algorithm and are currently not seeded (though perhaps that will
change in the future).  The new functions accepting a @code{gmp_randstate_t}
are recommended for applications that care about randomness.

@menu
* Random State Initialization::
* Random State Seeding::
* Random State Miscellaneous::
@end menu

@node Random State Initialization, Random State Seeding, Random Number Functions, Random Number Functions
@section Random State Initialization
@cindex Random number state
@cindex Initialization functions

@deftypefun void gmp_randinit_default (gmp_randstate_t @var{state})
Initialize @var{state} with a default algorithm.  This will be a compromise
between speed and randomness, and is recommended for applications with no
special requirements.  Currently this is @code{gmp_randinit_mt}.
@end deftypefun

@deftypefun void gmp_randinit_mt (gmp_randstate_t @var{state})
@cindex Mersenne twister random numbers
Initialize @var{state} for a Mersenne Twister algorithm.  This algorithm is
fast and has good randomness properties.
@end deftypefun

@deftypefun void gmp_randinit_lc_2exp (gmp_randstate_t @var{state}, mpz_t @var{a}, @w{unsigned long @var{c}}, @w{mp_bitcnt_t @var{m2exp}})
@cindex Linear congruential random numbers
Initialize @var{state} with a linear congruential algorithm @m{X = (@var{a}X +
@var{c}) @bmod 2^{m2exp}, X = (@var{a}*X + @var{c}) mod 2^@var{m2exp}}.

The low bits of @math{X} in this algorithm are not very random.  The least
significant bit will have a period no more than 2, and the second bit no more
than 4, etc.  For this reason only the high half of each @math{X} is actually
used.

When a random number of more than @math{@var{m2exp}/2} bits is to be
generated, multiple iterations of the recurrence are used and the results
concatenated.
@end deftypefun

@deftypefun int gmp_randinit_lc_2exp_size (gmp_randstate_t @var{state}, mp_bitcnt_t @var{size})
@cindex Linear congruential random numbers
Initialize @var{state} for a linear congruential algorithm as per
@code{gmp_randinit_lc_2exp}.  @var{a}, @var{c} and @var{m2exp} are selected
from a table, chosen so that @var{size} bits (or more) of each @math{X} will
be used, i.e.@: @math{@var{m2exp}/2 @ge{} @var{size}}.

If successful the return value is non-zero.  If @var{size} is bigger than the
table data provides then the return value is zero.  The maximum @var{size}
currently supported is 128.
@end deftypefun

@deftypefun void gmp_randinit_set (gmp_randstate_t @var{rop}, gmp_randstate_t @var{op})
Initialize @var{rop} with a copy of the algorithm and state from @var{op}.
@end deftypefun

@c  Although gmp_randinit, gmp_errno and related constants are obsolete, we
@c  still put @findex entries for them, since they're still documented and
@c  someone might be looking them up when perusing old application code.

@deftypefun void gmp_randinit (gmp_randstate_t @var{state}, @w{gmp_randalg_t @var{alg}}, @dots{})
@strong{This function is obsolete.}

@findex GMP_RAND_ALG_LC
@findex GMP_RAND_ALG_DEFAULT
Initialize @var{state} with an algorithm selected by @var{alg}.  The only
choice is @code{GMP_RAND_ALG_LC}, which is @code{gmp_randinit_lc_2exp_size}
described above.  A third parameter of type @code{unsigned long} is required,
this is the @var{size} for that function.  @code{GMP_RAND_ALG_DEFAULT} or 0
are the same as @code{GMP_RAND_ALG_LC}.

@c  For reference, this is the only place gmp_errno has been documented, and
@c  due to being non thread safe we won't be adding to it's uses.
@findex gmp_errno
@findex GMP_ERROR_UNSUPPORTED_ARGUMENT
@findex GMP_ERROR_INVALID_ARGUMENT
@code{gmp_randinit} sets bits in the global variable @code{gmp_errno} to
indicate an error.  @code{GMP_ERROR_UNSUPPORTED_ARGUMENT} if @var{alg} is
unsupported, or @code{GMP_ERROR_INVALID_ARGUMENT} if the @var{size} parameter
is too big.  It may be noted this error reporting is not thread safe (a good
reason to use @code{gmp_randinit_lc_2exp_size} instead).
@end deftypefun

@deftypefun void gmp_randclear (gmp_randstate_t @var{state})
Free all memory occupied by @var{state}.
@end deftypefun


@node Random State Seeding, Random State Miscellaneous, Random State Initialization, Random Number Functions
@section Random State Seeding
@cindex Random number seeding
@cindex Seeding random numbers

@deftypefun void gmp_randseed (gmp_randstate_t @var{state}, mpz_t @var{seed})
@deftypefunx void gmp_randseed_ui (gmp_randstate_t @var{state}, @w{unsigned long int @var{seed}})
Set an initial seed value into @var{state}.

The size of a seed determines how many different sequences of random numbers
that it's possible to generate.  The ``quality'' of the seed is the randomness
of a given seed compared to the previous seed used, and this affects the
randomness of separate number sequences.  The method for choosing a seed is
critical if the generated numbers are to be used for important applications,
such as generating cryptographic keys.

Traditionally the system time has been used to seed, but care needs to be
taken with this.  If an application seeds often and the resolution of the
system clock is low, then the same sequence of numbers might be repeated.
Also, the system time is quite easy to guess, so if unpredictability is
required then it should definitely not be the only source for the seed value.
On some systems there's a special device @file{/dev/random} which provides
random data better suited for use as a seed.
@end deftypefun


@node Random State Miscellaneous,  , Random State Seeding, Random Number Functions
@section Random State Miscellaneous

@deftypefun {unsigned long} gmp_urandomb_ui (gmp_randstate_t @var{state}, unsigned long @var{n})
Return a uniformly distributed random number of @var{n} bits, i.e.@: in the
range 0 to @m{2^n-1,2^@var{n}-1} inclusive.  @var{n} must be less than or
equal to the number of bits in an @code{unsigned long}.
@end deftypefun

@deftypefun {unsigned long} gmp_urandomm_ui (gmp_randstate_t @var{state}, unsigned long @var{n})
Return a uniformly distributed random number in the range 0 to
@math{@var{n}-1}, inclusive.
@end deftypefun


@node Formatted Output, Formatted Input, Random Number Functions, Top
@chapter Formatted Output
@cindex Formatted output
@cindex @code{printf} formatted output

@menu
* Formatted Output Strings::
* Formatted Output Functions::
* C++ Formatted Output::
@end menu

@node Formatted Output Strings, Formatted Output Functions, Formatted Output, Formatted Output
@section Format Strings

@code{gmp_printf} and friends accept format strings similar to the standard C
@code{printf} (@pxref{Formatted Output,, Formatted Output, libc, The GNU C
Library Reference Manual}).  A format specification is of the form

@example
% [flags] [width] [.[precision]] [type] conv
@end example

GMP adds types @samp{Z}, @samp{Q} and @samp{F} for @code{mpz_t}, @code{mpq_t}
and @code{mpf_t} respectively, @samp{M} for @code{mp_limb_t}, and @samp{N} for
an @code{mp_limb_t} array.  @samp{Z}, @samp{Q}, @samp{M} and @samp{N} behave
like integers.  @samp{Q} will print a @samp{/} and a denominator, if needed.
@samp{F} behaves like a float.  For example,

@example
mpz_t z;
gmp_printf ("%s is an mpz %Zd\n", "here", z);

mpq_t q;
gmp_printf ("a hex rational: %#40Qx\n", q);

mpf_t f;
int   n;
gmp_printf ("fixed point mpf %.*Ff with %d digits\n", n, f, n);

mp_limb_t l;
gmp_printf ("limb %Mu\n", l);

const mp_limb_t *ptr;
mp_size_t       size;
gmp_printf ("limb array %Nx\n", ptr, size);
@end example

For @samp{N} the limbs are expected least significant first, as per the
@code{mpn} functions (@pxref{Low-level Functions}).  A negative size can be
given to print the value as a negative.

All the standard C @code{printf} types behave the same as the C library
@code{printf}, and can be freely intermixed with the GMP extensions.  In the
current implementation the standard parts of the format string are simply
handed to @code{printf} and only the GMP extensions handled directly.

The flags accepted are as follows.  GLIBC style @nisamp{'} is only for the
standard C types (not the GMP types), and only if the C library supports it.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{0} @tab pad with zeros (rather than spaces)
@item @nicode{#} @tab show the base with @samp{0x}, @samp{0X} or @samp{0}
@item @nicode{+} @tab always show a sign
@item (space)    @tab show a space or a @samp{-} sign
@item @nicode{'} @tab group digits, GLIBC style (not GMP types)
@end multitable
@end quotation

The optional width and precision can be given as a number within the format
string, or as a @samp{*} to take an extra parameter of type @code{int}, the
same as the standard @code{printf}.

The standard types accepted are as follows.  @samp{h} and @samp{l} are
portable, the rest will depend on the compiler (or include files) for the type
and the C library for the output.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{h}  @tab @nicode{short}
@item @nicode{hh} @tab @nicode{char}
@item @nicode{j}  @tab @nicode{intmax_t} or @nicode{uintmax_t}
@item @nicode{l}  @tab @nicode{long} or @nicode{wchar_t}
@item @nicode{ll} @tab @nicode{long long}
@item @nicode{L}  @tab @nicode{long double}
@item @nicode{q}  @tab @nicode{quad_t} or @nicode{u_quad_t}
@item @nicode{t}  @tab @nicode{ptrdiff_t}
@item @nicode{z}  @tab @nicode{size_t}
@end multitable
@end quotation

@noindent
The GMP types are

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{F}  @tab @nicode{mpf_t}, float conversions
@item @nicode{Q}  @tab @nicode{mpq_t}, integer conversions
@item @nicode{M}  @tab @nicode{mp_limb_t}, integer conversions
@item @nicode{N}  @tab @nicode{mp_limb_t} array, integer conversions
@item @nicode{Z}  @tab @nicode{mpz_t}, integer conversions
@end multitable
@end quotation

The conversions accepted are as follows.  @samp{a} and @samp{A} are always
supported for @code{mpf_t} but depend on the C library for standard C float
types.  @samp{m} and @samp{p} depend on the C library.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{a} @nicode{A} @tab hex floats, C99 style
@item @nicode{c}            @tab character
@item @nicode{d}            @tab decimal integer
@item @nicode{e} @nicode{E} @tab scientific format float
@item @nicode{f}            @tab fixed point float
@item @nicode{i}            @tab same as @nicode{d}
@item @nicode{g} @nicode{G} @tab fixed or scientific float
@item @nicode{m}            @tab @code{strerror} string, GLIBC style
@item @nicode{n}            @tab store characters written so far
@item @nicode{o}            @tab octal integer
@item @nicode{p}            @tab pointer
@item @nicode{s}            @tab string
@item @nicode{u}            @tab unsigned integer
@item @nicode{x} @nicode{X} @tab hex integer
@end multitable
@end quotation

@samp{o}, @samp{x} and @samp{X} are unsigned for the standard C types, but for
types @samp{Z}, @samp{Q} and @samp{N} they are signed.  @samp{u} is not
meaningful for @samp{Z}, @samp{Q} and @samp{N}.

@samp{M} is a proxy for the C library @samp{l} or @samp{L}, according to the
size of @code{mp_limb_t}.  Unsigned conversions will be usual, but a signed
conversion can be used and will interpret the value as a twos complement
negative.

@samp{n} can be used with any type, even the GMP types.

Other types or conversions that might be accepted by the C library
@code{printf} cannot be used through @code{gmp_printf}, this includes for
instance extensions registered with GLIBC @code{register_printf_function}.
Also currently there's no support for POSIX @samp{$} style numbered arguments
(perhaps this will be added in the future).

The precision field has its usual meaning for integer @samp{Z} and float
@samp{F} types, but is currently undefined for @samp{Q} and should not be used
with that.

@code{mpf_t} conversions only ever generate as many digits as can be
accurately represented by the operand, the same as @code{mpf_get_str} does.
Zeros will be used if necessary to pad to the requested precision.  This
happens even for an @samp{f} conversion of an @code{mpf_t} which is an
integer, for instance @math{2^@W{1024}} in an @code{mpf_t} of 128 bits
precision will only produce about 40 digits, then pad with zeros to the
decimal point.  An empty precision field like @samp{%.Fe} or @samp{%.Ff} can
be used to specifically request just the significant digits.  Without any dot
and thus no precision field, a precision value of 6 will be used.  Note that
these rules mean that @samp{%Ff}, @samp{%.Ff}, and @samp{%.0Ff} will all be
different.

The decimal point character (or string) is taken from the current locale
settings on systems which provide @code{localeconv} (@pxref{Locales,, Locales
and Internationalization, libc, The GNU C Library Reference Manual}).  The C
library will normally do the same for standard float output.

The format string is only interpreted as plain @code{char}s, multibyte
characters are not recognised.  Perhaps this will change in the future.


@node Formatted Output Functions, C++ Formatted Output, Formatted Output Strings, Formatted Output
@section Functions
@cindex Output functions

Each of the following functions is similar to the corresponding C library
function.  The basic @code{printf} forms take a variable argument list.  The
@code{vprintf} forms take an argument pointer, see @ref{Variadic Functions,,
Variadic Functions, libc, The GNU C Library Reference Manual}, or @samp{man 3
va_start}.

It should be emphasised that if a format string is invalid, or the arguments
don't match what the format specifies, then the behaviour of any of these
functions will be unpredictable.  GCC format string checking is not available,
since it doesn't recognise the GMP extensions.

The file based functions @code{gmp_printf} and @code{gmp_fprintf} will return
@math{-1} to indicate a write error.  Output is not ``atomic'', so partial
output may be produced if a write error occurs.  All the functions can return
@math{-1} if the C library @code{printf} variant in use returns @math{-1}, but
this shouldn't normally occur.

@deftypefun int gmp_printf (const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vprintf (const char *@var{fmt}, va_list @var{ap})
Print to the standard output @code{stdout}.  Return the number of characters
written, or @math{-1} if an error occurred.
@end deftypefun

@deftypefun int gmp_fprintf (FILE *@var{fp}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vfprintf (FILE *@var{fp}, const char *@var{fmt}, va_list @var{ap})
Print to the stream @var{fp}.  Return the number of characters written, or
@math{-1} if an error occurred.
@end deftypefun

@deftypefun int gmp_sprintf (char *@var{buf}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vsprintf (char *@var{buf}, const char *@var{fmt}, va_list @var{ap})
Form a null-terminated string in @var{buf}.  Return the number of characters
written, excluding the terminating null.

No overlap is permitted between the space at @var{buf} and the string
@var{fmt}.

These functions are not recommended, since there's no protection against
exceeding the space available at @var{buf}.
@end deftypefun

@deftypefun int gmp_snprintf (char *@var{buf}, size_t @var{size}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vsnprintf (char *@var{buf}, size_t @var{size}, const char *@var{fmt}, va_list @var{ap})
Form a null-terminated string in @var{buf}.  No more than @var{size} bytes
will be written.  To get the full output, @var{size} must be enough for the
string and null-terminator.

The return value is the total number of characters which ought to have been
produced, excluding the terminating null.  If @math{@var{retval} @ge{}
@var{size}} then the actual output has been truncated to the first
@math{@var{size}-1} characters, and a null appended.

No overlap is permitted between the region @{@var{buf},@var{size}@} and the
@var{fmt} string.

Notice the return value is in ISO C99 @code{snprintf} style.  This is so even
if the C library @code{vsnprintf} is the older GLIBC 2.0.x style.
@end deftypefun

@deftypefun int gmp_asprintf (char **@var{pp}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vasprintf (char **@var{pp}, const char *@var{fmt}, va_list @var{ap})
Form a null-terminated string in a block of memory obtained from the current
memory allocation function (@pxref{Custom Allocation}).  The block will be the
size of the string and null-terminator.  The address of the block in stored to
*@var{pp}.  The return value is the number of characters produced, excluding
the null-terminator.

Unlike the C library @code{asprintf}, @code{gmp_asprintf} doesn't return
@math{-1} if there's no more memory available, it lets the current allocation
function handle that.
@end deftypefun

@deftypefun int gmp_obstack_printf (struct obstack *@var{ob}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_obstack_vprintf (struct obstack *@var{ob}, const char *@var{fmt}, va_list @var{ap})
@cindex @code{obstack} output
Append to the current object in @var{ob}.  The return value is the number of
characters written.  A null-terminator is not written.

@var{fmt} cannot be within the current object in @var{ob}, since that object
might move as it grows.

These functions are available only when the C library provides the obstack
feature, which probably means only on GNU systems, see @ref{Obstacks,,
Obstacks, libc, The GNU C Library Reference Manual}.
@end deftypefun


@node C++ Formatted Output,  , Formatted Output Functions, Formatted Output
@section C++ Formatted Output
@cindex C++ @code{ostream} output
@cindex @code{ostream} output

The following functions are provided in @file{libgmpxx} (@pxref{Headers and
Libraries}), which is built if C++ support is enabled (@pxref{Build Options}).
Prototypes are available from @code{<gmp.h>}.

@deftypefun ostream& operator<< (ostream& @var{stream}, mpz_t @var{op})
Print @var{op} to @var{stream}, using its @code{ios} formatting settings.
@code{ios::width} is reset to 0 after output, the same as the standard
@code{ostream operator<<} routines do.

In hex or octal, @var{op} is printed as a signed number, the same as for
decimal.  This is unlike the standard @code{operator<<} routines on @code{int}
etc, which instead give twos complement.
@end deftypefun

@deftypefun ostream& operator<< (ostream& @var{stream}, mpq_t @var{op})
Print @var{op} to @var{stream}, using its @code{ios} formatting settings.
@code{ios::width} is reset to 0 after output, the same as the standard
@code{ostream operator<<} routines do.

Output will be a fraction like @samp{5/9}, or if the denominator is 1 then
just a plain integer like @samp{123}.

In hex or octal, @var{op} is printed as a signed value, the same as for
decimal.  If @code{ios::showbase} is set then a base indicator is shown on
both the numerator and denominator (if the denominator is required).
@end deftypefun

@deftypefun ostream& operator<< (ostream& @var{stream}, mpf_t @var{op})
Print @var{op} to @var{stream}, using its @code{ios} formatting settings.
@code{ios::width} is reset to 0 after output, the same as the standard
@code{ostream operator<<} routines do.

The decimal point follows the standard library float @code{operator<<}, which
on recent systems means the @code{std::locale} imbued on @var{stream}.

Hex and octal are supported, unlike the standard @code{operator<<} on
@code{double}.  The mantissa will be in hex or octal, the exponent will be in
decimal.  For hex the exponent delimiter is an @samp{@@}.  This is as per
@code{mpf_out_str}.

@code{ios::showbase} is supported, and will put a base on the mantissa, for
example hex @samp{0x1.8} or @samp{0x0.8}, or octal @samp{01.4} or @samp{00.4}.
This last form is slightly strange, but at least differentiates itself from
decimal.
@end deftypefun

These operators mean that GMP types can be printed in the usual C++ way, for
example,

@example
mpz_t  z;
int    n;
...
cout << "iteration " << n << " value " << z << "\n";
@end example

But note that @code{ostream} output (and @code{istream} input, @pxref{C++
Formatted Input}) is the only overloading available for the GMP types and that
for instance using @code{+} with an @code{mpz_t} will have unpredictable
results.  For classes with overloading, see @ref{C++ Class Interface}.


@node Formatted Input, C++ Class Interface, Formatted Output, Top
@chapter Formatted Input
@cindex Formatted input
@cindex @code{scanf} formatted input

@menu
* Formatted Input Strings::
* Formatted Input Functions::
* C++ Formatted Input::
@end menu


@node Formatted Input Strings, Formatted Input Functions, Formatted Input, Formatted Input
@section Formatted Input Strings

@code{gmp_scanf} and friends accept format strings similar to the standard C
@code{scanf} (@pxref{Formatted Input,, Formatted Input, libc, The GNU C
Library Reference Manual}).  A format specification is of the form

@example
% [flags] [width] [type] conv
@end example

GMP adds types @samp{Z}, @samp{Q} and @samp{F} for @code{mpz_t}, @code{mpq_t}
and @code{mpf_t} respectively.  @samp{Z} and @samp{Q} behave like integers.
@samp{Q} will read a @samp{/} and a denominator, if present.  @samp{F} behaves
like a float.

GMP variables don't require an @code{&} when passed to @code{gmp_scanf}, since
they're already ``call-by-reference''.  For example,

@example
/* to read say "a(5) = 1234" */
int   n;
mpz_t z;
gmp_scanf ("a(%d) = %Zd\n", &n, z);

mpq_t q1, q2;
gmp_sscanf ("0377 + 0x10/0x11", "%Qi + %Qi", q1, q2);

/* to read say "topleft (1.55,-2.66)" */
mpf_t x, y;
char  buf[32];
gmp_scanf ("%31s (%Ff,%Ff)", buf, x, y);
@end example

All the standard C @code{scanf} types behave the same as in the C library
@code{scanf}, and can be freely intermixed with the GMP extensions.  In the
current implementation the standard parts of the format string are simply
handed to @code{scanf} and only the GMP extensions handled directly.

The flags accepted are as follows.  @samp{a} and @samp{'} will depend on
support from the C library, and @samp{'} cannot be used with GMP types.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{*} @tab read but don't store
@item @nicode{a} @tab allocate a buffer (string conversions)
@item @nicode{'} @tab grouped digits, GLIBC style (not GMP types)
@end multitable
@end quotation

The standard types accepted are as follows.  @samp{h} and @samp{l} are
portable, the rest will depend on the compiler (or include files) for the type
and the C library for the input.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{h}  @tab @nicode{short}
@item @nicode{hh} @tab @nicode{char}
@item @nicode{j}  @tab @nicode{intmax_t} or @nicode{uintmax_t}
@item @nicode{l}  @tab @nicode{long int}, @nicode{double} or @nicode{wchar_t}
@item @nicode{ll} @tab @nicode{long long}
@item @nicode{L}  @tab @nicode{long double}
@item @nicode{q}  @tab @nicode{quad_t} or @nicode{u_quad_t}
@item @nicode{t}  @tab @nicode{ptrdiff_t}
@item @nicode{z}  @tab @nicode{size_t}
@end multitable
@end quotation

@noindent
The GMP types are

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{F}  @tab @nicode{mpf_t}, float conversions
@item @nicode{Q}  @tab @nicode{mpq_t}, integer conversions
@item @nicode{Z}  @tab @nicode{mpz_t}, integer conversions
@end multitable
@end quotation

The conversions accepted are as follows.  @samp{p} and @samp{[} will depend on
support from the C library, the rest are standard.

@quotation
@multitable {(space)} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item @nicode{c}            @tab character or characters
@item @nicode{d}            @tab decimal integer
@item @nicode{e} @nicode{E} @nicode{f} @nicode{g} @nicode{G}
                            @tab float
@item @nicode{i}            @tab integer with base indicator
@item @nicode{n}            @tab characters read so far
@item @nicode{o}            @tab octal integer
@item @nicode{p}            @tab pointer
@item @nicode{s}            @tab string of non-whitespace characters
@item @nicode{u}            @tab decimal integer
@item @nicode{x} @nicode{X} @tab hex integer
@item @nicode{[}            @tab string of characters in a set
@end multitable
@end quotation

@samp{e}, @samp{E}, @samp{f}, @samp{g} and @samp{G} are identical, they all
read either fixed point or scientific format, and either upper or lower case
@samp{e} for the exponent in scientific format.

C99 style hex float format (@code{printf %a}, @pxref{Formatted Output
Strings}) is always accepted for @code{mpf_t}, but for the standard float
types it will depend on the C library.

@samp{x} and @samp{X} are identical, both accept both upper and lower case
hexadecimal.

@samp{o}, @samp{u}, @samp{x} and @samp{X} all read positive or negative
values.  For the standard C types these are described as ``unsigned''
conversions, but that merely affects certain overflow handling, negatives are
still allowed (per @code{strtoul}, @pxref{Parsing of Integers,, Parsing of
Integers, libc, The GNU C Library Reference Manual}).  For GMP types there are
no overflows, so @samp{d} and @samp{u} are identical.

@samp{Q} type reads the numerator and (optional) denominator as given.  If the
value might not be in canonical form then @code{mpq_canonicalize} must be
called before using it in any calculations (@pxref{Rational Number
Functions}).

@samp{Qi} will read a base specification separately for the numerator and
denominator.  For example @samp{0x10/11} would be 16/11, whereas
@samp{0x10/0x11} would be 16/17.

@samp{n} can be used with any of the types above, even the GMP types.
@samp{*} to suppress assignment is allowed, though in that case it would do
nothing at all.

Other conversions or types that might be accepted by the C library
@code{scanf} cannot be used through @code{gmp_scanf}.

Whitespace is read and discarded before a field, except for @samp{c} and
@samp{[} conversions.

For float conversions, the decimal point character (or string) expected is
taken from the current locale settings on systems which provide
@code{localeconv} (@pxref{Locales,, Locales and Internationalization, libc,
The GNU C Library Reference Manual}).  The C library will normally do the same
for standard float input.

