1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
|
/* Include file for internal GNU MP types and definitions.
THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND ARE ALMOST CERTAIN TO
BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE GNU MP RELEASES.
Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000 Free Software
Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#ifndef __GMP_IMPL_H__
#define __GMP_IMPL_H__
/* When used from the GMP_FUNC_ALLOC test, config.h doesn't exist, but the
equivalent definitions will have come from confdefs.h included at the
start of the test program. */
#if ! GMP_FUNC_ALLOCA_TEST
#include "config.h"
#include "gmp-mparam.h"
#endif
/* #include "longlong.h" */
/* The following tries to get a good version of alloca. The tests are
adapted from autoconf AC_FUNC_ALLOCA, with a couple of additions.
Whether this succeeds is tested by GMP_FUNC_ALLOCA and HAVE_ALLOCA will
be setup appropriately.
ifndef alloca - a cpp define might already exist. glibc <stdlib.h>
includes <alloca.h> which uses GCC __builtin_alloca. HP cc
+Olibcalls supposedly provides a #define.
GCC __builtin_alloca - preferred whenever available.
_AIX pragma - IBM compilers need a #pragma in "each module that needs to
use alloca". Pragma indented to protect pre-ANSI cpp's. _IBMR2 was
used in past versions of GMP, retained still in case it matters.
The autoconf manual says this pragma needs to be at the start of a C
file, apart from comments and preprocessor directives. Is that true?
xlc on aix 4.xxx doesn't seem to mind it being after prototypes etc
from gmp.h.
*/
#ifndef alloca
# ifdef __GNUC__
# define alloca __builtin_alloca
# else
# ifdef __DECC
# define alloca(x) __ALLOCA(x)
# else
# ifdef _MSC_VER
# include <malloc.h>
# define alloca _alloca
# else
# if HAVE_ALLOCA_H
# include <alloca.h>
# else
# if defined (_AIX) || defined (_IBMR2)
#pragma alloca
# else
char *alloca ();
# endif
# endif
# endif
# endif
# endif
#endif
#if ! HAVE_ALLOCA || USE_STACK_ALLOC
#include "stack-alloc.h"
#else
#define TMP_DECL(m)
#define TMP_ALLOC(x) alloca(x)
#define TMP_MARK(m)
#define TMP_FREE(m)
#endif
/* Allocating various types. */
#define TMP_ALLOC_TYPE(n,type) ((type *) TMP_ALLOC ((n) * sizeof (type)))
#define TMP_ALLOC_LIMBS(n) TMP_ALLOC_TYPE(n,mp_limb_t)
#define TMP_ALLOC_MP_PTRS(n) TMP_ALLOC_TYPE(n,mp_ptr)
#define ABS(x) (x >= 0 ? x : -x)
#define MIN(l,o) ((l) < (o) ? (l) : (o))
#define MAX(h,i) ((h) > (i) ? (h) : (i))
#define numberof(x) (sizeof (x) / sizeof ((x)[0]))
/* Field access macros. */
#define SIZ(x) ((x)->_mp_size)
#define ABSIZ(x) ABS (SIZ (x))
#define PTR(x) ((x)->_mp_d)
#define LIMBS(x) ((x)->_mp_d)
#define EXP(x) ((x)->_mp_exp)
#define PREC(x) ((x)->_mp_prec)
#define ALLOC(x) ((x)->_mp_alloc)
/* Extra casts because shorts are promoted to ints by "~" and "<<". "-1"
rather than "1" in SIGNED_TYPE_MIN avoids warnings from some compilers
about arithmetic overflow. */
#define UNSIGNED_TYPE_MAX(type) ((type) ~ (type) 0)
#define UNSIGNED_TYPE_HIGHBIT(type) ((type) ~ (UNSIGNED_TYPE_MAX(type) >> 1))
#define SIGNED_TYPE_MIN(type) (((type) -1) << (8*sizeof(type)-1))
#define SIGNED_TYPE_MAX(type) ((type) ~ SIGNED_TYPE_MIN(type))
#define SIGNED_TYPE_HIGHBIT(type) SIGNED_TYPE_MIN(type)
#define MP_LIMB_T_MAX UNSIGNED_TYPE_MAX (mp_limb_t)
#define MP_LIMB_T_HIGHBIT UNSIGNED_TYPE_HIGHBIT (mp_limb_t)
#define MP_SIZE_T_MAX SIGNED_TYPE_MAX (mp_size_t)
#ifndef ULONG_MAX
#define ULONG_MAX UNSIGNED_TYPE_MAX (unsigned long)
#endif
#define ULONG_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned long)
#define LONG_HIGHBIT SIGNED_TYPE_HIGHBIT (long)
#ifndef LONG_MAX
#define LONG_MAX SIGNED_TYPE_MAX (long)
#endif
#ifndef USHORT_MAX
#define USHORT_MAX UNSIGNED_TYPE_MAX (unsigned short)
#endif
#define USHORT_HIGHBIT UNSIGNED_TYPE_HIGHBIT (unsigned short)
#define SHORT_HIGHBIT SIGNED_TYPE_HIGHBIT (short)
#ifndef SHORT_MAX
#define SHORT_MAX SIGNED_TYPE_MAX (short)
#endif
#define MPZ_FITS_STYPE_SDT(size,data,type) \
((size) == 0 \
|| ((size) == 1 && (data) < UNSIGNED_TYPE_HIGHBIT (unsigned type)) \
|| ((size) == -1 && (data) <= UNSIGNED_TYPE_HIGHBIT (unsigned type)))
#define MPZ_FITS_UTYPE_SDT(size,data,type) \
((size) == 0 \
|| ((size) == 1 && (data) < UNSIGNED_TYPE_MAX (type)))
/* Swap macros. */
#define MP_LIMB_T_SWAP(x, y) \
do { \
mp_limb_t __mp_limb_t_swap__tmp = (x); \
(x) = (y); \
(y) = __mp_limb_t_swap__tmp; \
} while (0)
#define MP_SIZE_T_SWAP(x, y) \
do { \
mp_size_t __mp_size_t_swap__tmp = (x); \
(x) = (y); \
(y) = __mp_size_t_swap__tmp; \
} while (0)