The format string is only interpreted as plain @code{char}s, multibyte
characters are not recognised.  Perhaps this will change in the future.


@node Formatted Input Functions, C++ Formatted Input, Formatted Input Strings, Formatted Input
@section Formatted Input Functions
@cindex Input functions

Each of the following functions is similar to the corresponding C library
function.  The plain @code{scanf} forms take a variable argument list.  The
@code{vscanf} forms take an argument pointer, see @ref{Variadic Functions,,
Variadic Functions, libc, The GNU C Library Reference Manual}, or @samp{man 3
va_start}.

It should be emphasised that if a format string is invalid, or the arguments
don't match what the format specifies, then the behaviour of any of these
functions will be unpredictable.  GCC format string checking is not available,
since it doesn't recognise the GMP extensions.

No overlap is permitted between the @var{fmt} string and any of the results
produced.

@deftypefun int gmp_scanf (const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vscanf (const char *@var{fmt}, va_list @var{ap})
Read from the standard input @code{stdin}.
@end deftypefun

@deftypefun int gmp_fscanf (FILE *@var{fp}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vfscanf (FILE *@var{fp}, const char *@var{fmt}, va_list @var{ap})
Read from the stream @var{fp}.
@end deftypefun

@deftypefun int gmp_sscanf (const char *@var{s}, const char *@var{fmt}, @dots{})
@deftypefunx int gmp_vsscanf (const char *@var{s}, const char *@var{fmt}, va_list @var{ap})
Read from a null-terminated string @var{s}.
@end deftypefun

The return value from each of these functions is the same as the standard C99
@code{scanf}, namely the number of fields successfully parsed and stored.
@samp{%n} fields and fields read but suppressed by @samp{*} don't count
towards the return value.

If end of input (or a file error) is reached before a character for a field or
a literal, and if no previous non-suppressed fields have matched, then the
return value is @code{EOF} instead of 0.  A whitespace character in the format
string is only an optional match and doesn't induce an @code{EOF} in this
fashion.  Leading whitespace read and discarded for a field don't count as
characters for that field.

For the GMP types, input parsing follows C99 rules, namely one character of
lookahead is used and characters are read while they continue to meet the
format requirements.  If this doesn't provide a complete number then the
function terminates, with that field not stored nor counted towards the return
value.  For instance with @code{mpf_t} an input @samp{1.23e-XYZ} would be read
up to the @samp{X} and that character pushed back since it's not a digit.  The
string @samp{1.23e-} would then be considered invalid since an @samp{e} must
be followed by at least one digit.

For the standard C types, in the current implementation GMP calls the C
library @code{scanf} functions, which might have looser rules about what
constitutes a valid input.

Note that @code{gmp_sscanf} is the same as @code{gmp_fscanf} and only does one
character of lookahead when parsing.  Although clearly it could look at its
entire input, it is deliberately made identical to @code{gmp_fscanf}, the same
way C99 @code{sscanf} is the same as @code{fscanf}.


@node C++ Formatted Input,  , Formatted Input Functions, Formatted Input
@section C++ Formatted Input
@cindex C++ @code{istream} input
@cindex @code{istream} input

The following functions are provided in @file{libgmpxx} (@pxref{Headers and
Libraries}), which is built only if C++ support is enabled (@pxref{Build
Options}).  Prototypes are available from @code{<gmp.h>}.

@deftypefun istream& operator>> (istream& @var{stream}, mpz_t @var{rop})
Read @var{rop} from @var{stream}, using its @code{ios} formatting settings.
@end deftypefun

@deftypefun istream& operator>> (istream& @var{stream}, mpq_t @var{rop})
An integer like @samp{123} will be read, or a fraction like @samp{5/9}.  No
whitespace is allowed around the @samp{/}.  If the fraction is not in
canonical form then @code{mpq_canonicalize} must be called (@pxref{Rational
Number Functions}) before operating on it.

As per integer input, an @samp{0} or @samp{0x} base indicator is read when
none of @code{ios::dec}, @code{ios::oct} or @code{ios::hex} are set.  This is
done separately for numerator and denominator, so that for instance
@samp{0x10/11} is @math{16/11} and @samp{0x10/0x11} is @math{16/17}.
@end deftypefun

@deftypefun istream& operator>> (istream& @var{stream}, mpf_t @var{rop})
Read @var{rop} from @var{stream}, using its @code{ios} formatting settings.

Hex or octal floats are not supported, but might be in the future, or perhaps
it's best to accept only what the standard float @code{operator>>} does.
@end deftypefun

Note that digit grouping specified by the @code{istream} locale is currently
not accepted.  Perhaps this will change in the future.

@sp 1
These operators mean that GMP types can be read in the usual C++ way, for
example,

@example
mpz_t  z;
...
cin >> z;
@end example

But note that @code{istream} input (and @code{ostream} output, @pxref{C++
Formatted Output}) is the only overloading available for the GMP types and
that for instance using @code{+} with an @code{mpz_t} will have unpredictable
results.  For classes with overloading, see @ref{C++ Class Interface}.



@node C++ Class Interface, Custom Allocation, Formatted Input, Top
@chapter C++ Class Interface
@cindex C++ interface

This chapter describes the C++ class based interface to GMP.

All GMP C language types and functions can be used in C++ programs, since
@file{gmp.h} has @code{extern "C"} qualifiers, but the class interface offers
overloaded functions and operators which may be more convenient.

Due to the implementation of this interface, a reasonably recent C++ compiler
is required, one supporting namespaces, partial specialization of templates
and member templates.  For GCC this means version 2.91 or later.

@strong{Everything described in this chapter is to be considered preliminary
and might be subject to incompatible changes if some unforeseen difficulty
reveals itself.}

@menu
* C++ Interface General::
* C++ Interface Integers::
* C++ Interface Rationals::
* C++ Interface Floats::
* C++ Interface Random Numbers::
* C++ Interface Limitations::
@end menu


@node C++ Interface General, C++ Interface Integers, C++ Class Interface, C++ Class Interface
@section C++ Interface General

@noindent
All the C++ classes and functions are available with

@cindex @code{gmpxx.h}
@example
#include <gmpxx.h>
@end example

Programs should be linked with the @file{libgmpxx} and @file{libgmp}
libraries.  For example,

@example
g++ mycxxprog.cc -lgmpxx -lgmp
@end example

@noindent
The classes defined are

@deftp Class mpz_class
@deftpx Class mpq_class
@deftpx Class mpf_class
@end deftp

The standard operators and various standard functions are overloaded to allow
arithmetic with these classes.  For example,

@example
int
main (void)
@{
  mpz_class a, b, c;

  a = 1234;
  b = "-5678";
  c = a+b;
  cout << "sum is " << c << "\n";
  cout << "absolute value is " << abs(c) << "\n";

  return 0;
@}
@end example

An important feature of the implementation is that an expression like
@code{a=b+c} results in a single call to the corresponding @code{mpz_add},
without using a temporary for the @code{b+c} part.  Expressions which by their
nature imply intermediate values, like @code{a=b*c+d*e}, still use temporaries
though.

The classes can be freely intermixed in expressions, as can the classes and
the standard types @code{long}, @code{unsigned long} and @code{double}.
Smaller types like @code{int} or @code{float} can also be intermixed, since
C++ will promote them.

Note that @code{bool} is not accepted directly, but must be explicitly cast to
an @code{int} first.  This is because C++ will automatically convert any
pointer to a @code{bool}, so if GMP accepted @code{bool} it would make all
sorts of invalid class and pointer combinations compile but almost certainly
not do anything sensible.

Conversions back from the classes to standard C++ types aren't done
automatically, instead member functions like @code{get_si} are provided (see
the following sections for details).

Also there are no automatic conversions from the classes to the corresponding
GMP C types, instead a reference to the underlying C object can be obtained
with the following functions,

@deftypefun mpz_t mpz_class::get_mpz_t ()
@deftypefunx mpq_t mpq_class::get_mpq_t ()
@deftypefunx mpf_t mpf_class::get_mpf_t ()
@end deftypefun

These can be used to call a C function which doesn't have a C++ class
interface.  For example to set @code{a} to the GCD of @code{b} and @code{c},

@example
mpz_class a, b, c;
...
mpz_gcd (a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());
@end example

In the other direction, a class can be initialized from the corresponding GMP
C type, or assigned to if an explicit constructor is used.  In both cases this
makes a copy of the value, it doesn't create any sort of association.  For
example,

@example
mpz_t z;
// ... init and calculate z ...
mpz_class x(z);
mpz_class y;
y = mpz_class (z);
@end example

There are no namespace setups in @file{gmpxx.h}, all types and functions are
simply put into the global namespace.  This is what @file{gmp.h} has done in
the past, and continues to do for compatibility.  The extras provided by
@file{gmpxx.h} follow GMP naming conventions and are unlikely to clash with
anything.


@node C++ Interface Integers, C++ Interface Rationals, C++ Interface General, C++ Class Interface
@section C++ Interface Integers

@deftypefun {} mpz_class::mpz_class (type @var{n})
Construct an @code{mpz_class}.  All the standard C++ types may be used, except
@code{long long} and @code{long double}, and all the GMP C++ classes can be
used, although conversions from @code{mpq_class} and @code{mpf_class} are
@code{explicit}.  Any necessary conversion follows the corresponding C
function, for example @code{double} follows @code{mpz_set_d}
(@pxref{Assigning Integers}).
@end deftypefun

@deftypefun explicit mpz_class::mpz_class (mpz_t @var{z})
Construct an @code{mpz_class} from an @code{mpz_t}.  The value in @var{z} is
copied into the new @code{mpz_class}, there won't be any permanent association
between it and @var{z}.
@end deftypefun

@deftypefun explicit mpz_class::mpz_class (const char *@var{s}, int @var{base} = 0)
@deftypefunx explicit mpz_class::mpz_class (const string& @var{s}, int @var{base} = 0)
Construct an @code{mpz_class} converted from a string using @code{mpz_set_str}
(@pxref{Assigning Integers}).

If the string is not a valid integer, an @code{std::invalid_argument}
exception is thrown.  The same applies to @code{operator=}.
@end deftypefun

@deftypefun mpz_class operator/ (mpz_class @var{a}, mpz_class @var{d})
@deftypefunx mpz_class operator% (mpz_class @var{a}, mpz_class @var{d})
Divisions involving @code{mpz_class} round towards zero, as per the
@code{mpz_tdiv_q} and @code{mpz_tdiv_r} functions (@pxref{Integer Division}).
This is the same as the C99 @code{/} and @code{%} operators.

The @code{mpz_fdiv@dots{}} or @code{mpz_cdiv@dots{}} functions can always be called
directly if desired.  For example,

@example
mpz_class q, a, d;
...
mpz_fdiv_q (q.get_mpz_t(), a.get_mpz_t(), d.get_mpz_t());
@end example
@end deftypefun

@deftypefun mpz_class abs (mpz_class @var{op})
@deftypefunx int cmp (mpz_class @var{op1}, type @var{op2})
@deftypefunx int cmp (type @var{op1}, mpz_class @var{op2})
@maybepagebreak
@deftypefunx bool mpz_class::fits_sint_p (void)
@deftypefunx bool mpz_class::fits_slong_p (void)
@deftypefunx bool mpz_class::fits_sshort_p (void)
@maybepagebreak
@deftypefunx bool mpz_class::fits_uint_p (void)
@deftypefunx bool mpz_class::fits_ulong_p (void)
@deftypefunx bool mpz_class::fits_ushort_p (void)
@maybepagebreak
@deftypefunx double mpz_class::get_d (void)
@deftypefunx long mpz_class::get_si (void)
@deftypefunx string mpz_class::get_str (int @var{base} = 10)
@deftypefunx {unsigned long} mpz_class::get_ui (void)
@maybepagebreak
@deftypefunx int mpz_class::set_str (const char *@var{str}, int @var{base})
@deftypefunx int mpz_class::set_str (const string& @var{str}, int @var{base})
@deftypefunx int sgn (mpz_class @var{op})
@deftypefunx mpz_class sqrt (mpz_class @var{op})
@maybepagebreak
@deftypefunx void mpz_class::swap (mpz_class& @var{op})
@deftypefunx void swap (mpz_class& @var{op1}, mpz_class& @var{op2})
These functions provide a C++ class interface to the corresponding GMP C
routines.

@code{cmp} can be used with any of the classes or the standard C++ types,
except @code{long long} and @code{long double}.
@end deftypefun

@sp 1
Overloaded operators for combinations of @code{mpz_class} and @code{double}
are provided for completeness, but it should be noted that if the given
@code{double} is not an integer then the way any rounding is done is currently
unspecified.  The rounding might take place at the start, in the middle, or at
the end of the operation, and it might change in the future.

Conversions between @code{mpz_class} and @code{double}, however, are defined
to follow the corresponding C functions @code{mpz_get_d} and @code{mpz_set_d}.
And comparisons are always made exactly, as per @code{mpz_cmp_d}.


@node C++ Interface Rationals, C++ Interface Floats, C++ Interface Integers, C++ Class Interface
@section C++ Interface Rationals

In all the following constructors, if a fraction is given then it should be in
canonical form, or if not then @code{mpq_class::canonicalize} called.

@deftypefun {} mpq_class::mpq_class (type @var{op})
@deftypefunx {} mpq_class::mpq_class (integer @var{num}, integer @var{den})
Construct an @code{mpq_class}.  The initial value can be a single value of any
type (conversion from @code{mpf_class} is @code{explicit}), or a pair of
integers (@code{mpz_class} or standard C++ integer types) representing a
fraction, except that @code{long long} and @code{long double} are not
supported.  For example,

@example
mpq_class q (99);
mpq_class q (1.75);
mpq_class q (1, 3);
@end example
@end deftypefun

@deftypefun explicit mpq_class::mpq_class (mpq_t @var{q})
Construct an @code{mpq_class} from an @code{mpq_t}.  The value in @var{q} is
copied into the new @code{mpq_class}, there won't be any permanent association
between it and @var{q}.
@end deftypefun

@deftypefun explicit mpq_class::mpq_class (const char *@var{s}, int @var{base} = 0)
@deftypefunx explicit mpq_class::mpq_class (const string& @var{s}, int @var{base} = 0)
Construct an @code{mpq_class} converted from a string using @code{mpq_set_str}
(@pxref{Initializing Rationals}).

If the string is not a valid rational, an @code{std::invalid_argument}
exception is thrown.  The same applies to @code{operator=}.
@end deftypefun

@deftypefun void mpq_class::canonicalize ()
Put an @code{mpq_class} into canonical form, as per @ref{Rational Number
Functions}.  All arithmetic operators require their operands in canonical
form, and will return results in canonical form.
@end deftypefun

@deftypefun mpq_class abs (mpq_class @var{op})
@deftypefunx int cmp (mpq_class @var{op1}, type @var{op2})
@deftypefunx int cmp (type @var{op1}, mpq_class @var{op2})
@maybepagebreak
@deftypefunx double mpq_class::get_d (void)
@deftypefunx string mpq_class::get_str (int @var{base} = 10)
@maybepagebreak
@deftypefunx int mpq_class::set_str (const char *@var{str}, int @var{base})
@deftypefunx int mpq_class::set_str (const string& @var{str}, int @var{base})
@deftypefunx int sgn (mpq_class @var{op})
@maybepagebreak
@deftypefunx void mpq_class::swap (mpq_class& @var{op})
@deftypefunx void swap (mpq_class& @var{op1}, mpq_class& @var{op2})
These functions provide a C++ class interface to the corresponding GMP C
routines.

@code{cmp} can be used with any of the classes or the standard C++ types,
except @code{long long} and @code{long double}.
@end deftypefun

@deftypefun {mpz_class&} mpq_class::get_num ()
@deftypefunx {mpz_class&} mpq_class::get_den ()
Get a reference to an @code{mpz_class} which is the numerator or denominator
of an @code{mpq_class}.  This can be used both for read and write access.  If
the object returned is modified, it modifies the original @code{mpq_class}.

If direct manipulation might produce a non-canonical value, then
@code{mpq_class::canonicalize} must be called before further operations.
@end deftypefun

@deftypefun mpz_t mpq_class::get_num_mpz_t ()
@deftypefunx mpz_t mpq_class::get_den_mpz_t ()
Get a reference to the underlying @code{mpz_t} numerator or denominator of an
@code{mpq_class}.  This can be passed to C functions expecting an
@code{mpz_t}.  Any modifications made to the @code{mpz_t} will modify the
original @code{mpq_class}.

If direct manipulation might produce a non-canonical value, then
@code{mpq_class::canonicalize} must be called before further operations.
@end deftypefun

@deftypefun istream& operator>> (istream& @var{stream}, mpq_class& @var{rop});
Read @var{rop} from @var{stream}, using its @code{ios} formatting settings,
the same as @code{mpq_t operator>>} (@pxref{C++ Formatted Input}).

If the @var{rop} read might not be in canonical form then
@code{mpq_class::canonicalize} must be called.
@end deftypefun


@node C++ Interface Floats, C++ Interface Random Numbers, C++ Interface Rationals, C++ Class Interface
@section C++ Interface Floats

When an expression requires the use of temporary intermediate @code{mpf_class}
values, like @code{f=g*h+x*y}, those temporaries will have the same precision
as the destination @code{f}.  Explicit constructors can be used if this
doesn't suit.

@deftypefun {} mpf_class::mpf_class (type @var{op})
@deftypefunx {} mpf_class::mpf_class (type @var{op}, mp_bitcnt_t @var{prec})
Construct an @code{mpf_class}.  Any standard C++ type can be used, except
@code{long long} and @code{long double}, and any of the GMP C++ classes can be
used.

If @var{prec} is given, the initial precision is that value, in bits.  If
@var{prec} is not given, then the initial precision is determined by the type
of @var{op} given.  An @code{mpz_class}, @code{mpq_class}, or C++
builtin type will give the default @code{mpf} precision (@pxref{Initializing
Floats}).  An @code{mpf_class} or expression will give the precision of that
value.  The precision of a binary expression is the higher of the two
operands.

@example
mpf_class f(1.5);        // default precision
mpf_class f(1.5, 500);   // 500 bits (at least)
mpf_class f(x);          // precision of x
mpf_class f(abs(x));     // precision of x
mpf_class f(-g, 1000);   // 1000 bits (at least)
mpf_class f(x+y);        // greater of precisions of x and y
@end example
@end deftypefun

@deftypefun explicit mpf_class::mpf_class (mpf_t @var{f})
@deftypefunx {} mpf_class::mpf_class (mpf_t @var{f}, mp_bitcnt_t @var{prec})
Construct an @code{mpf_class} from an @code{mpf_t}.  The value in @var{f} is
copied into the new @code{mpf_class}, there won't be any permanent association
between it and @var{f}.

If @var{prec} is given, the initial precision is that value, in bits.  If
@var{prec} is not given, then the initial precision is that of @var{f}.
@end deftypefun

@deftypefun explicit mpf_class::mpf_class (const char *@var{s})
@deftypefunx {} mpf_class::mpf_class (const char *@var{s}, mp_bitcnt_t @var{prec}, int @var{base} = 0)
@deftypefunx explicit mpf_class::mpf_class (const string& @var{s})
@deftypefunx {} mpf_class::mpf_class (const string& @var{s}, mp_bitcnt_t @var{prec}, int @var{base} = 0)
Construct an @code{mpf_class} converted from a string using @code{mpf_set_str}
(@pxref{Assigning Floats}).  If @var{prec} is given, the initial precision is
that value, in bits.  If not, the default @code{mpf} precision
(@pxref{Initializing Floats}) is used.

If the string is not a valid float, an @code{std::invalid_argument} exception
is thrown.  The same applies to @code{operator=}.
@end deftypefun

@deftypefun {mpf_class&} mpf_class::operator= (type @var{op})
Convert and store the given @var{op} value to an @code{mpf_class} object.  The
same types are accepted as for the constructors above.

Note that @code{operator=} only stores a new value, it doesn't copy or change
the precision of the destination, instead the value is truncated if necessary.
This is the same as @code{mpf_set} etc.  Note in particular this means for
@code{mpf_class} a copy constructor is not the same as a default constructor
plus assignment.

@example
mpf_class x (y);   // x created with precision of y

mpf_class x;       // x created with default precision
x = y;             // value truncated to that precision
@end example

Applications using templated code may need to be careful about the assumptions
the code makes in this area, when working with @code{mpf_class} values of
various different or non-default precisions.  For instance implementations of
the standard @code{complex} template have been seen in both styles above,
though of course @code{complex} is normally only actually specified for use
with the builtin float types.
@end deftypefun

@deftypefun mpf_class abs (mpf_class @var{op})
@deftypefunx mpf_class ceil (mpf_class @var{op})
@deftypefunx int cmp (mpf_class @var{op1}, type @var{op2})
@deftypefunx int cmp (type @var{op1}, mpf_class @var{op2})
@maybepagebreak
@deftypefunx bool mpf_class::fits_sint_p (void)
@deftypefunx bool mpf_class::fits_slong_p (void)
@deftypefunx bool mpf_class::fits_sshort_p (void)
@maybepagebreak
@deftypefunx bool mpf_class::fits_uint_p (void)
@deftypefunx bool mpf_class::fits_ulong_p (void)
@deftypefunx bool mpf_class::fits_ushort_p (void)
@maybepagebreak
@deftypefunx mpf_class floor (mpf_class @var{op})
@deftypefunx mpf_class hypot (mpf_class @var{op1}, mpf_class @var{op2})
@maybepagebreak
@deftypefunx double mpf_class::get_d (void)
@deftypefunx long mpf_class::get_si (void)
@deftypefunx string mpf_class::get_str (mp_exp_t& @var{exp}, int @var{base} = 10, size_t @var{digits} = 0)
@deftypefunx {unsigned long} mpf_class::get_ui (void)
@maybepagebreak
@deftypefunx int mpf_class::set_str (const char *@var{str}, int @var{base})
@deftypefunx int mpf_class::set_str (const string& @var{str}, int @var{base})
@deftypefunx int sgn (mpf_class @var{op})
@deftypefunx mpf_class sqrt (mpf_class @var{op})
@maybepagebreak
@deftypefunx void mpf_class::swap (mpf_class& @var{op})
@deftypefunx void swap (mpf_class& @var{op1}, mpf_class& @var{op2})
@deftypefunx mpf_class trunc (mpf_class @var{op})
These functions provide a C++ class interface to the corresponding GMP C
routines.

@code{cmp} can be used with any of the classes or the standard C++ types,
except @code{long long} and @code{long double}.

The accuracy provided by @code{hypot} is not currently guaranteed.
@end deftypefun

@deftypefun {mp_bitcnt_t} mpf_class::get_prec ()
@deftypefunx void mpf_class::set_prec (mp_bitcnt_t @var{prec})
@deftypefunx void mpf_class::set_prec_raw (mp_bitcnt_t @var{prec})
Get or set the current precision of an @code{mpf_class}.

The restrictions described for @code{mpf_set_prec_raw} (@pxref{Initializing
Floats}) apply to @code{mpf_class::set_prec_raw}.  Note in particular that the
@code{mpf_class} must be restored to it's allocated precision before being
destroyed.  This must be done by application code, there's no automatic
mechanism for it.
@end deftypefun


@node C++ Interface Random Numbers, C++ Interface Limitations, C++ Interface Floats, C++ Class Interface
@section C++ Interface Random Numbers

@deftp Class gmp_randclass
The C++ class interface to the GMP random number functions uses
@code{gmp_randclass} to hold an algorithm selection and current state, as per
@code{gmp_randstate_t}.
@end deftp

@deftypefun {} gmp_randclass::gmp_randclass (void (*@var{randinit}) (gmp_randstate_t, @dots{}), @dots{})
Construct a @code{gmp_randclass}, using a call to the given @var{randinit}
function (@pxref{Random State Initialization}).  The arguments expected are
the same as @var{randinit}, but with @code{mpz_class} instead of @code{mpz_t}.
For example,

@example
gmp_randclass r1 (gmp_randinit_default);
gmp_randclass r2 (gmp_randinit_lc_2exp_size, 32);
gmp_randclass r3 (gmp_randinit_lc_2exp, a, c, m2exp);
gmp_randclass r4 (gmp_randinit_mt);
@end example

@code{gmp_randinit_lc_2exp_size} will fail if the size requested is too big,
an @code{std::length_error} exception is thrown in that case.
@end deftypefun

@deftypefun {} gmp_randclass::gmp_randclass (gmp_randalg_t @var{alg}, @dots{})
Construct a @code{gmp_randclass} using the same parameters as
@code{gmp_randinit} (@pxref{Random State Initialization}).  This function is
obsolete and the above @var{randinit} style should be preferred.
@end deftypefun

@deftypefun void gmp_randclass::seed (unsigned long int @var{s})
@deftypefunx void gmp_randclass::seed (mpz_class @var{s})
Seed a random number generator.  See @pxref{Random Number Functions}, for how
to choose a good seed.
@end deftypefun

@deftypefun mpz_class gmp_randclass::get_z_bits (mp_bitcnt_t @var{bits})
@deftypefunx mpz_class gmp_randclass::get_z_bits (mpz_class @var{bits})
Generate a random integer with a specified number of bits.
@end deftypefun

@deftypefun mpz_class gmp_randclass::get_z_range (mpz_class @var{n})
Generate a random integer in the range 0 to @math{@var{n}-1} inclusive.
@end deftypefun

@deftypefun mpf_class gmp_randclass::get_f ()
@deftypefunx mpf_class gmp_randclass::get_f (mp_bitcnt_t @var{prec})
Generate a random float @var{f} in the range @math{0 <= @var{f} < 1}.  @var{f}
will be to @var{prec} bits precision, or if @var{prec} is not given then to
the precision of the destination.  For example,

@example
gmp_randclass  r;
...
mpf_class  f (0, 512);   // 512 bits precision
f = r.get_f();           // random number, 512 bits
@end example
@end deftypefun



@node C++ Interface Limitations,  , C++ Interface Random Numbers, C++ Class Interface
@section C++ Interface Limitations

@table @asis
@item @code{mpq_class} and Templated Reading
A generic piece of template code probably won't know that @code{mpq_class}
requires a @code{canonicalize} call if inputs read with @code{operator>>}
might be non-canonical.  This can lead to incorrect results.

@code{operator>>} behaves as it does for reasons of efficiency.  A
canonicalize can be quite time consuming on large operands, and is best
avoided if it's not necessary.

But this potential difficulty reduces the usefulness of @code{mpq_class}.
Perhaps a mechanism to tell @code{operator>>} what to do will be adopted in
the future, maybe a preprocessor define, a global flag, or an @code{ios} flag
pressed into service.  Or maybe, at the risk of inconsistency, the
@code{mpq_class} @code{operator>>} could canonicalize and leave @code{mpq_t}
@code{operator>>} not doing so, for use on those occasions when that's
acceptable.  Send feedback or alternate ideas to @email{gmp-bugs@@gmplib.org}.

@item Subclassing
Subclassing the GMP C++ classes works, but is not currently recommended.

Expressions involving subclasses resolve correctly (or seem to), but in normal
C++ fashion the subclass doesn't inherit constructors and assignments.
There's many of those in the GMP classes, and a good way to reestablish them
in a subclass is not yet provided.

@item Templated Expressions
A subtle difficulty exists when using expressions together with
application-defined template functions.  Consider the following, with @code{T}
intended to be some numeric type,

@example
template <class T>
T fun (const T &, const T &);
@end example

@noindent
When used with, say, plain @code{mpz_class} variables, it works fine: @code{T}
is resolved as @code{mpz_class}.

@example
mpz_class f(1), g(2);
fun (f, g);    // Good
@end example

@noindent
But when one of the arguments is an expression, it doesn't work.

@example
mpz_class f(1), g(2), h(3);
fun (f, g+h);  // Bad
@end example

This is because @code{g+h} ends up being a certain expression template type
internal to @code{gmpxx.h}, which the C++ template resolution rules are unable
to automatically convert to @code{mpz_class}.  The workaround is simply to add
an explicit cast.

@example
mpz_class f(1), g(2), h(3);
fun (f, mpz_class(g+h));  // Good
@end example

Similarly, within @code{fun} it may be necessary to cast an expression to type
@code{T} when calling a templated @code{fun2}.

@example
template <class T>
void fun (T f, T g)
@{
  fun2 (f, f+g);     // Bad
@}

template <class T>
void fun (T f, T g)
@{
  fun2 (f, T(f+g));  // Good
@}
@end example
@end table


@node Custom Allocation, Language Bindings, C++ Class Interface, Top
@comment  node-name,  next,  previous,  up
@chapter Custom Allocation
@cindex Custom allocation
@cindex Memory allocation
@cindex Allocation of memory

By default GMP uses @code{malloc}, @code{realloc} and @code{free} for memory
allocation, and if they fail GMP prints a message to the standard error output
and terminates the program.

Alternate functions can be specified, to allocate memory in a different way or
to have a different error action on running out of memory.

@deftypefun void mp_set_memory_functions (@* void *(*@var{alloc_func_ptr}) (size_t), @* void *(*@var{realloc_func_ptr}) (void *, size_t, size_t), @* void (*@var{free_func_ptr}) (void *, size_t))
Replace the current allocation functions from the arguments.  If an argument
is @code{NULL}, the corresponding default function is used.

These functions will be used for all memory allocation done by GMP, apart from
temporary space from @code{alloca} if that function is available and GMP is
configured to use it (@pxref{Build Options}).

@strong{Be sure to call @code{mp_set_memory_functions} only when there are no
active GMP objects allocated using the previous memory functions!  Usually
that means calling it before any other GMP function.}
@end deftypefun

The functions supplied should fit the following declarations:

@deftypevr Function {void *} allocate_function (size_t @var{alloc_size})
Return a pointer to newly allocated space with at least @var{alloc_size}
bytes.
@end deftypevr

@deftypevr Function {void *} reallocate_function (void *@var{ptr}, size_t @var{old_size}, size_t @var{new_size})
Resize a previously allocated block @var{ptr} of @var{old_size} bytes to be
@var{new_size} bytes.

The block may be moved if necessary or if desired, and in that case the
smaller of @var{old_size} and @var{new_size} bytes must be copied to the new
location.  The return value is a pointer to the resized block, that being the
new location if moved or just @var{ptr} if not.

@var{ptr} is never @code{NULL}, it's always a previously allocated block.
@var{new_size} may be bigger or smaller than @var{old_size}.
@end deftypevr

@deftypevr Function void free_function (void *@var{ptr}, size_t @var{size})
De-allocate the space pointed to by @var{ptr}.

@var{ptr} is never @code{NULL}, it's always a previously allocated block of
@var{size} bytes.
@end deftypevr

A @dfn{byte} here means the unit used by the @code{sizeof} operator.

The @var{reallocate_function} parameter @var{old_size} and the
@var{free_function} parameter @var{size} are passed for convenience, but of
course they can be ignored if not needed by an implementation.  The default
functions using @code{malloc} and friends for instance don't use them.

No error return is allowed from any of these functions, if they return then
they must have performed the specified operation.  In particular note that
@var{allocate_function} or @var{reallocate_function} mustn't return
@code{NULL}.

Getting a different fatal error action is a good use for custom allocation
functions, for example giving a graphical dialog rather than the default print
to @code{stderr}.  How much is possible when genuinely out of memory is
another question though.

There's currently no defined way for the allocation functions to recover from
an error such as out of memory, they must terminate program execution.  A
@code{longjmp} or throwing a C++ exception will have undefined results.  This
may change in the future.

GMP may use allocated blocks to hold pointers to other allocated blocks.  This
will limit the assumptions a conservative garbage collection scheme can make.

Since the default GMP allocation uses @code{malloc} and friends, those
functions will be linked in even if the first thing a program does is an
@code{mp_set_memory_functions}.  It's necessary to change the GMP sources if
this is a problem.

@sp 1
@deftypefun void mp_get_memory_functions (@* void *(**@var{alloc_func_ptr}) (size_t), @* void *(**@var{realloc_func_ptr}) (void *, size_t, size_t), @* void (**@var{free_func_ptr}) (void *, size_t))
Get the current allocation functions, storing function pointers to the
locations given by the arguments.  If an argument is @code{NULL}, that
function pointer is not stored.

@need 1000
For example, to get just the current free function,

@example
void (*freefunc) (void *, size_t);

mp_get_memory_functions (NULL, NULL, &freefunc);
@end example
@end deftypefun

@node Language Bindings, Algorithms, Custom Allocation, Top
@chapter Language Bindings
@cindex Language bindings
@cindex Other languages

The following packages and projects offer access to GMP from languages other
than C, though perhaps with varying levels of functionality and efficiency.

@c  @spaceuref{U} is the same as @uref{U}, but with a couple of extra spaces
@c  in tex, just to separate the URL from the preceding text a bit.
@iftex
@macro spaceuref {U}
@ @ @uref{\U\}
@end macro
@end iftex
@ifnottex
@macro spaceuref {U}
@uref{\U\}
@end macro
@end ifnottex

@sp 1
@table @asis
@item C++
@itemize @bullet
@item
GMP C++ class interface, @pxref{C++ Class Interface} @* Straightforward
interface, expression templates to eliminate temporaries.
@item
ALP @spaceuref{http://www-sop.inria.fr/saga/logiciels/ALP/} @* Linear algebra and
polynomials using templates.
@item
Arithmos @spaceuref{http://cant.ua.ac.be/old/arithmos/} @* Rationals
with infinities and square roots.
@item
CLN @spaceuref{http://www.ginac.de/CLN/} @* High level classes for arithmetic.
@item
LiDIA @spaceuref{http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/} @* A C++
library for computational number theory.
@item
Linbox @spaceuref{http://www.linalg.org/} @* Sparse vectors and matrices.
@item
NTL @spaceuref{http://www.shoup.net/ntl/} @* A C++ number theory library.
@end itemize

@c @item D
@c @itemize @bullet
@c @item
@c gmp-d @spaceuref{http://home.comcast.net/~benhinkle/gmp-d/}
@c @end itemize

@item Eiffel
@itemize @bullet
@item
Eiffelroom @spaceuref{http://www.eiffelroom.org/node/442}
@end itemize

@item Fortran
@itemize @bullet
@item
Omni F77 @spaceuref{http://phase.hpcc.jp/Omni/home.html} @* Arbitrary
precision floats.
@end itemize

@item Haskell
@itemize @bullet
@item
Glasgow Haskell Compiler @spaceuref{http://www.haskell.org/ghc/}
@end itemize

@item Java
@itemize @bullet
@item
Kaffe @spaceuref{http://www.kaffe.org/}
@item
Kissme @spaceuref{http://kissme.sourceforge.net/}
@end itemize

@item Lisp
@itemize @bullet
@item
GNU Common Lisp @spaceuref{http://www.gnu.org/software/gcl/gcl.html}
@item
Librep @spaceuref{http://librep.sourceforge.net/}
@item
@c  FIXME: When there's a stable release with gmp support, just refer to it
@c  rather than bothering to talk about betas.
XEmacs (21.5.18 beta and up) @spaceuref{http://www.xemacs.org} @* Optional
big integers, rationals and floats using GMP.
@end itemize

@item M4
@itemize @bullet
@item
@c  FIXME: When there's a stable release with gmp support, just refer to it
@c  rather than bothering to talk about betas.
GNU m4 betas @spaceuref{http://www.seindal.dk/rene/gnu/} @* Optionally provides
an arbitrary precision @code{mpeval}.
@end itemize

@item ML
@itemize @bullet
@item
MLton compiler @spaceuref{http://mlton.org/}
@end itemize

@item Objective Caml
@itemize @bullet
@item
MLGMP @spaceuref{http://www.di.ens.fr/~monniaux/programmes.html.en}
@item
Numerix @spaceuref{http://pauillac.inria.fr/~quercia/} @* Optionally using
GMP.
@end itemize

@item Oz
@itemize @bullet
@item
Mozart @spaceuref{http://www.mozart-oz.org/}
@end itemize

@item Pascal
@itemize @bullet
@item
GNU Pascal Compiler @spaceuref{http://www.gnu-pascal.de/} @* GMP unit.
@item
Numerix @spaceuref{http://pauillac.inria.fr/~quercia/} @* For Free Pascal,
optionally using GMP.
@end itemize

@item Perl
@itemize @bullet
@item
GMP module, see @file{demos/perl} in the GMP sources (@pxref{Demonstration
Programs}).
@item
Math::GMP @spaceuref{http://www.cpan.org/} @* Compatible with Math::BigInt, but
not as many functions as the GMP module above.
@item
Math::BigInt::GMP @spaceuref{http://www.cpan.org/} @* Plug Math::GMP into
normal Math::BigInt operations.
@end itemize

@need 1000
@item Pike
@itemize @bullet
@item
mpz module in the standard distribution, @uref{http://pike.ida.liu.se/}
@end itemize

@need 500
@item Prolog
@itemize @bullet
@item
SWI Prolog @spaceuref{http://www.swi-prolog.org/} @*
Arbitrary precision floats.
@end itemize

@item Python
@itemize @bullet
@item
GMPY @uref{http://code.google.com/p/gmpy/}
@end itemize

@item Ruby
@itemize @bullet
@item
http://rubygems.org/gems/gmp
@end itemize

@item Scheme
@itemize @bullet
@item
GNU Guile (upcoming 1.8) @spaceuref{http://www.gnu.org/software/guile/guile.html}
@item
RScheme @spaceuref{http://www.rscheme.org/}
@item
STklos @spaceuref{http://www.stklos.org/}
@c
@c  For reference, MzScheme uses some of gmp, but (as of version 205) it only
@c  has copies of some of the generic C code, and we don't consider that a
@c  language binding to gmp.
@c
@end itemize

@item Smalltalk
@itemize @bullet
@item
GNU Smalltalk @spaceuref{http://www.smalltalk.org/versions/GNUSmalltalk.html}
@end itemize

@item Other
@itemize @bullet
@item
Axiom @uref{http://savannah.nongnu.org/projects/axiom} @* Computer algebra
using GCL.
@item
DrGenius @spaceuref{http://drgenius.seul.org/} @* Geometry system and
mathematical programming language.
@item
GiNaC @spaceuref{http://www.ginac.de/} @* C++ computer algebra using CLN.
@item
GOO @spaceuref{http://www.googoogaga.org/} @* Dynamic object oriented
language.
@item
Maxima @uref{http://www.ma.utexas.edu/users/wfs/maxima.html} @* Macsyma
computer algebra using GCL.
@item
Q @spaceuref{http://q-lang.sourceforge.net/} @* Equational programming system.
@item
Regina @spaceuref{http://regina.sourceforge.net/} @* Topological calculator.
@item
Yacas @spaceuref{yacas.sourceforge.net} @* Yet another computer algebra system.
@end itemize

@end table


@node Algorithms, Internals, Language Bindings, Top
@chapter Algorithms
@cindex Algorithms

This chapter is an introduction to some of the algorithms used for various GMP
operations.  The code is likely to be hard to understand without knowing
something about the algorithms.

Some GMP internals are mentioned, but applications that expect to be
compatible with future GMP releases should take care to use only the
documented functions.

@menu
* Multiplication Algorithms::
* Division Algorithms::
* Greatest Common Divisor Algorithms::
* Powering Algorithms::
* Root Extraction Algorithms::
* Radix Conversion Algorithms::
* Other Algorithms::
* Assembly Coding::
@end menu


@node Multiplication Algorithms, Division Algorithms, Algorithms, Algorithms
@section Multiplication
@cindex Multiplication algorithms

N@cross{}N limb multiplications and squares are done using one of five
algorithms, as the size N increases.

@quotation
@multitable {KaratsubaMMM} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item Algorithm @tab Threshold
@item Basecase  @tab (none)
@item Karatsuba @tab @code{MUL_TOOM22_THRESHOLD}
@item Toom-3    @tab @code{MUL_TOOM33_THRESHOLD}
@item Toom-4    @tab @code{MUL_TOOM44_THRESHOLD}
@item FFT       @tab @code{MUL_FFT_THRESHOLD}
@end multitable
@end quotation

Similarly for squaring, with the @code{SQR} thresholds.

N@cross{}M multiplications of operands with different sizes above
@code{MUL_TOOM22_THRESHOLD} are currently done by special Toom-inspired
algorithms or directly with FFT, depending on operand size (@pxref{Unbalanced
Multiplication}).

@menu
* Basecase Multiplication::
* Karatsuba Multiplication::
* Toom 3-Way Multiplication::
* Toom 4-Way Multiplication::
* FFT Multiplication::
* Other Multiplication::
* Unbalanced Multiplication::
@end menu


@node Basecase Multiplication, Karatsuba Multiplication, Multiplication Algorithms, Multiplication Algorithms
@subsection Basecase Multiplication

Basecase N@cross{}M multiplication is a straightforward rectangular set of
cross-products, the same as long multiplication done by hand and for that
reason sometimes known as the schoolbook or grammar school method.  This is an
@m{O(NM),O(N*M)} algorithm.  See Knuth section 4.3.1 algorithm M
(@pxref{References}), and the @file{mpn/generic/mul_basecase.c} code.

Assembly implementations of @code{mpn_mul_basecase} are essentially the same
as the generic C code, but have all the usual assembly tricks and
obscurities introduced for speed.

A square can be done in roughly half the time of a multiply, by using the fact
that the cross products above and below the diagonal are the same.  A triangle
of products below the diagonal is formed, doubled (left shift by one bit), and
then the products on the diagonal added.  This can be seen in
@file{mpn/generic/sqr_basecase.c}.  Again the assembly implementations take
essentially the same approach.

@tex
\def\GMPline#1#2#3#4#5#6{%
  \hbox {%
    \vrule height 2.5ex depth 1ex
           \hbox to 2em {\hfil{#2}\hfil}%
    \vrule \hbox to 2em {\hfil{#3}\hfil}%
    \vrule \hbox to 2em {\hfil{#4}\hfil}%
    \vrule \hbox to 2em {\hfil{#5}\hfil}%
    \vrule \hbox to 2em {\hfil{#6}\hfil}%
    \vrule}}
\GMPdisplay{
  \hbox{%
    \vbox{%
      \hbox to 1.5em {\vrule height 2.5ex depth 1ex width 0pt}%
      \hbox {\vrule height 2.5ex depth 1ex width 0pt u0\hfil}%
      \hbox {\vrule height 2.5ex depth 1ex width 0pt u1\hfil}%
      \hbox {\vrule height 2.5ex depth 1ex width 0pt u2\hfil}%
      \hbox {\vrule height 2.5ex depth 1ex width 0pt u3\hfil}%
      \hbox {\vrule height 2.5ex depth 1ex width 0pt u4\hfil}%
      \vfill}%
    \vbox{%
      \hbox{%
        \hbox to 2em {\hfil u0\hfil}%
        \hbox to 2em {\hfil u1\hfil}%
        \hbox to 2em {\hfil u2\hfil}%
        \hbox to 2em {\hfil u3\hfil}%
        \hbox to 2em {\hfil u4\hfil}}%
      \vskip 0.7ex
      \hrule
      \GMPline{u0}{d}{}{}{}{}%
      \hrule
      \GMPline{u1}{}{d}{}{}{}%
      \hrule
      \GMPline{u2}{}{}{d}{}{}%
      \hrule
      \GMPline{u3}{}{}{}{d}{}%
      \hrule
      \GMPline{u4}{}{}{}{}{d}%
      \hrule}}}
@end tex
@ifnottex
@example
@group
     u0  u1  u2  u3  u4
   +---+---+---+---+---+
u0 | d |   |   |   |   |
   +---+---+---+---+---+
u1 |   | d |   |   |   |
   +---+---+---+---+---+
u2 |   |   | d |   |   |
   +---+---+---+---+---+
u3 |   |   |   | d |   |
   +---+---+---+---+---+
u4 |   |   |   |   | d |
   +---+---+---+---+---+
@end group
@end example
@end ifnottex

In practice squaring isn't a full 2@cross{} faster than multiplying, it's
usually around 1.5@cross{}.  Less than 1.5@cross{} probably indicates
@code{mpn_sqr_basecase} wants improving on that CPU.

On some CPUs @code{mpn_mul_basecase} can be faster than the generic C
@code{mpn_sqr_basecase} on some small sizes.  @code{SQR_BASECASE_THRESHOLD} is
the size at which to use @code{mpn_sqr_basecase}, this will be zero if that
routine should be used always.


@node Karatsuba Multiplication, Toom 3-Way Multiplication, Basecase Multiplication, Multiplication Algorithms
@subsection Karatsuba Multiplication
@cindex Karatsuba multiplication

The Karatsuba multiplication algorithm is described in Knuth section 4.3.3
part A, and various other textbooks.  A brief description is given here.

The inputs @math{x} and @math{y} are treated as each split into two parts of
equal length (or the most significant part one limb shorter if N is odd).

@tex
% GMPboxwidth used for all the multiplication pictures
\global\newdimen\GMPboxwidth \global\GMPboxwidth=5em
% GMPboxdepth and GMPboxheight are also used for the float pictures
\global\newdimen\GMPboxdepth  \global\GMPboxdepth=1ex
\global\newdimen\GMPboxheight \global\GMPboxheight=2ex
\gdef\GMPvrule{\vrule height \GMPboxheight depth \GMPboxdepth}
\def\GMPbox#1#2{%
  \vbox {%
    \hrule
    \hbox to 2\GMPboxwidth{%
      \GMPvrule \hfil $#1$\hfil \vrule \hfil $#2$\hfil \vrule}%
    \hrule}}
\GMPdisplay{%
\vbox{%
  \hbox to 2\GMPboxwidth {high \hfil low}
  \vskip 0.7ex
  \GMPbox{x_1}{x_0}
  \vskip 0.5ex
  \GMPbox{y_1}{y_0}
}}
@end tex
@ifnottex
@example
@group
 high              low
+----------+----------+
|    x1    |    x0    |
+----------+----------+

+----------+----------+
|    y1    |    y0    |
+----------+----------+
@end group
@end example
@end ifnottex

Let @math{b} be the power of 2 where the split occurs, i.e.@: if @ms{x,0} is
@math{k} limbs (@ms{y,0} the same) then
@m{b=2\GMPraise{$k*$@code{mp\_bits\_per\_limb}}, b=2^(k*mp_bits_per_limb)}.
With that @m{x=x_1b+x_0,x=x1*b+x0} and @m{y=y_1b+y_0,y=y1*b+y0}, and the
following holds,

@display
@m{xy = (b^2+b)x_1y_1 - b(x_1-x_0)(y_1-y_0) + (b+1)x_0y_0,
  x*y = (b^2+b)*x1*y1 - b*(x1-x0)*(y1-y0) + (b+1)*x0*y0}
@end display

This formula means doing only three multiplies of (N/2)@cross{}(N/2) limbs,
whereas a basecase multiply of N@cross{}N limbs is equivalent to four
multiplies of (N/2)@cross{}(N/2).  The factors @math{(b^2+b)} etc represent
the positions where the three products must be added.

@tex
\def\GMPboxA#1#2{%
  \vbox{%
    \hrule
    \hbox{%
      \GMPvrule
      \hbox to 2\GMPboxwidth {\hfil\hbox{$#1$}\hfil}%
      \vrule
      \hbox to 2\GMPboxwidth {\hfil\hbox{$#2$}\hfil}%
      \vrule}
    \hrule}}
\def\GMPboxB#1#2{%
  \hbox{%
    \raise \GMPboxdepth \hbox to \GMPboxwidth {\hfil #1\hskip 0.5em}%
    \vbox{%
      \hrule
      \hbox{%
        \GMPvrule
        \hbox to 2\GMPboxwidth {\hfil\hbox{$#2$}\hfil}%
        \vrule}%
      \hrule}}}
\GMPdisplay{%
\vbox{%
  \hbox to 4\GMPboxwidth {high \hfil low}
  \vskip 0.7ex
  \GMPboxA{x_1y_1}{x_0y_0}
  \vskip 0.5ex
  \GMPboxB{$+$}{x_1y_1}
  \vskip 0.5ex
  \GMPboxB{$+$}{x_0y_0}
  \vskip 0.5ex
  \GMPboxB{$-$}{(x_1-x_0)(y_1-y_0)}
}}
@end tex
@ifnottex
@example
@group
 high                              low
+--------+--------+ +--------+--------+
|      x1*y1      | |      x0*y0      |
+--------+--------+ +--------+--------+
          +--------+--------+
      add |      x1*y1      |
          +--------+--------+
          +--------+--------+
      add |      x0*y0      |
          +--------+--------+
          +--------+--------+
      sub | (x1-x0)*(y1-y0) |
          +--------+--------+
@end group
@end example
@end ifnottex

The term @m{(x_1-x_0)(y_1-y_0),(x1-x0)*(y1-y0)} is best calculated as an
absolute value, and the sign used to choose to add or subtract.  Notice the
sum @m{\mathop{\rm high}(x_0y_0)+\mathop{\rm low}(x_1y_1),
high(x0*y0)+low(x1*y1)} occurs twice, so it's possible to do @m{5k,5*k} limb
additions, rather than @m{6k,6*k}, but in GMP extra function call overheads
outweigh the saving.

Squaring is similar to multiplying, but with @math{x=y} the formula reduces to
an equivalent with three squares,

@display
@m{x^2 = (b^2+b)x_1^2 - b(x_1-x_0)^2 + (b+1)x_0^2,
   x^2 = (b^2+b)*x1^2 - b*(x1-x0)^2 + (b+1)*x0^2}
@end display

The final result is accumulated from those three squares the same way as for
the three multiplies above.  The middle term @m{(x_1-x_0)^2,(x1-x0)^2} is now
always positive.

A similar formula for both multiplying and squaring can be constructed with a
middle term @m{(x_1+x_0)(y_1+y_0),(x1+x0)*(y1+y0)}.  But those sums can exceed
@math{k} limbs, leading to more carry handling and additions than the form
above.

Karatsuba multiplication is asymptotically an @math{O(N^@W{1.585})} algorithm,
the exponent being @m{\log3/\log2,log(3)/log(2)}, representing 3 multiplies
each @math{1/2} the size of the inputs.  This is a big improvement over the
basecase multiply at @math{O(N^2)} and the advantage soon overcomes the extra
additions Karatsuba performs.  @code{MUL_TOOM22_THRESHOLD} can be as little
as 10 limbs.  The @code{SQR} threshold is usually about twice the @code{MUL}.