#define MP_PTR_SWAP(x, y) \
do { \
mp_ptr __mp_ptr_swap__tmp = (x); \
(x) = (y); \
(y) = __mp_ptr_swap__tmp; \
} while (0)
#define MP_SRCPTR_SWAP(x, y) \
do { \
mp_srcptr __mp_srcptr_swap__tmp = (x); \
(x) = (y); \
(y) = __mp_srcptr_swap__tmp; \
} while (0)
#define MPN_PTR_SWAP(xp,xs, yp,ys) \
do { \
MP_PTR_SWAP (xp, yp); \
MP_SIZE_T_SWAP (xs, ys); \
} while(0)
#define MPN_SRCPTR_SWAP(xp,xs, yp,ys) \
do { \
MP_SRCPTR_SWAP (xp, yp); \
MP_SIZE_T_SWAP (xs, ys); \
} while(0)
#define MPZ_PTR_SWAP(x, y) \
do { \
mpz_ptr __mpz_ptr_swap__tmp = (x); \
(x) = (y); \
(y) = __mpz_ptr_swap__tmp; \
} while (0)
#define MPZ_SRCPTR_SWAP(x, y) \
do { \
mpz_srcptr __mpz_srcptr_swap__tmp = (x); \
(x) = (y); \
(y) = __mpz_srcptr_swap__tmp; \
} while (0)
#if defined (__cplusplus)
extern "C" {
#endif
extern void * (*__gmp_allocate_func) _PROTO ((size_t));
extern void * (*__gmp_reallocate_func) _PROTO ((void *, size_t, size_t));
extern void (*__gmp_free_func) _PROTO ((void *, size_t));
void *__gmp_default_allocate _PROTO ((size_t));
void *__gmp_default_reallocate _PROTO ((void *, size_t, size_t));
void __gmp_default_free _PROTO ((void *, size_t));
#define __GMP_ALLOCATE_FUNC_TYPE(n,type) \
((type *) (*__gmp_allocate_func) ((n) * sizeof (type)))
#define __GMP_ALLOCATE_FUNC_LIMBS(n) __GMP_ALLOCATE_FUNC_TYPE (n, mp_limb_t)
#define __GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, type) \
((type *) (*__gmp_reallocate_func) \
(p, (old_size) * sizeof (type), (new_size) * sizeof (type)))
#define __GMP_REALLOCATE_FUNC_LIMBS(p, old_size, new_size) \
__GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, mp_limb_t)
#define __GMP_FREE_FUNC_TYPE(p,n,type) (*__gmp_free_func) (p, (n) * sizeof (type))
#define __GMP_FREE_FUNC_LIMBS(p,n) __GMP_FREE_FUNC_TYPE (p, n, mp_limb_t)
#if (__STDC__-0) || defined (__cplusplus)
#else
#define const /* Empty */
#define signed /* Empty */
#endif
/* Note that if every use of an inline routine is in fact expanded, then
there'd no need for a library copy in mpn/inlines.lo. But gcc can
sometimes decide not to inline, and it's easier to just have a copy in
inlines.lo than to figure out when that is. */
#undef _EXTERN_INLINE
#ifdef _FORCE_INLINES
#define _EXTERN_INLINE
#else
#ifdef __GNUC__
#define _EXTERN_INLINE extern inline
#else
#define _EXTERN_INLINE static inline
#endif
#endif
#if defined (__GNUC__) && defined (__i386__)
#if 0
/* Check that these actually improve things.
Need a cld after each std too. */
#define MPN_COPY_INCR(DST, SRC, N) \
__asm__ ("cld\n\trep\n\tmovsl" : : \
"D" (DST), "S" (SRC), "c" (N) : \
"cx", "di", "si", "memory")
#define MPN_COPY_DECR(DST, SRC, N) \
__asm__ ("std\n\trep\n\tmovsl" : : \
"D" ((DST) + (N) - 1), "S" ((SRC) + (N) - 1), "c" (N) : \
"cx", "di", "si", "memory")
#define MPN_NORMALIZE_NOT_ZERO(P, N) \
do { \
__asm__ ("std\n\trepe\n\tscasl" : "=c" (N) : \
"a" (0), "D" ((P) + (N) - 1), "0" (N) : \
"cx", "di"); \
(N)++; \
} while (0)
#endif
#endif
#if HAVE_NATIVE_mpn_copyi
#define mpn_copyi __MPN(copyi)
void mpn_copyi _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
#endif
/* Remap names of internal mpn functions. */
#define __clz_tab __MPN(clz_tab)
#define mpn_udiv_w_sdiv __MPN(udiv_w_sdiv)
#define mpn_reciprocal __MPN(reciprocal)
#define mpn_gcd_finda __MPN(gcd_finda)
mp_limb_t mpn_gcd_finda _PROTO((const mp_limb_t cp[2]));
/* kara uses n+1 limbs of temporary space and then recurses with the
balance, so need (n+1) + (ceil(n/2)+1) + (ceil(n/4)+1) + ... */
#define MPN_KARA_MUL_N_TSIZE(n) (2*((n)+BITS_PER_MP_LIMB))
#define MPN_KARA_SQR_N_TSIZE(n) (2*((n)+BITS_PER_MP_LIMB))
/* toom3 uses 4*(ceil(n/3)) of temporary space and then recurses with the
balance either into itself or kara. The following might be
overestimates. */
#define MPN_TOOM3_MUL_N_TSIZE(n) (2*(n) + 3*BITS_PER_MP_LIMB)
#define MPN_TOOM3_SQR_N_TSIZE(n) (2*(n) + 3*BITS_PER_MP_LIMB)
/* need 2 so that n2>=1 */
#define MPN_KARA_MUL_N_MINSIZE 2
#define MPN_KARA_SQR_N_MINSIZE 2
/* need 5 so that l,ls>=1 */
#define MPN_TOOM3_MUL_N_MINSIZE 5
#define MPN_TOOM3_SQR_N_MINSIZE 5
#define mpn_kara_mul_n __MPN(kara_mul_n)
void mpn_kara_mul_n _PROTO((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr));
#define mpn_kara_sqr_n __MPN(kara_sqr_n)
void mpn_kara_sqr_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));
#define mpn_toom3_mul_n __MPN(toom3_mul_n)
void mpn_toom3_mul_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t,mp_ptr));
#define mpn_toom3_sqr_n __MPN(toom3_sqr_n)
void mpn_toom3_sqr_n _PROTO((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));
#define mpn_fft_best_k __MPN(fft_best_k)
int mpn_fft_best_k _PROTO ((mp_size_t n, int sqr));
#define mpn_mul_fft __MPN(mul_fft)
void mpn_mul_fft _PROTO ((mp_ptr op, mp_size_t pl,
mp_srcptr n, mp_size_t nl,
mp_srcptr m, mp_size_t ml,
int k));
#define mpn_mul_fft_full __MPN(mul_fft_full)
void mpn_mul_fft_full _PROTO ((mp_ptr op,
mp_srcptr n, mp_size_t nl,
mp_srcptr m, mp_size_t ml));
#define mpn_fft_next_size __MPN(fft_next_size)
mp_size_t mpn_fft_next_size _PROTO ((mp_size_t pl, int k));
#define mpn_sb_divrem_mn __MPN(sb_divrem_mn)
mp_limb_t mpn_sb_divrem_mn _PROTO ((mp_ptr, mp_ptr, mp_size_t,
mp_srcptr, mp_size_t));
#define mpn_dc_divrem_n __MPN(dc_divrem_n)
mp_limb_t mpn_dc_divrem_n _PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t));
/* #define mpn_tdiv_q __MPN(tdiv_q) */
/* void mpn_tdiv_q _PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); */
#define mpz_divexact_gcd __gmpz_divexact_gcd
void mpz_divexact_gcd _PROTO ((mpz_ptr q, mpz_srcptr a, mpz_srcptr d));
/* Copy NLIMBS *limbs* from SRC to DST, NLIMBS==0 allowed. */
#ifndef MPN_COPY_INCR
#if HAVE_NATIVE_mpn_copyi
#define MPN_COPY_INCR(DST, SRC, NLIMBS) mpn_copyi (DST, SRC, NLIMBS)
#else
#define MPN_COPY_INCR(DST, SRC, NLIMBS) \
do { \
mp_size_t __i; \
ASSERT (MPN_SAME_OR_INCR_P (DST, SRC, NLIMBS)); \
for (__i = 0; __i < (NLIMBS); __i++) \
(DST)[__i] = (SRC)[__i]; \
} while (0)
#endif
#endif
#if HAVE_NATIVE_mpn_copyd
#define mpn_copyd __MPN(copyd)
void mpn_copyd _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
#endif
/* NLIMBS==0 allowed */
#ifndef MPN_COPY_DECR
#if HAVE_NATIVE_mpn_copyd
#define MPN_COPY_DECR(DST, SRC, NLIMBS) mpn_copyd (DST, SRC, NLIMBS)
#else
#define MPN_COPY_DECR(DST, SRC, NLIMBS) \
do { \
mp_size_t __i; \
ASSERT (MPN_SAME_OR_DECR_P (DST, SRC, NLIMBS)); \
for (__i = (NLIMBS) - 1; __i >= 0; __i--) \
(DST)[__i] = (SRC)[__i]; \
} while (0)
#endif
#endif
/* Define MPN_COPY for vector computers. Since #pragma cannot be in a macro,
rely on function inlining. */
#if defined (_CRAY) || defined (__uxp__)
static inline void
_MPN_COPY (d, s, n) mp_ptr d; mp_srcptr s; mp_size_t n;
{
int i; /* Faster for Cray with plain int */
#pragma _CRI ivdep /* Cray PVP systems */
#pragma loop noalias d,s /* Fujitsu VPP systems */
for (i = 0; i < n; i++)
d[i] = s[i];
}
#define MPN_COPY _MPN_COPY
#endif
#ifndef MPN_COPY
#define MPN_COPY(d,s,n) \
do { \
ASSERT (MPN_SAME_OR_SEPARATE_P (d, s, n)); \
MPN_COPY_INCR (d, s, n); \
} while (0)
#endif
/* Zero NLIMBS *limbs* AT DST. */
#ifndef MPN_ZERO
#define MPN_ZERO(DST, NLIMBS) \
do { \
mp_size_t __i; \
ASSERT ((NLIMBS) >= 0); \
for (__i = 0; __i < (NLIMBS); __i++) \
(DST)[__i] = 0; \
} while (0)
#endif
#ifndef MPN_NORMALIZE
#define MPN_NORMALIZE(DST, NLIMBS) \
do { \
while (NLIMBS > 0) \
{ \
if ((DST)[(NLIMBS) - 1] != 0) \
break; \
NLIMBS--; \
} \
} while (0)
#endif
#ifndef MPN_NORMALIZE_NOT_ZERO
#define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS) \
do { \
ASSERT ((NLIMBS) >= 1); \
while (1) \
{ \
if ((DST)[(NLIMBS) - 1] != 0) \
break; \
NLIMBS--; \
} \
} while (0)
#endif
/* Strip least significant zero limbs from ptr,size by incrementing ptr and
decrementing size. The number in ptr,size must be non-zero, ie. size!=0
and somewhere a non-zero limb. */
#define MPN_STRIP_LOW_ZEROS_NOT_ZERO(ptr, size) \
do { \
ASSERT ((size) >= 1); \
while ((ptr)[0] == 0) \
{ \
(ptr)++; \
(size)--; \
ASSERT (size >= 0); \
} \
} while (0)
/* Initialize X of type mpz_t with space for NLIMBS limbs. X should be a
temporary variable; it will be automatically cleared out at function
return. We use __x here to make it possible to accept both mpz_ptr and
mpz_t arguments. */
#define MPZ_TMP_INIT(X, NLIMBS) \
do { \
mpz_ptr __x = (X); \
ASSERT ((NLIMBS) >= 1); \
__x->_mp_alloc = (NLIMBS); \
__x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB); \
} while (0)
/* Realloc for an mpz_t WHAT if it has less than NEEDED limbs. */
#define MPZ_REALLOC(what,needed) \
do { \
if ((needed) > ALLOC (what)) \
_mpz_realloc (what, needed); \
} while (0)
#define MPZ_EQUAL_1_P(z) (SIZ(z)==1 && PTR(z)[0] == 1)
/* FIB_SIZE(n) is the number of limbs needed for Fibonacci number F[n], not
exactly but certainly it's no fewer than needed.
From Knuth vol 1 section 1.2.8, F[n] = phi^n/sqrt(5) rounded to the
nearest integer, where phi=(1+sqrt(5))/2 is the golden ratio. So the
number of bits required is n*log_2((1+sqrt(5))/2) = n*0.6942419.
The multiplier is done with 23/32=0.71875 for efficient calculation on
CPUs without good floating point. The +2 is for rounding up.