The basecase algorithm will take a time of the form @m{M(N) = aN^2 + bN + c,
M(N) = a*N^2 + b*N + c} and the Karatsuba algorithm @m{K(N) = 3M(N/2) + dN +
e, K(N) = 3*M(N/2) + d*N + e}, which expands to @m{K(N) = {3\over4} aN^2 +
{3\over2} bN + 3c + dN + e, K(N) = 3/4*a*N^2 + 3/2*b*N + 3*c + d*N + e}.  The
factor @m{3\over4, 3/4} for @math{a} means per-crossproduct speedups in the
basecase code will increase the threshold since they benefit @math{M(N)} more
than @math{K(N)}.  And conversely the @m{3\over2, 3/2} for @math{b} means
linear style speedups of @math{b} will increase the threshold since they
benefit @math{K(N)} more than @math{M(N)}.  The latter can be seen for
instance when adding an optimized @code{mpn_sqr_diagonal} to
@code{mpn_sqr_basecase}.  Of course all speedups reduce total time, and in
that sense the algorithm thresholds are merely of academic interest.


@node Toom 3-Way Multiplication, Toom 4-Way Multiplication, Karatsuba Multiplication, Multiplication Algorithms
@subsection Toom 3-Way Multiplication
@cindex Toom multiplication

The Karatsuba formula is the simplest case of a general approach to splitting
inputs that leads to both Toom and FFT algorithms.  A description of
Toom can be found in Knuth section 4.3.3, with an example 3-way
calculation after Theorem A@.  The 3-way form used in GMP is described here.

The operands are each considered split into 3 pieces of equal length (or the
most significant part 1 or 2 limbs shorter than the other two).

@tex
\def\GMPbox#1#2#3{%
  \vbox{%
    \hrule \vfil
    \hbox to 3\GMPboxwidth {%
      \GMPvrule
      \hfil$#1$\hfil
      \vrule
      \hfil$#2$\hfil
      \vrule
      \hfil$#3$\hfil
      \vrule}%
    \vfil \hrule
}}
\GMPdisplay{%
\vbox{%
  \hbox to 3\GMPboxwidth {high \hfil low}
  \vskip 0.7ex
  \GMPbox{x_2}{x_1}{x_0}
  \vskip 0.5ex
  \GMPbox{y_2}{y_1}{y_0}
  \vskip 0.5ex
}}
@end tex
@ifnottex
@example
@group
 high                         low
+----------+----------+----------+
|    x2    |    x1    |    x0    |
+----------+----------+----------+

+----------+----------+----------+
|    y2    |    y1    |    y0    |
+----------+----------+----------+
@end group
@end example
@end ifnottex

@noindent
These parts are treated as the coefficients of two polynomials

@display
@group
@m{X(t) = x_2t^2 + x_1t + x_0,
   X(t) = x2*t^2 + x1*t + x0}
@m{Y(t) = y_2t^2 + y_1t + y_0,
   Y(t) = y2*t^2 + y1*t + y0}
@end group
@end display

Let @math{b} equal the power of 2 which is the size of the @ms{x,0}, @ms{x,1},
@ms{y,0} and @ms{y,1} pieces, i.e.@: if they're @math{k} limbs each then
@m{b=2\GMPraise{$k*$@code{mp\_bits\_per\_limb}}, b=2^(k*mp_bits_per_limb)}.
With this @math{x=X(b)} and @math{y=Y(b)}.

Let a polynomial @m{W(t)=X(t)Y(t),W(t)=X(t)*Y(t)} and suppose its coefficients
are

@display
@m{W(t) = w_4t^4 + w_3t^3 + w_2t^2 + w_1t + w_0,
   W(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0}
@end display

The @m{w_i,w[i]} are going to be determined, and when they are they'll give
the final result using @math{w=W(b)}, since
@m{xy=X(b)Y(b),x*y=X(b)*Y(b)=W(b)}.  The coefficients will be roughly
@math{b^2} each, and the final @math{W(b)} will be an addition like,

@tex
\def\GMPbox#1#2{%
  \moveright #1\GMPboxwidth
  \vbox{%
    \hrule
    \hbox{%
      \GMPvrule
      \hbox to 2\GMPboxwidth {\hfil$#2$\hfil}%
      \vrule}%
    \hrule
}}
\GMPdisplay{%
\vbox{%
  \hbox to 6\GMPboxwidth {high \hfil low}%
  \vskip 0.7ex
  \GMPbox{0}{w_4}
  \vskip 0.5ex
  \GMPbox{1}{w_3}
  \vskip 0.5ex
  \GMPbox{2}{w_2}
  \vskip 0.5ex
  \GMPbox{3}{w_1}
  \vskip 0.5ex
  \GMPbox{4}{w_0}
}}
@end tex
@ifnottex
@example
@group
 high                                        low
+-------+-------+
|       w4      |
+-------+-------+
       +--------+-------+
       |        w3      |
       +--------+-------+
               +--------+-------+
               |        w2      |
               +--------+-------+
                       +--------+-------+
                       |        w1      |
                       +--------+-------+
                                +-------+-------+
                                |       w0      |
                                +-------+-------+
@end group
@end example
@end ifnottex

The @m{w_i,w[i]} coefficients could be formed by a simple set of cross
products, like @m{w_4=x_2y_2,w4=x2*y2}, @m{w_3=x_2y_1+x_1y_2,w3=x2*y1+x1*y2},
@m{w_2=x_2y_0+x_1y_1+x_0y_2,w2=x2*y0+x1*y1+x0*y2} etc, but this would need all
nine @m{x_iy_j,x[i]*y[j]} for @math{i,j=0,1,2}, and would be equivalent merely
to a basecase multiply.  Instead the following approach is used.

@math{X(t)} and @math{Y(t)} are evaluated and multiplied at 5 points, giving
values of @math{W(t)} at those points.  In GMP the following points are used,

@quotation
@multitable {@m{t=\infty,t=inf}M} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item Point                 @tab Value
@item @math{t=0}            @tab @m{x_0y_0,x0 * y0}, which gives @ms{w,0} immediately
@item @math{t=1}            @tab @m{(x_2+x_1+x_0)(y_2+y_1+y_0),(x2+x1+x0) * (y2+y1+y0)}
@item @math{t=-1}           @tab @m{(x_2-x_1+x_0)(y_2-y_1+y_0),(x2-x1+x0) * (y2-y1+y0)}
@item @math{t=2}            @tab @m{(4x_2+2x_1+x_0)(4y_2+2y_1+y_0),(4*x2+2*x1+x0) * (4*y2+2*y1+y0)}
@item @m{t=\infty,t=inf}    @tab @m{x_2y_2,x2 * y2}, which gives @ms{w,4} immediately
@end multitable
@end quotation

At @math{t=-1} the values can be negative and that's handled using the
absolute values and tracking the sign separately.  At @m{t=\infty,t=inf} the
value is actually @m{\lim_{t\to\infty} {X(t)Y(t)\over t^4}, X(t)*Y(t)/t^4 in
the limit as t approaches infinity}, but it's much easier to think of as
simply @m{x_2y_2,x2*y2} giving @ms{w,4} immediately (much like
@m{x_0y_0,x0*y0} at @math{t=0} gives @ms{w,0} immediately).

Each of the points substituted into
@m{W(t)=w_4t^4+\cdots+w_0,W(t)=w4*t^4+@dots{}+w0} gives a linear combination
of the @m{w_i,w[i]} coefficients, and the value of those combinations has just
been calculated.

@tex
\GMPdisplay{%
$\matrix{%
W(0)      & = &       &   &      &   &      &   &      &   & w_0 \cr
W(1)      & = &   w_4 & + &  w_3 & + &  w_2 & + &  w_1 & + & w_0 \cr
W(-1)     & = &   w_4 & - &  w_3 & + &  w_2 & - &  w_1 & + & w_0 \cr
W(2)      & = & 16w_4 & + & 8w_3 & + & 4w_2 & + & 2w_1 & + & w_0 \cr
W(\infty) & = &   w_4 \cr
}$}
@end tex
@ifnottex
@example
@group
W(0)   =                              w0
W(1)   =    w4 +   w3 +   w2 +   w1 + w0
W(-1)  =    w4 -   w3 +   w2 -   w1 + w0
W(2)   = 16*w4 + 8*w3 + 4*w2 + 2*w1 + w0
W(inf) =    w4
@end group
@end example
@end ifnottex

This is a set of five equations in five unknowns, and some elementary linear
algebra quickly isolates each @m{w_i,w[i]}.  This involves adding or
subtracting one @math{W(t)} value from another, and a couple of divisions by
powers of 2 and one division by 3, the latter using the special
@code{mpn_divexact_by3} (@pxref{Exact Division}).

The conversion of @math{W(t)} values to the coefficients is interpolation.  A
polynomial of degree 4 like @math{W(t)} is uniquely determined by values known
at 5 different points.  The points are arbitrary and can be chosen to make the
linear equations come out with a convenient set of steps for quickly isolating
the @m{w_i,w[i]}.

Squaring follows the same procedure as multiplication, but there's only one
@math{X(t)} and it's evaluated at the 5 points, and those values squared to
give values of @math{W(t)}.  The interpolation is then identical, and in fact
the same @code{toom3_interpolate} subroutine is used for both squaring and
multiplying.

Toom-3 is asymptotically @math{O(N^@W{1.465})}, the exponent being
@m{\log5/\log3,log(5)/log(3)}, representing 5 recursive multiplies of 1/3 the
original size each.  This is an improvement over Karatsuba at
@math{O(N^@W{1.585})}, though Toom does more work in the evaluation and
interpolation and so it only realizes its advantage above a certain size.

Near the crossover between Toom-3 and Karatsuba there's generally a range of
sizes where the difference between the two is small.
@code{MUL_TOOM33_THRESHOLD} is a somewhat arbitrary point in that range and
successive runs of the tune program can give different values due to small
variations in measuring.  A graph of time versus size for the two shows the
effect, see @file{tune/README}.

At the fairly small sizes where the Toom-3 thresholds occur it's worth
remembering that the asymptotic behaviour for Karatsuba and Toom-3 can't be
expected to make accurate predictions, due of course to the big influence of
all sorts of overheads, and the fact that only a few recursions of each are
being performed.  Even at large sizes there's a good chance machine dependent
effects like cache architecture will mean actual performance deviates from
what might be predicted.

The formula given for the Karatsuba algorithm (@pxref{Karatsuba
Multiplication}) has an equivalent for Toom-3 involving only five multiplies,
but this would be complicated and unenlightening.

An alternate view of Toom-3 can be found in Zuras (@pxref{References}), using
a vector to represent the @math{x} and @math{y} splits and a matrix
multiplication for the evaluation and interpolation stages.  The matrix
inverses are not meant to be actually used, and they have elements with values
much greater than in fact arise in the interpolation steps.  The diagram shown
for the 3-way is attractive, but again doesn't have to be implemented that way
and for example with a bit of rearrangement just one division by 6 can be
done.


@node Toom 4-Way Multiplication, FFT Multiplication, Toom 3-Way Multiplication, Multiplication Algorithms
@subsection Toom 4-Way Multiplication
@cindex Toom multiplication

Karatsuba and Toom-3 split the operands into 2 and 3 coefficients,
respectively.  Toom-4 analogously splits the operands into 4 coefficients.
Using the notation from the section on Toom-3 multiplication, we form two
polynomials:

@display
@group
@m{X(t) = x_3t^3 + x_2t^2 + x_1t + x_0,
   X(t) = x3*t^3 + x2*t^2 + x1*t + x0}
@m{Y(t) = y_3t^3 + y_2t^2 + y_1t + y_0,
   Y(t) = y3*t^3 + y2*t^2 + y1*t + y0}
@end group
@end display

@math{X(t)} and @math{Y(t)} are evaluated and multiplied at 7 points, giving
values of @math{W(t)} at those points.  In GMP the following points are used,

@quotation
@multitable {@m{t=-1/2,t=inf}M} {MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM}
@item Point              @tab Value
@item @math{t=0}         @tab @m{x_0y_0,x0 * y0}, which gives @ms{w,0} immediately
@item @math{t=1/2}       @tab @m{(x_3+2x_2+4x_1+8x_0)(y_3+2y_2+4y_1+8y_0),(x3+2*x2+4*x1+8*x0) * (y3+2*y2+4*y1+8*y0)}
@item @math{t=-1/2}      @tab @m{(-x_3+2x_2-4x_1+8x_0)(-y_3+2y_2-4y_1+8y_0),(-x3+2*x2-4*x1+8*x0) * (-y3+2*y2-4*y1+8*y0)}
@item @math{t=1}         @tab @m{(x_3+x_2+x_1+x_0)(y_3+y_2+y_1+y_0),(x3+x2+x1+x0) * (y3+y2+y1+y0)}
@item @math{t=-1}        @tab @m{(-x_3+x_2-x_1+x_0)(-y_3+y_2-y_1+y_0),(-x3+x2-x1+x0) * (-y3+y2-y1+y0)}
@item @math{t=2}         @tab @m{(8x_3+4x_2+2x_1+x_0)(8y_3+4y_2+2y_1+y_0),(8*x3+4*x2+2*x1+x0) * (8*y3+4*y2+2*y1+y0)}
@item @m{t=\infty,t=inf} @tab @m{x_3y_3,x3 * y3}, which gives @ms{w,6} immediately
@end multitable
@end quotation

The number of additions and subtractions for Toom-4 is much larger than for Toom-3.
But several subexpressions occur multiple times, for example @m{x_2+x_0,x2+x0}, occurs
for both @math{t=1} and @math{t=-1}.

Toom-4 is asymptotically @math{O(N^@W{1.404})}, the exponent being
@m{\log7/\log4,log(7)/log(4)}, representing 7 recursive multiplies of 1/4 the
original size each.


@node FFT Multiplication, Other Multiplication, Toom 4-Way Multiplication, Multiplication Algorithms
@subsection FFT Multiplication
@cindex FFT multiplication
@cindex Fast Fourier Transform

At large to very large sizes a Fermat style FFT multiplication is used,
following Sch@"onhage and Strassen (@pxref{References}).  Descriptions of FFTs
in various forms can be found in many textbooks, for instance Knuth section
4.3.3 part C or Lipson chapter IX@.  A brief description of the form used in
GMP is given here.

The multiplication done is @m{xy \bmod 2^N+1, x*y mod 2^N+1}, for a given
@math{N}.  A full product @m{xy,x*y} is obtained by choosing @m{N \ge
\mathop{\rm bits}(x)+\mathop{\rm bits}(y), N>=bits(x)+bits(y)} and padding
@math{x} and @math{y} with high zero limbs.  The modular product is the native
form for the algorithm, so padding to get a full product is unavoidable.

The algorithm follows a split, evaluate, pointwise multiply, interpolate and
combine similar to that described above for Karatsuba and Toom-3.  A @math{k}
parameter controls the split, with an FFT-@math{k} splitting into @math{2^k}
pieces of @math{M=N/2^k} bits each.  @math{N} must be a multiple of
@m{2^k\times@code{mp\_bits\_per\_limb}, (2^k)*@nicode{mp_bits_per_limb}} so
the split falls on limb boundaries, avoiding bit shifts in the split and
combine stages.

The evaluations, pointwise multiplications, and interpolation, are all done
modulo @m{2^{N'}+1, 2^N'+1} where @math{N'} is @math{2M+k+3} rounded up to a
multiple of @math{2^k} and of @code{mp_bits_per_limb}.  The results of
interpolation will be the following negacyclic convolution of the input
pieces, and the choice of @math{N'} ensures these sums aren't truncated.
@tex
$$ w_n = \sum_{{i+j = b2^k+n}\atop{b=0,1}} (-1)^b x_i y_j $$
@end tex
@ifnottex

@example
           ---
           \         b
w[n] =     /     (-1) * x[i] * y[j]
           ---
       i+j==b*2^k+n
          b=0,1
@end example

@end ifnottex
The points used for the evaluation are @math{g^i} for @math{i=0} to
@math{2^k-1} where @m{g=2^{2N'/2^k}, g=2^(2N'/2^k)}.  @math{g} is a
@m{2^k,2^k'}th root of unity mod @m{2^{N'}+1,2^N'+1}, which produces necessary
cancellations at the interpolation stage, and it's also a power of 2 so the
fast Fourier transforms used for the evaluation and interpolation do only
shifts, adds and negations.

The pointwise multiplications are done modulo @m{2^{N'}+1, 2^N'+1} and either
recurse into a further FFT or use a plain multiplication (Toom-3, Karatsuba or
basecase), whichever is optimal at the size @math{N'}.  The interpolation is
an inverse fast Fourier transform.  The resulting set of sums of @m{x_iy_j,
x[i]*y[j]} are added at appropriate offsets to give the final result.

Squaring is the same, but @math{x} is the only input so it's one transform at
the evaluate stage and the pointwise multiplies are squares.  The
interpolation is the same.

For a mod @math{2^N+1} product, an FFT-@math{k} is an @m{O(N^{k/(k-1)}),
O(N^(k/(k-1)))} algorithm, the exponent representing @math{2^k} recursed
modular multiplies each @m{1/2^{k-1},1/2^(k-1)} the size of the original.
Each successive @math{k} is an asymptotic improvement, but overheads mean each
is only faster at bigger and bigger sizes.  In the code, @code{MUL_FFT_TABLE}
and @code{SQR_FFT_TABLE} are the thresholds where each @math{k} is used.  Each
new @math{k} effectively swaps some multiplying for some shifts, adds and
overheads.

A mod @math{2^N+1} product can be formed with a normal
@math{N@cross{}N@rightarrow{}2N} bit multiply plus a subtraction, so an FFT
and Toom-3 etc can be compared directly.  A @math{k=4} FFT at
@math{O(N^@W{1.333})} can be expected to be the first faster than Toom-3 at
@math{O(N^@W{1.465})}.  In practice this is what's found, with
@code{MUL_FFT_MODF_THRESHOLD} and @code{SQR_FFT_MODF_THRESHOLD} being between
300 and 1000 limbs, depending on the CPU@.  So far it's been found that only
very large FFTs recurse into pointwise multiplies above these sizes.

When an FFT is to give a full product, the change of @math{N} to @math{2N}
doesn't alter the theoretical complexity for a given @math{k}, but for the
purposes of considering where an FFT might be first used it can be assumed
that the FFT is recursing into a normal multiply and that on that basis it's
doing @math{2^k} recursed multiplies each @m{1/2^{k-2},1/2^(k-2)} the size of
the inputs, making it @m{O(N^{k/(k-2)}), O(N^(k/(k-2)))}.  This would mean
@math{k=7} at @math{O(N^@W{1.4})} would be the first FFT faster than Toom-3.
In practice @code{MUL_FFT_THRESHOLD} and @code{SQR_FFT_THRESHOLD} have been
found to be in the @math{k=8} range, somewhere between 3000 and 10000 limbs.

The way @math{N} is split into @math{2^k} pieces and then @math{2M+k+3} is
rounded up to a multiple of @math{2^k} and @code{mp_bits_per_limb} means that
when @math{2^k@ge{}@nicode{mp\_bits\_per\_limb}} the effective @math{N} is a
multiple of @m{2^{2k-1},2^(2k-1)} bits.  The @math{+k+3} means some values of
@math{N} just under such a multiple will be rounded to the next.  The
complexity calculations above assume that a favourable size is used, meaning
one which isn't padded through rounding, and it's also assumed that the extra
@math{+k+3} bits are negligible at typical FFT sizes.

The practical effect of the @m{2^{2k-1},2^(2k-1)} constraint is to introduce a
step-effect into measured speeds.  For example @math{k=8} will round @math{N}
up to a multiple of 32768 bits, so for a 32-bit limb there'll be 512 limb
groups of sizes for which @code{mpn_mul_n} runs at the same speed.  Or for
@math{k=9} groups of 2048 limbs, @math{k=10} groups of 8192 limbs, etc.  In
practice it's been found each @math{k} is used at quite small multiples of its
size constraint and so the step effect is quite noticeable in a time versus
size graph.

The threshold determinations currently measure at the mid-points of size
steps, but this is sub-optimal since at the start of a new step it can happen
that it's better to go back to the previous @math{k} for a while.  Something
more sophisticated for @code{MUL_FFT_TABLE} and @code{SQR_FFT_TABLE} will be
needed.


@node Other Multiplication, Unbalanced Multiplication, FFT Multiplication, Multiplication Algorithms
@subsection Other Multiplication
@cindex Toom multiplication

The Toom algorithms described above (@pxref{Toom 3-Way Multiplication},
@pxref{Toom 4-Way Multiplication}) generalizes to split into an arbitrary
number of pieces, as per Knuth section 4.3.3 algorithm C@.  This is not
currently used.  The notes here are merely for interest.

In general a split into @math{r+1} pieces is made, and evaluations and
pointwise multiplications done at @m{2r+1,2*r+1} points.  A 4-way split does 7
pointwise multiplies, 5-way does 9, etc.  Asymptotically an @math{(r+1)}-way
algorithm is @m{O(N^{log(2r+1)/log(r+1)}, O(N^(log(2*r+1)/log(r+1)))}.  Only
the pointwise multiplications count towards big-@math{O} complexity, but the
time spent in the evaluate and interpolate stages grows with @math{r} and has
a significant practical impact, with the asymptotic advantage of each @math{r}
realized only at bigger and bigger sizes.  The overheads grow as
@m{O(Nr),O(N*r)}, whereas in an @math{r=2^k} FFT they grow only as @m{O(N \log
r), O(N*log(r))}.

Knuth algorithm C evaluates at points 0,1,2,@dots{},@m{2r,2*r}, but exercise 4
uses @math{-r},@dots{},0,@dots{},@math{r} and the latter saves some small
multiplies in the evaluate stage (or rather trades them for additions), and
has a further saving of nearly half the interpolate steps.  The idea is to
separate odd and even final coefficients and then perform algorithm C steps C7
and C8 on them separately.  The divisors at step C7 become @math{j^2} and the
multipliers at C8 become @m{2tj-j^2,2*t*j-j^2}.

Splitting odd and even parts through positive and negative points can be
thought of as using @math{-1} as a square root of unity.  If a 4th root of
unity was available then a further split and speedup would be possible, but no
such root exists for plain integers.  Going to complex integers with
@m{i=\sqrt{-1}, i=sqrt(-1)} doesn't help, essentially because in Cartesian
form it takes three real multiplies to do a complex multiply.  The existence
of @m{2^k,2^k'}th roots of unity in a suitable ring or field lets the fast
Fourier transform keep splitting and get to @m{O(N \log r), O(N*log(r))}.

Floating point FFTs use complex numbers approximating Nth roots of unity.
Some processors have special support for such FFTs.  But these are not used in
GMP since it's very difficult to guarantee an exact result (to some number of
bits).  An occasional difference of 1 in the last bit might not matter to a
typical signal processing algorithm, but is of course of vital importance to
GMP.


@node Unbalanced Multiplication,  , Other Multiplication, Multiplication Algorithms
@subsection Unbalanced Multiplication
@cindex Unbalanced multiplication

Multiplication of operands with different sizes, both below
@code{MUL_TOOM22_THRESHOLD} are done with plain schoolbook multiplication
(@pxref{Basecase Multiplication}).

For really large operands, we invoke FFT directly.

For operands between these sizes, we use Toom inspired algorithms suggested by
Alberto Zanoni and Marco Bodrato.  The idea is to split the operands into
polynomials of different degree.  GMP currently splits the smaller operand
onto 2 coefficients, i.e., a polynomial of degree 1, but the larger operand
can be split into 2, 3, or 4 coefficients, i.e., a polynomial of degree 1 to
3.

@c FIXME: This is mighty ugly, but a cleaner @need triggers texinfo bugs that
@c screws up layout here and there in the rest of the manual.
@c @tex
@c \goodbreak
@c @end tex
@node Division Algorithms, Greatest Common Divisor Algorithms, Multiplication Algorithms, Algorithms
@section Division Algorithms
@cindex Division algorithms

@menu
* Single Limb Division::
* Basecase Division::
* Divide and Conquer Division::
* Block-Wise Barrett Division::
* Exact Division::
* Exact Remainder::
* Small Quotient Division::
@end menu


@node Single Limb Division, Basecase Division, Division Algorithms, Division Algorithms
@subsection Single Limb Division

N@cross{}1 division is implemented using repeated 2@cross{}1 divisions from
high to low, either with a hardware divide instruction or a multiplication by
inverse, whichever is best on a given CPU.

The multiply by inverse follows ``Improved division by invariant integers'' by
M@"oller and Granlund (@pxref{References}) and is implemented as
@code{udiv_qrnnd_preinv} in @file{gmp-impl.h}.  The idea is to have a
fixed-point approximation to @math{1/d} (see @code{invert_limb}) and then
multiply by the high limb (plus one bit) of the dividend to get a quotient
@math{q}.  With @math{d} normalized (high bit set), @math{q} is no more than 1
too small.  Subtracting @m{qd,q*d} from the dividend gives a remainder, and
reveals whether @math{q} or @math{q-1} is correct.

The result is a division done with two multiplications and four or five
arithmetic operations.  On CPUs with low latency multipliers this can be much
faster than a hardware divide, though the cost of calculating the inverse at
the start may mean it's only better on inputs bigger than say 4 or 5 limbs.

When a divisor must be normalized, either for the generic C
@code{__udiv_qrnnd_c} or the multiply by inverse, the division performed is
actually @m{a2^k,a*2^k} by @m{d2^k,d*2^k} where @math{a} is the dividend and
@math{k} is the power necessary to have the high bit of @m{d2^k,d*2^k} set.
The bit shifts for the dividend are usually accomplished ``on the fly''
meaning by extracting the appropriate bits at each step.  Done this way the
quotient limbs come out aligned ready to store.  When only the remainder is
wanted, an alternative is to take the dividend limbs unshifted and calculate
@m{r = a \bmod d2^k, r = a mod d*2^k} followed by an extra final step @m{r2^k
\bmod d2^k, r*2^k mod d*2^k}.  This can help on CPUs with poor bit shifts or
few registers.

The multiply by inverse can be done two limbs at a time.  The calculation is
basically the same, but the inverse is two limbs and the divisor treated as if
padded with a low zero limb.  This means more work, since the inverse will
need a 2@cross{}2 multiply, but the four 1@cross{}1s to do that are
independent and can therefore be done partly or wholly in parallel.  Likewise
for a 2@cross{}1 calculating @m{qd,q*d}.  The net effect is to process two
limbs with roughly the same two multiplies worth of latency that one limb at a
time gives.  This extends to 3 or 4 limbs at a time, though the extra work to
apply the inverse will almost certainly soon reach the limits of multiplier
throughput.

A similar approach in reverse can be taken to process just half a limb at a
time if the divisor is only a half limb.  In this case the 1@cross{}1 multiply
for the inverse effectively becomes two @m{{1\over2}\times1, (1/2)x1} for each
limb, which can be a saving on CPUs with a fast half limb multiply, or in fact
if the only multiply is a half limb, and especially if it's not pipelined.


@node Basecase Division, Divide and Conquer Division, Single Limb Division, Division Algorithms
@subsection Basecase Division

Basecase N@cross{}M division is like long division done by hand, but in base
@m{2\GMPraise{@code{mp\_bits\_per\_limb}}, 2^mp_bits_per_limb}.  See Knuth
section 4.3.1 algorithm D, and @file{mpn/generic/sb_divrem_mn.c}.

Briefly stated, while the dividend remains larger than the divisor, a high
quotient limb is formed and the N@cross{}1 product @m{qd,q*d} subtracted at
the top end of the dividend.  With a normalized divisor (most significant bit
set), each quotient limb can be formed with a 2@cross{}1 division and a
1@cross{}1 multiplication plus some subtractions.  The 2@cross{}1 division is
by the high limb of the divisor and is done either with a hardware divide or a
multiply by inverse (the same as in @ref{Single Limb Division}) whichever is
faster.  Such a quotient is sometimes one too big, requiring an addback of the
divisor, but that happens rarely.

With Q=N@minus{}M being the number of quotient limbs, this is an
@m{O(QM),O(Q*M)} algorithm and will run at a speed similar to a basecase
Q@cross{}M multiplication, differing in fact only in the extra multiply and
divide for each of the Q quotient limbs.


@node Divide and Conquer Division, Block-Wise Barrett Division, Basecase Division, Division Algorithms
@subsection Divide and Conquer Division

For divisors larger than @code{DC_DIV_QR_THRESHOLD}, division is done by dividing.
Or to be precise by a recursive divide and conquer algorithm based on work by
Moenck and Borodin, Jebelean, and Burnikel and Ziegler (@pxref{References}).

The algorithm consists essentially of recognising that a 2N@cross{}N division
can be done with the basecase division algorithm (@pxref{Basecase Division}),
but using N/2 limbs as a base, not just a single limb.  This way the
multiplications that arise are (N/2)@cross{}(N/2) and can take advantage of
Karatsuba and higher multiplication algorithms (@pxref{Multiplication
Algorithms}).  The two ``digits'' of the quotient are formed by recursive
N@cross{}(N/2) divisions.

If the (N/2)@cross{}(N/2) multiplies are done with a basecase multiplication
then the work is about the same as a basecase division, but with more function
call overheads and with some subtractions separated from the multiplies.
These overheads mean that it's only when N/2 is above
@code{MUL_TOOM22_THRESHOLD} that divide and conquer is of use.

@code{DC_DIV_QR_THRESHOLD} is based on the divisor size N, so it will be somewhere
above twice @code{MUL_TOOM22_THRESHOLD}, but how much above depends on the
CPU@.  An optimized @code{mpn_mul_basecase} can lower @code{DC_DIV_QR_THRESHOLD} a
little by offering a ready-made advantage over repeated @code{mpn_submul_1}
calls.

Divide and conquer is asymptotically @m{O(M(N)\log N),O(M(N)*log(N))} where
@math{M(N)} is the time for an N@cross{}N multiplication done with FFTs.  The
actual time is a sum over multiplications of the recursed sizes, as can be
seen near the end of section 2.2 of Burnikel and Ziegler.  For example, within
the Toom-3 range, divide and conquer is @m{2.63M(N), 2.63*M(N)}.  With higher
algorithms the @math{M(N)} term improves and the multiplier tends to @m{\log
N, log(N)}.  In practice, at moderate to large sizes, a 2N@cross{}N division
is about 2 to 4 times slower than an N@cross{}N multiplication.


@node Block-Wise Barrett Division, Exact Division, Divide and Conquer Division, Division Algorithms
@subsection Block-Wise Barrett Division

For the largest divisions, a block-wise Barrett division algorithm is used.
Here, the divisor is inverted to a precision determined by the relative size of
the dividend and divisor.  Blocks of quotient limbs are then generated by
multiplying blocks from the dividend by the inverse.

Our block-wise algorithm computes a smaller inverse than in the plain Barrett
algorithm.  For a @math{2n/n} division, the inverse will be just @m{\lceil n/2
\rceil, ceil(n/2)} limbs.


@node Exact Division, Exact Remainder, Block-Wise Barrett Division, Division Algorithms
@subsection Exact Division


A so-called exact division is when the dividend is known to be an exact
multiple of the divisor.  Jebelean's exact division algorithm uses this
knowledge to make some significant optimizations (@pxref{References}).

The idea can be illustrated in decimal for example with 368154 divided by
543.  Because the low digit of the dividend is 4, the low digit of the
quotient must be 8.  This is arrived at from @m{4 \mathord{\times} 7 \bmod 10,
4*7 mod 10}, using the fact 7 is the modular inverse of 3 (the low digit of
the divisor), since @m{3 \mathord{\times} 7 \mathop{\equiv} 1 \bmod 10, 3*7
@equiv{} 1 mod 10}.  So @m{8\mathord{\times}543 = 4344,8*543=4344} can be
subtracted from the dividend leaving 363810.  Notice the low digit has become
zero.

The procedure is repeated at the second digit, with the next quotient digit 7
(@m{1 \mathord{\times} 7 \bmod 10, 7 @equiv{} 1*7 mod 10}), subtracting
@m{7\mathord{\times}543 = 3801,7*543=3801}, leaving 325800.  And finally at
the third digit with quotient digit 6 (@m{8 \mathord{\times} 7 \bmod 10, 8*7
mod 10}), subtracting @m{6\mathord{\times}543 = 3258,6*543=3258} leaving 0.
So the quotient is 678.

Notice however that the multiplies and subtractions don't need to extend past
the low three digits of the dividend, since that's enough to determine the
three quotient digits.  For the last quotient digit no subtraction is needed
at all.  On a 2N@cross{}N division like this one, only about half the work of
a normal basecase division is necessary.

For an N@cross{}M exact division producing Q=N@minus{}M quotient limbs, the
saving over a normal basecase division is in two parts.  Firstly, each of the
Q quotient limbs needs only one multiply, not a 2@cross{}1 divide and
multiply.  Secondly, the crossproducts are reduced when @math{Q>M} to
@m{QM-M(M+1)/2,Q*M-M*(M+1)/2}, or when @math{Q@le{}M} to @m{Q(Q-1)/2,
Q*(Q-1)/2}.  Notice the savings are complementary.  If Q is big then many
divisions are saved, or if Q is small then the crossproducts reduce to a small
number.

The modular inverse used is calculated efficiently by @code{binvert_limb} in
@file{gmp-impl.h}.  This does four multiplies for a 32-bit limb, or six for a
64-bit limb.  @file{tune/modlinv.c} has some alternate implementations that
might suit processors better at bit twiddling than multiplying.

The sub-quadratic exact division described by Jebelean in ``Exact Division
with Karatsuba Complexity'' is not currently implemented.  It uses a
rearrangement similar to the divide and conquer for normal division
(@pxref{Divide and Conquer Division}), but operating from low to high.  A
further possibility not currently implemented is ``Bidirectional Exact Integer
Division'' by Krandick and Jebelean which forms quotient limbs from both the
high and low ends of the dividend, and can halve once more the number of
crossproducts needed in a 2N@cross{}N division.

A special case exact division by 3 exists in @code{mpn_divexact_by3},
supporting Toom-3 multiplication and @code{mpq} canonicalizations.  It forms
quotient digits with a multiply by the modular inverse of 3 (which is
@code{0xAA..AAB}) and uses two comparisons to determine a borrow for the next
limb.  The multiplications don't need to be on the dependent chain, as long as
the effect of the borrows is applied, which can help chips with pipelined
multipliers.


@node Exact Remainder, Small Quotient Division, Exact Division, Division Algorithms
@subsection Exact Remainder
@cindex Exact remainder

If the exact division algorithm is done with a full subtraction at each stage
and the dividend isn't a multiple of the divisor, then low zero limbs are
produced but with a remainder in the high limbs.  For dividend @math{a},
divisor @math{d}, quotient @math{q}, and @m{b = 2
\GMPraise{@code{mp\_bits\_per\_limb}}, b = 2^mp_bits_per_limb}, this remainder
@math{r} is of the form
@tex
$$ a = qd + r b^n $$
@end tex
@ifnottex

@example
a = q*d + r*b^n
@end example

@end ifnottex
@math{n} represents the number of zero limbs produced by the subtractions,
that being the number of limbs produced for @math{q}.  @math{r} will be in the
range @math{0@le{}r<d} and can be viewed as a remainder, but one shifted up by
a factor of @math{b^n}.

Carrying out full subtractions at each stage means the same number of cross
products must be done as a normal division, but there's still some single limb
divisions saved.  When @math{d} is a single limb some simplifications arise,
providing good speedups on a number of processors.

@code{mpn_divexact_by3}, @code{mpn_modexact_1_odd} and the @code{mpn_redc_X}
functions differ subtly in how they return @math{r}, leading to some negations
in the above formula, but all are essentially the same.

@cindex Divisibility algorithm
@cindex Congruence algorithm
Clearly @math{r} is zero when @math{a} is a multiple of @math{d}, and this
leads to divisibility or congruence tests which are potentially more efficient
than a normal division.

The factor of @math{b^n} on @math{r} can be ignored in a GCD when @math{d} is
odd, hence the use of @code{mpn_modexact_1_odd} by @code{mpn_gcd_1} and
@code{mpz_kronecker_ui} etc (@pxref{Greatest Common Divisor Algorithms}).

Montgomery's REDC method for modular multiplications uses operands of the form
of @m{xb^{-n}, x*b^-n} and @m{yb^{-n}, y*b^-n} and on calculating @m{(xb^{-n})
(yb^{-n}), (x*b^-n)*(y*b^-n)} uses the factor of @math{b^n} in the exact
remainder to reach a product in the same form @m{(xy)b^{-n}, (x*y)*b^-n}
(@pxref{Modular Powering Algorithm}).

Notice that @math{r} generally gives no useful information about the ordinary
remainder @math{a @bmod d} since @math{b^n @bmod d} could be anything.  If
however @math{b^n @equiv{} 1 @bmod d}, then @math{r} is the negative of the
ordinary remainder.  This occurs whenever @math{d} is a factor of
@math{b^n-1}, as for example with 3 in @code{mpn_divexact_by3}.  For a 32 or
64 bit limb other such factors include 5, 17 and 257, but no particular use
has been found for this.


@node Small Quotient Division,  , Exact Remainder, Division Algorithms
@subsection Small Quotient Division

An N@cross{}M division where the number of quotient limbs Q=N@minus{}M is
small can be optimized somewhat.

An ordinary basecase division normalizes the divisor by shifting it to make
the high bit set, shifting the dividend accordingly, and shifting the
remainder back down at the end of the calculation.  This is wasteful if only a
few quotient limbs are to be formed.  Instead a division of just the top
@m{\rm2Q,2*Q} limbs of the dividend by the top Q limbs of the divisor can be
used to form a trial quotient.  This requires only those limbs normalized, not
the whole of the divisor and dividend.

A multiply and subtract then applies the trial quotient to the M@minus{}Q
unused limbs of the divisor and N@minus{}Q dividend limbs (which includes Q
limbs remaining from the trial quotient division).  The starting trial
quotient can be 1 or 2 too big, but all cases of 2 too big and most cases of 1
too big are detected by first comparing the most significant limbs that will
arise from the subtraction.  An addback is done if the quotient still turns
out to be 1 too big.

This whole procedure is essentially the same as one step of the basecase
algorithm done in a Q limb base, though with the trial quotient test done only
with the high limbs, not an entire Q limb ``digit'' product.  The correctness
of this weaker test can be established by following the argument of Knuth
section 4.3.1 exercise 20 but with the @m{v_2 \GMPhat q > b \GMPhat r
+ u_2, v2*q>b*r+u2} condition appropriately relaxed.


@need 1000
@node Greatest Common Divisor Algorithms, Powering Algorithms, Division Algorithms, Algorithms
@section Greatest Common Divisor
@cindex Greatest common divisor algorithms
@cindex GCD algorithms

@menu
* Binary GCD::
* Lehmer's Algorithm::
* Subquadratic GCD::
* Extended GCD::
* Jacobi Symbol::
@end menu


@node Binary GCD, Lehmer's Algorithm, Greatest Common Divisor Algorithms, Greatest Common Divisor Algorithms
@subsection Binary GCD

At small sizes GMP uses an @math{O(N^2)} binary style GCD@.  This is described
in many textbooks, for example Knuth section 4.5.2 algorithm B@.  It simply
consists of successively reducing odd operands @math{a} and @math{b} using

@quotation
@math{a,b = @abs{}(a-b),@min{}(a,b)} @*
strip factors of 2 from @math{a}
@end quotation

The Euclidean GCD algorithm, as per Knuth algorithms E and A, repeatedly
computes the quotient @m{q = \lfloor a/b \rfloor, q = floor(a/b)} and replaces
@math{a,b} by @math{v, u - q v}. The binary algorithm has so far been found to
be faster than the Euclidean algorithm everywhere.  One reason the binary
method does well is that the implied quotient at each step is usually small,
so often only one or two subtractions are needed to get the same effect as a
division.  Quotients 1, 2 and 3 for example occur 67.7% of the time, see Knuth
section 4.5.3 Theorem E.

When the implied quotient is large, meaning @math{b} is much smaller than
@math{a}, then a division is worthwhile.  This is the basis for the initial
@math{a @bmod b} reductions in @code{mpn_gcd} and @code{mpn_gcd_1} (the latter
for both N@cross{}1 and 1@cross{}1 cases).  But after that initial reduction,
big quotients occur too rarely to make it worth checking for them.

@sp 1
The final @math{1@cross{}1} GCD in @code{mpn_gcd_1} is done in the generic C
code as described above.  For two N-bit operands, the algorithm takes about
0.68 iterations per bit.  For optimum performance some attention needs to be
paid to the way the factors of 2 are stripped from @math{a}.

Firstly it may be noted that in twos complement the number of low zero bits on
@math{a-b} is the same as @math{b-a}, so counting or testing can begin on
@math{a-b} without waiting for @math{@abs{}(a-b)} to be determined.

A loop stripping low zero bits tends not to branch predict well, since the
condition is data dependent.  But on average there's only a few low zeros, so
an option is to strip one or two bits arithmetically then loop for more (as
done for AMD K6).  Or use a lookup table to get a count for several bits then
loop for more (as done for AMD K7).  An alternative approach is to keep just
one of @math{a} or @math{b} odd and iterate

@quotation
@math{a,b = @abs{}(a-b), @min{}(a,b)} @*
@math{a = a/2} if even @*
@math{b = b/2} if even
@end quotation

This requires about 1.25 iterations per bit, but stripping of a single bit at
each step avoids any branching.  Repeating the bit strip reduces to about 0.9
iterations per bit, which may be a worthwhile tradeoff.

Generally with the above approaches a speed of perhaps 6 cycles per bit can be
achieved, which is still not terribly fast with for instance a 64-bit GCD
taking nearly 400 cycles.  It's this sort of time which means it's not usually
advantageous to combine a set of divisibility tests into a GCD.

Currently, the binary algorithm is used for GCD only when @math{N < 3}.

@node Lehmer's Algorithm, Subquadratic GCD, Binary GCD, Greatest Common Divisor Algorithms
@comment  node-name,  next,  previous,  up
@subsection Lehmer's algorithm

Lehmer's improvement of the Euclidean algorithms is based on the observation
that the initial part of the quotient sequence depends only on the most
significant parts of the inputs. The variant of Lehmer's algorithm used in GMP
splits off the most significant two limbs, as suggested, e.g., in ``A
Double-Digit Lehmer-Euclid Algorithm'' by Jebelean (@pxref{References}). The
quotients of two double-limb inputs are collected as a 2 by 2 matrix with
single-limb elements. This is done by the function @code{mpn_hgcd2}. The
resulting matrix is applied to the inputs using @code{mpn_mul_1} and
@code{mpn_submul_1}. Each iteration usually reduces the inputs by almost one
limb. In the rare case of a large quotient, no progress can be made by
examining just the most significant two limbs, and the quotient is computed
using plain division.

The resulting algorithm is asymptotically @math{O(N^2)}, just as the Euclidean
algorithm and the binary algorithm. The quadratic part of the work are
the calls to @code{mpn_mul_1} and @code{mpn_submul_1}. For small sizes, the
linear work is also significant. There are roughly @math{N} calls to the
@code{mpn_hgcd2} function. This function uses a couple of important
optimizations:

@itemize
@item
It uses the same relaxed notion of correctness as @code{mpn_hgcd} (see next
section). This means that when called with the most significant two limbs of
two large numbers, the returned matrix does not always correspond exactly to
the initial quotient sequence for the two large numbers; the final quotient
may sometimes be one off.

@item
It takes advantage of the fact the quotients are usually small. The division
operator is not used, since the corresponding assembler instruction is very
slow on most architectures. (This code could probably be improved further, it
uses many branches that are unfriendly to prediction).

@item
It switches from double-limb calculations to single-limb calculations half-way
through, when the input numbers have been reduced in size from two limbs to
one and a half.

@end itemize

@node Subquadratic GCD, Extended GCD, Lehmer's Algorithm, Greatest Common Divisor Algorithms
@subsection Subquadratic GCD

For inputs larger than @code{GCD_DC_THRESHOLD}, GCD is computed via the HGCD
(Half GCD) function, as a generalization to Lehmer's algorithm.

Let the inputs @math{a,b} be of size @math{N} limbs each. Put @m{S=\lfloor N/2
\rfloor + 1, S = floor(N/2) + 1}. Then HGCD(a,b) returns a transformation
matrix @math{T} with non-negative elements, and reduced numbers @math{(c;d) =
T^{-1} (a;b)}. The reduced numbers @math{c,d} must be larger than @math{S}
limbs, while their difference @math{abs(c-d)} must fit in @math{S} limbs. The
matrix elements will also be of size roughly @math{N/2}.

The HGCD base case uses Lehmer's algorithm, but with the above stop condition
that returns reduced numbers and the corresponding transformation matrix
half-way through. For inputs larger than @code{HGCD_THRESHOLD}, HGCD is
computed recursively, using the divide and conquer algorithm in ``On
Sch@"onhage's algorithm and subquadratic integer GCD computation'' by M@"oller
(@pxref{References}). The recursive algorithm consists of these main
steps.

@itemize

@item
Call HGCD recursively, on the most significant @math{N/2} limbs. Apply the
resulting matrix @math{T_1} to the full numbers, reducing them to a size just
above @math{3N/2}.

@item
Perform a small number of division or subtraction steps to reduce the numbers
to size below @math{3N/2}. This is essential mainly for the unlikely case of
large quotients.

@item
Call HGCD recursively, on the most significant @math{N/2} limbs of the reduced
numbers. Apply the resulting matrix @math{T_2} to the full numbers, reducing
them to a size just above @math{N/2}.

@item
Compute @math{T = T_1 T_2}.

@item
Perform a small number of division and subtraction steps to satisfy the
requirements, and return.
@end itemize

GCD is then implemented as a loop around HGCD, similarly to Lehmer's
algorithm. Where Lehmer repeatedly chops off the top two limbs, calls
@code{mpn_hgcd2}, and applies the resulting matrix to the full numbers, the
subquadratic GCD chops off the most significant third of the limbs (the
proportion is a tuning parameter, and @math{1/3} seems to be more efficient
than, e.g, @math{1/2}), calls @code{mpn_hgcd}, and applies the resulting
matrix. Once the input numbers are reduced to size below
@code{GCD_DC_THRESHOLD}, Lehmer's algorithm is used for the rest of the work.

The asymptotic running time of both HGCD and GCD is @m{O(M(N)\log N),O(M(N)*log(N))},
where @math{M(N)} is the time for multiplying two @math{N}-limb numbers.

@comment  node-name,  next,  previous,  up

@node Extended GCD, Jacobi Symbol, Subquadratic GCD, Greatest Common Divisor Algorithms
@subsection Extended GCD

The extended GCD function, or GCDEXT, calculates @math{@gcd{}(a,b)} and also
cofactors @math{x} and @math{y} satisfying @m{ax+by=\gcd(a@C{}b),
a*x+b*y=gcd(a@C{}b)}. All the algorithms used for plain GCD are extended to
handle this case. The binary algorithm is used only for single-limb GCDEXT.
Lehmer's algorithm is used for sizes up to @code{GCDEXT_DC_THRESHOLD}. Above
this threshold, GCDEXT is implemented as a loop around HGCD, but with more
book-keeping to keep track of the cofactors. This gives the same asymptotic
running time as for GCD and HGCD, @m{O(M(N)\log N),O(M(N)*log(N))}

One difference to plain GCD is that while the inputs @math{a} and @math{b} are
reduced as the algorithm proceeds, the cofactors @math{x} and @math{y} grow in
size. This makes the tuning of the chopping-point more difficult. The current
code chops off the most significant half of the inputs for the call to HGCD in
the first iteration, and the most significant two thirds for the remaining
calls. This strategy could surely be improved. Also the stop condition for the
loop, where Lehmer's algorithm is invoked once the inputs are reduced below
@code{GCDEXT_DC_THRESHOLD}, could maybe be improved by taking into account the
current size of the cofactors.

@node Jacobi Symbol,  , Extended GCD, Greatest Common Divisor Algorithms
@subsection Jacobi Symbol
@cindex Jacobi symbol algorithm

@code{mpz_jacobi} and @code{mpz_kronecker} are currently implemented with a
simple binary algorithm similar to that described for the GCDs (@pxref{Binary
GCD}).  They're not very fast when both inputs are large.  Lehmer's multi-step
improvement or a binary based multi-step algorithm is likely to be better.

When one operand fits a single limb, and that includes @code{mpz_kronecker_ui}
and friends, an initial reduction is done with either @code{mpn_mod_1} or
@code{mpn_modexact_1_odd}, followed by the binary algorithm on a single limb.
The binary algorithm is well suited to a single limb, and the whole
calculation in this case is quite efficient.

In all the routines sign changes for the result are accumulated using some bit
twiddling, avoiding table lookups or conditional jumps.


@need 1000
@node Powering Algorithms, Root Extraction Algorithms, Greatest Common Divisor Algorithms, Algorithms
@section Powering Algorithms
@cindex Powering algorithms

@menu
* Normal Powering Algorithm::
* Modular Powering Algorithm::
@end menu


@node Normal Powering Algorithm, Modular Powering Algorithm, Powering Algorithms, Powering Algorithms
@subsection Normal Powering

Normal @code{mpz} or @code{mpf} powering uses a simple binary algorithm,
successively squaring and then multiplying by the base when a 1 bit is seen in
the exponent, as per Knuth section 4.6.3.  The ``left to right''
variant described there is used rather than algorithm A, since it's just as
easy and can be done with somewhat less temporary memory.


@node Modular Powering Algorithm,  , Normal Powering Algorithm, Powering Algorithms
@subsection Modular Powering

Modular powering is implemented using a @math{2^k}-ary sliding window
algorithm, as per ``Handbook of Applied Cryptography'' algorithm 14.85
(@pxref{References}).  @math{k} is chosen according to the size of the
exponent.  Larger exponents use larger values of @math{k}, the choice being
made to minimize the average number of multiplications that must supplement
the squaring.

The modular multiplies and squares use either a simple division or the REDC
method by Montgomery (@pxref{References}).  REDC is a little faster,
essentially saving N single limb divisions in a fashion similar to an exact
remainder (@pxref{Exact Remainder}).