Note that a division is done first, since on a 32-bit system it's at
least conceivable to go right up to n==ULONG_MAX. (F[2^32-1] would be
about 380Mbytes, plus temporary workspace of about 1.2Gbytes here and
whatever a multiply of two 190Mbyte numbers takes.) */
#define MPZ_FIB_SIZE(n) \
((mp_size_t) ((n) / 32 * 23 / BITS_PER_MP_LIMB) + 2)
/* For a threshold between algorithms A and B, size>=thresh is where B
should be used. Special value MP_SIZE_T_MAX means only ever use A, or
value 0 means only ever use B. The tests for these special values will
be compile-time constants, so the compiler should be able to eliminate
the code for the unwanted algorithm. */
#define ABOVE_THRESHOLD(size,thresh) \
((thresh) == 0 \
|| ((thresh) != MP_SIZE_T_MAX \
&& (size) >= (thresh)))
#define BELOW_THRESHOLD(size,thresh) (! ABOVE_THRESHOLD (size, thresh))
/* If KARATSUBA_MUL_THRESHOLD is not already defined, define it to a
value which is good on most machines. */
#ifndef KARATSUBA_MUL_THRESHOLD
#define KARATSUBA_MUL_THRESHOLD 32
#endif
/* If TOOM3_MUL_THRESHOLD is not already defined, define it to a
value which is good on most machines. */
#ifndef TOOM3_MUL_THRESHOLD
#define TOOM3_MUL_THRESHOLD 256
#endif
#ifndef KARATSUBA_SQR_THRESHOLD
#define KARATSUBA_SQR_THRESHOLD (2*KARATSUBA_MUL_THRESHOLD)
#endif
#ifndef TOOM3_SQR_THRESHOLD
#define TOOM3_SQR_THRESHOLD (2*TOOM3_MUL_THRESHOLD)
#endif
/* First k to use for an FFT modF multiply. A modF FFT is an order
log(2^k)/log(2^(k-1)) algorithm, so k=3 is merely 1.5 like karatsuba,
whereas k=4 is 1.33 which is faster than toom3 at 1.485. */
#define FFT_FIRST_K 4
/* Threshold at which FFT should be used to do a modF NxN -> N multiply. */
#ifndef FFT_MODF_MUL_THRESHOLD
#define FFT_MODF_MUL_THRESHOLD (TOOM3_MUL_THRESHOLD * 3)
#endif
#ifndef FFT_MODF_SQR_THRESHOLD
#define FFT_MODF_SQR_THRESHOLD (TOOM3_SQR_THRESHOLD * 3)
#endif
/* Threshold at which FFT should be used to do an NxN -> 2N multiply. This
will be a size where FFT is using k=7 or k=8, since an FFT-k used for an
NxN->2N multiply and not recursing into itself is an order
log(2^k)/log(2^(k-2)) algorithm, so it'll be at least k=7 at 1.39 which
is the first better than toom3. */
#ifndef FFT_MUL_THRESHOLD
#define FFT_MUL_THRESHOLD (FFT_MODF_MUL_THRESHOLD * 10)
#endif
#ifndef FFT_SQR_THRESHOLD
#define FFT_SQR_THRESHOLD (FFT_MODF_SQR_THRESHOLD * 10)
#endif
/* Table of thresholds for successive modF FFT "k"s. The first entry is
where FFT_FIRST_K+1 should be used, the second FFT_FIRST_K+2,
etc. See mpn_fft_best_k(). */
#ifndef FFT_MUL_TABLE
#define FFT_MUL_TABLE \
{ TOOM3_MUL_THRESHOLD * 4, /* k=5 */ \
TOOM3_MUL_THRESHOLD * 8, /* k=6 */ \
TOOM3_MUL_THRESHOLD * 16, /* k=7 */ \
TOOM3_MUL_THRESHOLD * 32, /* k=8 */ \
TOOM3_MUL_THRESHOLD * 96, /* k=9 */ \
TOOM3_MUL_THRESHOLD * 288, /* k=10 */ \
0 }
#endif
#ifndef FFT_SQR_TABLE
#define FFT_SQR_TABLE \
{ TOOM3_SQR_THRESHOLD * 4, /* k=5 */ \
TOOM3_SQR_THRESHOLD * 8, /* k=6 */ \
TOOM3_SQR_THRESHOLD * 16, /* k=7 */ \
TOOM3_SQR_THRESHOLD * 32, /* k=8 */ \
TOOM3_SQR_THRESHOLD * 96, /* k=9 */ \
TOOM3_SQR_THRESHOLD * 288, /* k=10 */ \
0 }
#endif
#ifndef FFT_TABLE_ATTRS
#define FFT_TABLE_ATTRS static const
#endif
#define MPN_FFT_TABLE_SIZE 16
/* mpn_dc_divrem_n(n) calls 2*mul(n/2)+2*div(n/2), thus to be faster than
div(n) = 4*div(n/2), we need mul(n/2) to be faster than the classic way,
i.e. n/2 >= KARATSUBA_MUL_THRESHOLD
Measured values are between 2 and 4 times KARATSUBA_MUL_THRESHOLD, so go
for 3 as an average. */
#ifndef DC_THRESHOLD
#define DC_THRESHOLD (3 * KARATSUBA_MUL_THRESHOLD)
#endif
/* It seems the bigcase code usually cuts in almost immediately (ie. only a
few sizes want the simple addition based code), so set the defaults like
that. */
#ifndef FIB_THRESHOLD
#if BITS_PER_MP_LIMB == 4
#define FIB_THRESHOLD 20
#endif
#if BITS_PER_MP_LIMB == 8
#define FIB_THRESHOLD 30
#endif
#if BITS_PER_MP_LIMB == 16
#define FIB_THRESHOLD 50
#endif
#if BITS_PER_MP_LIMB == 32
#define FIB_THRESHOLD 100
#endif
#if BITS_PER_MP_LIMB == 64
#define FIB_THRESHOLD 200
#endif
/* something arbitrary otherwise */
#ifndef FIB_THRESHOLD
#define FIB_THRESHOLD 100
#endif
#endif
/* Return non-zero if xp,xsize and yp,ysize overlap.
If xp+xsize<=yp there's no overlap, or if yp+ysize<=xp there's no
overlap. If both these are false, there's an overlap. */
#define MPN_OVERLAP_P(xp, xsize, yp, ysize) \
((xp) + (xsize) > (yp) && (yp) + (ysize) > (xp))
/* Return non-zero if xp,xsize and yp,ysize are either identical or not
overlapping. Return zero if they're partially overlapping. */
#define MPN_SAME_OR_SEPARATE_P(xp, yp, size) \
MPN_SAME_OR_SEPARATE2_P(xp, size, yp, size)
#define MPN_SAME_OR_SEPARATE2_P(xp, xsize, yp, ysize) \
((xp) == (yp) || ! MPN_OVERLAP_P (xp, xsize, yp, ysize))
/* Return non-zero if dst,dsize and src,ssize are either identical or
overlapping in a way suitable for an incrementing/decrementing algorithm.
Return zero if they're partially overlapping in an unsuitable fashion. */
#define MPN_SAME_OR_INCR2_P(dst, dsize, src, ssize) \
((dst) <= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize))
#define MPN_SAME_OR_INCR_P(dst, src, size) \
MPN_SAME_OR_INCR2_P(dst, size, src, size)
#define MPN_SAME_OR_DECR2_P(dst, dsize, src, ssize) \
((dst) >= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize))
#define MPN_SAME_OR_DECR_P(dst, src, size) \
MPN_SAME_OR_DECR2_P(dst, size, src, size)
#if HAVE_VOID
#define CAST_TO_VOID (void)
#else
#define CAST_TO_VOID
#endif
/* ASSERT() is a private assertion checking scheme, similar to <assert.h>.
ASSERT() does the check only if WANT_ASSERT is selected, ASSERT_ALWAYS()
does it always. Generally assertions are meant for development, but
might help when looking for a problem later too.