@node Root Extraction Algorithms, Radix Conversion Algorithms, Powering Algorithms, Algorithms
@section Root Extraction Algorithms
@cindex Root extraction algorithms

@menu
* Square Root Algorithm::
* Nth Root Algorithm::
* Perfect Square Algorithm::
* Perfect Power Algorithm::
@end menu


@node Square Root Algorithm, Nth Root Algorithm, Root Extraction Algorithms, Root Extraction Algorithms
@subsection Square Root
@cindex Square root algorithm
@cindex Karatsuba square root algorithm

Square roots are taken using the ``Karatsuba Square Root'' algorithm by Paul
Zimmermann (@pxref{References}).

An input @math{n} is split into four parts of @math{k} bits each, so with
@math{b=2^k} we have @m{n = a_3b^3 + a_2b^2 + a_1b + a_0, n = a3*b^3 + a2*b^2
+ a1*b + a0}.  Part @ms{a,3} must be ``normalized'' so that either the high or
second highest bit is set.  In GMP, @math{k} is kept on a limb boundary and
the input is left shifted (by an even number of bits) to normalize.

The square root of the high two parts is taken, by recursive application of
the algorithm (bottoming out in a one-limb Newton's method),
@tex
$$ s',r' = \mathop{\rm sqrtrem} \> (a_3b + a_2) $$
@end tex
@ifnottex

@example
s1,r1 = sqrtrem (a3*b + a2)
@end example

@end ifnottex
This is an approximation to the desired root and is extended by a division to
give @math{s},@math{r},
@tex
$$\eqalign{
q,u &= \mathop{\rm divrem} \> (r'b + a_1, 2s') \cr
s &= s'b + q \cr
r &= ub + a_0 - q^2
}$$
@end tex
@ifnottex

@example
q,u = divrem (r1*b + a1, 2*s1)
s = s1*b + q
r = u*b + a0 - q^2
@end example

@end ifnottex
The normalization requirement on @ms{a,3} means at this point @math{s} is
either correct or 1 too big.  @math{r} is negative in the latter case, so
@tex
$$\eqalign{
\mathop{\rm if} \; r &< 0 \; \mathop{\rm then} \cr
r &\leftarrow r + 2s - 1 \cr
s &\leftarrow s - 1
}$$
@end tex
@ifnottex

@example
if r < 0 then
  r = r + 2*s - 1
  s = s - 1
@end example

@end ifnottex
The algorithm is expressed in a divide and conquer form, but as noted in the
paper it can also be viewed as a discrete variant of Newton's method, or as a
variation on the schoolboy method (no longer taught) for square roots two
digits at a time.

If the remainder @math{r} is not required then usually only a few high limbs
of @math{r} and @math{u} need to be calculated to determine whether an
adjustment to @math{s} is required.  This optimization is not currently
implemented.

In the Karatsuba multiplication range this algorithm is @m{O({3\over2}
M(N/2)),O(1.5*M(N/2))}, where @math{M(n)} is the time to multiply two numbers
of @math{n} limbs.  In the FFT multiplication range this grows to a bound of
@m{O(6 M(N/2)),O(6*M(N/2))}.  In practice a factor of about 1.5 to 1.8 is
found in the Karatsuba and Toom-3 ranges, growing to 2 or 3 in the FFT range.

The algorithm does all its calculations in integers and the resulting
@code{mpn_sqrtrem} is used for both @code{mpz_sqrt} and @code{mpf_sqrt}.
The extended precision given by @code{mpf_sqrt_ui} is obtained by
padding with zero limbs.


@node Nth Root Algorithm, Perfect Square Algorithm, Square Root Algorithm, Root Extraction Algorithms
@subsection Nth Root
@cindex Root extraction algorithm
@cindex Nth root algorithm

Integer Nth roots are taken using Newton's method with the following
iteration, where @math{A} is the input and @math{n} is the root to be taken.
@tex
$$a_{i+1} = {1\over n} \left({A \over a_i^{n-1}} + (n-1)a_i \right)$$
@end tex
@ifnottex

@example
         1         A
a[i+1] = - * ( --------- + (n-1)*a[i] )
         n     a[i]^(n-1)
@end example

@end ifnottex
The initial approximation @m{a_1,a[1]} is generated bitwise by successively
powering a trial root with or without new 1 bits, aiming to be just above the
true root.  The iteration converges quadratically when started from a good
approximation.  When @math{n} is large more initial bits are needed to get
good convergence.  The current implementation is not particularly well
optimized.


@node Perfect Square Algorithm, Perfect Power Algorithm, Nth Root Algorithm, Root Extraction Algorithms
@subsection Perfect Square
@cindex Perfect square algorithm

A significant fraction of non-squares can be quickly identified by checking
whether the input is a quadratic residue modulo small integers.

@code{mpz_perfect_square_p} first tests the input mod 256, which means just
examining the low byte.  Only 44 different values occur for squares mod 256,
so 82.8% of inputs can be immediately identified as non-squares.

On a 32-bit system similar tests are done mod 9, 5, 7, 13 and 17, for a total
99.25% of inputs identified as non-squares.  On a 64-bit system 97 is tested
too, for a total 99.62%.

These moduli are chosen because they're factors of @math{2^@W{24}-1} (or
@math{2^@W{48}-1} for 64-bits), and such a remainder can be quickly taken just
using additions (see @code{mpn_mod_34lsub1}).

When nails are in use moduli are instead selected by the @file{gen-psqr.c}
program and applied with an @code{mpn_mod_1}.  The same @math{2^@W{24}-1} or
@math{2^@W{48}-1} could be done with nails using some extra bit shifts, but
this is not currently implemented.

In any case each modulus is applied to the @code{mpn_mod_34lsub1} or
@code{mpn_mod_1} remainder and a table lookup identifies non-squares.  By
using a ``modexact'' style calculation, and suitably permuted tables, just one
multiply each is required, see the code for details.  Moduli are also combined
to save operations, so long as the lookup tables don't become too big.
@file{gen-psqr.c} does all the pre-calculations.

A square root must still be taken for any value that passes these tests, to
verify it's really a square and not one of the small fraction of non-squares
that get through (i.e.@: a pseudo-square to all the tested bases).

Clearly more residue tests could be done, @code{mpz_perfect_square_p} only
uses a compact and efficient set.  Big inputs would probably benefit from more
residue testing, small inputs might be better off with less.  The assumed
distribution of squares versus non-squares in the input would affect such
considerations.


@node Perfect Power Algorithm,  , Perfect Square Algorithm, Root Extraction Algorithms
@subsection Perfect Power
@cindex Perfect power algorithm

Detecting perfect powers is required by some factorization algorithms.
Currently @code{mpz_perfect_power_p} is implemented using repeated Nth root
extractions, though naturally only prime roots need to be considered.
(@xref{Nth Root Algorithm}.)

If a prime divisor @math{p} with multiplicity @math{e} can be found, then only
roots which are divisors of @math{e} need to be considered, much reducing the
work necessary.  To this end divisibility by a set of small primes is checked.


@node Radix Conversion Algorithms, Other Algorithms, Root Extraction Algorithms, Algorithms
@section Radix Conversion
@cindex Radix conversion algorithms

Radix conversions are less important than other algorithms.  A program
dominated by conversions should probably use a different data representation.

@menu
* Binary to Radix::
* Radix to Binary::
@end menu


@node Binary to Radix, Radix to Binary, Radix Conversion Algorithms, Radix Conversion Algorithms
@subsection Binary to Radix

Conversions from binary to a power-of-2 radix use a simple and fast
@math{O(N)} bit extraction algorithm.

Conversions from binary to other radices use one of two algorithms.  Sizes
below @code{GET_STR_PRECOMPUTE_THRESHOLD} use a basic @math{O(N^2)} method.
Repeated divisions by @math{b^n} are made, where @math{b} is the radix and
@math{n} is the biggest power that fits in a limb.  But instead of simply
using the remainder @math{r} from such divisions, an extra divide step is done
to give a fractional limb representing @math{r/b^n}.  The digits of @math{r}
can then be extracted using multiplications by @math{b} rather than divisions.
Special case code is provided for decimal, allowing multiplications by 10 to
optimize to shifts and adds.

Above @code{GET_STR_PRECOMPUTE_THRESHOLD} a sub-quadratic algorithm is used.
For an input @math{t}, powers @m{b^{n2^i},b^(n*2^i)} of the radix are
calculated, until a power between @math{t} and @m{\sqrt{t},sqrt(t)} is
reached.  @math{t} is then divided by that largest power, giving a quotient
which is the digits above that power, and a remainder which is those below.
These two parts are in turn divided by the second highest power, and so on
recursively.  When a piece has been divided down to less than
@code{GET_STR_DC_THRESHOLD} limbs, the basecase algorithm described above is
used.

The advantage of this algorithm is that big divisions can make use of the
sub-quadratic divide and conquer division (@pxref{Divide and Conquer
Division}), and big divisions tend to have less overheads than lots of
separate single limb divisions anyway.  But in any case the cost of
calculating the powers @m{b^{n2^i},b^(n*2^i)} must first be overcome.

@code{GET_STR_PRECOMPUTE_THRESHOLD} and @code{GET_STR_DC_THRESHOLD} represent
the same basic thing, the point where it becomes worth doing a big division to
cut the input in half.  @code{GET_STR_PRECOMPUTE_THRESHOLD} includes the cost
of calculating the radix power required, whereas @code{GET_STR_DC_THRESHOLD}
assumes that's already available, which is the case when recursing.

Since the base case produces digits from least to most significant but they
want to be stored from most to least, it's necessary to calculate in advance
how many digits there will be, or at least be sure not to underestimate that.
For GMP the number of input bits is multiplied by @code{chars_per_bit_exactly}
from @code{mp_bases}, rounding up.  The result is either correct or one too
big.

Examining some of the high bits of the input could increase the chance of
getting the exact number of digits, but an exact result every time would not
be practical, since in general the difference between numbers 100@dots{} and
99@dots{} is only in the last few bits and the work to identify 99@dots{}
might well be almost as much as a full conversion.

@code{mpf_get_str} doesn't currently use the algorithm described here, it
multiplies or divides by a power of @math{b} to move the radix point to the
just above the highest non-zero digit (or at worst one above that location),
then multiplies by @math{b^n} to bring out digits.  This is @math{O(N^2)} and
is certainly not optimal.

The @math{r/b^n} scheme described above for using multiplications to bring out
digits might be useful for more than a single limb.  Some brief experiments
with it on the base case when recursing didn't give a noticeable improvement,
but perhaps that was only due to the implementation.  Something similar would
work for the sub-quadratic divisions too, though there would be the cost of
calculating a bigger radix power.

Another possible improvement for the sub-quadratic part would be to arrange
for radix powers that balanced the sizes of quotient and remainder produced,
i.e.@: the highest power would be an @m{b^{nk},b^(n*k)} approximately equal to
@m{\sqrt{t},sqrt(t)}, not restricted to a @math{2^i} factor.  That ought to
smooth out a graph of times against sizes, but may or may not be a net
speedup.


@node Radix to Binary,  , Binary to Radix, Radix Conversion Algorithms
@subsection Radix to Binary

@strong{This section needs to be rewritten, it currently describes the
algorithms used before GMP 4.3.}

Conversions from a power-of-2 radix into binary use a simple and fast
@math{O(N)} bitwise concatenation algorithm.

Conversions from other radices use one of two algorithms.  Sizes below
@code{SET_STR_PRECOMPUTE_THRESHOLD} use a basic @math{O(N^2)} method.  Groups
of @math{n} digits are converted to limbs, where @math{n} is the biggest
power of the base @math{b} which will fit in a limb, then those groups are
accumulated into the result by multiplying by @math{b^n} and adding.  This
saves multi-precision operations, as per Knuth section 4.4 part E
(@pxref{References}).  Some special case code is provided for decimal, giving
the compiler a chance to optimize multiplications by 10.

Above @code{SET_STR_PRECOMPUTE_THRESHOLD} a sub-quadratic algorithm is used.
First groups of @math{n} digits are converted into limbs.  Then adjacent
limbs are combined into limb pairs with @m{xb^n+y,x*b^n+y}, where @math{x}
and @math{y} are the limbs.  Adjacent limb pairs are combined into quads
similarly with @m{xb^{2n}+y,x*b^(2n)+y}.  This continues until a single block
remains, that being the result.

The advantage of this method is that the multiplications for each @math{x} are
big blocks, allowing Karatsuba and higher algorithms to be used.  But the cost
of calculating the powers @m{b^{n2^i},b^(n*2^i)} must be overcome.
@code{SET_STR_PRECOMPUTE_THRESHOLD} usually ends up quite big, around 5000 digits, and on
some processors much bigger still.

@code{SET_STR_PRECOMPUTE_THRESHOLD} is based on the input digits (and tuned
for decimal), though it might be better based on a limb count, so as to be
independent of the base.  But that sort of count isn't used by the base case
and so would need some sort of initial calculation or estimate.

The main reason @code{SET_STR_PRECOMPUTE_THRESHOLD} is so much bigger than the
corresponding @code{GET_STR_PRECOMPUTE_THRESHOLD} is that @code{mpn_mul_1} is
much faster than @code{mpn_divrem_1} (often by a factor of 5, or more).


@need 1000
@node Other Algorithms, Assembly Coding, Radix Conversion Algorithms, Algorithms
@section Other Algorithms

@menu
* Prime Testing Algorithm::
* Factorial Algorithm::
* Binomial Coefficients Algorithm::
* Fibonacci Numbers Algorithm::
* Lucas Numbers Algorithm::
* Random Number Algorithms::
@end menu


@node Prime Testing Algorithm, Factorial Algorithm, Other Algorithms, Other Algorithms
@subsection Prime Testing
@cindex Prime testing algorithms

The primality testing in @code{mpz_probab_prime_p} (@pxref{Number Theoretic
Functions}) first does some trial division by small factors and then uses the
Miller-Rabin probabilistic primality testing algorithm, as described in Knuth
section 4.5.4 algorithm P (@pxref{References}).

For an odd input @math{n}, and with @math{n = q@GMPmultiply{}2^k+1} where
@math{q} is odd, this algorithm selects a random base @math{x} and tests
whether @math{x^q @bmod{} n} is 1 or @math{-1}, or an @m{x^{q2^j} \bmod n,
x^(q*2^j) mod n} is @math{1}, for @math{1@le{}j@le{}k}.  If so then @math{n}
is probably prime, if not then @math{n} is definitely composite.

Any prime @math{n} will pass the test, but some composites do too.  Such
composites are known as strong pseudoprimes to base @math{x}.  No @math{n} is
a strong pseudoprime to more than @math{1/4} of all bases (see Knuth exercise
22), hence with @math{x} chosen at random there's no more than a @math{1/4}
chance a ``probable prime'' will in fact be composite.

In fact strong pseudoprimes are quite rare, making the test much more
powerful than this analysis would suggest, but @math{1/4} is all that's proven
for an arbitrary @math{n}.


@node Factorial Algorithm, Binomial Coefficients Algorithm, Prime Testing Algorithm, Other Algorithms
@subsection Factorial
@cindex Factorial algorithm

Factorials are calculated by a combination of removal of twos, powering, and
binary splitting.  The procedure can be best illustrated with an example,

@quotation
@math{23! = 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23}
@end quotation

@noindent
has factors of two removed,

@quotation
@math{23! = 2^{19}.1.1.3.1.5.3.7.1.9.5.11.3.13.7.15.1.17.9.19.5.21.11.23}
@end quotation

@noindent
and the resulting terms collected up according to their multiplicity,

@quotation
@math{23! = 2^{19}.(3.5)^3.(7.9.11)^2.(13.15.17.19.21.23)}
@end quotation

Each sequence such as @math{13.15.17.19.21.23} is evaluated by splitting into
every second term, as for instance @math{(13.17.21).(15.19.23)}, and the same
recursively on each half.  This is implemented iteratively using some bit
twiddling.

Such splitting is more efficient than repeated N@cross{}1 multiplies since it
forms big multiplies, allowing Karatsuba and higher algorithms to be used.
And even below the Karatsuba threshold a big block of work can be more
efficient for the basecase algorithm.

Splitting into subsequences of every second term keeps the resulting products
more nearly equal in size than would the simpler approach of say taking the
first half and second half of the sequence.  Nearly equal products are more
efficient for the current multiply implementation.


@node Binomial Coefficients Algorithm, Fibonacci Numbers Algorithm, Factorial Algorithm, Other Algorithms
@subsection Binomial Coefficients
@cindex Binomial coefficient algorithm

Binomial coefficients @m{\left({n}\atop{k}\right), C(n@C{}k)} are calculated
by first arranging @math{k @le{} n/2} using @m{\left({n}\atop{k}\right) =
\left({n}\atop{n-k}\right), C(n@C{}k) = C(n@C{}n-k)} if necessary, and then
evaluating the following product simply from @math{i=2} to @math{i=k}.
@tex
$$ \left({n}\atop{k}\right) = (n-k+1) \prod_{i=2}^{k} {{n-k+i} \over i} $$
@end tex
@ifnottex

@example
                      k  (n-k+i)
C(n,k) =  (n-k+1) * prod -------
                     i=2    i
@end example

@end ifnottex
It's easy to show that each denominator @math{i} will divide the product so
far, so the exact division algorithm is used (@pxref{Exact Division}).

The numerators @math{n-k+i} and denominators @math{i} are first accumulated
into as many fit a limb, to save multi-precision operations, though for
@code{mpz_bin_ui} this applies only to the divisors, since @math{n} is an
@code{mpz_t} and @math{n-k+i} in general won't fit in a limb at all.


@node Fibonacci Numbers Algorithm, Lucas Numbers Algorithm, Binomial Coefficients Algorithm, Other Algorithms
@subsection Fibonacci Numbers
@cindex Fibonacci number algorithm

The Fibonacci functions @code{mpz_fib_ui} and @code{mpz_fib2_ui} are designed
for calculating isolated @m{F_n,F[n]} or @m{F_n,F[n]},@m{F_{n-1},F[n-1]}
values efficiently.

For small @math{n}, a table of single limb values in @code{__gmp_fib_table} is
used.  On a 32-bit limb this goes up to @m{F_{47},F[47]}, or on a 64-bit limb
up to @m{F_{93},F[93]}.  For convenience the table starts at @m{F_{-1},F[-1]}.

Beyond the table, values are generated with a binary powering algorithm,
calculating a pair @m{F_n,F[n]} and @m{F_{n-1},F[n-1]} working from high to
low across the bits of @math{n}.  The formulas used are
@tex
$$\eqalign{
  F_{2k+1} &= 4F_k^2 - F_{k-1}^2 + 2(-1)^k \cr
  F_{2k-1} &=  F_k^2 + F_{k-1}^2           \cr
  F_{2k}   &= F_{2k+1} - F_{2k-1}
}$$
@end tex
@ifnottex

@example
F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k
F[2k-1] =   F[k]^2 + F[k-1]^2

F[2k] = F[2k+1] - F[2k-1]
@end example

@end ifnottex
At each step, @math{k} is the high @math{b} bits of @math{n}.  If the next bit
of @math{n} is 0 then @m{F_{2k},F[2k]},@m{F_{2k-1},F[2k-1]} is used, or if
it's a 1 then @m{F_{2k+1},F[2k+1]},@m{F_{2k},F[2k]} is used, and the process
repeated until all bits of @math{n} are incorporated.  Notice these formulas
require just two squares per bit of @math{n}.

It'd be possible to handle the first few @math{n} above the single limb table
with simple additions, using the defining Fibonacci recurrence @m{F_{k+1} =
F_k + F_{k-1}, F[k+1]=F[k]+F[k-1]}, but this is not done since it usually
turns out to be faster for only about 10 or 20 values of @math{n}, and
including a block of code for just those doesn't seem worthwhile.  If they
really mattered it'd be better to extend the data table.

Using a table avoids lots of calculations on small numbers, and makes small
@math{n} go fast.  A bigger table would make more small @math{n} go fast, it's
just a question of balancing size against desired speed.  For GMP the code is
kept compact, with the emphasis primarily on a good powering algorithm.

@code{mpz_fib2_ui} returns both @m{F_n,F[n]} and @m{F_{n-1},F[n-1]}, but
@code{mpz_fib_ui} is only interested in @m{F_n,F[n]}.  In this case the last
step of the algorithm can become one multiply instead of two squares.  One of
the following two formulas is used, according as @math{n} is odd or even.
@tex
$$\eqalign{
  F_{2k}   &= F_k (F_k + 2F_{k-1}) \cr
  F_{2k+1} &= (2F_k + F_{k-1}) (2F_k - F_{k-1}) + 2(-1)^k
}$$
@end tex
@ifnottex

@example
F[2k]   = F[k]*(F[k]+2F[k-1])

F[2k+1] = (2F[k]+F[k-1])*(2F[k]-F[k-1]) + 2*(-1)^k
@end example

@end ifnottex
@m{F_{2k+1},F[2k+1]} here is the same as above, just rearranged to be a
multiply.  For interest, the @m{2(-1)^k, 2*(-1)^k} term both here and above
can be applied just to the low limb of the calculation, without a carry or
borrow into further limbs, which saves some code size.  See comments with
@code{mpz_fib_ui} and the internal @code{mpn_fib2_ui} for how this is done.


@node Lucas Numbers Algorithm, Random Number Algorithms, Fibonacci Numbers Algorithm, Other Algorithms
@subsection Lucas Numbers
@cindex Lucas number algorithm

@code{mpz_lucnum2_ui} derives a pair of Lucas numbers from a pair of Fibonacci
numbers with the following simple formulas.
@tex
$$\eqalign{
  L_k     &=  F_k + 2F_{k-1} \cr
  L_{k-1} &= 2F_k -  F_{k-1}
}$$
@end tex
@ifnottex

@example
L[k]   =   F[k] + 2*F[k-1]
L[k-1] = 2*F[k] -   F[k-1]
@end example

@end ifnottex
@code{mpz_lucnum_ui} is only interested in @m{L_n,L[n]}, and some work can be
saved.  Trailing zero bits on @math{n} can be handled with a single square
each.
@tex
$$ L_{2k} = L_k^2 - 2(-1)^k $$
@end tex
@ifnottex

@example
L[2k] = L[k]^2 - 2*(-1)^k
@end example

@end ifnottex
And the lowest 1 bit can be handled with one multiply of a pair of Fibonacci
numbers, similar to what @code{mpz_fib_ui} does.
@tex
$$ L_{2k+1} = 5F_{k-1} (2F_k + F_{k-1}) - 4(-1)^k $$
@end tex
@ifnottex

@example
L[2k+1] = 5*F[k-1]*(2*F[k]+F[k-1]) - 4*(-1)^k
@end example

@end ifnottex


@node Random Number Algorithms,  , Lucas Numbers Algorithm, Other Algorithms
@subsection Random Numbers
@cindex Random number algorithms

For the @code{urandomb} functions, random numbers are generated simply by
concatenating bits produced by the generator.  As long as the generator has
good randomness properties this will produce well-distributed @math{N} bit
numbers.

For the @code{urandomm} functions, random numbers in a range @math{0@le{}R<N}
are generated by taking values @math{R} of @m{\lceil \log_2 N \rceil,
ceil(log2(N))} bits each until one satisfies @math{R<N}.  This will normally
require only one or two attempts, but the attempts are limited in case the
generator is somehow degenerate and produces only 1 bits or similar.

@cindex Mersenne twister algorithm
The Mersenne Twister generator is by Matsumoto and Nishimura
(@pxref{References}).  It has a non-repeating period of @math{2^@W{19937}-1},
which is a Mersenne prime, hence the name of the generator.  The state is 624
words of 32-bits each, which is iterated with one XOR and shift for each
32-bit word generated, making the algorithm very fast.  Randomness properties
are also very good and this is the default algorithm used by GMP.

@cindex Linear congruential algorithm
Linear congruential generators are described in many text books, for instance
Knuth volume 2 (@pxref{References}).  With a modulus @math{M} and parameters
@math{A} and @math{C}, a integer state @math{S} is iterated by the formula
@math{S @leftarrow{} A@GMPmultiply{}S+C @bmod{} M}.  At each step the new
state is a linear function of the previous, mod @math{M}, hence the name of
the generator.

In GMP only moduli of the form @math{2^N} are supported, and the current
implementation is not as well optimized as it could be.  Overheads are
significant when @math{N} is small, and when @math{N} is large clearly the
multiply at each step will become slow.  This is not a big concern, since the
Mersenne Twister generator is better in every respect and is therefore
recommended for all normal applications.

For both generators the current state can be deduced by observing enough
output and applying some linear algebra (over GF(2) in the case of the
Mersenne Twister).  This generally means raw output is unsuitable for
cryptographic applications without further hashing or the like.


@node Assembly Coding,  , Other Algorithms, Algorithms
@section Assembly Coding
@cindex Assembly coding

The assembly subroutines in GMP are the most significant source of speed at
small to moderate sizes.  At larger sizes algorithm selection becomes more
important, but of course speedups in low level routines will still speed up
everything proportionally.

Carry handling and widening multiplies that are important for GMP can't be
easily expressed in C@.  GCC @code{asm} blocks help a lot and are provided in
@file{longlong.h}, but hand coding low level routines invariably offers a
speedup over generic C by a factor of anything from 2 to 10.

@menu
* Assembly Code Organisation::
* Assembly Basics::
* Assembly Carry Propagation::
* Assembly Cache Handling::
* Assembly Functional Units::
* Assembly Floating Point::
* Assembly SIMD Instructions::
* Assembly Software Pipelining::
* Assembly Loop Unrolling::
* Assembly Writing Guide::
@end menu


@node Assembly Code Organisation, Assembly Basics, Assembly Coding, Assembly Coding
@subsection Code Organisation
@cindex Assembly code organisation
@cindex Code organisation

The various @file{mpn} subdirectories contain machine-dependent code, written
in C or assembly.  The @file{mpn/generic} subdirectory contains default code,
used when there's no machine-specific version of a particular file.

Each @file{mpn} subdirectory is for an ISA family.  Generally 32-bit and
64-bit variants in a family cannot share code and have separate directories.
Within a family further subdirectories may exist for CPU variants.

In each directory a @file{nails} subdirectory may exist, holding code with
nails support for that CPU variant.  A @code{NAILS_SUPPORT} directive in each
file indicates the nails values the code handles.  Nails code only exists
where it's faster, or promises to be faster, than plain code.  There's no
effort put into nails if they're not going to enhance a given CPU.


@node Assembly Basics, Assembly Carry Propagation, Assembly Code Organisation, Assembly Coding
@subsection Assembly Basics

@code{mpn_addmul_1} and @code{mpn_submul_1} are the most important routines
for overall GMP performance.  All multiplications and divisions come down to
repeated calls to these.  @code{mpn_add_n}, @code{mpn_sub_n},
@code{mpn_lshift} and @code{mpn_rshift} are next most important.

On some CPUs assembly versions of the internal functions
@code{mpn_mul_basecase} and @code{mpn_sqr_basecase} give significant speedups,
mainly through avoiding function call overheads.  They can also potentially
make better use of a wide superscalar processor, as can bigger primitives like
@code{mpn_addmul_2} or @code{mpn_addmul_4}.

The restrictions on overlaps between sources and destinations
(@pxref{Low-level Functions}) are designed to facilitate a variety of
implementations.  For example, knowing @code{mpn_add_n} won't have partly
overlapping sources and destination means reading can be done far ahead of
writing on superscalar processors, and loops can be vectorized on a vector
processor, depending on the carry handling.


@node Assembly Carry Propagation, Assembly Cache Handling, Assembly Basics, Assembly Coding
@subsection Carry Propagation
@cindex Assembly carry propagation

The problem that presents most challenges in GMP is propagating carries from
one limb to the next.  In functions like @code{mpn_addmul_1} and
@code{mpn_add_n}, carries are the only dependencies between limb operations.

On processors with carry flags, a straightforward CISC style @code{adc} is
generally best.  AMD K6 @code{mpn_addmul_1} however is an example of an
unusual set of circumstances where a branch works out better.

On RISC processors generally an add and compare for overflow is used.  This
sort of thing can be seen in @file{mpn/generic/aors_n.c}.  Some carry
propagation schemes require 4 instructions, meaning at least 4 cycles per
limb, but other schemes may use just 1 or 2.  On wide superscalar processors
performance may be completely determined by the number of dependent
instructions between carry-in and carry-out for each limb.

On vector processors good use can be made of the fact that a carry bit only
very rarely propagates more than one limb.  When adding a single bit to a
limb, there's only a carry out if that limb was @code{0xFF@dots{}FF} which on
random data will be only 1 in @m{2\GMPraise{@code{mp\_bits\_per\_limb}},
2^mp_bits_per_limb}.  @file{mpn/cray/add_n.c} is an example of this, it adds
all limbs in parallel, adds one set of carry bits in parallel and then only
rarely needs to fall through to a loop propagating further carries.

On the x86s, GCC (as of version 2.95.2) doesn't generate particularly good code
for the RISC style idioms that are necessary to handle carry bits in
C@.  Often conditional jumps are generated where @code{adc} or @code{sbb} forms
would be better.  And so unfortunately almost any loop involving carry bits
needs to be coded in assembly for best results.


@node Assembly Cache Handling, Assembly Functional Units, Assembly Carry Propagation, Assembly Coding
@subsection Cache Handling
@cindex Assembly cache handling

GMP aims to perform well both on operands that fit entirely in L1 cache and
those which don't.

Basic routines like @code{mpn_add_n} or @code{mpn_lshift} are often used on
large operands, so L2 and main memory performance is important for them.
@code{mpn_mul_1} and @code{mpn_addmul_1} are mostly used for multiply and
square basecases, so L1 performance matters most for them, unless assembly
versions of @code{mpn_mul_basecase} and @code{mpn_sqr_basecase} exist, in
which case the remaining uses are mostly for larger operands.

For L2 or main memory operands, memory access times will almost certainly be
more than the calculation time.  The aim therefore is to maximize memory
throughput, by starting a load of the next cache line while processing the
contents of the previous one.  Clearly this is only possible if the chip has a
lock-up free cache or some sort of prefetch instruction.  Most current chips
have both these features.

Prefetching sources combines well with loop unrolling, since a prefetch can be
initiated once per unrolled loop (or more than once if the loop covers more
than one cache line).

On CPUs without write-allocate caches, prefetching destinations will ensure
individual stores don't go further down the cache hierarchy, limiting
bandwidth.  Of course for calculations which are slow anyway, like
@code{mpn_divrem_1}, write-throughs might be fine.

The distance ahead to prefetch will be determined by memory latency versus
throughput.  The aim of course is to have data arriving continuously, at peak
throughput.  Some CPUs have limits on the number of fetches or prefetches in
progress.

If a special prefetch instruction doesn't exist then a plain load can be used,
but in that case care must be taken not to attempt to read past the end of an
operand, since that might produce a segmentation violation.

Some CPUs or systems have hardware that detects sequential memory accesses and
initiates suitable cache movements automatically, making life easy.


@node Assembly Functional Units, Assembly Floating Point, Assembly Cache Handling, Assembly Coding
@subsection Functional Units

When choosing an approach for an assembly loop, consideration is given to
what operations can execute simultaneously and what throughput can thereby be
achieved.  In some cases an algorithm can be tweaked to accommodate available
resources.

Loop control will generally require a counter and pointer updates, costing as
much as 5 instructions, plus any delays a branch introduces.  CPU addressing
modes might reduce pointer updates, perhaps by allowing just one updating
pointer and others expressed as offsets from it, or on CISC chips with all
addressing done with the loop counter as a scaled index.

The final loop control cost can be amortised by processing several limbs in
each iteration (@pxref{Assembly Loop Unrolling}).  This at least ensures loop
control isn't a big fraction the work done.

Memory throughput is always a limit.  If perhaps only one load or one store
can be done per cycle then 3 cycles/limb will the top speed for ``binary''
operations like @code{mpn_add_n}, and any code achieving that is optimal.

Integer resources can be freed up by having the loop counter in a float
register, or by pressing the float units into use for some multiplying,
perhaps doing every second limb on the float side (@pxref{Assembly Floating
Point}).

Float resources can be freed up by doing carry propagation on the integer
side, or even by doing integer to float conversions in integers using bit
twiddling.


@node Assembly Floating Point, Assembly SIMD Instructions, Assembly Functional Units, Assembly Coding
@subsection Floating Point
@cindex Assembly floating Point

Floating point arithmetic is used in GMP for multiplications on CPUs with poor
integer multipliers.  It's mostly useful for @code{mpn_mul_1},
@code{mpn_addmul_1} and @code{mpn_submul_1} on 64-bit machines, and
@code{mpn_mul_basecase} on both 32-bit and 64-bit machines.

With IEEE 53-bit double precision floats, integer multiplications producing up
to 53 bits will give exact results.  Breaking a 64@cross{}64 multiplication
into eight 16@cross{}@math{32@rightarrow{}48} bit pieces is convenient.  With
some care though six 21@cross{}@math{32@rightarrow{}53} bit products can be
used, if one of the lower two 21-bit pieces also uses the sign bit.

For the @code{mpn_mul_1} family of functions on a 64-bit machine, the
invariant single limb is split at the start, into 3 or 4 pieces.  Inside the
loop, the bignum operand is split into 32-bit pieces.  Fast conversion of
these unsigned 32-bit pieces to floating point is highly machine-dependent.
In some cases, reading the data into the integer unit, zero-extending to
64-bits, then transferring to the floating point unit back via memory is the
only option.

Converting partial products back to 64-bit limbs is usually best done as a
signed conversion.  Since all values are smaller than @m{2^{53},2^53}, signed
and unsigned are the same, but most processors lack unsigned conversions.

@sp 2

Here is a diagram showing 16@cross{}32 bit products for an @code{mpn_mul_1} or
@code{mpn_addmul_1} with a 64-bit limb.  The single limb operand V is split
into four 16-bit parts.  The multi-limb operand U is split in the loop into
two 32-bit parts.

@tex
\global\newdimen\GMPbits      \global\GMPbits=0.18em
\def\GMPbox#1#2#3{%
  \hbox{%
    \hbox to 128\GMPbits{\hfil
      \vbox{%
        \hrule
        \hbox to 48\GMPbits {\GMPvrule \hfil$#2$\hfil \vrule}%
        \hrule}%
      \hskip #1\GMPbits}%
    \raise \GMPboxdepth \hbox{\hskip 2em #3}}}
%
\GMPdisplay{%
  \vbox{%
    \hbox{%
      \hbox to 128\GMPbits {\hfil
        \vbox{%
          \hrule
          \hbox to 64\GMPbits{%
            \GMPvrule \hfil$v48$\hfil
            \vrule    \hfil$v32$\hfil
            \vrule    \hfil$v16$\hfil
            \vrule    \hfil$v00$\hfil
            \vrule}
          \hrule}}%
       \raise \GMPboxdepth \hbox{\hskip 2em V Operand}}
    \vskip 0.5ex
    \hbox{%
      \hbox to 128\GMPbits {\hfil
        \raise \GMPboxdepth \hbox{$\times$\hskip 1.5em}%
        \vbox{%
          \hrule
          \hbox to 64\GMPbits {%
            \GMPvrule \hfil$u32$\hfil
            \vrule \hfil$u00$\hfil
            \vrule}%
          \hrule}}%
       \raise \GMPboxdepth \hbox{\hskip 2em U Operand (one limb)}}%
    \vskip 0.5ex
    \hbox{\vbox to 2ex{\hrule width 128\GMPbits}}%
    \GMPbox{0}{u00 \times v00}{$p00$\hskip 1.5em 48-bit products}%
    \vskip 0.5ex
    \GMPbox{16}{u00 \times v16}{$p16$}
    \vskip 0.5ex
    \GMPbox{32}{u00 \times v32}{$p32$}
    \vskip 0.5ex
    \GMPbox{48}{u00 \times v48}{$p48$}
    \vskip 0.5ex
    \GMPbox{32}{u32 \times v00}{$r32$}
    \vskip 0.5ex
    \GMPbox{48}{u32 \times v16}{$r48$}
    \vskip 0.5ex
    \GMPbox{64}{u32 \times v32}{$r64$}
    \vskip 0.5ex
    \GMPbox{80}{u32 \times v48}{$r80$}
}}
@end tex
@ifnottex
@example
@group
                +---+---+---+---+
                |v48|v32|v16|v00|    V operand
                +---+---+---+---+

                +-------+---+---+
            x   |  u32  |  u00  |    U operand (one limb)
                +---------------+

---------------------------------

                    +-----------+
                    | u00 x v00 |    p00    48-bit products
                    +-----------+
                +-----------+
                | u00 x v16 |        p16
                +-----------+
            +-----------+
            | u00 x v32 |            p32
            +-----------+
        +-----------+
        | u00 x v48 |                p48
        +-----------+
            +-----------+
            | u32 x v00 |            r32
            +-----------+
        +-----------+
        | u32 x v16 |                r48
        +-----------+
    +-----------+
    | u32 x v32 |                    r64
    +-----------+
+-----------+
| u32 x v48 |                        r80
+-----------+
@end group
@end example
@end ifnottex

@math{p32} and @math{r32} can be summed using floating-point addition, and
likewise @math{p48} and @math{r48}.  @math{p00} and @math{p16} can be summed
with @math{r64} and @math{r80} from the previous iteration.

For each loop then, four 49-bit quantities are transferred to the integer unit,
aligned as follows,

@tex
% GMPbox here should be 49 bits wide, but use 51 to better show p16+r80'
% crossing into the upper 64 bits.
\def\GMPbox#1#2#3{%
  \hbox{%
    \hbox to 128\GMPbits {%
      \hfil
      \vbox{%
        \hrule
        \hbox to 51\GMPbits {\GMPvrule \hfil$#2$\hfil \vrule}%
        \hrule}%
      \hskip #1\GMPbits}%
    \raise \GMPboxdepth \hbox{\hskip 1.5em $#3$\hfil}%
}}
\newbox\b \setbox\b\hbox{64 bits}%
\newdimen\bw \bw=\wd\b \advance\bw by 2em
\newdimen\x \x=128\GMPbits
\advance\x by -2\bw
\divide\x by4
\GMPdisplay{%
  \vbox{%
    \hbox to 128\GMPbits {%
      \GMPvrule
      \raise 0.5ex \vbox{\hrule \hbox to \x {}}%
      \hfil 64 bits\hfil
      \raise 0.5ex \vbox{\hrule \hbox to \x {}}%
      \vrule
      \raise 0.5ex \vbox{\hrule \hbox to \x {}}%
      \hfil 64 bits\hfil
      \raise 0.5ex \vbox{\hrule \hbox to \x {}}%
      \vrule}%
    \vskip 0.7ex
    \GMPbox{0}{p00+r64'}{i00}
    \vskip 0.5ex
    \GMPbox{16}{p16+r80'}{i16}
    \vskip 0.5ex
    \GMPbox{32}{p32+r32}{i32}
    \vskip 0.5ex
    \GMPbox{48}{p48+r48}{i48}
}}
@end tex
@ifnottex
@example
@group
|-----64bits----|-----64bits----|
                   +------------+
                   | p00 + r64' |    i00
                   +------------+
               +------------+
               | p16 + r80' |        i16
               +------------+
           +------------+
           | p32 + r32  |            i32
           +------------+
       +------------+
       | p48 + r48  |                i48
       +------------+
@end group
@end example
@end ifnottex

The challenge then is to sum these efficiently and add in a carry limb,
generating a low 64-bit result limb and a high 33-bit carry limb (@math{i48}
extends 33 bits into the high half).


@node Assembly SIMD Instructions, Assembly Software Pipelining, Assembly Floating Point, Assembly Coding
@subsection SIMD Instructions
@cindex Assembly SIMD

The single-instruction multiple-data support in current microprocessors is
aimed at signal processing algorithms where each data point can be treated
more or less independently.  There's generally not much support for
propagating the sort of carries that arise in GMP.

SIMD multiplications of say four 16@cross{}16 bit multiplies only do as much
work as one 32@cross{}32 from GMP's point of view, and need some shifts and
adds besides.  But of course if say the SIMD form is fully pipelined and uses
less instruction decoding then it may still be worthwhile.

On the x86 chips, MMX has so far found a use in @code{mpn_rshift} and
@code{mpn_lshift}, and is used in a special case for 16-bit multipliers in the
P55 @code{mpn_mul_1}.  SSE2 is used for Pentium 4 @code{mpn_mul_1},
@code{mpn_addmul_1}, and @code{mpn_submul_1}.


@node Assembly Software Pipelining, Assembly Loop Unrolling, Assembly SIMD Instructions, Assembly Coding
@subsection Software Pipelining
@cindex Assembly software pipelining

Software pipelining consists of scheduling instructions around the branch
point in a loop.  For example a loop might issue a load not for use in the
present iteration but the next, thereby allowing extra cycles for the data to
arrive from memory.

Naturally this is wanted only when doing things like loads or multiplies that
take several cycles to complete, and only where a CPU has multiple functional
units so that other work can be done in the meantime.

A pipeline with several stages will have a data value in progress at each
stage and each loop iteration moves them along one stage.  This is like
juggling.

If the latency of some instruction is greater than the loop time then it will
be necessary to unroll, so one register has a result ready to use while
another (or multiple others) are still in progress.  (@pxref{Assembly Loop
Unrolling}).


@node Assembly Loop Unrolling, Assembly Writing Guide, Assembly Software Pipelining, Assembly Coding
@subsection Loop Unrolling
@cindex Assembly loop unrolling

Loop unrolling consists of replicating code so that several limbs are
processed in each loop.  At a minimum this reduces loop overheads by a
corresponding factor, but it can also allow better register usage, for example
alternately using one register combination and then another.  Judicious use of
@command{m4} macros can help avoid lots of duplication in the source code.

Any amount of unrolling can be handled with a loop counter that's decremented
by @math{N} each time, stopping when the remaining count is less than the
further @math{N} the loop will process.  Or by subtracting @math{N} at the
start, the termination condition becomes when the counter @math{C} is less
than 0 (and the count of remaining limbs is @math{C+N}).

Alternately for a power of 2 unroll the loop count and remainder can be
established with a shift and mask.  This is convenient if also making a
computed jump into the middle of a large loop.

The limbs not a multiple of the unrolling can be handled in various ways, for
example

@itemize @bullet
@item
A simple loop at the end (or the start) to process the excess.  Care will be
wanted that it isn't too much slower than the unrolled part.

@item
A set of binary tests, for example after an 8-limb unrolling, test for 4 more
limbs to process, then a further 2 more or not, and finally 1 more or not.
This will probably take more code space than a simple loop.

@item
A @code{switch} statement, providing separate code for each possible excess,
for example an 8-limb unrolling would have separate code for 0 remaining, 1
remaining, etc, up to 7 remaining.  This might take a lot of code, but may be
the best way to optimize all cases in combination with a deep pipelined loop.

@item
A computed jump into the middle of the loop, thus making the first iteration
handle the excess.  This should make times smoothly increase with size, which
is attractive, but setups for the jump and adjustments for pointers can be
tricky and could become quite difficult in combination with deep pipelining.
@end itemize


@node Assembly Writing Guide,  , Assembly Loop Unrolling, Assembly Coding
@subsection Writing Guide
@cindex Assembly writing guide

This is a guide to writing software pipelined loops for processing limb
vectors in assembly.

First determine the algorithm and which instructions are needed.  Code it
without unrolling or scheduling, to make sure it works.  On a 3-operand CPU
try to write each new value to a new register, this will greatly simplify later
steps.

Then note for each instruction the functional unit and/or issue port
requirements.  If an instruction can use either of two units, like U0 or U1
then make a category ``U0/U1''.  Count the total using each unit (or combined
unit), and count all instructions.

Figure out from those counts the best possible loop time.  The goal will be to
find a perfect schedule where instruction latencies are completely hidden.
The total instruction count might be the limiting factor, or perhaps a
particular functional unit.  It might be possible to tweak the instructions to
help the limiting factor.

Suppose the loop time is @math{N}, then make @math{N} issue buckets, with the
final loop branch at the end of the last.  Now fill the buckets with dummy
instructions using the functional units desired.  Run this to make sure the
intended speed is reached.

Now replace the dummy instructions with the real instructions from the slow
but correct loop you started with.  The first will typically be a load
instruction.  Then the instruction using that value is placed in a bucket an
appropriate distance down.  Run the loop again, to check it still runs at
target speed.

Keep placing instructions, frequently measuring the loop.  After a few you
will need to wrap around from the last bucket back to the top of the loop.  If
you used the new-register for new-value strategy above then there will be no
register conflicts.  If not then take care not to clobber something already in
use.  Changing registers at this time is very error prone.

The loop will overlap two or more of the original loop iterations, and the
computation of one vector element result will be started in one iteration of
the new loop, and completed one or several iterations later.

The final step is to create feed-in and wind-down code for the loop.  A good
way to do this is to make a copy (or copies) of the loop at the start and
delete those instructions which don't have valid antecedents, and at the end
replicate and delete those whose results are unwanted (including any further
loads).

The loop will have a minimum number of limbs loaded and processed, so the
feed-in code must test if the request size is smaller and skip either to a
suitable part of the wind-down or to special code for small sizes.


@node Internals, Contributors, Algorithms, Top
@chapter Internals
@cindex Internals

@strong{This chapter is provided only for informational purposes and the
various internals described here may change in future GMP releases.
Applications expecting to be compatible with future releases should use only
the documented interfaces described in previous chapters.}

@menu
* Integer Internals::
* Rational Internals::
* Float Internals::
* Raw Output Internals::
* C++ Interface Internals::
@end menu

@node Integer Internals, Rational Internals, Internals, Internals
@section Integer Internals
@cindex Integer internals

@code{mpz_t} variables represent integers using sign and magnitude, in space
dynamically allocated and reallocated.  The fields are as follows.

@table @asis
@item @code{_mp_size}
The number of limbs, or the negative of that when representing a negative
integer.  Zero is represented by @code{_mp_size} set to zero, in which case
the @code{_mp_d} data is unused.

@item @code{_mp_d}
A pointer to an array of limbs which is the magnitude.  These are stored
``little endian'' as per the @code{mpn} functions, so @code{_mp_d[0]} is the
least significant limb and @code{_mp_d[ABS(_mp_size)-1]} is the most
significant.  Whenever @code{_mp_size} is non-zero, the most significant limb
is non-zero.

Currently there's always at least one limb allocated, so for instance
@code{mpz_set_ui} never needs to reallocate, and @code{mpz_get_ui} can fetch
@code{_mp_d[0]} unconditionally (though its value is then only wanted if
@code{_mp_size} is non-zero).

@item @code{_mp_alloc}
@code{_mp_alloc} is the number of limbs currently allocated at @code{_mp_d},
and naturally @code{_mp_alloc >= ABS(_mp_size)}.  When an @code{mpz} routine
is about to (or might be about to) increase @code{_mp_size}, it checks
@code{_mp_alloc} to see whether there's enough space, and reallocates if not.
@code{MPZ_REALLOC} is generally used for this.
@end table

The various bitwise logical functions like @code{mpz_and} behave as if
negative values were twos complement.  But sign and magnitude is always used
internally, and necessary adjustments are made during the calculations.
Sometimes this isn't pretty, but sign and magnitude are best for other
routines.

Some internal temporary variables are setup with @code{MPZ_TMP_INIT} and these
have @code{_mp_d} space obtained from @code{TMP_ALLOC} rather than the memory
allocation functions.  Care is taken to ensure that these are big enough that
no reallocation is necessary (since it would have unpredictable consequences).

@code{_mp_size} and @code{_mp_alloc} are @code{int}, although @code{mp_size_t}
is usually a @code{long}.  This is done to make the fields just 32 bits on
some 64 bits systems, thereby saving a few bytes of data space but still
providing plenty of range.


@node Rational Internals, Float Internals, Integer Internals, Internals
@section Rational Internals
@cindex Rational internals

@code{mpq_t} variables represent rationals using an @code{mpz_t} numerator and
denominator (@pxref{Integer Internals}).

The canonical form adopted is denominator positive (and non-zero), no common
factors between numerator and denominator, and zero uniquely represented as
0/1.

It's believed that casting out common factors at each stage of a calculation
is best in general.  A GCD is an @math{O(N^2)} operation so it's better to do
a few small ones immediately than to delay and have to do a big one later.
Knowing the numerator and denominator have no common factors can be used for
example in @code{mpq_mul} to make only two cross GCDs necessary, not four.

This general approach to common factors is badly sub-optimal in the presence
of simple factorizations or little prospect for cancellation, but GMP has no
way to know when this will occur.  As per @ref{Efficiency}, that's left to
applications.  The @code{mpq_t} framework might still suit, with
@code{mpq_numref} and @code{mpq_denref} for direct access to the numerator and
denominator, or of course @code{mpz_t} variables can be used directly.


@node Float Internals, Raw Output Internals, Rational Internals, Internals
@section Float Internals
@cindex Float internals

Efficient calculation is the primary aim of GMP floats and the use of whole
limbs and simple rounding facilitates this.

@code{mpf_t} floats have a variable precision mantissa and a single machine
word signed exponent.  The mantissa is represented using sign and magnitude.