ASSERT_NOCARRY() uses ASSERT() to check the expression is zero, but if
assertion checking is disabled, the expression is still evaluated. This
is meant for use with routines like mpn_add_n() where the return value
represents a carry or whatever that shouldn't occur. For example,
ASSERT_NOCARRY (mpn_add_n (rp, s1p, s2p, size)); */
#ifdef __LINE__
#define ASSERT_LINE __LINE__
#else
#define ASSERT_LINE -1
#endif
#ifdef __FILE__
#define ASSERT_FILE __FILE__
#else
#define ASSERT_FILE ""
#endif
int __gmp_assert_fail _PROTO((const char *filename, int linenum,
const char *expr));
#if HAVE_STRINGIZE
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, #expr)
#else
#define ASSERT_FAIL(expr) __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, "expr")
#endif
#define ASSERT_ALWAYS(expr) \
do { \
if (!(expr)) \
ASSERT_FAIL (expr); \
} while (0)
#if WANT_ASSERT
#define ASSERT(expr) ASSERT_ALWAYS (expr)
#define ASSERT_NOCARRY(expr) ASSERT_ALWAYS ((expr) == 0)
#else
#define ASSERT(expr) do {} while (0)
#define ASSERT_NOCARRY(expr) (expr)
#endif
#if HAVE_NATIVE_mpn_com_n
#define mpn_com_n __MPN(com_n)
void mpn_com_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
#else
#define mpn_com_n(d,s,n) \
do { \
mp_ptr __d = (d); \
mp_srcptr __s = (s); \
mp_size_t __n = (n); \
ASSERT (__n >= 1); \
ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s, __n)); \
do \
*__d++ = ~ *__s++; \
while (--__n); \
} while (0)
#endif
#define MPN_LOGOPS_N_INLINE(d,s1,s2,n,dop,op,s2op) \
do { \
mp_ptr __d = (d); \
mp_srcptr __s1 = (s1); \
mp_srcptr __s2 = (s2); \
mp_size_t __n = (n); \
ASSERT (__n >= 1); \
ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s1, __n)); \
ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s2, __n)); \
do \
*__d++ = dop (*__s1++ op s2op *__s2++); \
while (--__n); \
} while (0)
#if HAVE_NATIVE_mpn_and_n
#define mpn_and_n __MPN(and_n)
void mpn_and_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_and_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&, )
#endif
#if HAVE_NATIVE_mpn_andn_n
#define mpn_andn_n __MPN(andn_n)
void mpn_andn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_andn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,&,~)
#endif
#if HAVE_NATIVE_mpn_nand_n
#define mpn_nand_n __MPN(nand_n)
void mpn_nand_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_nand_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,&, )
#endif
#if HAVE_NATIVE_mpn_ior_n
#define mpn_ior_n __MPN(ior_n)
void mpn_ior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_ior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|, )
#endif
#if HAVE_NATIVE_mpn_iorn_n
#define mpn_iorn_n __MPN(iorn_n)
void mpn_iorn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_iorn_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,|,~)
#endif
#if HAVE_NATIVE_mpn_nior_n
#define mpn_nior_n __MPN(nior_n)
void mpn_nior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_nior_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,|, )
#endif
#if HAVE_NATIVE_mpn_xor_n
#define mpn_xor_n __MPN(xor_n)
void mpn_xor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_xor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n, ,^, )
#endif
#if HAVE_NATIVE_mpn_xnor_n
#define mpn_xnor_n __MPN(xnor_n)
void mpn_xnor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_xnor_n(d,s1,s2,n) MPN_LOGOPS_N_INLINE(d,s1,s2,n,~,^, )
#endif
/* n==0 is allowed and is considered a zero value. */
#define mpn_zero_p __MPN(zero_p)
int mpn_zero_p _PROTO ((mp_srcptr p, mp_size_t n));
#if HAVE_INLINE || defined (_FORCE_INLINES)
_EXTERN_INLINE int
mpn_zero_p (mp_srcptr p, mp_size_t n)
{
mp_size_t i;
ASSERT (n >= 0);
for (i = 0; i < n; i++)
if (p[i] != 0)
return 0;
return 1;
}
#endif
/* Structure for conversion between internal binary format and
strings in base 2..36. */
struct bases
{
/* Number of digits in the conversion base that always fits in an mp_limb_t.
For example, for base 10 on a machine where a mp_limb_t has 32 bits this
is 9, since 10**9 is the largest number that fits into a mp_limb_t. */
int chars_per_limb;
/* log(2)/log(conversion_base) */
double chars_per_bit_exactly;
/* base**chars_per_limb, i.e. the biggest number that fits a word, built by
factors of base. Exception: For 2, 4, 8, etc, big_base is log2(base),
i.e. the number of bits used to represent each digit in the base. */
mp_limb_t big_base;
/* A BITS_PER_MP_LIMB bit approximation to 1/big_base, represented as a
fixed-point number. Instead of dividing by big_base an application can
choose to multiply by big_base_inverted. */
mp_limb_t big_base_inverted;
};
#define __mp_bases __MPN(mp_bases)
extern const struct bases __mp_bases[256];
extern mp_size_t __gmp_default_fp_limb_precision;
#if defined (__i386__)
#define TARGET_REGISTER_STARVED 1
#else
#define TARGET_REGISTER_STARVED 0
#endif
/* Use a library function for invert_limb, if available. */
#if ! defined (invert_limb) && HAVE_NATIVE_mpn_invert_limb
#define mpn_invert_limb __MPN(invert_limb)
mp_limb_t mpn_invert_limb _PROTO ((mp_limb_t));
#define invert_limb(invxl,xl) (invxl = __MPN(invert_limb) (xl))
#endif
#ifndef invert_limb
#define invert_limb(invxl,xl) \
do { \
mp_limb_t dummy; \
ASSERT ((xl) != 0); \
if (xl << 1 == 0) \
invxl = ~(mp_limb_t) 0; \
else \
udiv_qrnnd (invxl, dummy, -xl, 0, xl); \
} while (0)
#endif
/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest
limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB).
If this would yield overflow, DI should be the largest possible number
(i.e., only ones). For correct operation, the most significant bit of D
has to be set. Put the quotient in Q and the remainder in R. */
#define udiv_qrnnd_preinv(q, r, nh, nl, d, di) \
do { \
mp_limb_t _q, _ql, _r; \
mp_limb_t _xh, _xl; \
ASSERT ((d) != 0); \
umul_ppmm (_q, _ql, (nh), (di)); \
_q += (nh); /* DI is 2**BITS_PER_MP_LIMB too small */ \
umul_ppmm (_xh, _xl, _q, (d)); \
sub_ddmmss (_xh, _r, (nh), (nl), _xh, _xl); \
if (_xh != 0) \
{ \
sub_ddmmss (_xh, _r, _xh, _r, 0, (d)); \
_q += 1; \
if (_xh != 0) \
{ \
sub_ddmmss (_xh, _r, _xh, _r, 0, (d)); \
_q += 1; \
} \
} \
if (_r >= (d)) \
{ \
_r -= (d); \
_q += 1; \
} \
(r) = _r; \
(q) = _q; \
} while (0)
/* Like udiv_qrnnd_preinv, but for for any value D. DNORM is D shifted left
so that its most significant bit is set. LGUP is ceil(log2(D)). */
#define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \
do { \
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \
mp_limb_t _xh, _xl; \
_n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\
_n10 = (nl) << (BITS_PER_MP_LIMB - (lgup)); \
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \
_nadj = _n10 + (_n1 & (dnorm)); \
umul_ppmm (_xh, _xl, di, _n2 - _n1); \
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \
_q1 = ~(_n2 + _xh); \
umul_ppmm (_xh, _xl, _q1, d); \
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \
_xh -= (d); \
(r) = _xl + ((d) & _xh); \
(q) = _xh - _q1; \
} while (0)
/* Exactly like udiv_qrnnd_preinv, but branch-free. It is not clear which
version to use. */
#define udiv_qrnnd_preinv2norm(q, r, nh, nl, d, di) \
do { \
mp_limb_t _n2, _n10, _n1, _nadj, _q1; \
mp_limb_t _xh, _xl; \
_n2 = (nh); \
_n10 = (nl); \
_n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1)); \
_nadj = _n10 + (_n1 & (d)); \
umul_ppmm (_xh, _xl, di, _n2 - _n1); \
add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj); \
_q1 = ~(_n2 + _xh); \
umul_ppmm (_xh, _xl, _q1, d); \
add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl); \
_xh -= (d); \
(r) = _xl + ((d) & _xh); \
(q) = _xh - _q1; \
} while (0)
/* Two dependent multiplies, plus about 6 cycles of other dependent
calculations. */
#ifndef UDIV_NORM_PREINV_TIME
#define UDIV_NORM_PREINV_TIME (2*UMUL_TIME + 6)
#endif
/* When divisor was unnormalized there's going to be some shifting, so
assume a couple of extra cycles. (The shifting isn't on the dependent
chain, but on some chips it seems to upset the code generation a bit.) */
#ifndef UDIV_UNNORM_PREINV_TIME
#define UDIV_UNNORM_PREINV_TIME (UDIV_NORM_PREINV_TIME + 2)
#endif
/* USE_PREINV_MOD_1 is whether to use mpn_preinv_mod_1, or to just use plain
mpn_mod_1. If there's a native mpn_preinv_mod_1 then it's assumed to be
fast. If preinv is the only division method, then mpn_preinv_mod_1 will
naturally want to be used. Otherwise see which of udiv_qrnnd or
udiv_qrnnd_preinv is faster. */
#ifndef USE_PREINV_MOD_1
#if HAVE_NATIVE_mpn_preinv_mod_1 || UDIV_PREINV_ALWAYS
#define USE_PREINV_MOD_1 1
#else
#define USE_PREINV_MOD_1 (UDIV_TIME > UDIV_NORM_PREINV_TIME)
#endif
#endif
#if USE_PREINV_MOD_1
#define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse) \
mpn_preinv_mod_1 (src, size, divisor, inverse)
#else
#define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse) \
mpn_mod_1 (src, size, divisor)
#endif
/* modlimb_invert() sets "inv" to the multiplicative inverse of "n" modulo
2^BITS_PER_MP_LIMB, ie. so that inv*n == 1 mod 2^BITS_PER_MP_LIMB.
"n" must be odd (otherwise such an inverse doesn't exist).
This is not to be confused with invert_limb(), which is completely
different.
The table lookup gives an inverse with the low 8 bits valid, and each
multiply step doubles the number of bits. See Jebelean's exact division
paper, end of section 4 (reference in gmp.texi).
Possible enhancement: Could use UHWtype until the last step, if half-size
multiplies are faster (might help under _LONG_LONG_LIMB). */
#define modlimb_invert_table __gmp_modlimb_invert_table
extern const unsigned char modlimb_invert_table[128];
#if BITS_PER_MP_LIMB <= 8
#define modlimb_invert(inv,n) \
do { \
mp_limb_t __n = (n); \
mp_limb_t __inv; \
ASSERT ((__n & 1) == 1); \
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
ASSERT (__inv * __n == 1); \
(inv) = __inv; \
} while (0)
#else
#if BITS_PER_MP_LIMB <= 16
#define modlimb_invert(inv,n) \
do { \
mp_limb_t __n = (n); \
mp_limb_t __inv; \
ASSERT ((__n & 1) == 1); \
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \
ASSERT (__inv * __n == 1); \
(inv) = __inv; \
} while (0)
#else
#if BITS_PER_MP_LIMB <= 32
#define modlimb_invert(inv,n) \
do { \
mp_limb_t __n = (n); \
mp_limb_t __inv; \
ASSERT ((__n & 1) == 1); \
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \
ASSERT (__inv * __n == 1); \
(inv) = __inv; \
} while (0)
#else
#if BITS_PER_MP_LIMB <= 64
#define modlimb_invert(inv,n) \
do { \
mp_limb_t __n = (n); \
mp_limb_t __inv; \
ASSERT ((__n & 1) == 1); \
__inv = modlimb_invert_table[(__n&0xFF)/2]; /* 8 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 16 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 32 */ \
__inv = 2 * __inv - __inv * __inv * __n; /* 64 */ \
ASSERT (__inv * __n == 1); \
(inv) = __inv; \
} while (0)
#endif /* 64 */
#endif /* 32 */
#endif /* 16 */
#endif /* 8 */
/* Multiplicative inverse of 3, modulo 2^BITS_PER_MP_LIMB.
0xAAAAAAAB for 32 bits, 0xAAAAAAAAAAAAAAAB for 64 bits. */
#define MODLIMB_INVERSE_3 ((MP_LIMB_T_MAX / 3) * 2 + 1)
/* The `mode' attribute was introduced in GCC 2.2, but we can only distinguish
between GCC 2 releases from 2.5, since __GNUC_MINOR__ wasn't introduced
until then. */
#if (__GNUC__ - 0 > 2 || defined (__GNUC_MINOR__)) && ! defined (__APPLE_CC__)
/* Define stuff for longlong.h. */
typedef unsigned int UQItype __attribute__ ((mode (QI)));
typedef int SItype __attribute__ ((mode (SI)));
typedef unsigned int USItype __attribute__ ((mode (SI)));
typedef int DItype __attribute__ ((mode (DI)));
typedef unsigned int UDItype __attribute__ ((mode (DI)));
#else
typedef unsigned char UQItype;
typedef long SItype;
typedef unsigned long USItype;
#if defined _LONGLONG || defined _LONG_LONG_LIMB
typedef long long int DItype;
typedef unsigned long long int UDItype;
#else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */
typedef long int DItype;
typedef unsigned long int UDItype;
#endif
#endif
typedef mp_limb_t UWtype;
typedef unsigned int UHWtype;
#define W_TYPE_SIZE BITS_PER_MP_LIMB
/* Define ieee_double_extract and _GMP_IEEE_FLOATS. */
#if (defined (__arm__) && (defined (__ARMWEL__) || defined (__linux__)))
/* Special case for little endian ARM since floats remain in big-endian. */
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
struct
{
unsigned int manh:20;
unsigned int exp:11;
unsigned int sig:1;
unsigned int manl:32;
} s;
double d;
};
#else
#if defined (_LITTLE_ENDIAN) || defined (__LITTLE_ENDIAN__) \
|| defined (__alpha) \
|| defined (__clipper__) \
|| defined (__cris) \
|| defined (__i386__) \
|| defined (__i860__) \
|| defined (__i960__) \
|| defined (__ia64) \
|| defined (MIPSEL) || defined (_MIPSEL) \
|| defined (__ns32000__) \
|| defined (__WINNT) || defined (_WIN32)
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
struct
{
unsigned int manl:32;
unsigned int manh:20;
unsigned int exp:11;
unsigned int sig:1;
} s;
double d;
};
#else /* Need this as an #else since the tests aren't made exclusive. */
#if defined (_BIG_ENDIAN) || defined (__BIG_ENDIAN__) \
|| defined (__a29k__) || defined (_AM29K) \
|| defined (__arm__) \
|| (defined (__convex__) && defined (_IEEE_FLOAT_)) \
|| defined (_CRAYMPP) || defined (_CRAYIEEE) \
|| defined (__i370__) || defined (__mvs__) \
|| defined (__mc68000__) || defined (__mc68020__) || defined (__m68k__)\
|| defined(mc68020) \
|| defined (__m88000__) \
|| defined (MIPSEB) || defined (_MIPSEB) \
|| defined (__hppa) || defined (__hppa__) \
|| defined (__pyr__) \
|| defined (__ibm032__) \
|| defined (_IBMR2) || defined (_ARCH_PPC) \
|| defined (__sh__) \
|| defined (__sparc) || defined (sparc) \
|| defined (__we32k__)
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
struct
{
unsigned int sig:1;
unsigned int exp:11;
unsigned int manh:20;
unsigned int manl:32;
} s;
double d;
};
#endif
#endif
#endif
/* Use (4.0 * ...) instead of (2.0 * ...) to work around buggy compilers. */
#define MP_BASE_AS_DOUBLE (4.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 2)))
/* Maximum number of limbs it will take to store any `double'.
We assume doubles have 53 mantissam bits. */
#define LIMBS_PER_DOUBLE ((53 + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB + 1)
double __gmp_scale2 _PROTO ((double, int));
int __gmp_extract_double _PROTO ((mp_ptr, double));
extern int __gmp_junk;
extern const int __gmp_0;
#define GMP_ERROR(code) (gmp_errno |= (code), __gmp_junk = 10/__gmp_0)
#define DIVIDE_BY_ZERO GMP_ERROR(GMP_ERROR_DIVISION_BY_ZERO)
#define SQRT_OF_NEGATIVE GMP_ERROR(GMP_ERROR_SQRT_OF_NEGATIVE)
#if defined _LONG_LONG_LIMB
#if defined (__STDC__)
#define CNST_LIMB(C) C##LL
#else
#define CNST_LIMB(C) C/**/LL
#endif
#else /* not _LONG_LONG_LIMB */
#if defined (__STDC__)
#define CNST_LIMB(C) C##L
#else
#define CNST_LIMB(C) C/**/L
#endif
#endif /* _LONG_LONG_LIMB */
/* Stuff used by mpn/generic/perfsqr.c and mpz/prime_p.c */
#if BITS_PER_MP_LIMB == 2
#define PP 0x3 /* 3 */
#define PP_FIRST_OMITTED 5
#endif
#if BITS_PER_MP_LIMB == 4
#define PP 0xF /* 3 x 5 */
#define PP_FIRST_OMITTED 7
#endif
#if BITS_PER_MP_LIMB == 8
#define PP 0x69 /* 3 x 5 x 7 */
#define PP_FIRST_OMITTED 11
#endif
#if BITS_PER_MP_LIMB == 16
#define PP 0x3AA7 /* 3 x 5 x 7 x 11 x 13 */
#define PP_FIRST_OMITTED 17
#endif
#if BITS_PER_MP_LIMB == 32
#define PP 0xC0CFD797L /* 3 x 5 x 7 x 11 x ... x 29 */
#define PP_INVERTED 0x53E5645CL
#define PP_FIRST_OMITTED 31
#endif
#if BITS_PER_MP_LIMB == 64
#define PP CNST_LIMB(0xE221F97C30E94E1D) /* 3 x 5 x 7 x 11 x ... x 53 */
#define PP_INVERTED CNST_LIMB(0x21CFE6CFC938B36B)
#define PP_FIRST_OMITTED 59
#endif
#ifndef PP_FIRST_OMITTED
#define PP_FIRST_OMITTED 3
#endif
/* BIT1 means a result value in bit 1 (second least significant bit), with a
zero bit representing +1 and a one bit representing -1. Bits other than
bit 1 are garbage.
JACOBI_TWOS_U_BIT1 and JACOBI_RECIP_UU_BIT1 are used in mpn_jacobi_base
and their speed is important. Expressions are used rather than
conditionals to accumulate sign changes, which effectively means XORs
instead of conditional JUMPs. */
/* (a/0), with a signed; is 1 if a=+/-1, 0 otherwise */
#define JACOBI_S0(a) \
(((a) == 1) | ((a) == -1))
/* (a/0), with a unsigned; is 1 if a=+/-1, 0 otherwise */
#define JACOBI_U0(a) \
((a) == 1)
/* (a/0), with a an mpz_t; is 1 if a=+/-1, 0 otherwise
An mpz_t always has at least one limb of allocated space, so the fetch of
the low limb is valid. */
#define JACOBI_Z0(a) \
(((SIZ(a) == 1) | (SIZ(a) == -1)) & (PTR(a)[0] == 1))
/* Convert a bit1 to +1 or -1. */
#define JACOBI_BIT1_TO_PN(result_bit1) \
(1 - ((result_bit1) & 2))
/* (2/b), with b unsigned and odd;
is (-1)^((b^2-1)/8) which is 1 if b==1,7mod8 or -1 if b==3,5mod8 and
hence obtained from (b>>1)^b */
#define JACOBI_TWO_U_BIT1(b) \
(((b) >> 1) ^ (b))
/* (2/b)^twos, with b unsigned and odd */
#define JACOBI_TWOS_U_BIT1(twos, b) \
(((twos) << 1) & JACOBI_TWO_U_BIT1 (b))
/* (2/b)^twos, with b unsigned and odd */
#define JACOBI_TWOS_U(twos, b) \
(JACOBI_BIT1_TO_PN (JACOBI_TWOS_U_BIT1 (twos, b)))
/* (a/b) effect due to sign of a: signed/unsigned, b odd;
is (-1)^((b-1)/2) if a<0, or +1 if a>=0 */
#define JACOBI_ASGN_SU_BIT1(a, b) \
((((a) < 0) << 1) & (b))
/* (a/b) effect due to sign of b: signed/mpz;
is -1 if a and b both negative, +1 otherwise */
#define JACOBI_BSGN_SZ_BIT1(a, b) \
((((a) < 0) & (SIZ(b) < 0)) << 1)
/* (a/b) effect due to sign of b: mpz/signed */
#define JACOBI_BSGN_ZS_BIT1(a, b) \
JACOBI_BSGN_SZ_BIT1(b, a)
/* (a/b) reciprocity to switch to (b/a), a,b both unsigned and odd.
Is (-1)^((a-1)*(b-1)/4), which means +1 if either a,b==1mod4, or -1 if
both a,b==3mod4, achieved in bit 1 by a&b. No ASSERT()s about a,b odd
because this is used in a couple of places with only bit 1 of a or b
valid. */
#define JACOBI_RECIP_UU_BIT1(a, b) \
((a) & (b))
/* For testing and debugging. */
#define MPZ_CHECK_FORMAT(z) \
do { \
ASSERT_ALWAYS (SIZ(z) == 0 || PTR(z)[ABSIZ(z) - 1] != 0); \
ASSERT_ALWAYS (ALLOC(z) >= ABSIZ(z)); \
} while (0)
#define MPQ_CHECK_FORMAT(q) \
do { \
MPZ_CHECK_FORMAT (mpq_numref (q)); \
MPZ_CHECK_FORMAT (mpq_denref (q)); \
ASSERT_ALWAYS (SIZ(mpq_denref(q)) >= 1); \
\
if (SIZ(mpq_numref(q)) == 0) \
{ \
/* should have zero as 0/1 */ \
ASSERT_ALWAYS (SIZ(mpq_denref(q)) == 1 \
&& PTR(mpq_denref(q))[0] == 1); \
} \
else \
{ \
/* should have no common factors */ \
mpz_t g; \
mpz_init (g); \
mpz_gcd (g, mpq_numref(q), mpq_denref(q)); \
ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0); \
mpz_clear (g); \
} \
} while (0)
#define MPZ_PROVOKE_REALLOC(z) \
do { ALLOC(z) = ABSIZ(z); } while (0)
#define MPZ_SET_STR_OR_ABORT(_r,_s,_b) \
do { \
if (mpz_set_str (_r, _s, _b) != 0) \
{ \
fprintf (stderr, "ERROR mpz_set_str\n"); \
fprintf (stderr, " str = \"%s\"\n", _s); \
fprintf (stderr, " base = %d\n", _b); \
abort(); \
} \
} while (0)
#define MPF_SET_STR_OR_ABORT(_r,_s,_b) \
do { \
if (mpf_set_str (_r, _s, _b) != 0) \
{ \
fprintf (stderr, "ERROR mpf_set_str\n"); \
fprintf (stderr, " str = \"%s\"\n", _s); \
fprintf (stderr, " base = %d\n", _b); \
abort(); \
} \
} while (0)
#if TUNE_PROGRAM_BUILD
/* Some extras wanted when recompiling some .c files for use by the tune
program. Not part of a normal build. */
extern mp_size_t mul_threshold[];
extern mp_size_t fft_modf_mul_threshold;
extern mp_size_t sqr_threshold[];
extern mp_size_t fft_modf_sqr_threshold;
extern mp_size_t dc_threshold[];
extern mp_size_t fib_threshold[];
extern mp_size_t powm_threshold[];
extern mp_size_t gcd_accel_threshold[];
extern mp_size_t gcdext_threshold[];
extern mp_size_t divrem_1_norm_threshold[];
extern mp_size_t divrem_1_unnorm_threshold[];
extern mp_size_t mod_1_norm_threshold[];
extern mp_size_t mod_1_unnorm_threshold[];
#undef KARATSUBA_MUL_THRESHOLD
#undef TOOM3_MUL_THRESHOLD
#undef FFT_MUL_TABLE
#undef FFT_MUL_THRESHOLD
#undef FFT_MODF_MUL_THRESHOLD
#undef KARATSUBA_SQR_THRESHOLD
#undef TOOM3_SQR_THRESHOLD
#undef FFT_SQR_TABLE
#undef FFT_SQR_THRESHOLD
#undef FFT_MODF_SQR_THRESHOLD
#undef DC_THRESHOLD
#undef FIB_THRESHOLD
#undef POWM_THRESHOLD
#undef GCD_ACCEL_THRESHOLD
#undef GCDEXT_THRESHOLD
#undef DIVREM_1_NORM_THRESHOLD
#undef DIVREM_1_UNNORM_THRESHOLD
#undef MOD_1_NORM_THRESHOLD
#undef MOD_1_UNNORM_THRESHOLD
#define KARATSUBA_MUL_THRESHOLD mul_threshold[0]
#define TOOM3_MUL_THRESHOLD mul_threshold[1]
#define FFT_MUL_TABLE { 0 }
#define FFT_MUL_THRESHOLD mul_threshold[2]
#define FFT_MODF_MUL_THRESHOLD fft_modf_mul_threshold
#define KARATSUBA_SQR_THRESHOLD sqr_threshold[0]
#define TOOM3_SQR_THRESHOLD sqr_threshold[1]
#define FFT_SQR_TABLE { 0 }
#define FFT_SQR_THRESHOLD sqr_threshold[2]
#define FFT_MODF_SQR_THRESHOLD fft_modf_sqr_threshold
#define DC_THRESHOLD dc_threshold[0]
#define FIB_THRESHOLD fib_threshold[0]
#define POWM_THRESHOLD powm_threshold[0]
#define GCD_ACCEL_THRESHOLD gcd_accel_threshold[0]
#define GCDEXT_THRESHOLD gcdext_threshold[0]
#define DIVREM_1_NORM_THRESHOLD divrem_1_norm_threshold[0]
#define DIVREM_1_UNNORM_THRESHOLD divrem_1_unnorm_threshold[0]
#define MOD_1_NORM_THRESHOLD mod_1_norm_threshold[0]
#define MOD_1_UNNORM_THRESHOLD mod_1_unnorm_threshold[0]
/* Sizes the tune program tests up to, used in a couple of recompilations. */
#define KARATSUBA_SQR_MAX_GENERIC 200
#define TOOM3_MUL_THRESHOLD_LIMIT 700
#undef FFT_TABLE_ATTRS
#define FFT_TABLE_ATTRS
extern mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE];
#if TUNE_PROGRAM_BUILD_SQR
#undef KARATSUBA_SQR_THRESHOLD
#define KARATSUBA_SQR_THRESHOLD KARATSUBA_SQR_MAX_GENERIC
#endif
#endif /* TUNE_PROGRAM_BUILD */
#if defined (__cplusplus)
}
#endif
#endif
|