@c FIXME: The arrow heads don't join to the lines exactly.
@tex
\global\newdimen\GMPboxwidth \GMPboxwidth=5em
\global\newdimen\GMPboxheight \GMPboxheight=3ex
\def\centreline{\hbox{\raise 0.8ex \vbox{\hrule \hbox{\hfil}}}}
\GMPdisplay{%
\vbox{%
  \hbox to 5\GMPboxwidth {most significant limb \hfil least significant limb}
  \vskip 0.7ex
  \def\GMPcentreline#1{\hbox{\raise 0.5 ex \vbox{\hrule \hbox to #1 {}}}}
  \hbox {
    \hbox to 3\GMPboxwidth {%
      \setbox 0 = \hbox{@code{\_mp\_exp}}%
      \dimen0=3\GMPboxwidth
      \advance\dimen0 by -\wd0
      \divide\dimen0 by 2
      \advance\dimen0 by -1em
      \setbox1 = \hbox{$\rightarrow$}%
      \dimen1=\dimen0
      \advance\dimen1 by -\wd1
      \GMPcentreline{\dimen0}%
      \hfil
      \box0%
      \hfil
      \GMPcentreline{\dimen1{}}%
      \box1}
    \hbox to 2\GMPboxwidth {\hfil @code{\_mp\_d}}}
  \vskip 0.5ex
  \vbox {%
    \hrule
    \hbox{%
      \vrule height 2ex depth 1ex
      \hbox to \GMPboxwidth {}%
      \vrule
      \hbox to \GMPboxwidth {}%
      \vrule
      \hbox to \GMPboxwidth {}%
      \vrule
      \hbox to \GMPboxwidth {}%
      \vrule
      \hbox to \GMPboxwidth {}%
      \vrule}
    \hrule
  }
  \hbox {%
    \hbox to 0.8 pt {}
    \hbox to 3\GMPboxwidth {%
      \hfil $\cdot$} \hbox {$\leftarrow$ radix point\hfil}}
  \hbox to 5\GMPboxwidth{%
    \setbox 0 = \hbox{@code{\_mp\_size}}%
    \dimen0 = 5\GMPboxwidth
    \advance\dimen0 by -\wd0
    \divide\dimen0 by 2
    \advance\dimen0 by -1em
    \dimen1 = \dimen0
    \setbox1 = \hbox{$\leftarrow$}%
    \setbox2 = \hbox{$\rightarrow$}%
    \advance\dimen0 by -\wd1
    \advance\dimen1 by -\wd2
    \hbox to 0.3 em {}%
    \box1
    \GMPcentreline{\dimen0}%
    \hfil
    \box0
    \hfil
    \GMPcentreline{\dimen1}%
    \box2}
}}
@end tex
@ifnottex
@example
   most                   least
significant            significant
   limb                   limb

                            _mp_d
 |---- _mp_exp --->           |
  _____ _____ _____ _____ _____
 |_____|_____|_____|_____|_____|
                   . <------------ radix point

  <-------- _mp_size --------->
@sp 1
@end example
@end ifnottex

@noindent
The fields are as follows.

@table @asis
@item @code{_mp_size}
The number of limbs currently in use, or the negative of that when
representing a negative value.  Zero is represented by @code{_mp_size} and
@code{_mp_exp} both set to zero, and in that case the @code{_mp_d} data is
unused.  (In the future @code{_mp_exp} might be undefined when representing
zero.)

@item @code{_mp_prec}
The precision of the mantissa, in limbs.  In any calculation the aim is to
produce @code{_mp_prec} limbs of result (the most significant being non-zero).

@item @code{_mp_d}
A pointer to the array of limbs which is the absolute value of the mantissa.
These are stored ``little endian'' as per the @code{mpn} functions, so
@code{_mp_d[0]} is the least significant limb and
@code{_mp_d[ABS(_mp_size)-1]} the most significant.

The most significant limb is always non-zero, but there are no other
restrictions on its value, in particular the highest 1 bit can be anywhere
within the limb.

@code{_mp_prec+1} limbs are allocated to @code{_mp_d}, the extra limb being
for convenience (see below).  There are no reallocations during a calculation,
only in a change of precision with @code{mpf_set_prec}.

@item @code{_mp_exp}
The exponent, in limbs, determining the location of the implied radix point.
Zero means the radix point is just above the most significant limb.  Positive
values mean a radix point offset towards the lower limbs and hence a value
@math{@ge{} 1}, as for example in the diagram above.  Negative exponents mean
a radix point further above the highest limb.

Naturally the exponent can be any value, it doesn't have to fall within the
limbs as the diagram shows, it can be a long way above or a long way below.
Limbs other than those included in the @code{@{_mp_d,_mp_size@}} data
are treated as zero.
@end table

The @code{_mp_size} and @code{_mp_prec} fields are @code{int}, although the
@code{mp_size_t} type is usually a @code{long}.  The @code{_mp_exp} field is
usually @code{long}.  This is done to make some fields just 32 bits on some 64
bits systems, thereby saving a few bytes of data space but still providing
plenty of precision and a very large range.


@sp 1
@noindent
The following various points should be noted.

@table @asis
@item Low Zeros
The least significant limbs @code{_mp_d[0]} etc can be zero, though such low
zeros can always be ignored.  Routines likely to produce low zeros check and
avoid them to save time in subsequent calculations, but for most routines
they're quite unlikely and aren't checked.

@item Mantissa Size Range
The @code{_mp_size} count of limbs in use can be less than @code{_mp_prec} if
the value can be represented in less.  This means low precision values or
small integers stored in a high precision @code{mpf_t} can still be operated
on efficiently.

@code{_mp_size} can also be greater than @code{_mp_prec}.  Firstly a value is
allowed to use all of the @code{_mp_prec+1} limbs available at @code{_mp_d},
and secondly when @code{mpf_set_prec_raw} lowers @code{_mp_prec} it leaves
@code{_mp_size} unchanged and so the size can be arbitrarily bigger than
@code{_mp_prec}.

@item Rounding
All rounding is done on limb boundaries.  Calculating @code{_mp_prec} limbs
with the high non-zero will ensure the application requested minimum precision
is obtained.

The use of simple ``trunc'' rounding towards zero is efficient, since there's
no need to examine extra limbs and increment or decrement.

@item Bit Shifts
Since the exponent is in limbs, there are no bit shifts in basic operations
like @code{mpf_add} and @code{mpf_mul}.  When differing exponents are
encountered all that's needed is to adjust pointers to line up the relevant
limbs.

Of course @code{mpf_mul_2exp} and @code{mpf_div_2exp} will require bit shifts,
but the choice is between an exponent in limbs which requires shifts there, or
one in bits which requires them almost everywhere else.

@item Use of @code{_mp_prec+1} Limbs
The extra limb on @code{_mp_d} (@code{_mp_prec+1} rather than just
@code{_mp_prec}) helps when an @code{mpf} routine might get a carry from its
operation.  @code{mpf_add} for instance will do an @code{mpn_add} of
@code{_mp_prec} limbs.  If there's no carry then that's the result, but if
there is a carry then it's stored in the extra limb of space and
@code{_mp_size} becomes @code{_mp_prec+1}.

Whenever @code{_mp_prec+1} limbs are held in a variable, the low limb is not
needed for the intended precision, only the @code{_mp_prec} high limbs.  But
zeroing it out or moving the rest down is unnecessary.  Subsequent routines
reading the value will simply take the high limbs they need, and this will be
@code{_mp_prec} if their target has that same precision.  This is no more than
a pointer adjustment, and must be checked anyway since the destination
precision can be different from the sources.

Copy functions like @code{mpf_set} will retain a full @code{_mp_prec+1} limbs
if available.  This ensures that a variable which has @code{_mp_size} equal to
@code{_mp_prec+1} will get its full exact value copied.  Strictly speaking
this is unnecessary since only @code{_mp_prec} limbs are needed for the
application's requested precision, but it's considered that an @code{mpf_set}
from one variable into another of the same precision ought to produce an exact
copy.

@item Application Precisions
@code{__GMPF_BITS_TO_PREC} converts an application requested precision to an
@code{_mp_prec}.  The value in bits is rounded up to a whole limb then an
extra limb is added since the most significant limb of @code{_mp_d} is only
non-zero and therefore might contain only one bit.

@code{__GMPF_PREC_TO_BITS} does the reverse conversion, and removes the extra
limb from @code{_mp_prec} before converting to bits.  The net effect of
reading back with @code{mpf_get_prec} is simply the precision rounded up to a
multiple of @code{mp_bits_per_limb}.

Note that the extra limb added here for the high only being non-zero is in
addition to the extra limb allocated to @code{_mp_d}.  For example with a
32-bit limb, an application request for 250 bits will be rounded up to 8
limbs, then an extra added for the high being only non-zero, giving an
@code{_mp_prec} of 9.  @code{_mp_d} then gets 10 limbs allocated.  Reading
back with @code{mpf_get_prec} will take @code{_mp_prec} subtract 1 limb and
multiply by 32, giving 256 bits.

Strictly speaking, the fact the high limb has at least one bit means that a
float with, say, 3 limbs of 32-bits each will be holding at least 65 bits, but
for the purposes of @code{mpf_t} it's considered simply to be 64 bits, a nice
multiple of the limb size.
@end table


@node Raw Output Internals, C++ Interface Internals, Float Internals, Internals
@section Raw Output Internals
@cindex Raw output internals

@noindent
@code{mpz_out_raw} uses the following format.

@tex
\global\newdimen\GMPboxwidth \GMPboxwidth=5em
\global\newdimen\GMPboxheight \GMPboxheight=3ex
\def\centreline{\hbox{\raise 0.8ex \vbox{\hrule \hbox{\hfil}}}}
\GMPdisplay{%
\vbox{%
  \def\GMPcentreline#1{\hbox{\raise 0.5 ex \vbox{\hrule \hbox to #1 {}}}}
  \vbox {%
    \hrule
    \hbox{%
      \vrule height 2.5ex depth 1.5ex
      \hbox to \GMPboxwidth {\hfil size\hfil}%
      \vrule
      \hbox to 3\GMPboxwidth {\hfil data bytes\hfil}%
      \vrule}
    \hrule}
}}
@end tex
@ifnottex
@example
+------+------------------------+
| size |       data bytes       |
+------+------------------------+
@end example
@end ifnottex

The size is 4 bytes written most significant byte first, being the number of
subsequent data bytes, or the twos complement negative of that when a negative
integer is represented.  The data bytes are the absolute value of the integer,
written most significant byte first.

The most significant data byte is always non-zero, so the output is the same
on all systems, irrespective of limb size.

In GMP 1, leading zero bytes were written to pad the data bytes to a multiple
of the limb size.  @code{mpz_inp_raw} will still accept this, for
compatibility.

The use of ``big endian'' for both the size and data fields is deliberate, it
makes the data easy to read in a hex dump of a file.  Unfortunately it also
means that the limb data must be reversed when reading or writing, so neither
a big endian nor little endian system can just read and write @code{_mp_d}.


@node C++ Interface Internals,  , Raw Output Internals, Internals
@section C++ Interface Internals
@cindex C++ interface internals

A system of expression templates is used to ensure something like @code{a=b+c}
turns into a simple call to @code{mpz_add} etc.  For @code{mpf_class}
the scheme also ensures the precision of the final
destination is used for any temporaries within a statement like
@code{f=w*x+y*z}.  These are important features which a naive implementation
cannot provide.

A simplified description of the scheme follows.  The true scheme is
complicated by the fact that expressions have different return types.  For
detailed information, refer to the source code.

To perform an operation, say, addition, we first define a ``function object''
evaluating it,

@example
struct __gmp_binary_plus
@{
  static void eval(mpf_t f, mpf_t g, mpf_t h) @{ mpf_add(f, g, h); @}
@};
@end example

@noindent
And an ``additive expression'' object,

@example
__gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >
operator+(const mpf_class &f, const mpf_class &g)
@{
  return __gmp_expr
    <__gmp_binary_expr<mpf_class, mpf_class, __gmp_binary_plus> >(f, g);
@}
@end example

The seemingly redundant @code{__gmp_expr<__gmp_binary_expr<@dots{}>>} is used to
encapsulate any possible kind of expression into a single template type.  In
fact even @code{mpf_class} etc are @code{typedef} specializations of
@code{__gmp_expr}.

Next we define assignment of @code{__gmp_expr} to @code{mpf_class}.

@example
template <class T>
mpf_class & mpf_class::operator=(const __gmp_expr<T> &expr)
@{
  expr.eval(this->get_mpf_t(), this->precision());
  return *this;
@}

template <class Op>
void __gmp_expr<__gmp_binary_expr<mpf_class, mpf_class, Op> >::eval
(mpf_t f, mp_bitcnt_t precision)
@{
  Op::eval(f, expr.val1.get_mpf_t(), expr.val2.get_mpf_t());
@}
@end example

where @code{expr.val1} and @code{expr.val2} are references to the expression's
operands (here @code{expr} is the @code{__gmp_binary_expr} stored within the
@code{__gmp_expr}).

This way, the expression is actually evaluated only at the time of assignment,
when the required precision (that of @code{f}) is known.  Furthermore the
target @code{mpf_t} is now available, thus we can call @code{mpf_add} directly
with @code{f} as the output argument.

Compound expressions are handled by defining operators taking subexpressions
as their arguments, like this:

@example
template <class T, class U>
__gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
operator+(const __gmp_expr<T> &expr1, const __gmp_expr<U> &expr2)
@{
  return __gmp_expr
    <__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, __gmp_binary_plus> >
    (expr1, expr2);
@}
@end example

And the corresponding specializations of @code{__gmp_expr::eval}:

@example
template <class T, class U, class Op>
void __gmp_expr
<__gmp_binary_expr<__gmp_expr<T>, __gmp_expr<U>, Op> >::eval
(mpf_t f, mp_bitcnt_t precision)
@{
  // declare two temporaries
  mpf_class temp1(expr.val1, precision), temp2(expr.val2, precision);
  Op::eval(f, temp1.get_mpf_t(), temp2.get_mpf_t());
@}
@end example

The expression is thus recursively evaluated to any level of complexity and
all subexpressions are evaluated to the precision of @code{f}.


@node Contributors, References, Internals, Top
@comment  node-name,  next,  previous,  up
@appendix Contributors
@cindex Contributors

Torbj@"orn Granlund wrote the original GMP library and is still the main
developer.  Code not explicitly attributed to others, was contributed by
Torbj@"orn.  Several other individuals and organizations have contributed
GMP.  Here is a list in chronological order on first contribution:

Gunnar Sj@"odin and Hans Riesel helped with mathematical problems in early
versions of the library.

Richard Stallman helped with the interface design and revised the first
version of this manual.

Brian Beuning and Doug Lea helped with testing of early versions of the
library and made creative suggestions.

John Amanatides of York University in Canada contributed the function
@code{mpz_probab_prime_p}.

Paul Zimmermann wrote the REDC-based mpz_powm code, the Sch@"onhage-Strassen
FFT multiply code, and the Karatsuba square root code.  He also improved the
Toom3 code for GMP 4.2.  Paul sparked the development of GMP 2, with his
comparisons between bignum packages.  The ECMNET project Paul is organizing
was a driving force behind many of the optimizations in GMP 3.  Paul also
wrote the new GMP 4.3 nth root code (with Torbj@"orn).

Ken Weber (Kent State University, Universidade Federal do Rio Grande do Sul)
contributed now defunct versions of @code{mpz_gcd}, @code{mpz_divexact},
@code{mpn_gcd}, and @code{mpn_bdivmod}, partially supported by CNPq (Brazil)
grant 301314194-2.

Per Bothner of Cygnus Support helped to set up GMP to use Cygnus' configure.
He has also made valuable suggestions and tested numerous intermediary
releases.

Joachim Hollman was involved in the design of the @code{mpf} interface, and in
the @code{mpz} design revisions for version 2.

Bennet Yee contributed the initial versions of @code{mpz_jacobi} and
@code{mpz_legendre}.

Andreas Schwab contributed the files @file{mpn/m68k/lshift.S} and
@file{mpn/m68k/rshift.S} (now in @file{.asm} form).

Robert Harley of Inria, France and David Seal of ARM, England, suggested clever
improvements for population count.  Robert also wrote highly optimized
Karatsuba and 3-way Toom multiplication functions for GMP 3, and contributed
the ARM assembly code.

Torsten Ekedahl of the Mathematical department of Stockholm University provided
significant inspiration during several phases of the GMP development.  His
mathematical expertise helped improve several algorithms.

Linus Nordberg wrote the new configure system based on autoconf and
implemented the new random functions.

Kevin Ryde worked on a large number of things: optimized x86 code, m4 asm
macros, parameter tuning, speed measuring, the configure system, function
inlining, divisibility tests, bit scanning, Jacobi symbols, Fibonacci and Lucas
number functions, printf and scanf functions, perl interface, demo expression
parser, the algorithms chapter in the manual, @file{gmpasm-mode.el}, and
various miscellaneous improvements elsewhere.

Kent Boortz made the Mac OS 9 port.

Steve Root helped write the optimized alpha 21264 assembly code.

Gerardo Ballabio wrote the @file{gmpxx.h} C++ class interface and the C++
@code{istream} input routines.

Jason Moxham rewrote @code{mpz_fac_ui}.

Pedro Gimeno implemented the Mersenne Twister and made other random number
improvements.

Niels M@"oller wrote the sub-quadratic GCD and extended GCD code, the
quadratic Hensel division code, and (with Torbj@"orn) the new divide and
conquer division code for GMP 4.3.  Niels also helped implement the new Toom
multiply code for GMP 4.3 and implemented helper functions to simplify Toom
evaluations for GMP 5.0.  He wrote the original version of mpn_mulmod_bnm1.

Alberto Zanoni and Marco Bodrato suggested the unbalanced multiply strategy,
and found the optimal strategies for evaluation and interpolation in Toom
multiplication.

Marco Bodrato helped implement the new Toom multiply code for GMP 4.3 and
implemented most of the new Toom multiply and squaring code for 5.0.
He is the main author of the current mpn_mulmod_bnm1 and mpn_mullo_n.  Marco
also wrote the functions mpn_invert and mpn_invertappr.

David Harvey suggested the internal function @code{mpn_bdiv_dbm1}, implementing
division relevant to Toom multiplication.  He also worked on fast assembly
sequences, in particular on a fast AMD64 @code{mpn_mul_basecase}.

Martin Boij wrote @code{mpn_perfect_power_p}.

(This list is chronological, not ordered after significance.  If you have
contributed to GMP but are not listed above, please tell
@email{gmp-devel@@gmplib.org} about the omission!)

The development of floating point functions of GNU MP 2, were supported in part
by the ESPRIT-BRA (Basic Research Activities) 6846 project POSSO (POlynomial
System SOlving).

The development of GMP 2, 3, and 4 was supported in part by the IDA Center for
Computing Sciences.

Thanks go to Hans Thorsen for donating an SGI system for the GMP test system
environment.

@node References, GNU Free Documentation License, Contributors, Top
@comment  node-name,  next,  previous,  up
@appendix References
@cindex References

@c  FIXME: In tex, the @uref's are unhyphenated, which is good for clarity,
@c  but being long words they upset paragraph formatting (the preceding line
@c  can get badly stretched).  Would like an conditional @* style line break
@c  if the uref is too long to fit on the last line of the paragraph, but it's
@c  not clear how to do that.  For now explicit @texlinebreak{}s are used on
@c  paragraphs that come out bad.

@section Books

@itemize @bullet
@item
Jonathan M. Borwein and Peter B. Borwein, ``Pi and the AGM: A Study in
Analytic Number Theory and Computational Complexity'', Wiley, 1998.

@item
Richard Crandall and Carl Pomerance, ``Prime Numbers: A Computational
Perspective'', 2nd edition, Springer-Verlag, 2005.
@texlinebreak{} @uref{http://www.math.dartmouth.edu/~carlp/}

@item
Henri Cohen, ``A Course in Computational Algebraic Number Theory'', Graduate
Texts in Mathematics number 138, Springer-Verlag, 1993.
@texlinebreak{} @uref{http://www.math.u-bordeaux.fr/~cohen/}

@item
Donald E. Knuth, ``The Art of Computer Programming'', volume 2,
``Seminumerical Algorithms'', 3rd edition, Addison-Wesley, 1998.
@texlinebreak{} @uref{http://www-cs-faculty.stanford.edu/~knuth/taocp.html}

@item
John D. Lipson, ``Elements of Algebra and Algebraic Computing'',
The Benjamin Cummings Publishing Company Inc, 1981.

@item
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, ``Handbook of
Applied Cryptography'', @uref{http://www.cacr.math.uwaterloo.ca/hac/}

@item
Richard M. Stallman and the GCC Developer Community, ``Using the GNU Compiler
Collection'', Free Software Foundation, 2008, available online
@uref{http://gcc.gnu.org/onlinedocs/}, and in the GCC package
@uref{ftp://ftp.gnu.org/gnu/gcc/}
@end itemize

@section Papers

@itemize @bullet
@item
Yves Bertot, Nicolas Magaud and Paul Zimmermann, ``A Proof of GMP Square
Root'', Journal of Automated Reasoning, volume 29, 2002, pp.@: 225-252.  Also
available online as INRIA Research Report 4475, June 2002,
@uref{http://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf}

@item
Christoph Burnikel and Joachim Ziegler, ``Fast Recursive Division'',
Max-Planck-Institut fuer Informatik Research Report MPI-I-98-1-022,
@texlinebreak{} @uref{http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022}

@item
Torbj@"orn Granlund and Peter L. Montgomery, ``Division by Invariant Integers
using Multiplication'', in Proceedings of the SIGPLAN PLDI'94 Conference, June
1994.  Also available @uref{http://gmplib.org/~tege/divcnst-pldi94.pdf}.

@item
Niels M@"oller and Torbj@"orn Granlund, ``Improved division by invariant
integers'', IEEE Transactions on Computers, 11 June 2010.
@uref{http://gmplib.org/~tege/division-paper.pdf}

@item
Torbj@"orn Granlund and Niels M@"oller, ``Division of integers large and
small'', to appear.

@item
Tudor Jebelean,
``An algorithm for exact division'',
Journal of Symbolic Computation,
volume 15, 1993, pp.@: 169-180.
Research report version available @texlinebreak{}
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-35.ps.gz}

@item
Tudor Jebelean, ``Exact Division with Karatsuba Complexity - Extended
Abstract'', RISC-Linz technical report 96-31, @texlinebreak{}
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-31.ps.gz}

@item
Tudor Jebelean, ``Practical Integer Division with Karatsuba Complexity'',
ISSAC 97, pp.@: 339-341.  Technical report available @texlinebreak{}
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1996/96-29.ps.gz}

@item
Tudor Jebelean, ``A Generalization of the Binary GCD Algorithm'', ISSAC 93,
pp.@: 111-116.  Technical report version available @texlinebreak{}
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1993/93-01.ps.gz}

@item
Tudor Jebelean, ``A Double-Digit Lehmer-Euclid Algorithm for Finding the GCD
of Long Integers'', Journal of Symbolic Computation, volume 19, 1995,
pp.@: 145-157.  Technical report version also available @texlinebreak{}
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1992/92-69.ps.gz}

@item
Werner Krandick and Tudor Jebelean, ``Bidirectional Exact Integer Division'',
Journal of Symbolic Computation, volume 21, 1996, pp.@: 441-455.  Early
technical report version also available
@uref{ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1994/94-50.ps.gz}

@item
Makoto Matsumoto and Takuji Nishimura, ``Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator'', ACM Transactions on
Modelling and Computer Simulation, volume 8, January 1998, pp.@: 3-30.
Available online @texlinebreak{}
@uref{http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.ps.gz} (or .pdf)

@item
R. Moenck and A. Borodin, ``Fast Modular Transforms via Division'',
Proceedings of the 13th Annual IEEE Symposium on Switching and Automata
Theory, October 1972, pp.@: 90-96.  Reprinted as ``Fast Modular Transforms'',
Journal of Computer and System Sciences, volume 8, number 3, June 1974,
pp.@: 366-386.

@item
Niels M@"oller, ``On Sch@"onhage's algorithm and subquadratic integer GCD
  computation'', in Mathematics of Computation, volume 77, January 2008, pp.@:
  589-607.

@item
Peter L. Montgomery, ``Modular Multiplication Without Trial Division'', in
Mathematics of Computation, volume 44, number 170, April 1985.

@item
Arnold Sch@"onhage and Volker Strassen, ``Schnelle Multiplikation grosser
Zahlen'', Computing 7, 1971, pp.@: 281-292.

@item
Kenneth Weber, ``The accelerated integer GCD algorithm'',
ACM Transactions on Mathematical Software,
volume 21, number 1, March 1995, pp.@: 111-122.

@item
Paul Zimmermann, ``Karatsuba Square Root'', INRIA Research Report 3805,
November 1999, @uref{http://hal.inria.fr/inria-00072854/PDF/RR-3805.pdf}

@item
Paul Zimmermann, ``A Proof of GMP Fast Division and Square Root
Implementations'', @texlinebreak{}
@uref{http://www.loria.fr/~zimmerma/papers/proof-div-sqrt.ps.gz}

@item
Dan Zuras, ``On Squaring and Multiplying Large Integers'', ARITH-11: IEEE
Symposium on Computer Arithmetic, 1993, pp.@: 260 to 271.  Reprinted as ``More
on Multiplying and Squaring Large Integers'', IEEE Transactions on Computers,
volume 43, number 8, August 1994, pp.@: 899-908.
@end itemize


@node GNU Free Documentation License, Concept Index, References, Top
@appendix GNU Free Documentation License
@cindex GNU Free Documentation License
@cindex Free Documentation License
@cindex Documentation license
@include fdl-1.3.texi


@node Concept Index, Function Index, GNU Free Documentation License, Top
@comment  node-name,  next,  previous,  up
@unnumbered Concept Index
@printindex cp

@node Function Index,  , Concept Index, Top
@comment  node-name,  next,  previous,  up
@unnumbered Function and Type Index
@printindex fn

@bye

@c Local variables:
@c fill-column: 78
@c compile-command: "make gmp.info"
@c End: