summaryrefslogtreecommitdiff
path: root/gmp-impl.h
blob: 96ba3189cecb795420269c1c1997d200974c00c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
/* Include file for internal GNU MP types and definitions.

   THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND ARE ALMOST CERTAIN TO
   BE SUBJECT TO INCOMPATIBLE CHANGES IN FUTURE GNU MP RELEASES.

Copyright 1991, 1993, 1994, 1995, 1996, 1997, 1999, 2000, 2001, 2002 Free
Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */


#ifndef __GMP_IMPL_H__
#define __GMP_IMPL_H__

/* On Cray vector systems "short" and "unsigned short" might not be the same
   number of bits, making the SHRT_MAX defaults below fail.  (This depends
   on compiler options.)  Instead use limits.h.  */
#if defined _CRAY
#include <limits.h>
#endif

#if ! __GMP_WITHIN_CONFIGURE
#include "config.h"
#include "gmp-mparam.h"
#endif

#ifdef __cplusplus
#include <string>
#endif

/* Might search and replace _PROTO to __GMP_PROTO internally one day, to
   avoid two names for one thing, but no hurry for that.  */
#define _PROTO(x)  __GMP_PROTO(x)

/* The following tries to get a good version of alloca.  The tests are
   adapted from autoconf AC_FUNC_ALLOCA, with a couple of additions.
   Whether this succeeds is tested by GMP_FUNC_ALLOCA and HAVE_ALLOCA will
   be setup appropriately.

   ifndef alloca - a cpp define might already exist.
       glibc <stdlib.h> includes <alloca.h> which uses GCC __builtin_alloca.
       HP cc +Olibcalls adds a #define of alloca to __builtin_alloca.

   GCC __builtin_alloca - preferred whenever available.

   _AIX pragma - IBM compilers need a #pragma in "each module that needs to
       use alloca".  Pragma indented to protect pre-ANSI cpp's.  _IBMR2 was
       used in past versions of GMP, retained still in case it matters.

       The autoconf manual says this pragma needs to be at the start of a C
       file, apart from comments and preprocessor directives.  Is that true?
       xlc on aix 4.xxx doesn't seem to mind it being after prototypes etc
       from gmp.h.
*/

#ifndef alloca
# ifdef __GNUC__
#  define alloca __builtin_alloca
# else
#  ifdef __DECC
#   define alloca(x) __ALLOCA(x)
#  else
#   ifdef _MSC_VER
#    include <malloc.h>
#    define alloca _alloca
#   else
#    if HAVE_ALLOCA_H
#     include <alloca.h>
#    else
#     if defined (_AIX) || defined (_IBMR2)
 #pragma alloca
#     else
       char *alloca ();
#     endif
#    endif
#   endif
#  endif
# endif
#endif


/* "const" basically means a function does nothing but examine its arguments
   and give a return value, it doesn't read or write any memory (neither
   global nor pointed to by arguments), and has no other side-effects.  This
   is more restrictive than "pure".  See info node "(gcc)Function
   Attributes".  */
#if HAVE_ATTRIBUTE_CONST
#define ATTRIBUTE_CONST  __attribute__ ((const))
#else
#define ATTRIBUTE_CONST
#endif

#if HAVE_ATTRIBUTE_NORETURN
#define ATTRIBUTE_NORETURN  __attribute__ ((noreturn))
#else
#define ATTRIBUTE_NORETURN
#endif

/* "malloc" means a function behaves like malloc in that the pointer it
   returns doesn't alias anything.  */
#if HAVE_ATTRIBUTE_MALLOC
#define ATTRIBUTE_MALLOC  __attribute__ ((malloc))
#else
#define ATTRIBUTE_MALLOC
#endif

#if ! HAVE_STRCHR
#define strchr(s,c)  index(s,c)
#endif

#if ! HAVE_MEMSET
#define memset(p, c, n)                 \
  do {                                  \
    ASSERT (n >= 0);                    \
    int  __i;                           \
    for (__i = 0; __i < (n); __i++)     \
      (p)[__i] = (c);                   \
  } while (0)
#endif

/* va_copy is a standard part of C99, and we expect it'll be available on
   earlier systems too if they need something other than a plain "=", though
   possibly as __va_copy (for example gcc in strict C89 mode).  */
#if ! defined (va_copy) && defined (__va_copy)
#define va_copy(dst,src)  __va_copy(dst,src)
#endif
#if ! defined (va_copy)
#define va_copy(dst,src)  do { (dst) = (src); } while (0)
#endif


#if defined (__cplusplus)
extern "C" {
#endif


/* Usage: TMP_DECL (marker);
          TMP_MARK (marker);
          ptr = TMP_ALLOC (bytes);
          TMP_FREE (marker);

   TMP_DECL just declares a variable, but might be empty and so must be last
   in a list of variables.  TMP_MARK must be done before any TMP_ALLOC.
   TMP_ALLOC(0) is not allowed.  TMP_FREE doesn't need to be done if a
   TMP_MARK was made, but then no TMP_ALLOCs.

   The name "marker" isn't used by the malloc-reentrant and debug methods,
   instead they hardcode a name which TMP_ALLOC will know.  For that reason
   two TMP_DECLs are not allowed, unless one is in a nested "{ }" block, and
   in that case TMP_MARK, TMP_ALLOC and TMP_FREE will refer to the TMP_DECL
   which is in scope, irrespective of the marker name given.  */

/* The alignment in bytes, used for TMP_ALLOCed blocks, when alloca or
   __gmp_allocate_func doesn't already determine it.  Currently TMP_ALLOC
   isn't used for "double"s, so that's not in the union.  */
union tmp_align_t {
  mp_limb_t  l;
  char       *p;
};
#define __TMP_ALIGN  sizeof (union tmp_align_t)

/* Return "a" rounded upwards to a multiple of "m", if it isn't already.
   "a" must be an unsigned type.  */
#define ROUND_UP_MULTIPLE(a,m)  ((a) + (-(a))%(m))

#if WANT_TMP_ALLOCA
/* Each TMP_ALLOC is simply an alloca(), and nothing else is needed.
   This is the preferred method.  */
#define TMP_DECL(m)
#define TMP_ALLOC(x) alloca(x)
#define TMP_MARK(m)
#define TMP_FREE(m)
#endif

#if WANT_TMP_REENTRANT
/* See tal-reent.c for some comments. */
struct tmp_reentrant_t {
  struct tmp_reentrant_t  *next;
  size_t                  size;   /* bytes, including header */
};
void *__gmp_tmp_reentrant_alloc _PROTO ((struct tmp_reentrant_t **, size_t)) ATTRIBUTE_MALLOC;
void  __gmp_tmp_reentrant_free _PROTO ((struct tmp_reentrant_t *));
#define TMP_DECL(marker)   struct tmp_reentrant_t *__tmp_marker
/* don't demand NULL, just cast a zero */
#define TMP_MARK(marker) \
  do { __tmp_marker = (struct tmp_reentrant_t *) 0; } while (0)
#define TMP_ALLOC(size)    __gmp_tmp_reentrant_alloc (&__tmp_marker, size)
#define TMP_FREE(marker)   __gmp_tmp_reentrant_free  (__tmp_marker)
#endif

#if WANT_TMP_NOTREENTRANT
/* See tal-notreent.c for some comments. */
struct tmp_marker
{
  struct tmp_stack *which_chunk;
  void *alloc_point;
};
typedef struct tmp_marker tmp_marker;
void *__gmp_tmp_alloc _PROTO ((unsigned long)) ATTRIBUTE_MALLOC;
void __gmp_tmp_mark _PROTO ((tmp_marker *));
void __gmp_tmp_free _PROTO ((tmp_marker *));
#define TMP_DECL(marker) tmp_marker marker
/* gcc recognises "(-(8*n))%8" or the like is always zero, which means the
   rounding up is a noop for allocs of whole limbs. */
#define TMP_ALLOC(size) \
  __gmp_tmp_alloc (ROUND_UP_MULTIPLE ((unsigned long) (size), __TMP_ALIGN))
#define TMP_MARK(marker) __gmp_tmp_mark (&marker)
#define TMP_FREE(marker) __gmp_tmp_free (&marker)
#endif

#if WANT_TMP_DEBUG
/* See tal-debug.c for some comments. */
struct tmp_debug_t {
  struct tmp_debug_entry_t  *list;
  const char                *file;
  int                       line;
};
struct tmp_debug_entry_t {
  struct tmp_debug_entry_t  *next;
  char                      *block;
  size_t                    size;
};
void  __gmp_tmp_debug_mark  _PROTO ((const char *, int, struct tmp_debug_t **,
                                     struct tmp_debug_t *,
                                     const char *, const char *));
void *__gmp_tmp_debug_alloc _PROTO ((const char *, int, int,
                                     struct tmp_debug_t **, const char *,
                                     size_t)) ATTRIBUTE_MALLOC;
void  __gmp_tmp_debug_free  _PROTO ((const char *, int, int,
                                     struct tmp_debug_t **,
                                     const char *, const char *));
#if HAVE_STRINGIZE
#define TMP_DECL(marker) TMP_DECL_NAME(marker, #marker)
#define TMP_MARK(marker) TMP_MARK_NAME(marker, #marker)
#define TMP_FREE(marker) TMP_FREE_NAME(marker, #marker)
#else
#define TMP_DECL(marker) TMP_DECL_NAME(marker, "marker")
#define TMP_MARK(marker) TMP_MARK_NAME(marker, "marker")
#define TMP_FREE(marker) TMP_FREE_NAME(marker, "marker")
#endif
/* The marker variable is designed to provoke an uninitialized varialble
   warning from the compiler if TMP_FREE is used without a TMP_MARK.
   __tmp_marker_inscope does the same for TMP_ALLOC.  Runtime tests pick
   these things up too.  */
#define TMP_DECL_NAME(marker, marker_name)                      \
  int marker;                                                   \
  int __tmp_marker_inscope;                                     \
  const char *__tmp_marker_name = marker_name;                  \
  struct tmp_debug_t  __tmp_marker_struct;                      \
  /* don't demand NULL, just cast a zero */                     \
  struct tmp_debug_t  *__tmp_marker = (struct tmp_debug_t *) 0
#define TMP_MARK_NAME(marker, marker_name)                      \
  do {                                                          \
    marker = 1;                                                 \
    __tmp_marker_inscope = 1;                                   \
    __gmp_tmp_debug_mark  (ASSERT_FILE, ASSERT_LINE,            \
                           &__tmp_marker, &__tmp_marker_struct, \
                           __tmp_marker_name, marker_name);     \
  } while (0)
#define TMP_ALLOC(size)                                                 \
  __gmp_tmp_debug_alloc (ASSERT_FILE, ASSERT_LINE,                      \
                         __tmp_marker_inscope,                          \
                         &__tmp_marker, __tmp_marker_name, size)
#define TMP_FREE_NAME(marker, marker_name)                      \
  do {                                                          \
    __gmp_tmp_debug_free  (ASSERT_FILE, ASSERT_LINE,            \
                           marker, &__tmp_marker,               \
                           __tmp_marker_name, marker_name);     \
  } while (0)
#endif


/* Allocating various types. */
#define TMP_ALLOC_TYPE(n,type) ((type *) TMP_ALLOC ((n) * sizeof (type)))
#define TMP_ALLOC_LIMBS(n)     TMP_ALLOC_TYPE(n,mp_limb_t)
#define TMP_ALLOC_MP_PTRS(n)   TMP_ALLOC_TYPE(n,mp_ptr)

/* It's more efficient to allocate one block than two.  This is certainly
   true of the malloc methods, but it can even be true of alloca if that
   involves copying a chunk of stack (various RISCs), or a call to a stack
   bounds check (mingw).  In any case, when debugging keep separate blocks
   so a redzoning malloc debugger can protect each individually.  */
#if WANT_TMP_DEBUG
#define TMP_ALLOC_LIMBS_2(xp,xsize, yp,ysize)   \
  do {                                          \
    (xp) = TMP_ALLOC_LIMBS (xsize);             \
    (yp) = TMP_ALLOC_LIMBS (ysize);             \
  } while (0)
#else
#define TMP_ALLOC_LIMBS_2(xp,xsize, yp,ysize)   \
  do {                                          \
    (xp) = TMP_ALLOC_LIMBS ((xsize) + (ysize)); \
    (yp) = (xp) + (xsize);                      \
  } while (0)
#endif


/* From gmp.h, nicer names for internal use. */
#define MPN_CMP(result, xp, yp, size)  __GMPN_CMP(result, xp, yp, size)

#define ABS(x) ((x) >= 0 ? (x) : -(x))
#define MIN(l,o) ((l) < (o) ? (l) : (o))
#define MAX(h,i) ((h) > (i) ? (h) : (i))
#define numberof(x)  (sizeof (x) / sizeof ((x)[0]))

/* Field access macros.  */
#define SIZ(x) ((x)->_mp_size)
#define ABSIZ(x) ABS (SIZ (x))
#define PTR(x) ((x)->_mp_d)
#define LIMBS(x) ((x)->_mp_d)
#define EXP(x) ((x)->_mp_exp)
#define PREC(x) ((x)->_mp_prec)
#define ALLOC(x) ((x)->_mp_alloc)

/* n-1 inverts any low zeros and the lowest one bit.  If n&(n-1) leaves zero
   then that lowest one bit must have been the only bit set.  n==0 will
   return true though, so avoid that.  */
#define POW2_P(n)  (((n) & ((n) - 1)) == 0)


/* Might be already defined by gmp-mparam.h, otherwise use what's in gmp.h. */
#ifndef BITS_PER_MP_LIMB
#define BITS_PER_MP_LIMB  __GMP_BITS_PER_MP_LIMB
#endif


/* The "short" defines are a bit different because shorts are promoted to
   ints by ~ or >> etc.  */

#ifndef ULONG_MAX
#define ULONG_MAX   __GMP_ULONG_MAX
#endif
#ifndef UINT_MAX
#define UINT_MAX    __GMP_UINT_MAX
#endif
#ifndef USHRT_MAX
#define USHRT_MAX   __GMP_USHRT_MAX
#endif
#define MP_LIMB_T_MAX      (~ (mp_limb_t) 0)

/* Must cast ULONG_MAX etc to unsigned long etc, since they might not be
   unsigned on a K&R compiler.  In particular the HP-UX 10 bundled K&R cc
   treats the plain decimal values in <limits.h> as signed.  */
#define ULONG_HIGHBIT      (ULONG_MAX ^ ((unsigned long) ULONG_MAX >> 1))
#define UINT_HIGHBIT       (UINT_MAX ^ ((unsigned) UINT_MAX >> 1))
#define USHRT_HIGHBIT      ((unsigned short) (USHRT_MAX ^ ((unsigned short) USHRT_MAX >> 1)))
#define MP_LIMB_T_HIGHBIT  (MP_LIMB_T_MAX ^ (MP_LIMB_T_MAX >> 1))

#ifndef LONG_MIN
#define LONG_MIN           ((long) ULONG_HIGHBIT)
#endif
#ifndef LONG_MAX
#define LONG_MAX           (-(LONG_MIN+1))
#endif

#ifndef INT_MIN
#define INT_MIN            ((int) UINT_HIGHBIT)
#endif
#ifndef INT_MAX
#define INT_MAX            (-(INT_MIN+1))
#endif

#ifndef SHRT_MIN
#define SHRT_MIN           ((short) USHRT_HIGHBIT)
#endif
#ifndef SHRT_MAX
#define SHRT_MAX           ((short) (-(SHRT_MIN+1)))
#endif

#if __GMP_MP_SIZE_T_INT
#define MP_SIZE_T_MAX      INT_MAX
#define MP_SIZE_T_MIN      INT_MIN
#else
#define MP_SIZE_T_MAX      LONG_MAX
#define MP_SIZE_T_MIN      LONG_MIN
#endif

#define LONG_HIGHBIT       LONG_MIN
#define INT_HIGHBIT        INT_MIN
#define SHRT_HIGHBIT       SHRT_MIN


#define GMP_NUMB_MASK     (MP_LIMB_T_MAX >> GMP_NAIL_BITS)
#define GMP_NAIL_MASK     (~ GMP_NUMB_MASK)
#define GMP_NUMB_HIGHBIT  (CNST_LIMB(1) << (GMP_NUMB_BITS-1))


/* Swap macros. */

#define MP_LIMB_T_SWAP(x, y)                    \
  do {                                          \
    mp_limb_t __mp_limb_t_swap__tmp = (x);      \
    (x) = (y);                                  \
    (y) = __mp_limb_t_swap__tmp;                \
  } while (0)
#define MP_SIZE_T_SWAP(x, y)                    \
  do {                                          \
    mp_size_t __mp_size_t_swap__tmp = (x);      \
    (x) = (y);                                  \
    (y) = __mp_size_t_swap__tmp;                \
  } while (0)

#define MP_PTR_SWAP(x, y)               \
  do {                                  \
    mp_ptr __mp_ptr_swap__tmp = (x);    \
    (x) = (y);                          \
    (y) = __mp_ptr_swap__tmp;           \
  } while (0)
#define MP_SRCPTR_SWAP(x, y)                    \
  do {                                          \
    mp_srcptr __mp_srcptr_swap__tmp = (x);      \
    (x) = (y);                                  \
    (y) = __mp_srcptr_swap__tmp;                \
  } while (0)

#define MPN_PTR_SWAP(xp,xs, yp,ys)      \
  do {                                  \
    MP_PTR_SWAP (xp, yp);               \
    MP_SIZE_T_SWAP (xs, ys);            \
  } while(0)
#define MPN_SRCPTR_SWAP(xp,xs, yp,ys)   \
  do {                                  \
    MP_SRCPTR_SWAP (xp, yp);            \
    MP_SIZE_T_SWAP (xs, ys);            \
  } while(0)

#define MPZ_PTR_SWAP(x, y)              \
  do {                                  \
    mpz_ptr __mpz_ptr_swap__tmp = (x);  \
    (x) = (y);                          \
    (y) = __mpz_ptr_swap__tmp;          \
  } while (0)
#define MPZ_SRCPTR_SWAP(x, y)                   \
  do {                                          \
    mpz_srcptr __mpz_srcptr_swap__tmp = (x);    \
    (x) = (y);                                  \
    (y) = __mpz_srcptr_swap__tmp;               \
  } while (0)


void *__gmp_default_allocate _PROTO ((size_t));
void *__gmp_default_reallocate _PROTO ((void *, size_t, size_t));
void __gmp_default_free _PROTO ((void *, size_t));

#define __GMP_ALLOCATE_FUNC_TYPE(n,type) \
  ((type *) (*__gmp_allocate_func) ((n) * sizeof (type)))
#define __GMP_ALLOCATE_FUNC_LIMBS(n)   __GMP_ALLOCATE_FUNC_TYPE (n, mp_limb_t)

#define __GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, type) \
  ((type *) (*__gmp_reallocate_func)                            \
   (p, (old_size) * sizeof (type), (new_size) * sizeof (type)))
#define __GMP_REALLOCATE_FUNC_LIMBS(p, old_size, new_size) \
  __GMP_REALLOCATE_FUNC_TYPE(p, old_size, new_size, mp_limb_t)

#define __GMP_FREE_FUNC_TYPE(p,n,type) (*__gmp_free_func) (p, (n) * sizeof (type))
#define __GMP_FREE_FUNC_LIMBS(p,n)     __GMP_FREE_FUNC_TYPE (p, n, mp_limb_t)

#define __GMP_REALLOCATE_FUNC_MAYBE(ptr, oldsize, newsize)      \
  do {                                                          \
    if ((oldsize) != (newsize))                                 \
      (ptr) = (*__gmp_reallocate_func) (ptr, oldsize, newsize); \
  } while (0)

#define __GMP_REALLOCATE_FUNC_MAYBE_TYPE(ptr, oldsize, newsize, type)   \
  do {                                                                  \
    if ((oldsize) != (newsize))                                         \
      (ptr) = (type *) (*__gmp_reallocate_func)                         \
        (ptr, (oldsize) * sizeof (type), (newsize) * sizeof (type));    \
  } while (0)


/* const and signed must match __gmp_const and __gmp_signed, so follow the
   decision made for those in gmp.h.    */
#if ! __GMP_HAVE_CONST
#define const   /* empty */
#define signed  /* empty */
#endif


/* Dummy for non-gcc, code involving it will go dead. */
#ifndef __GNUC__
#define __builtin_constant_p(x)   0
#endif


/* In gcc 2.96 and up on i386, tail calls are optimized to jumps if the
   stack usage is compatible.  __attribute__ ((regparm (N))) helps by
   putting leading parameters in registers, avoiding extra stack.  */

#if HAVE_HOST_CPU_FAMILY_x86 && __GMP_GNUC_PREREQ (2,96)
#define USE_LEADING_REGPARM 1
#else
#define USE_LEADING_REGPARM 0
#endif

/* Macros for altering parameter order according to regparm usage. */
#if USE_LEADING_REGPARM
#define REGPARM_2_1(a,b,x)    x,a,b
#define REGPARM_3_1(a,b,c,x)  x,a,b,c
#define REGPARM_ATTR(n) __attribute__ ((regparm (n)))
#else
#define REGPARM_2_1(a,b,x)    a,b,x
#define REGPARM_3_1(a,b,c,x)  a,b,c,x
#define REGPARM_ATTR(n)
#endif


/* ASM_L gives a local label for a gcc asm block, for use when temporary
   local labels like "1:" might not be available, which is the case for
   instance on the x86s (the SCO assembler doesn't support them).

   The label generated is made unique by including "%=" which is a unique
   number for each insn.  This ensures the same name can be used in multiple
   asm blocks, perhaps via a macro.  Since jumps between asm blocks are not
   allowed there's no need for a label to be usable outside a single
   block.  */

#define ASM_L(name)  LSYM_PREFIX "asm_%=_" #name


#if defined (__GNUC__) && HAVE_HOST_CPU_FAMILY_x86
#if 0
/* FIXME: Check that these actually improve things.
   FIXME: Need a cld after each std.
   FIXME: Can't have inputs in clobbered registers, must describe them as
   dummy outputs, and add volatile. */
#define MPN_COPY_INCR(DST, SRC, N)					\
  __asm__ ("cld\n\trep\n\tmovsl" : :					\
	   "D" (DST), "S" (SRC), "c" (N) :				\
	   "cx", "di", "si", "memory")
#define MPN_COPY_DECR(DST, SRC, N)					\
  __asm__ ("std\n\trep\n\tmovsl" : :					\
	   "D" ((DST) + (N) - 1), "S" ((SRC) + (N) - 1), "c" (N) :	\
	   "cx", "di", "si", "memory")
#endif
#endif


void __gmpz_aorsmul_1 _PROTO ((REGPARM_3_1 (mpz_ptr w, mpz_srcptr u, mp_limb_t v, mp_size_t sub))) REGPARM_ATTR(1);
#define mpz_aorsmul_1(w,u,v,sub)  __gmpz_aorsmul_1 (REGPARM_3_1 (w, u, v, sub))

#define mpz_n_pow_ui __gmpz_n_pow_ui
void    mpz_n_pow_ui _PROTO ((mpz_ptr, mp_srcptr, mp_size_t, unsigned long));


#define mpn_add_nc __MPN(add_nc)
__GMP_DECLSPEC mp_limb_t mpn_add_nc __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t));

#define mpn_addmul_1c __MPN(addmul_1c)
__GMP_DECLSPEC mp_limb_t mpn_addmul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t));

#define mpn_addsub_n __MPN(addsub_n)
__GMP_DECLSPEC mp_limb_t mpn_addsub_n __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));

#define mpn_addsub_nc __MPN(addsub_nc)
__GMP_DECLSPEC mp_limb_t mpn_addsub_nc __GMP_PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t));

#define mpn_divrem_1c __MPN(divrem_1c)
__GMP_DECLSPEC mp_limb_t mpn_divrem_1c __GMP_PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t));

#define mpn_dump __MPN(dump)
__GMP_DECLSPEC void mpn_dump __GMP_PROTO ((mp_srcptr, mp_size_t));

#define mpn_fib2_ui __MPN(fib2_ui)
mp_size_t mpn_fib2_ui _PROTO ((mp_ptr, mp_ptr, unsigned long));

/* Remap names of internal mpn functions.  */
#define __clz_tab               __MPN(clz_tab)
#define mpn_udiv_w_sdiv		__MPN(udiv_w_sdiv)

#define mpn_gcd_finda	__MPN(gcd_finda)
mp_limb_t mpn_gcd_finda _PROTO((const mp_limb_t cp[2])) __GMP_ATTRIBUTE_PURE;

#define mpn_jacobi_base __MPN(jacobi_base)
int mpn_jacobi_base _PROTO ((mp_limb_t a, mp_limb_t b, int result_bit1)) ATTRIBUTE_CONST;

#define mpn_mod_1c __MPN(mod_1c)
__GMP_DECLSPEC mp_limb_t mpn_mod_1c __GMP_PROTO ((mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t)) __GMP_ATTRIBUTE_PURE;

#define mpn_mul_1c __MPN(mul_1c)
__GMP_DECLSPEC mp_limb_t mpn_mul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t));

#define mpn_mul_2 __MPN(mul_2)
mp_limb_t mpn_mul_2 _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr));

#define mpn_mul_basecase __MPN(mul_basecase)
__GMP_DECLSPEC void mpn_mul_basecase __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t));

#define mpn_sqr_n __MPN(sqr_n)
__GMP_DECLSPEC void mpn_sqr_n __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t));

#define mpn_sqr_basecase __MPN(sqr_basecase)
__GMP_DECLSPEC void mpn_sqr_basecase __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t));

#define mpn_sub_nc __MPN(sub_nc)
__GMP_DECLSPEC mp_limb_t mpn_sub_nc __GMP_PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_limb_t));

#define mpn_submul_1c __MPN(submul_1c)
__GMP_DECLSPEC mp_limb_t mpn_submul_1c __GMP_PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t));


typedef __gmp_randstate_struct *gmp_randstate_ptr;

#define _gmp_rand __gmp_rand
__GMP_DECLSPEC void _gmp_rand _PROTO ((mp_ptr, gmp_randstate_t, unsigned long int));


/* __gmp_rands is the global state for the old-style random functions, and
   is also used in the test programs (hence the __GMP_DECLSPEC).

   There's no seeding here, so mpz_random etc will generate the same
   sequence every time.  This is not unlike the C library random functions
   if you don't seed them, so perhaps it's acceptable.  Digging up a seed
   from /dev/random or the like would work on many systems, but might
   encourage a false confidence, since it'd be pretty much impossible to do
   something that would work reliably everywhere.  In any case the new style
   functions are recommended to applications which care about randomness, so
   the old functions aren't too important.  */

__GMP_DECLSPEC extern char             __gmp_rands_initialized;
__GMP_DECLSPEC extern gmp_randstate_t  __gmp_rands;

#define RANDS                                   \
  ((__gmp_rands_initialized ? 0                 \
    : (__gmp_rands_initialized = 1,             \
       gmp_randinit_default (__gmp_rands), 0)), \
   __gmp_rands)

/* this is used by the test programs, to free memory */
#define RANDS_CLEAR()                   \
  do {                                  \
    if (__gmp_rands_initialized)        \
      {                                 \
        __gmp_rands_initialized = 0;    \
        gmp_randclear (__gmp_rands);    \
      }                                 \
  } while (0)


/* kara uses n+1 limbs of temporary space and then recurses with the
   balance, so need (n+1) + (ceil(n/2)+1) + (ceil(n/4)+1) + ... */
#define MPN_KARA_MUL_N_TSIZE(n)   (2*((n)+BITS_PER_MP_LIMB))
#define MPN_KARA_SQR_N_TSIZE(n)   (2*((n)+BITS_PER_MP_LIMB))

/* toom3 uses 4*(ceil(n/3)) of temporary space and then recurses with the
   balance either into itself or kara.  The following might be
   overestimates. */
#define MPN_TOOM3_MUL_N_TSIZE(n)  (2*(n) + 3*BITS_PER_MP_LIMB)
#define MPN_TOOM3_SQR_N_TSIZE(n)  (2*(n) + 3*BITS_PER_MP_LIMB)

/* need 2 so that n2>=1 */
#define MPN_KARA_MUL_N_MINSIZE    2
#define MPN_KARA_SQR_N_MINSIZE    2

/* Need l>=1, ls>=1, and 2*ls > l (the latter for the tD MPN_INCR_U) */
#define MPN_TOOM3_MUL_N_MINSIZE   11
#define MPN_TOOM3_SQR_N_MINSIZE   11

#define mpn_sqr_diagonal __MPN(sqr_diagonal)
void mpn_sqr_diagonal _PROTO ((mp_ptr, mp_srcptr, mp_size_t));

#define mpn_kara_mul_n	__MPN(kara_mul_n)
void mpn_kara_mul_n _PROTO((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t, mp_ptr));

#define mpn_kara_sqr_n  __MPN(kara_sqr_n)
void mpn_kara_sqr_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));

#define mpn_toom3_mul_n  __MPN(toom3_mul_n)
void mpn_toom3_mul_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t,mp_ptr));

#define mpn_toom3_sqr_n  __MPN(toom3_sqr_n)
void mpn_toom3_sqr_n _PROTO((mp_ptr, mp_srcptr, mp_size_t, mp_ptr));


#define mpn_fft_best_k __MPN(fft_best_k)
int     mpn_fft_best_k _PROTO ((mp_size_t n, int sqr)) ATTRIBUTE_CONST;

#define mpn_mul_fft  __MPN(mul_fft)
void mpn_mul_fft _PROTO ((mp_ptr op, mp_size_t pl,
                          mp_srcptr n, mp_size_t nl,
                          mp_srcptr m, mp_size_t ml,
                          int k));

#define mpn_mul_fft_full  __MPN(mul_fft_full)
void mpn_mul_fft_full _PROTO ((mp_ptr op,
                               mp_srcptr n, mp_size_t nl,
                               mp_srcptr m, mp_size_t ml));

#define   mpn_fft_next_size __MPN(fft_next_size)
mp_size_t mpn_fft_next_size _PROTO ((mp_size_t pl, int k)) ATTRIBUTE_CONST;

#define mpn_sb_divrem_mn  __MPN(sb_divrem_mn)
mp_limb_t mpn_sb_divrem_mn _PROTO ((mp_ptr, mp_ptr, mp_size_t,
                                    mp_srcptr, mp_size_t));

#define mpn_dc_divrem_n  __MPN(dc_divrem_n)
mp_limb_t mpn_dc_divrem_n _PROTO ((mp_ptr, mp_ptr, mp_srcptr, mp_size_t));

/* #define mpn_tdiv_q  __MPN(tdiv_q) */
/* void mpn_tdiv_q _PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t)); */

#define mpz_divexact_gcd  __gmpz_divexact_gcd
void mpz_divexact_gcd _PROTO ((mpz_ptr q, mpz_srcptr a, mpz_srcptr d));

#define mpz_inp_str_nowhite __gmpz_inp_str_nowhite
#ifdef _GMP_H_HAVE_FILE
size_t mpz_inp_str_nowhite _PROTO ((mpz_ptr x, FILE *stream, int base, int c, size_t nread));
#endif

#define mpn_divisible_p __MPN(divisible_p)
int     mpn_divisible_p _PROTO ((mp_srcptr ap, mp_size_t asize,
                                 mp_srcptr dp, mp_size_t dsize)) __GMP_ATTRIBUTE_PURE;


/* from gmp.h */
#if HAVE_HOST_CPU_FAMILY_power || HAVE_HOST_CPU_FAMILY_powerpc
#define MPN_COPY_INCR(dst, src, size)                   \
  do {                                                  \
    ASSERT ((size) >= 0);                               \
    ASSERT (MPN_SAME_OR_INCR_P (dst, src, size));       \
    __GMPN_COPY_INCR (dst, src, size);                  \
  } while (0)
#endif

#if defined (_CRAY)
#define MPN_COPY_INCR(dst, src, n)					\
  do {									\
    int __i;		/* Faster on some Crays with plain int */	\
    _Pragma ("_CRI ivdep");						\
    for (__i = 0; __i < (n); __i++)					\
      (dst)[__i] = (src)[__i];						\
  } while (0)
#endif

#define mpn_copyi __MPN(copyi)
void mpn_copyi _PROTO ((mp_ptr, mp_srcptr, mp_size_t));

#if ! defined (MPN_COPY_INCR) && HAVE_NATIVE_mpn_copyi
#define MPN_COPY_INCR(dst, src, size)                   \
  do {                                                  \
    ASSERT ((size) >= 0);                               \
    ASSERT (MPN_SAME_OR_INCR_P (dst, src, size));       \
    mpn_copyi (dst, src, size);                         \
  } while (0)
#endif

/* Copy N limbs from SRC to DST incrementing, N==0 allowed.  */
#if ! defined (MPN_COPY_INCR)
#define MPN_COPY_INCR(dst, src, n)                      \
  do {                                                  \
    ASSERT ((n) >= 0);                                  \
    ASSERT (MPN_SAME_OR_INCR_P (dst, src, n));          \
    if ((n) != 0)                                       \
      {                                                 \
	mp_size_t __n = (n) - 1;                        \
	mp_ptr __dst = (dst);                           \
	mp_srcptr __src = (src);                        \
	mp_limb_t __x;                                  \
	__x = *__src++;                                 \
	if (__n != 0)                                   \
	  {                                             \
	    do                                          \
	      {                                         \
		*__dst++ = __x;                         \
		__x = *__src++;                         \
	      }                                         \
	    while (--__n);                              \
	  }                                             \
	*__dst++ = __x;                                 \
      }                                                 \
  } while (0)
#endif


/* As per __GMPN_COPY_INCR in gmp.h. */
#if HAVE_HOST_CPU_FAMILY_power || HAVE_HOST_CPU_FAMILY_powerpc
#define MPN_COPY_DECR(dst, src, size)                   \
  do {                                                  \
    ASSERT ((size) >= 0);                               \
    ASSERT (MPN_SAME_OR_DECR_P (dst, src, size));       \
    if ((size) != 0)                                    \
      {                                                 \
        mp_ptr     __dst = (dst) + (size);              \
        mp_srcptr  __src = (src) + (size);              \
        mp_size_t  __size = (size);                     \
        do                                              \
          *--__dst = *--__src;                          \
        while (--__size != 0);                          \
      }                                                 \
  } while (0)
#endif

#if defined (_CRAY)
#define MPN_COPY_DECR(dst, src, n)					\
  do {									\
    int __i;		/* Faster on some Crays with plain int */	\
    _Pragma ("_CRI ivdep");						\
    for (__i = (n) - 1; __i >= 0; __i--)				\
      (dst)[__i] = (src)[__i];						\
  } while (0)
#endif

#define mpn_copyd __MPN(copyd)
void mpn_copyd _PROTO ((mp_ptr, mp_srcptr, mp_size_t));

#if ! defined (MPN_COPY_DECR) && HAVE_NATIVE_mpn_copyd
#define MPN_COPY_DECR(dst, src, size)                   \
  do {                                                  \
    ASSERT ((size) >= 0);                               \
    ASSERT (MPN_SAME_OR_DECR_P (dst, src, size));       \
    mpn_copyd (dst, src, size);                         \
  } while (0)
#endif

/* Copy N limbs from SRC to DST decrementing, N==0 allowed.  */
#if ! defined (MPN_COPY_DECR)
#define MPN_COPY_DECR(dst, src, n)                      \
  do {                                                  \
    ASSERT ((n) >= 0);                                  \
    ASSERT (MPN_SAME_OR_DECR_P (dst, src, n));          \
    if ((n) != 0)                                       \
      {                                                 \
	mp_size_t __n = (n) - 1;                        \
	mp_ptr __dst = (dst) + __n;                     \
	mp_srcptr __src = (src) + __n;                  \
	mp_limb_t __x;                                  \
	__x = *__src--;                                 \
	if (__n != 0)                                   \
	  {                                             \
	    do                                          \
	      {                                         \
		*__dst-- = __x;                         \
		__x = *__src--;                         \
	      }                                         \
	    while (--__n);                              \
	  }                                             \
	*__dst-- = __x;                                 \
      }                                                 \
  } while (0)
#endif


#ifndef MPN_COPY
#define MPN_COPY(d,s,n)                         \
  do {                                          \
    ASSERT (MPN_SAME_OR_SEPARATE_P (d, s, n));  \
    MPN_COPY_INCR (d, s, n);                    \
  } while (0)
#endif


/* Zero n limbs at dst.

   For power and powerpc we want an inline stu/bdnz loop for zeroing.  On
   ppc630 for instance this is optimal since it can sustain only 1 store per
   cycle.

   gcc 2.95.x (for powerpc64 -maix64, or powerpc32) doesn't recognise the
   "for" loop in the generic code below can become stu/bdnz.  The do/while
   here helps it get to that.  The same caveat about plain -mpowerpc64 mode
   applies here as to __GMPN_COPY_INCR in gmp.h.

   xlc 3.1 already generates stu/bdnz from the generic C, and does so from
   this loop too.

   Enhancement: GLIBC does some trickery with dcbz to zero whole cache lines
   at a time.  MPN_ZERO isn't all that important in GMP, so it might be more
   trouble than it's worth to do the same, though perhaps a call to memset
   would be good when on a GNU system.  */

#if HAVE_HOST_CPU_FAMILY_power || HAVE_HOST_CPU_FAMILY_powerpc
#define MPN_ZERO(dst, n)			\
  do {						\
    ASSERT ((n) >= 0);				\
    if ((n) != 0)				\
      {						\
	mp_ptr __dst = (dst) - 1;		\
	mp_size_t __n = (n);			\
	do					\
	  *++__dst = 0;				\
	while (--__n);				\
      }						\
  } while (0)
#endif

#ifndef MPN_ZERO
#define MPN_ZERO(dst, n)			\
  do {						\
    ASSERT ((n) >= 0);				\
    if ((n) != 0)				\
      {						\
	mp_ptr __dst = (dst);			\
	mp_size_t __n = (n);			\
	do					\
	  *__dst++ = 0;				\
	while (--__n);				\
      }						\
  } while (0)
#endif


/* On the x86s repe/scasl doesn't seem useful, since it takes many cycles to
   start up and would need to strip a lot of zeros before it'd be faster
   than a simple cmpl loop.  Here are some times in cycles for
   std/repe/scasl/cld and cld/repe/scasl (the latter would be for stripping
   low zeros).

                std   cld
           P5    18    16
           P6    46    38
           K6    36    13
           K7    21    20
*/
#ifndef MPN_NORMALIZE
#define MPN_NORMALIZE(DST, NLIMBS) \
  do {									\
    while (NLIMBS > 0)							\
      {									\
	if ((DST)[(NLIMBS) - 1] != 0)					\
	  break;							\
	NLIMBS--;							\
      }									\
  } while (0)
#endif
#ifndef MPN_NORMALIZE_NOT_ZERO
#define MPN_NORMALIZE_NOT_ZERO(DST, NLIMBS)     \
  do {                                          \
    ASSERT ((NLIMBS) >= 1);                     \
    while (1)                                   \
      {                                         \
	if ((DST)[(NLIMBS) - 1] != 0)           \
	  break;                                \
	NLIMBS--;                               \
      }                                         \
  } while (0)
#endif

/* Strip least significant zero limbs from {ptr,size} by incrementing ptr
   and decrementing size.  low should be ptr[0], and will be the new ptr[0]
   on returning.  The number in {ptr,size} must be non-zero, ie. size!=0 and
   somewhere a non-zero limb.  */
#define MPN_STRIP_LOW_ZEROS_NOT_ZERO(ptr, size, low)    \
  do {                                                  \
    ASSERT ((size) >= 1);                               \
    ASSERT ((low) == (ptr)[0]);                         \
                                                        \
    while ((low) == 0)                                  \
      {                                                 \
        (size)--;                                       \
        ASSERT ((size) >= 1);                           \
        (ptr)++;                                        \
        (low) = *(ptr);                                 \
      }                                                 \
  } while (0)

/* Initialize X of type mpz_t with space for NLIMBS limbs.  X should be a
   temporary variable; it will be automatically cleared out at function
   return.  We use __x here to make it possible to accept both mpz_ptr and
   mpz_t arguments.  */
#define MPZ_TMP_INIT(X, NLIMBS)                                         \
  do {                                                                  \
    mpz_ptr __x = (X);                                                  \
    ASSERT ((NLIMBS) >= 1);                                             \
    __x->_mp_alloc = (NLIMBS);                                          \
    __x->_mp_d = (mp_ptr) TMP_ALLOC ((NLIMBS) * BYTES_PER_MP_LIMB);     \
  } while (0)

/* Realloc for an mpz_t WHAT if it has less than NEEDED limbs.  */
#define MPZ_REALLOC(what,needed) \
  do {								\
    if ((needed) > ALLOC (what))				\
      _mpz_realloc (what, needed);				\
  } while (0)

#define MPZ_EQUAL_1_P(z)  (SIZ(z)==1 && PTR(z)[0] == 1)


/* MPN_FIB2_SIZE(n) is the size in limbs required by mpn_fib2_ui for fp and
   f1p.

   From Knuth vol 1 section 1.2.8, F[n] = phi^n/sqrt(5) rounded to the
   nearest integer, where phi=(1+sqrt(5))/2 is the golden ratio.  So the
   number of bits required is n*log_2((1+sqrt(5))/2) = n*0.6942419.

   The multiplier used is 23/32=0.71875 for efficient calculation on CPUs
   without good floating point.  There's +2 for rounding up, and a further
   +2 since at the last step x limbs are doubled into a 2x+1 limb region
   whereas the actual F[2k] value might be only 2x-1 limbs.

   Note that a division is done first, since on a 32-bit system it's at
   least conceivable to go right up to n==ULONG_MAX.  (F[2^32-1] would be
   about 380Mbytes, plus temporary workspace of about 1.2Gbytes here and
   whatever a multiply of two 190Mbyte numbers takes.)  */

#define MPN_FIB2_SIZE(n) \
  ((mp_size_t) ((n) / 32 * 23 / BITS_PER_MP_LIMB) + 4)


/* FIB_TABLE(n) returns the Fibonacci number F[n].  Must have n in the range
   -1 <= n <= FIB_TABLE_LIMIT.

   FIB_TABLE_LUCNUM_LIMIT is the largest n for which L[n] = F[n] + 2*F[n-1]
   fits in a limb.

   This data generated by code at the end of mpn/generic/fib2_ui.c.  */

extern const mp_limb_t __gmp_fib_table[];
#define FIB_TABLE(n)  (__gmp_fib_table[(n)+1])

#if GMP_NUMB_BITS >= 64
#define FIB_TABLE_LIMIT         93
#define FIB_TABLE_LUCNUM_LIMIT  92
#else
#if GMP_NUMB_BITS >= 32
#define FIB_TABLE_LIMIT         47
#define FIB_TABLE_LUCNUM_LIMIT  46
#else
#if GMP_NUMB_BITS >= 16
#define FIB_TABLE_LIMIT         24
#define FIB_TABLE_LUCNUM_LIMIT  23
#else
#if GMP_NUMB_BITS >= 8
#define FIB_TABLE_LIMIT         13
#define FIB_TABLE_LUCNUM_LIMIT  11
#else
#if GMP_NUMB_BITS >= 4
#define FIB_TABLE_LIMIT         7
#define FIB_TABLE_LUCNUM_LIMIT  5
#endif /* 4 */
#endif /* 8 */
#endif /* 16 */
#endif /* 32 */
#endif /* 64 */


/* For a threshold between algorithms A and B, size>=thresh is where B
   should be used.  Special value MP_SIZE_T_MAX means only ever use A, or
   value 0 means only ever use B.  The tests for these special values will
   be compile-time constants, so the compiler should be able to eliminate
   the code for the unwanted algorithm.  */

#define ABOVE_THRESHOLD(size,thresh)    \
  ((thresh) == 0                        \
   || ((thresh) != MP_SIZE_T_MAX        \
       && (size) >= (thresh)))
#define BELOW_THRESHOLD(size,thresh)  (! ABOVE_THRESHOLD (size, thresh))


/* If KARATSUBA_MUL_THRESHOLD is not already defined, define it to a
   value which is good on most machines.  */
#ifndef KARATSUBA_MUL_THRESHOLD
#define KARATSUBA_MUL_THRESHOLD 32
#endif

/* If TOOM3_MUL_THRESHOLD is not already defined, define it to a
   value which is good on most machines.  */
#ifndef TOOM3_MUL_THRESHOLD
#define TOOM3_MUL_THRESHOLD 256
#endif

/* This is the threshold at which mpn_sqr_basecase should take over from
   mpn_mul_basecase in mpn_sqr_n.  Default is to use mpn_sqr_basecase
   always.

   If it turns out that mpn_kara_sqr_n becomes faster than mpn_mul_basecase
   before mpn_sqr_basecase does, then BASECASE_SQR_THRESHOLD is the
   karatsuba threshold and KARATSUBA_SQR_THRESHOLD is 0.  This oddity arises
   more or less because KARATSUBA_SQR_THRESHOLD represents the size up to
   which mpn_sqr_basecase should be used, and that may be never.  */

#ifndef BASECASE_SQR_THRESHOLD
#define BASECASE_SQR_THRESHOLD 0
#endif

#ifndef KARATSUBA_SQR_THRESHOLD
#define KARATSUBA_SQR_THRESHOLD (2*KARATSUBA_MUL_THRESHOLD)
#endif

#ifndef TOOM3_SQR_THRESHOLD
#define TOOM3_SQR_THRESHOLD (2*TOOM3_MUL_THRESHOLD)
#endif

/* First k to use for an FFT modF multiply.  A modF FFT is an order
   log(2^k)/log(2^(k-1)) algorithm, so k=3 is merely 1.5 like karatsuba,
   whereas k=4 is 1.33 which is faster than toom3 at 1.485.    */
#define FFT_FIRST_K  4

/* Threshold at which FFT should be used to do a modF NxN -> N multiply. */
#ifndef FFT_MODF_MUL_THRESHOLD
#define FFT_MODF_MUL_THRESHOLD   (TOOM3_MUL_THRESHOLD * 3)
#endif
#ifndef FFT_MODF_SQR_THRESHOLD
#define FFT_MODF_SQR_THRESHOLD   (TOOM3_SQR_THRESHOLD * 3)
#endif

/* Threshold at which FFT should be used to do an NxN -> 2N multiply.  This
   will be a size where FFT is using k=7 or k=8, since an FFT-k used for an
   NxN->2N multiply and not recursing into itself is an order
   log(2^k)/log(2^(k-2)) algorithm, so it'll be at least k=7 at 1.39 which
   is the first better than toom3.  */
#ifndef FFT_MUL_THRESHOLD
#define FFT_MUL_THRESHOLD   (FFT_MODF_MUL_THRESHOLD * 10)
#endif
#ifndef FFT_SQR_THRESHOLD
#define FFT_SQR_THRESHOLD   (FFT_MODF_SQR_THRESHOLD * 10)
#endif

/* Table of thresholds for successive modF FFT "k"s.  The first entry is
   where FFT_FIRST_K+1 should be used, the second FFT_FIRST_K+2,
   etc.  See mpn_fft_best_k(). */
#ifndef FFT_MUL_TABLE
#define FFT_MUL_TABLE                           \
  { TOOM3_MUL_THRESHOLD * 4,   /* k=5 */        \
    TOOM3_MUL_THRESHOLD * 8,   /* k=6 */        \
    TOOM3_MUL_THRESHOLD * 16,  /* k=7 */        \
    TOOM3_MUL_THRESHOLD * 32,  /* k=8 */        \
    TOOM3_MUL_THRESHOLD * 96,  /* k=9 */        \
    TOOM3_MUL_THRESHOLD * 288, /* k=10 */       \
    0 }
#endif
#ifndef FFT_SQR_TABLE
#define FFT_SQR_TABLE                           \
  { TOOM3_SQR_THRESHOLD * 4,   /* k=5 */        \
    TOOM3_SQR_THRESHOLD * 8,   /* k=6 */        \
    TOOM3_SQR_THRESHOLD * 16,  /* k=7 */        \
    TOOM3_SQR_THRESHOLD * 32,  /* k=8 */        \
    TOOM3_SQR_THRESHOLD * 96,  /* k=9 */        \
    TOOM3_SQR_THRESHOLD * 288, /* k=10 */       \
    0 }
#endif

#ifndef FFT_TABLE_ATTRS
#define FFT_TABLE_ATTRS   static const
#endif

#define MPN_FFT_TABLE_SIZE  16


/* mpn_dc_divrem_n(n) calls 2*mul(n/2)+2*div(n/2), thus to be faster than
   div(n) = 4*div(n/2), we need mul(n/2) to be faster than the classic way,
   i.e. n/2 >= KARATSUBA_MUL_THRESHOLD

   Measured values are between 2 and 4 times KARATSUBA_MUL_THRESHOLD, so go
   for 3 as an average.  */

#ifndef DC_THRESHOLD
#define DC_THRESHOLD    (3 * KARATSUBA_MUL_THRESHOLD)
#endif


/* Return non-zero if xp,xsize and yp,ysize overlap.
   If xp+xsize<=yp there's no overlap, or if yp+ysize<=xp there's no
   overlap.  If both these are false, there's an overlap. */
#define MPN_OVERLAP_P(xp, xsize, yp, ysize) \
  ((xp) + (xsize) > (yp) && (yp) + (ysize) > (xp))
#define MEM_OVERLAP_P(xp, xsize, yp, ysize)     \
  (   (char *) (xp) + (xsize) > (char *) (yp)   \
   && (char *) (yp) + (ysize) > (char *) (xp))

/* Return non-zero if xp,xsize and yp,ysize are either identical or not
   overlapping.  Return zero if they're partially overlapping. */
#define MPN_SAME_OR_SEPARATE_P(xp, yp, size)    \
  MPN_SAME_OR_SEPARATE2_P(xp, size, yp, size)
#define MPN_SAME_OR_SEPARATE2_P(xp, xsize, yp, ysize)           \
  ((xp) == (yp) || ! MPN_OVERLAP_P (xp, xsize, yp, ysize))

/* Return non-zero if dst,dsize and src,ssize are either identical or
   overlapping in a way suitable for an incrementing/decrementing algorithm.
   Return zero if they're partially overlapping in an unsuitable fashion. */
#define MPN_SAME_OR_INCR2_P(dst, dsize, src, ssize)             \
  ((dst) <= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize))
#define MPN_SAME_OR_INCR_P(dst, src, size)      \
  MPN_SAME_OR_INCR2_P(dst, size, src, size)
#define MPN_SAME_OR_DECR2_P(dst, dsize, src, ssize)             \
  ((dst) >= (src) || ! MPN_OVERLAP_P (dst, dsize, src, ssize))
#define MPN_SAME_OR_DECR_P(dst, src, size)      \
  MPN_SAME_OR_DECR2_P(dst, size, src, size)


/* ASSERT() is a private assertion checking scheme, similar to <assert.h>.
   ASSERT() does the check only if WANT_ASSERT is selected, ASSERT_ALWAYS()
   does it always.  Generally assertions are meant for development, but
   might help when looking for a problem later too.

   Note that strings shouldn't be used within the ASSERT expression,
   eg. ASSERT(strcmp(s,"notgood")!=0), since the quotes upset the "expr"
   used in the !HAVE_STRINGIZE case (ie. K&R).  */

#ifdef __LINE__
#define ASSERT_LINE  __LINE__
#else
#define ASSERT_LINE  -1
#endif

#ifdef __FILE__
#define ASSERT_FILE  __FILE__
#else
#define ASSERT_FILE  ""
#endif

void __gmp_assert_header _PROTO ((const char *filename, int linenum));
void __gmp_assert_fail _PROTO ((const char *filename, int linenum,
                               const char *expr)) ATTRIBUTE_NORETURN;

#if HAVE_STRINGIZE
#define ASSERT_FAIL(expr)  __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, #expr)
#else
#define ASSERT_FAIL(expr)  __gmp_assert_fail (ASSERT_FILE, ASSERT_LINE, "expr")
#endif

#define ASSERT_ALWAYS(expr)     \
  do {                          \
    if (!(expr))                \
      ASSERT_FAIL (expr);       \
  } while (0)

#if WANT_ASSERT
#define ASSERT(expr)   ASSERT_ALWAYS (expr)
#else
#define ASSERT(expr)   do {} while (0)
#endif


/* ASSERT_CARRY checks the expression is non-zero, and ASSERT_NOCARRY checks
   that it's zero.  In both cases if assertion checking is disabled the
   expression is still evaluated.  These macros are meant for use with
   routines like mpn_add_n() where the return value represents a carry or
   whatever that should or shouldn't occur in some context.  For example,
   ASSERT_NOCARRY (mpn_add_n (rp, s1p, s2p, size)); */
#if WANT_ASSERT
#define ASSERT_CARRY(expr)     ASSERT_ALWAYS ((expr) != 0)
#define ASSERT_NOCARRY(expr)   ASSERT_ALWAYS ((expr) == 0)
#else
#define ASSERT_CARRY(expr)     (expr)
#define ASSERT_NOCARRY(expr)   (expr)
#endif


/* ASSERT_CODE includes code when assertion checking is wanted.  This is the
   same as writing "#if WANT_ASSERT", but more compact.  */
#if WANT_ASSERT
#define ASSERT_CODE(expr)  expr
#else
#define ASSERT_CODE(expr)
#endif


/* Test that an mpq_t is in fully canonical form.  This can be used as
   protection on routines like mpq_equal which give wrong results on
   non-canonical inputs.  */
#if WANT_ASSERT
#define ASSERT_MPQ_CANONICAL(q)                         \
  do {                                                  \
    ASSERT (q->_mp_den._mp_size > 0);                   \
    if (q->_mp_num._mp_size == 0)                       \
      {                                                 \
        /* zero should be 0/1 */                        \
        ASSERT (mpz_cmp_ui (mpq_denref(q), 1L) == 0);   \
      }                                                 \
    else                                                \
      {                                                 \
        /* no common factors */                         \
        mpz_t  __g;                                     \
        mpz_init (__g);                                 \
        mpz_gcd (__g, mpq_numref(q), mpq_denref(q));    \
        ASSERT (mpz_cmp_ui (__g, 1) == 0);              \
        mpz_clear (__g);                                \
      }                                                 \
  } while (0)
#else
#define ASSERT_MPQ_CANONICAL(q)  do {} while (0)
#endif

/* Check that the nail parts are zero. */
#if WANT_ASSERT
#define ASSERT_MP_LIMB_T(limb)                  \
  do {                                          \
    mp_limb_t  __nail = (limb) & GMP_NAIL_MASK; \
    ASSERT (__nail == 0);                       \
  } while (0)
#define ASSERT_MPN(ptr, size)                   \
  do {                                          \
    if (GMP_NAIL_BITS != 0)                     \
      {                                         \
        mp_size_t  __i;                         \
        for (__i = 0; __i < (size); __i++)      \
          ASSERT_MP_LIMB_T ((ptr)[__i]);        \
      }                                         \
  } while (0)
#else
#define ASSERT_MP_LIMB_T(limb)  do {} while (0)
#define ASSERT_MPN(ptr, size)   do {} while (0)
#endif


/* Assert that an mpn region {ptr,size} is zero, or non-zero.
   size==0 is allowed, and in that case {ptr,size} considered to be zero.  */
#if WANT_ASSERT
#define ASSERT_MPN_ZERO_P(ptr,size)     \
  do {                                  \
    mp_size_t  __i;                     \
    ASSERT ((size) >= 0);               \
    for (__i = 0; __i < (size); __i++)  \
      ASSERT ((ptr)[__i] == 0);         \
  } while (0)
#define ASSERT_MPN_NONZERO_P(ptr,size)  \
  do {                                  \
    mp_size_t  __i;                     \
    int        __nonzero = 0;           \
    ASSERT ((size) >= 0);               \
    for (__i = 0; __i < (size); __i++)  \
      if ((ptr)[__i] != 0)              \
        {                               \
          __nonzero = 1;                \
          break;                        \
        }                               \
    ASSERT (__nonzero);                 \
  } while (0)
#else
#define ASSERT_MPN_ZERO_P(ptr,size)     do {} while (0)
#define ASSERT_MPN_NONZERO_P(ptr,size)  do {} while (0)
#endif


#if HAVE_NATIVE_mpn_com_n
#define mpn_com_n __MPN(com_n)
void mpn_com_n _PROTO ((mp_ptr, mp_srcptr, mp_size_t));
#else
#define mpn_com_n(d,s,n)                                \
  do {                                                  \
    mp_ptr     __d = (d);                               \
    mp_srcptr  __s = (s);                               \
    mp_size_t  __n = (n);                               \
    ASSERT (__n >= 1);                                  \
    ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s, __n));    \
    do                                                  \
      *__d++ = ~ *__s++;                                \
    while (--__n);                                      \
  } while (0)
#endif

#define MPN_LOGOPS_N_INLINE(d, s1, s2, n, operation)    \
  do {                                                  \
    mp_ptr	 __d = (d);                             \
    mp_srcptr	 __s1 = (s1);                           \
    mp_srcptr	 __s2 = (s2);                           \
    mp_size_t	 __n = (n);                             \
    ASSERT (__n >= 1);                                  \
    ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s1, __n));   \
    ASSERT (MPN_SAME_OR_SEPARATE_P (__d, __s2, __n));   \
    do                                                  \
      operation;                                        \
    while (--__n);                                      \
  } while (0)

#if HAVE_NATIVE_mpn_and_n
#define mpn_and_n __MPN(and_n)
void mpn_and_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_and_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ & *__s2++)
#endif

#if HAVE_NATIVE_mpn_andn_n
#define mpn_andn_n __MPN(andn_n)
void mpn_andn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_andn_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ & ~*__s2++)
#endif

#if HAVE_NATIVE_mpn_nand_n
#define mpn_nand_n __MPN(nand_n)
void mpn_nand_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_nand_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~ (*__s1++ & *__s2++))
#endif

#if HAVE_NATIVE_mpn_ior_n
#define mpn_ior_n __MPN(ior_n)
void mpn_ior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_ior_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ | *__s2++)
#endif

#if HAVE_NATIVE_mpn_iorn_n
#define mpn_iorn_n __MPN(iorn_n)
void mpn_iorn_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_iorn_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ | ~*__s2++)
#endif

#if HAVE_NATIVE_mpn_nior_n
#define mpn_nior_n __MPN(nior_n)
void mpn_nior_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_nior_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~ (*__s1++ | *__s2++))
#endif

#if HAVE_NATIVE_mpn_xor_n
#define mpn_xor_n __MPN(xor_n)
void mpn_xor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_xor_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = *__s1++ ^ *__s2++)
#endif

#if HAVE_NATIVE_mpn_xnor_n
#define mpn_xnor_n __MPN(xnor_n)
void mpn_xnor_n _PROTO ((mp_ptr, mp_srcptr, mp_srcptr, mp_size_t));
#else
#define mpn_xnor_n(d, s1, s2, n) \
  MPN_LOGOPS_N_INLINE (d, s1, s2, n, *__d++ = ~ (*__s1++ ^ *__s2++))
#endif


/* MPN_INCR_U does {ptr,size} += n, MPN_DECR_U does {ptr,size} -= n, both
   expecting no carry (or borrow) from that.

   The size parameter is only for the benefit of assertion checking.  In a
   normal build it's unused and the carry/borrow is just propagated as far
   as it needs to go.

   On random data, usually only one or two limbs of {ptr,size} get updated,
   so there's no need for any sophisticated looping, just something compact
   and sensible.

   FIXME: Do the generic MPN_{INCR,DECR}_U with a block of code like
   mpn_incr_u but with the assertions built in, rather than the separate
   add_1 and sub_1 when assertion checking.

   FIXME: Switch all code from mpn_{incr,decr}_u to MPN_{INCR,DECR}_U,
   declaring their operand sizes, then remove the former.  This is purely
   for the benefit of assertion checking.  */

#if defined (__GNUC__) && HAVE_HOST_CPU_FAMILY_x86                      \
  && BITS_PER_MP_LIMB == 32 && ! defined (NO_ASM) && ! WANT_ASSERT
/* Better flags handling than the generic C gives on i386, saving a few
   bytes of code and maybe a cycle or two.  aors is an add or sub, iord is
   an inc or dec, and jiord is a jump for overflow of iord.  */

#define MPN_IORD_U(ptr, n, aors, iord, jiord)   \
  do {                                          \
    mp_ptr  __dummy;                            \
    if (__builtin_constant_p (n) && (n) == 1)   \
      {                                         \
        __asm__ __volatile__                    \
          ("\n" ASM_L(top) ":\n"                \
           "\t" iord "(%0)\n"                   \
           "\tleal 4(%0),%0\n"                  \
           "\t" jiord " " ASM_L(top)            \
           : "=r" (__dummy)                     \
           : "0"  (ptr)                         \
           : "memory");                         \
      }                                         \
    else                                        \
      {                                         \
        __asm__ __volatile__                    \
          (   aors  " %2,(%0)\n"                \
           "\tjnc " ASM_L(done) "\n"            \
           ASM_L(top) ":\n"                     \
           "\t" iord "4(%0)\n"                  \
           "\tleal 4(%0),%0\n"                  \
           "\t" jiord " " ASM_L(top) "\n"       \
           ASM_L(done) ":\n"                    \
           : "=r" (__dummy)                     \
           : "0"  (ptr),                        \
             "ri" (n)                           \
           : "memory");                         \
      }                                         \
  } while (0)

#define MPN_INCR_U(ptr, size, n)  MPN_IORD_U (ptr, n, "addl", "addl $1,", "jc")
#define MPN_DECR_U(ptr, size, n)  MPN_IORD_U (ptr, n, "subl", "subl $1,", "jc")
#define mpn_incr_u(ptr, n)  MPN_INCR_U (ptr, 0, n)
#define mpn_decr_u(ptr, n)  MPN_DECR_U (ptr, 0, n)
#endif

#ifndef mpn_incr_u
#define mpn_incr_u(p,incr)                              \
  do {                                                  \
    mp_limb_t __x;                                      \
    mp_ptr __p = (p);                                   \
    if (__builtin_constant_p (incr) && (incr) == 1)     \
      {                                                 \
        while (++(*(__p++)) == 0)                       \
          ;                                             \
      }                                                 \
    else                                                \
      {                                                 \
        __x = *__p + (incr);                            \
        *__p = __x;                                     \
        if (__x < (incr))                               \
          while (++(*(++__p)) == 0)                     \
            ;                                           \
      }                                                 \
  } while (0)
#endif

#ifndef mpn_decr_u
#define mpn_decr_u(p,incr)                              \
  do {                                                  \
    mp_limb_t __x;                                      \
    mp_ptr __p = (p);                                   \
    if (__builtin_constant_p (incr) && (incr) == 1)     \
      {                                                 \
        while ((*(__p++))-- == 0)                       \
          ;                                             \
      }                                                 \
    else                                                \
      {                                                 \
        __x = *__p;                                     \
        *__p = __x - (incr);                            \
        if (__x < (incr))                               \
          while ((*(++__p))-- == 0)                     \
            ;                                           \
      }                                                 \
  } while (0)
#endif

#ifndef MPN_INCR_U
#if WANT_ASSERT
#define MPN_INCR_U(ptr, size, n)                        \
  do {                                                  \
    ASSERT ((size) >= 1);                               \
    ASSERT_NOCARRY (mpn_add_1 (ptr, ptr, size, n));     \
  } while (0)
#else
#define MPN_INCR_U(ptr, size, n)   mpn_incr_u (ptr, n)
#endif
#endif

#ifndef MPN_DECR_U
#if WANT_ASSERT
#define MPN_DECR_U(ptr, size, n)                        \
  do {                                                  \
    ASSERT ((size) >= 1);                               \
    ASSERT_NOCARRY (mpn_sub_1 (ptr, ptr, size, n));     \
  } while (0)
#else
#define MPN_DECR_U(ptr, size, n)   mpn_decr_u (ptr, n)
#endif
#endif


/* Structure for conversion between internal binary format and
   strings in base 2..36.  */
struct bases
{
  /* Number of digits in the conversion base that always fits in an mp_limb_t.
     For example, for base 10 on a machine where a mp_limb_t has 32 bits this
     is 9, since 10**9 is the largest number that fits into a mp_limb_t.  */
  int chars_per_limb;

  /* log(2)/log(conversion_base) */
  double chars_per_bit_exactly;

  /* base**chars_per_limb, i.e. the biggest number that fits a word, built by
     factors of base.  Exception: For 2, 4, 8, etc, big_base is log2(base),
     i.e. the number of bits used to represent each digit in the base.  */
  mp_limb_t big_base;

  /* A BITS_PER_MP_LIMB bit approximation to 1/big_base, represented as a
     fixed-point number.  Instead of dividing by big_base an application can
     choose to multiply by big_base_inverted.  */
  mp_limb_t big_base_inverted;
};

#define mp_bases __MPN(bases)
#define __mp_bases __MPN(bases)
extern const struct bases mp_bases[257];

/* mp_bases[10] values, generated by mpn/mp_bases.c */
#if BITS_PER_MP_LIMB == 4
#define MP_BASES_CHARS_PER_LIMB_10      1
#define MP_BASES_BIG_BASE_10            CNST_LIMB(0xa)
#define MP_BASES_BIG_BASE_INVERTED_10   CNST_LIMB(0x9)
#define MP_BASES_NORMALIZATION_STEPS_10 0
#endif
#if BITS_PER_MP_LIMB == 8
#define MP_BASES_CHARS_PER_LIMB_10      2
#define MP_BASES_BIG_BASE_10            CNST_LIMB(0x64)
#define MP_BASES_BIG_BASE_INVERTED_10   CNST_LIMB(0x47)
#define MP_BASES_NORMALIZATION_STEPS_10 1
#endif
#if BITS_PER_MP_LIMB == 16
#define MP_BASES_CHARS_PER_LIMB_10      4
#define MP_BASES_BIG_BASE_10            CNST_LIMB(0x2710)
#define MP_BASES_BIG_BASE_INVERTED_10   CNST_LIMB(0xa36e)
#define MP_BASES_NORMALIZATION_STEPS_10 2
#endif
#if BITS_PER_MP_LIMB == 32
#define MP_BASES_CHARS_PER_LIMB_10      9
#define MP_BASES_BIG_BASE_10            CNST_LIMB(0x3b9aca00)
#define MP_BASES_BIG_BASE_INVERTED_10   CNST_LIMB(0x12e0be82)
#define MP_BASES_NORMALIZATION_STEPS_10 2
#endif
#if BITS_PER_MP_LIMB == 64
#define MP_BASES_CHARS_PER_LIMB_10      19
#define MP_BASES_BIG_BASE_10            CNST_LIMB(0x8ac7230489e80000)
#define MP_BASES_BIG_BASE_INVERTED_10   CNST_LIMB(0xd83c94fb6d2ac34a)
#define MP_BASES_NORMALIZATION_STEPS_10 0
#endif


/* For power of 2 bases this is exact.  For other bases the result is either
   exact or one too big.

   To be exact always it'd be necessary to examine all the limbs of the
   operand, since numbers like 100..000 and 99...999 generally differ only
   in the lowest limb.  It'd be possible to examine just a couple of high
   limbs to increase the probability of being exact, but that doesn't seem
   worth bothering with.  */

#define MPN_SIZEINBASE(result, ptr, size, base)                         \
  do {                                                                  \
    int       __lb_base, __cnt;                                         \
    mp_size_t __totbits;                                                \
                                                                        \
    ASSERT ((size) >= 0);                                               \
    ASSERT ((base) >= 2);                                               \
    ASSERT ((base) < numberof (mp_bases));                              \
                                                                        \
    /* Special case for X == 0.  */                                     \
    if ((size) == 0)                                                    \
      (result) = 1;                                                     \
    else                                                                \
      {                                                                 \
        /* Calculate the total number of significant bits of X.  */     \
        count_leading_zeros (__cnt, (ptr)[(size)-1]);                   \
        __totbits = (size) * GMP_NUMB_BITS - __cnt;                     \
                                                                        \
        if (POW2_P (base))                                              \
          {                                                             \
            __lb_base = mp_bases[base].big_base;                        \
            (result) = (__totbits + __lb_base - 1) / __lb_base;         \
          }                                                             \
        else                                                            \
          (result) = (size_t)                                           \
            (__totbits * mp_bases[base].chars_per_bit_exactly) + 1;     \
      }                                                                 \
  } while (0)

/* eliminate mp_bases lookups for base==16 */
#define MPN_SIZEINBASE_16(result, ptr, size)                            \
  do {                                                                  \
    int       __cnt;                                                    \
    mp_size_t __totbits;                                                \
                                                                        \
    ASSERT ((size) >= 0);                                               \
                                                                        \
    /* Special case for X == 0.  */                                     \
    if ((size) == 0)                                                    \
      (result) = 1;                                                     \
    else                                                                \
      {                                                                 \
        /* Calculate the total number of significant bits of X.  */     \
        count_leading_zeros (__cnt, (ptr)[(size)-1]);                   \
        __totbits = (size) * GMP_NUMB_BITS - __cnt;                     \
        (result) = (__totbits + 4 - 1) / 4;                             \
      }                                                                 \
  } while (0)


#if HAVE_HOST_CPU_FAMILY_x86
#define TARGET_REGISTER_STARVED 1
#else
#define TARGET_REGISTER_STARVED 0
#endif

/* Use a library function for invert_limb, if available. */
#if ! defined (invert_limb) && HAVE_NATIVE_mpn_invert_limb
#define mpn_invert_limb  __MPN(invert_limb)
mp_limb_t mpn_invert_limb _PROTO ((mp_limb_t)) ATTRIBUTE_CONST;
#define invert_limb(invxl,xl)  (invxl = mpn_invert_limb (xl))
#endif

#ifndef invert_limb
#define invert_limb(invxl,xl)                   \
  do {                                          \
    mp_limb_t dummy;                            \
    ASSERT ((xl) != 0);                         \
    if (xl << 1 == 0)                           \
      invxl = ~(mp_limb_t) 0;                   \
    else                                        \
      udiv_qrnnd (invxl, dummy, -xl, 0, xl);    \
  } while (0)
#endif

/* Divide the two-limb number in (NH,,NL) by D, with DI being the largest
   limb not larger than (2**(2*BITS_PER_MP_LIMB))/D - (2**BITS_PER_MP_LIMB).
   If this would yield overflow, DI should be the largest possible number
   (i.e., only ones).  For correct operation, the most significant bit of D
   has to be set.  Put the quotient in Q and the remainder in R.  */
#define udiv_qrnnd_preinv(q, r, nh, nl, d, di)                            \
  do {                                                                    \
    mp_limb_t _q, _ql, _r;                                                \
    mp_limb_t _xh, _xl;                                                   \
    ASSERT ((d) != 0);                                                    \
    umul_ppmm (_q, _ql, (nh), (di));                                      \
    _q += (nh);                 /* DI is 2**BITS_PER_MP_LIMB too small */ \
    umul_ppmm (_xh, _xl, _q, (d));                                        \
    sub_ddmmss (_xh, _r, (nh), (nl), _xh, _xl);                           \
    if (_xh != 0)                                                         \
      {                                                                   \
	sub_ddmmss (_xh, _r, _xh, _r, 0, (d));                            \
	_q += 1;                                                          \
	if (_xh != 0)                                                     \
	  {                                                               \
	    _r -= (d);                                                    \
	    _q += 1;                                                      \
	  }                                                               \
      }                                                                   \
    if (_r >= (d))                                                        \
      {                                                                   \
	_r -= (d);                                                        \
	_q += 1;                                                          \
      }                                                                   \
    (r) = _r;                                                             \
    (q) = _q;                                                             \
  } while (0)
/* Like udiv_qrnnd_preinv, but for for any value D.  DNORM is D shifted left
   so that its most significant bit is set.  LGUP is ceil(log2(D)).  */
#define udiv_qrnnd_preinv2gen(q, r, nh, nl, d, di, dnorm, lgup) \
  do {									\
    mp_limb_t _n2, _n10, _n1, _nadj, _q1;				\
    mp_limb_t _xh, _xl;							\
    _n2 = ((nh) << (BITS_PER_MP_LIMB - (lgup))) + ((nl) >> 1 >> (l - 1));\
    _n10 = (nl) << (BITS_PER_MP_LIMB - (lgup));				\
    _n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1));		\
    _nadj = _n10 + (_n1 & (dnorm));					\
    umul_ppmm (_xh, _xl, di, _n2 - _n1);				\
    add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj);				\
    _q1 = ~(_n2 + _xh);							\
    umul_ppmm (_xh, _xl, _q1, d);					\
    add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl);				\
    _xh -= (d);								\
    (r) = _xl + ((d) & _xh);						\
    (q) = _xh - _q1;							\
  } while (0)
/* Exactly like udiv_qrnnd_preinv, but branch-free.  It is not clear which
   version to use.  */
#define udiv_qrnnd_preinv2norm(q, r, nh, nl, d, di) \
  do {									\
    mp_limb_t _n2, _n10, _n1, _nadj, _q1;				\
    mp_limb_t _xh, _xl;							\
    _n2 = (nh);								\
    _n10 = (nl);							\
    _n1 = ((mp_limb_signed_t) _n10 >> (BITS_PER_MP_LIMB - 1));		\
    _nadj = _n10 + (_n1 & (d));						\
    umul_ppmm (_xh, _xl, di, _n2 - _n1);				\
    add_ssaaaa (_xh, _xl, _xh, _xl, 0, _nadj);				\
    _q1 = ~(_n2 + _xh);							\
    umul_ppmm (_xh, _xl, _q1, d);					\
    add_ssaaaa (_xh, _xl, _xh, _xl, nh, nl);				\
    _xh -= (d);								\
    (r) = _xl + ((d) & _xh);						\
    (q) = _xh - _q1;							\
  } while (0)


#define mpn_preinv_divrem_1  __MPN(preinv_divrem_1)
mp_limb_t mpn_preinv_divrem_1 _PROTO ((mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t, mp_limb_t, int));


/* USE_PREINV_DIVREM_1 is whether to use mpn_preinv_divrem_1, as opposed to
   the plain mpn_divrem_1.  Likewise USE_PREINV_MOD_1 chooses between
   mpn_preinv_mod_1 and plain mpn_mod_1.  The default for both is yes, since
   the few CISC chips where preinv is not good have defines saying so.  */
#ifndef USE_PREINV_DIVREM_1
#define USE_PREINV_DIVREM_1   1
#endif
#ifndef USE_PREINV_MOD_1
#define USE_PREINV_MOD_1   1
#endif

#if USE_PREINV_DIVREM_1
#define MPN_DIVREM_OR_PREINV_DIVREM_1(qp,xsize,ap,size,d,dinv,shift)    \
  mpn_preinv_divrem_1 (qp, xsize, ap, size, d, dinv, shift)
#else
#define MPN_DIVREM_OR_PREINV_DIVREM_1(qp,xsize,ap,size,d,dinv,shift)    \
  mpn_divrem_1 (qp, xsize, ap, size, d)
#endif

#if USE_PREINV_MOD_1
#define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse)       \
  mpn_preinv_mod_1 (src, size, divisor, inverse)
#else
#define MPN_MOD_OR_PREINV_MOD_1(src,size,divisor,inverse)       \
  mpn_mod_1 (src, size, divisor)
#endif


#define mpn_mod_34lsub1 __MPN(mod_34lsub1)
mp_limb_t mpn_mod_34lsub1 _PROTO ((mp_srcptr, mp_size_t)) __GMP_ATTRIBUTE_PURE;


/* DIVEXACT_1_THRESHOLD is at what size to use mpn_divexact_1, as opposed to
   plain mpn_divrem_1.  Likewise MODEXACT_1_ODD_THRESHOLD for
   mpn_modexact_1_odd against plain mpn_mod_1.  On most CPUs divexact and
   modexact are faster at all sizes, so the defaults are 0.  Those CPUs
   where this is not right have a tuned threshold.  */
#ifndef DIVEXACT_1_THRESHOLD
#define DIVEXACT_1_THRESHOLD  0
#endif
#ifndef MODEXACT_1_ODD_THRESHOLD
#define MODEXACT_1_ODD_THRESHOLD  0
#endif

#define mpn_divexact_1 __MPN(divexact_1)
void    mpn_divexact_1 _PROTO ((mp_ptr, mp_srcptr, mp_size_t, mp_limb_t));

#define MPN_DIVREM_OR_DIVEXACT_1(dst, src, size, divisor)                     \
  do {                                                                        \
    if (BELOW_THRESHOLD (size, DIVEXACT_1_THRESHOLD))                         \
      ASSERT_NOCARRY (mpn_divrem_1 (dst, (mp_size_t) 0, src, size, divisor)); \
    else                                                                      \
      {                                                                       \
        ASSERT (mpn_mod_1 (src, size, divisor) == 0);                         \
        mpn_divexact_1 (dst, src, size, divisor);                             \
      }                                                                       \
  } while (0)

#define mpn_modexact_1c_odd  __MPN(modexact_1c_odd)
mp_limb_t mpn_modexact_1c_odd _PROTO ((mp_srcptr src, mp_size_t size,
                                       mp_limb_t divisor, mp_limb_t c)) __GMP_ATTRIBUTE_PURE;

#if HAVE_NATIVE_mpn_modexact_1_odd
#define mpn_modexact_1_odd   __MPN(modexact_1_odd)
mp_limb_t mpn_modexact_1_odd _PROTO ((mp_srcptr src, mp_size_t size,
                                      mp_limb_t divisor)) __GMP_ATTRIBUTE_PURE;
#else
#define mpn_modexact_1_odd(src,size,divisor) \
  mpn_modexact_1c_odd (src, size, divisor, CNST_LIMB(0))
#endif

#define MPN_MOD_OR_MODEXACT_1_ODD(src,size,divisor)     \
  (ABOVE_THRESHOLD (size, MODEXACT_1_ODD_THRESHOLD)     \
   ? mpn_modexact_1_odd (src, size, divisor)            \
   : mpn_mod_1 (src, size, divisor))


/* modlimb_invert() sets inv to the multiplicative inverse of n modulo
   2^BITS_PER_MP_LIMB, ie. satisfying inv*n == 1 mod 2^BITS_PER_MP_LIMB.
   n must be odd (otherwise such an inverse doesn't exist).

   This is not to be confused with invert_limb(), which is completely
   different.

   The table lookup gives an inverse with the low 8 bits valid, and each
   multiply step doubles the number of bits.  See Jebelean "An algorithm for
   exact division" end of section 4 (reference in gmp.texi).

   Possible enhancement: Could use UHWtype until the last step, if half-size
   multiplies are faster (might help under _LONG_LONG_LIMB).

   Alternative: As noted in Granlund and Montgomery "Division by Invariant
   Integers using Multiplication" (reference in gmp.texi), n itself gives a
   3-bit inverse immediately, and could be used instead of a table lookup.
   Some bit twiddling could very likely give a 4-bit inverse to start too.  */

#define modlimb_invert_table  __gmp_modlimb_invert_table
__GMP_DECLSPEC extern const unsigned char  modlimb_invert_table[128];

#if BITS_PER_MP_LIMB <= 8
#define modlimb_invert(inv,n)                                   \
  do {                                                          \
    mp_limb_t  __n = (n);                                       \
    mp_limb_t  __inv;                                           \
    ASSERT ((__n & 1) == 1);                                    \
    __inv = modlimb_invert_table[(__n/2)&0x7F]; /*  8 */        \
    ASSERT (__inv * __n == 1);                                  \
    (inv) = __inv;                                              \
  } while (0)
#else
#if BITS_PER_MP_LIMB <= 16
#define modlimb_invert(inv,n)                                   \
  do {                                                          \
    mp_limb_t  __n = (n);                                       \
    mp_limb_t  __inv;                                           \
    ASSERT ((__n & 1) == 1);                                    \
    __inv = modlimb_invert_table[(__n/2)&0x7F]; /*  8 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 16 */        \
    ASSERT (__inv * __n == 1);                                  \
    (inv) = __inv;                                              \
  } while (0)
#else
#if BITS_PER_MP_LIMB <= 32
#define modlimb_invert(inv,n)                                   \
  do {                                                          \
    mp_limb_t  __n = (n);                                       \
    mp_limb_t  __inv;                                           \
    ASSERT ((__n & 1) == 1);                                    \
    __inv = modlimb_invert_table[(__n/2)&0x7F]; /*  8 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 16 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 32 */        \
    ASSERT (__inv * __n == 1);                                  \
    (inv) = __inv;                                              \
  } while (0)
#else
#if BITS_PER_MP_LIMB <= 64
#define modlimb_invert(inv,n)                                   \
  do {                                                          \
    mp_limb_t  __n = (n);                                       \
    mp_limb_t  __inv;                                           \
    ASSERT ((__n & 1) == 1);                                    \
    __inv = modlimb_invert_table[(__n/2)&0x7F]; /*  8 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 16 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 32 */        \
    __inv = 2 * __inv - __inv * __inv * __n;    /* 64 */        \
    ASSERT (__inv * __n == 1);                                  \
    (inv) = __inv;                                              \
  } while (0)
#endif /* 64 */
#endif /* 32 */
#endif /* 16 */
#endif /* 8 */


/* Multiplicative inverse of 3, modulo 2^BITS_PER_MP_LIMB.
   0xAAAAAAAB for 32 bits, 0xAAAAAAAAAAAAAAAB for 64 bits. */
#define MODLIMB_INVERSE_3   ((MP_LIMB_T_MAX / 3) * 2 + 1)


/* Set r to -a mod d.  a>=d is allowed.  Can give r>d.  All should be limbs.

   It's not clear whether this is the best way to do this calculation.
   Anything congruent to -a would be fine for the one limb congruence
   tests.  */ 

#define NEG_MOD(r, a, d)                                        \
  do {                                                          \
    ASSERT ((d) != 0);                                          \
    if ((a) <= (d))                                             \
      {                                                         \
        /* small a is reasonably likely */                      \
        (r) = (d) - (a);                                        \
      }                                                         \
    else                                                        \
      {                                                         \
        unsigned   __twos;                                      \
        mp_limb_t  __dnorm;                                     \
        count_leading_zeros (__twos, d);                        \
        __dnorm = (d) << __twos;                                \
        (r) = ((a) <= __dnorm ? __dnorm : 2*__dnorm) - (a);     \
      }                                                         \
  } while (0)

/* A bit mask of all the least significant zero bits of n, or -1 if n==0. */
#define LOW_ZEROS_MASK(n)  (((n) & -(n)) - 1)


/* Set "p" to 1 if there's an odd number of 1 bits in "n", or to 0 if
   there's an even number.  */

#if defined (__GNUC__) && ! defined (NO_ASM) && HAVE_HOST_CPU_FAMILY_x86
#define ULONG_PARITY(p, n)              \
  do {                                  \
    char           __p;                 \
    unsigned long  __n = (n);           \
    __n ^= (__n >> 16);                 \
    asm ("xorb   %h1, %b1\n"            \
         "setpo  %0\n"                  \
         : "=qm" (__p), "=q" (__n)      \
         : "1" (__n));                  \
    (p) = __p;                          \
  } while (0)
#else
#define ULONG_PARITY(p, n)                      \
  do {                                          \
    unsigned long  __n = (n);                   \
    int  __p = 0;                               \
    do                                          \
      {                                         \
        __p ^= 0x96696996L >> (__n & 0x1F);     \
        __n >>= 5;                              \
      }                                         \
    while (__n != 0);                           \
                                                \
    (p) = __p;                                  \
  } while (0)
#endif


/* bswap is available on i486 and up and is fast.  A combination rorw $8 /
   roll $16 / rorw $8 is used in glibc for plain i386 (and in the linux
   kernel with xchgb instead of rorw), but this is not done here, because
   i386 means generic x86 and mixing word and dword operations will cause
   partial register stalls on P6 chips.  */
#if defined (__GNUC__) && ! defined (NO_ASM)            \
  && HAVE_HOST_CPU_FAMILY_x86 && ! HAVE_HOST_CPU_i386   \
  && BITS_PER_MP_LIMB == 32
#define BSWAP_LIMB(dst, src)                    \
  do {                                          \
    asm ("bswap %0" : "=r" (dst) : "0" (src));  \
  } while (0)
#endif /* x86 */

#if defined (__GNUC__) && ! defined (NO_ASM)    \
  && defined (__ia64) && BITS_PER_MP_LIMB == 64
#define BSWAP_LIMB(dst, src)                                    \
  do {                                                          \
    asm ("mux1 %0 = %1, @rev" : "=r" (dst) :  "r" (src));       \
  } while (0)
#endif

#if ! defined (BSWAP_LIMB)
#if BITS_PER_MP_LIMB == 8
#define BSWAP_LIMB(dst, src)            \
  do { (dst) = (src); } while (0)
#endif
#if BITS_PER_MP_LIMB == 16
#define BSWAP_LIMB(dst, src)                    \
  do {                                          \
    (dst) = ((src) << 8) + ((src) >> 8);        \
  } while (0)
#endif
#if BITS_PER_MP_LIMB == 32
#define BSWAP_LIMB(dst, src)    \
  do {                          \
    (dst) =                     \
      ((src) << 24)             \
      + (((src) & 0xFF00) << 8) \
      + (((src) >> 8) & 0xFF00) \
      + ((src) >> 24);          \
  } while (0)
#endif
#if BITS_PER_MP_LIMB == 64
#define BSWAP_LIMB(dst, src)            \
  do {                                  \
    (dst) =                             \
      ((src) << 56)                     \
      + (((src) & 0xFF00) << 40)        \
      + (((src) & 0xFF0000) << 24)      \
      + (((src) & 0xFF000000) << 8)     \
      + (((src) >> 8) & 0xFF000000)     \
      + (((src) >> 24) & 0xFF0000)      \
      + (((src) >> 40) & 0xFF00)        \
      + ((src) >> 56);                  \
  } while (0)
#endif
#endif


/* No processor claiming to be SPARC v9 compliant seems to
   implement the POPC instruction.  Disable pattern for now.  */
#if 0
#if defined __GNUC__ && defined __sparc_v9__ && BITS_PER_MP_LIMB == 64
#define popc_limb(result, input)                        \
  do {                                                  \
    DItype __res;                                       \
    asm ("popc %1,%0" : "=r" (result) : "rI" (input));  \
  } while (0)
#endif
#endif

/* Cool population count of an mp_limb_t.
   You have to figure out how this works, I won't tell you!

   The constants could also be expressed as:
     0xAA... = [2^(N+1) / 3] = [(2^N-1)/3*2]
     0x33... = [2^N / 5]     = [(2^N-1)/5]
     0x0f... = [2^N / 17]    = [(2^N-1)/17]
     (N is BITS_PER_MP_LIMB, [] denotes truncation.) */

#if ! defined (popc_limb) && BITS_PER_MP_LIMB == 64
#define popc_limb(result, input)                                \
  do {                                                          \
    mp_limb_t  __x = (input);                                   \
    __x -= (__x & CNST_LIMB(0xaaaaaaaaaaaaaaaa)) >> 1;          \
    __x = ((__x >> 2) & CNST_LIMB(0x3333333333333333))          \
      +    (__x       & CNST_LIMB(0x3333333333333333));         \
    __x = ((__x >> 4) + __x) & CNST_LIMB(0x0f0f0f0f0f0f0f0f);   \
    __x = ((__x >> 8) + __x);                                   \
    __x = ((__x >> 16) + __x);                                  \
    __x = ((__x >> 32) + __x) & 0xff;                           \
    (result) = __x;                                             \
  } while (0)
#endif
#if ! defined (popc_limb) && BITS_PER_MP_LIMB == 32
#define popc_limb(result, input)                                \
  do {                                                          \
    mp_limb_t  __x = (input);                                   \
    __x -= (__x & 0xaaaaaaaaL) >> 1;                            \
    __x = ((__x >> 2) & 0x33333333L) + (__x & 0x33333333L);     \
    __x = ((__x >> 4) + __x) & 0x0f0f0f0fL;                     \
    __x = ((__x >> 8) + __x);                                   \
    __x = ((__x >> 16) + __x) & 0xff;                           \
    (result) = __x;                                             \
  } while (0)
#endif
#if ! defined (popc_limb) && BITS_PER_MP_LIMB == 16
#define popc_limb(result, input)                        \
  do {                                                  \
    mp_limb_t  __x = (input);                           \
    __x -= (__x & 0xaaaa) >> 1;                         \
    __x = ((__x >> 2) & 0x3333) + (__x & 0x3333);       \
    __x = ((__x >> 4) + __x) & 0x0f0f;                  \
    __x = ((__x >> 8) + __x) & 0xff;                    \
    (result) = __x;                                     \
  } while (0)
#endif
#if ! defined (popc_limb) && BITS_PER_MP_LIMB == 8
#define popc_limb(result, input)                \
  do {                                          \
    mp_limb_t  __x = (input);                   \
    __x -= (__x & 0xaa) >> 1;                   \
    __x = ((__x >> 2) & 0x33) + (__x & 0x33);   \
    __x = ((__x >> 4) + __x) & 0xf;             \
    (result) = __x;                             \
  } while (0)
#endif
#if ! defined (popc_limb) && BITS_PER_MP_LIMB == 4
#define popc_limb(result, input)                                              \
  do {                                                                        \
    mp_limb_t  __x = (input);                                                 \
    __x = (__x & 1) + ((__x >> 1) & 1) + ((__x >> 2) & 1) + ((__x >> 3) & 1); \
    (result) = __x;                                                           \
  } while (0)
#endif


/* Define stuff for longlong.h.  */
#if HAVE_ATTRIBUTE_MODE
typedef unsigned int UQItype	__attribute__ ((mode (QI)));
typedef		 int SItype	__attribute__ ((mode (SI)));
typedef unsigned int USItype	__attribute__ ((mode (SI)));
typedef		 int DItype	__attribute__ ((mode (DI)));
typedef unsigned int UDItype	__attribute__ ((mode (DI)));
#else
typedef unsigned char UQItype;
typedef		 long SItype;
typedef unsigned long USItype;
#if defined _LONGLONG || defined _LONG_LONG_LIMB
typedef	long long int DItype;
typedef unsigned long long int UDItype;
#else /* Assume `long' gives us a wide enough type.  Needed for hppa2.0w.  */
typedef long int DItype;
typedef unsigned long int UDItype;
#endif
#endif

typedef mp_limb_t UWtype;
typedef unsigned int UHWtype;
#define W_TYPE_SIZE BITS_PER_MP_LIMB

/* Define ieee_double_extract and _GMP_IEEE_FLOATS.  */

#if (defined (__arm__) && (defined (__ARMWEL__) || defined (__linux__)))
/* Special case for little endian ARM since floats remain in big-endian.  */
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
  struct
    {
      unsigned int manh:20;
      unsigned int exp:11;
      unsigned int sig:1;
      unsigned int manl:32;
    } s;
  double d;
};
#else
#if defined (_LITTLE_ENDIAN) || defined (__LITTLE_ENDIAN__)		\
 || defined (__alpha)							\
 || defined (__clipper__)						\
 || defined (__cris)							\
 || defined (__i386__)							\
 || defined (__i860__)							\
 || defined (__i960__)							\
 || defined (__ia64)							\
 || defined (MIPSEL) || defined (_MIPSEL)				\
 || defined (__ns32000__)						\
 || defined (__WINNT) || defined (_WIN32)
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
  struct
    {
      unsigned int manl:32;
      unsigned int manh:20;
      unsigned int exp:11;
      unsigned int sig:1;
    } s;
  double d;
};
#else /* Need this as an #else since the tests aren't made exclusive.  */
#if defined (__mc68000__) || defined (__mc68020__) || defined (__m68k__)\
    || defined(mc68020)
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
  struct
    {
      /* "int" might be only 16 bits, so use "long" */
      unsigned long sig:1;
      unsigned long exp:11;
      unsigned long manh:20;
      unsigned long manl:32;
    } s;
  double d;
};
#else
#if defined (_BIG_ENDIAN) || defined (__BIG_ENDIAN__)			\
 || defined (__a29k__) || defined (_AM29K)				\
 || defined (__arm__)							\
 || (defined (__convex__) && defined (_IEEE_FLOAT_))			\
 || defined (_CRAYMPP) || defined (_CRAYIEEE)				\
 || defined (__i370__) || defined (__mvs__)				\
 || defined (__m88000__)						\
 || defined (MIPSEB) || defined (_MIPSEB)				\
 || defined (__hppa) || defined (__hppa__)				\
 || defined (__pyr__)							\
 || defined (__ibm032__)						\
 || defined (_IBMR2) || defined (_ARCH_PPC)				\
 || defined (__sh__)							\
 || defined (__sparc) || defined (sparc)				\
 || defined (__we32k__)
#define _GMP_IEEE_FLOATS 1
union ieee_double_extract
{
  struct
    {
      unsigned int sig:1;
      unsigned int exp:11;
      unsigned int manh:20;
      unsigned int manl:32;
    } s;
  double d;
};
#endif
#endif
#endif
#endif

/* Use (4.0 * ...) instead of (2.0 * ...) to work around buggy compilers
   that don't convert ulong->double correctly (eg. SunOS 4 native cc).  */
#define MP_BASE_AS_DOUBLE (4.0 * ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 2)))
/* Maximum number of limbs it will take to store any `double'.
   We assume doubles have 53 mantissam bits.  */
#define LIMBS_PER_DOUBLE ((53 + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB + 1)

double __gmp_scale2 _PROTO ((double, int)) ATTRIBUTE_CONST;
int __gmp_extract_double _PROTO ((mp_ptr, double));

extern int __gmp_junk;
extern const int __gmp_0;
void __gmp_exception _PROTO ((int)) ATTRIBUTE_NORETURN;
void __gmp_divide_by_zero _PROTO ((void)) ATTRIBUTE_NORETURN;
void __gmp_sqrt_of_negative _PROTO ((void)) ATTRIBUTE_NORETURN;
#define GMP_ERROR(code)   __gmp_exception (code)
#define DIVIDE_BY_ZERO    __gmp_divide_by_zero ()
#define SQRT_OF_NEGATIVE  __gmp_sqrt_of_negative ()

#if defined _LONG_LONG_LIMB
#if __GMP_HAVE_TOKEN_PASTE
#define CNST_LIMB(C) C##LL
#else
#define CNST_LIMB(C) C/**/LL
#endif
#else /* not _LONG_LONG_LIMB */
#if __GMP_HAVE_TOKEN_PASTE
#define CNST_LIMB(C) C##L
#else
#define CNST_LIMB(C) C/**/L
#endif
#endif /* _LONG_LONG_LIMB */

/* Stuff used by mpn/generic/perfsqr.c and mpz/prime_p.c */
#if BITS_PER_MP_LIMB == 2
#define PP 0x3					/* 3 */
#define PP_FIRST_OMITTED 5
#endif
#if BITS_PER_MP_LIMB == 4
#define PP 0xF					/* 3 x 5 */
#define PP_FIRST_OMITTED 7
#endif
#if BITS_PER_MP_LIMB == 8
#define PP 0x69					/* 3 x 5 x 7 */
#define PP_FIRST_OMITTED 11
#endif
#if BITS_PER_MP_LIMB == 16
#define PP 0x3AA7				/* 3 x 5 x 7 x 11 x 13 */
#define PP_FIRST_OMITTED 17
#endif
#if BITS_PER_MP_LIMB == 32
#define PP 0xC0CFD797L				/* 3 x 5 x 7 x 11 x ... x 29 */
#define PP_INVERTED 0x53E5645CL
#define PP_FIRST_OMITTED 31
#endif
#if BITS_PER_MP_LIMB == 64
#define PP CNST_LIMB(0xE221F97C30E94E1D)	/* 3 x 5 x 7 x 11 x ... x 53 */
#define PP_INVERTED CNST_LIMB(0x21CFE6CFC938B36B)
#define PP_FIRST_OMITTED 59
#endif
#ifndef PP_FIRST_OMITTED
#define PP_FIRST_OMITTED 3
#endif



/* BIT1 means a result value in bit 1 (second least significant bit), with a
   zero bit representing +1 and a one bit representing -1.  Bits other than
   bit 1 are garbage.  These are meant to be kept in "int"s, and casts are
   used to ensure the expressions are "int"s even if a and/or b might be
   other types.

   JACOBI_TWOS_U_BIT1 and JACOBI_RECIP_UU_BIT1 are used in mpn_jacobi_base
   and their speed is important.  Expressions are used rather than
   conditionals to accumulate sign changes, which effectively means XORs
   instead of conditional JUMPs. */

/* (a/0), with a signed; is 1 if a=+/-1, 0 otherwise */
#define JACOBI_S0(a)   (((a) == 1) | ((a) == -1))

/* (a/0), with a unsigned; is 1 if a=+/-1, 0 otherwise */
#define JACOBI_U0(a)   ((a) == 1)

/* (a/0), with a given by low and size;
   is 1 if a=+/-1, 0 otherwise */
#define JACOBI_LS0(alow,asize) \
  (((alow) == 1) && ((asize) == 1 || (asize) == -1))

/* (a/0), with a an mpz_t;
   fetch of low limb always valid, even if size is zero */
#define JACOBI_Z0(a)   JACOBI_LS0 (PTR(a)[0], SIZ(a))

/* (0/b), with b unsigned; is 1 if b=+/-1, 0 otherwise */
#define JACOBI_0U(b)   ((b) == 1)

/* (0/b), with b unsigned; is 1 if b=+/-1, 0 otherwise */
#define JACOBI_0S(b)   ((b) == 1 || (b) == -1)

/* (0/b), with b given by low and size; is 1 if b=+/-1, 0 otherwise */
#define JACOBI_0LS(blow,bsize) \
  ((blow == 1) && (bsize == 1 || bsize == -1))

/* Convert a bit1 to +1 or -1. */
#define JACOBI_BIT1_TO_PN(result_bit1) \
  (1 - ((int) (result_bit1) & 2))

/* (2/b), with b unsigned and odd;
   is (-1)^((b^2-1)/8) which is 1 if b==1,7mod8 or -1 if b==3,5mod8 and
   hence obtained from (b>>1)^b */
#define JACOBI_TWO_U_BIT1(b) \
  ((int) (((b) >> 1) ^ (b)))

/* (2/b)^twos, with b unsigned and odd */
#define JACOBI_TWOS_U_BIT1(twos, b) \
  ((int) ((twos) << 1) & JACOBI_TWO_U_BIT1 (b))

/* (2/b)^twos, with b unsigned and odd */
#define JACOBI_TWOS_U(twos, b) \
  (JACOBI_BIT1_TO_PN (JACOBI_TWOS_U_BIT1 (twos, b)))

/* (-1/b), with b odd (signed or unsigned);
   is (-1)^((b-1)/2) */
#define JACOBI_N1B_BIT1(b) \
  ((int) (b))

/* (a/b) effect due to sign of a: signed/unsigned, b odd;
   is (-1/b) if a<0, or +1 if a>=0 */
#define JACOBI_ASGN_SU_BIT1(a, b) \
  ((((a) < 0) << 1) & JACOBI_N1B_BIT1(b))

/* (a/b) effect due to sign of b: signed/signed;
   is -1 if a and b both negative, +1 otherwise */
#define JACOBI_BSGN_SS_BIT1(a, b) \
  ((((a)<0) & ((b)<0)) << 1)

/* (a/b) effect due to sign of b: signed/mpz;
   is -1 if a and b both negative, +1 otherwise */
#define JACOBI_BSGN_SZ_BIT1(a, b) \
  JACOBI_BSGN_SS_BIT1 (a, SIZ(b))

/* (a/b) effect due to sign of b: mpz/signed;
   is -1 if a and b both negative, +1 otherwise */
#define JACOBI_BSGN_ZS_BIT1(a, b) \
  JACOBI_BSGN_SZ_BIT1 (b, a)

/* (a/b) reciprocity to switch to (b/a), a,b both unsigned and odd;
   is (-1)^((a-1)*(b-1)/4), which means +1 if either a,b==1mod4, or -1 if
   both a,b==3mod4, achieved in bit 1 by a&b.  No ASSERT()s about a,b odd
   because this is used in a couple of places with only bit 1 of a or b
   valid. */
#define JACOBI_RECIP_UU_BIT1(a, b) \
  ((int) ((a) & (b)))


/* Set a_rem to {a_ptr,a_size} reduced modulo b, either using mod_1 or
   modexact_1_odd, but in either case leaving a_rem<b.  b must be odd and
   unsigned.  modexact_1_odd effectively calculates -a mod b, and
   result_bit1 is adjusted for the factor of -1.  */

#define JACOBI_MOD_OR_MODEXACT_1_ODD(result_bit1, a_rem, a_ptr, a_size, b) \
  do {                                                                     \
    mp_srcptr  __a_ptr  = (a_ptr);                                         \
    mp_size_t  __a_size = (a_size);                                        \
    mp_limb_t  __b      = (b);                                             \
                                                                           \
    ASSERT (__a_size >= 1);                                                \
    ASSERT (__b & 1);                                                      \
                                                                           \
    if (BELOW_THRESHOLD (__a_size, MODEXACT_1_ODD_THRESHOLD))              \
      {                                                                    \
        (a_rem) = mpn_mod_1 (__a_ptr, __a_size, __b);                      \
      }                                                                    \
    else                                                                   \
      {                                                                    \
        (result_bit1) ^= JACOBI_N1B_BIT1 (__b);                            \
        (a_rem) = mpn_modexact_1_odd (__a_ptr, __a_size, __b);             \
      }                                                                    \
  } while (0)


/* __GMPF_BITS_TO_PREC applies a minimum 53 bits, rounds upwards to a whole
   limb and adds an extra limb.  __GMPF_PREC_TO_BITS drops that extra limb,
   hence giving back the user's size in bits rounded up.  Notice that
   converting prec->bits->prec gives an unchanged value.  */
#define __GMPF_BITS_TO_PREC(n)                                          \
  ((mp_size_t) ((__GMP_MAX (53, n) + 2 * __GMP_BITS_PER_MP_LIMB - 1)    \
                / __GMP_BITS_PER_MP_LIMB))
#define __GMPF_PREC_TO_BITS(n) \
  ((unsigned long) (n) * __GMP_BITS_PER_MP_LIMB - __GMP_BITS_PER_MP_LIMB)

extern mp_size_t __gmp_default_fp_limb_precision;


/* Set n to the number of significant digits an mpf of the given _mp_prec
   field, in the given base.  This is a rounded up value, designed to ensure
   there's enough digits to reproduce all the guaranteed part of the value.

   There are prec many limbs, but the high might be only "1" so forget it
   and just count prec-1 limbs into chars.  +1 rounds that upwards, and a
   further +1 is because the limbs usually won't fall on digit boundaries.

   FIXME: If base is a power of 2 and the bits per digit divides
   BITS_PER_MP_LIMB then the +2 is unnecessary.  This happens always for
   base==2, and in base==16 with the current 32 or 64 bit limb sizes. */

#define MPF_SIGNIFICANT_DIGITS(n, base, prec)                           \
  do {                                                                  \
    ASSERT (base >= 2 && base < numberof (mp_bases));                   \
    (n) = 2 + (size_t) ((((prec) - 1) * BITS_PER_MP_LIMB)               \
                        * mp_bases[(base)].chars_per_bit_exactly);      \
  } while (0)


#define DOPRNT_CONV_FIXED        1
#define DOPRNT_CONV_SCIENTIFIC   2
#define DOPRNT_CONV_GENERAL      3

#define DOPRNT_JUSTIFY_NONE      0
#define DOPRNT_JUSTIFY_LEFT      1
#define DOPRNT_JUSTIFY_RIGHT     2
#define DOPRNT_JUSTIFY_INTERNAL  3

#define DOPRNT_SHOWBASE_YES      1
#define DOPRNT_SHOWBASE_NO       2
#define DOPRNT_SHOWBASE_NONZERO  3

struct doprnt_params_t {
  int         base;          /* negative for upper case */
  int         conv;          /* choices above */
  const char  *expfmt;       /* exponent format */
  int         exptimes4;     /* exponent multiply by 4 */
  char        fill;          /* character */
  int         justify;       /* choices above */
  int         prec;          /* prec field, or -1 for all digits */
  int         showbase;      /* choices above */
  int         showpoint;     /* if radix point always shown */
  int         showtrailing;  /* if trailing zeros wanted */
  char        sign;          /* '+', ' ', or '\0' */
  int         width;         /* width field */
};

#if _GMP_H_HAVE_VA_LIST

typedef int (*doprnt_format_t) _PROTO ((void *data, const char *fmt, va_list ap));
typedef int (*doprnt_memory_t) _PROTO ((void *data, const char *str, size_t len));
typedef int (*doprnt_reps_t) _PROTO ((void *data, int c, int reps));
typedef int (*doprnt_final_t) _PROTO ((void *data));

struct doprnt_funs_t {
  doprnt_format_t  format;
  doprnt_memory_t  memory;
  doprnt_reps_t    reps;
  doprnt_final_t   final;   /* NULL if not required */
};

extern const struct doprnt_funs_t  __gmp_fprintf_funs;
extern const struct doprnt_funs_t  __gmp_sprintf_funs;
extern const struct doprnt_funs_t  __gmp_snprintf_funs;
extern const struct doprnt_funs_t  __gmp_obstack_printf_funs;
extern const struct doprnt_funs_t  __gmp_ostream_funs;

/* "buf" is a __gmp_allocate_func block of "alloc" many bytes.  The first
   "size" of these have been written.  "alloc > size" is maintained, so
   there's room to store a '\0' at the end.  "result" is where the
   application wants the final block pointer.  */
struct gmp_asprintf_t {
  char    **result;
  char    *buf;
  size_t  size;
  size_t  alloc;
};

#define GMP_ASPRINTF_T_INIT(d, output)                          \
  do {                                                          \
    (d).result = (output);                                      \
    (d).alloc = 256;                                            \
    (d).buf = (char *) (*__gmp_allocate_func) ((d).alloc);      \
    (d).size = 0;                                               \
  } while (0)

/* If a realloc is necessary, use twice the size actually required, so as to
   avoid repeated small reallocs.  */
#define GMP_ASPRINTF_T_NEED(d, n)                                       \
  do {                                                                  \
    size_t  alloc, newsize, newalloc;                                   \
    ASSERT ((d)->alloc >= (d)->size + 1);                               \
                                                                        \
    alloc = (d)->alloc;                                                 \
    newsize = (d)->size + (n);                                          \
    if (alloc <= newsize)                                               \
      {                                                                 \
        newalloc = 2*newsize;                                           \
        (d)->alloc = newalloc;                                          \
        (d)->buf = __GMP_REALLOCATE_FUNC_TYPE ((d)->buf,                \
                                               alloc, newalloc, char);  \
      }                                                                 \
  } while (0)

int __gmp_asprintf_memory _PROTO ((struct gmp_asprintf_t *d, const char *str, size_t len));
int __gmp_asprintf_reps _PROTO ((struct gmp_asprintf_t *d, int c, int reps));
int __gmp_asprintf_final _PROTO ((struct gmp_asprintf_t *d));

/* buf is where to write the next output, and size is how much space is left
   there.  If the application passed size==0 then that's what we'll have
   here, and nothing at all should be written.  */
struct gmp_snprintf_t {
  char    *buf;
  size_t  size;
};

/* Add the bytes printed by the call to the total retval, or bail out on an
   error.  */
#define DOPRNT_ACCUMULATE(call) \
  do {                          \
    int  __ret;                 \
    __ret = call;               \
    if (__ret == -1)            \
      goto error;               \
    retval += __ret;            \
  } while (0)
#define DOPRNT_ACCUMULATE_FUN(fun, params)      \
  do {                                          \
    ASSERT ((fun) != NULL);                     \
    DOPRNT_ACCUMULATE ((*(fun)) params);        \
  } while (0)
    
#define DOPRNT_FORMAT(fmt, ap)                          \
  DOPRNT_ACCUMULATE_FUN (funs->format, (data, fmt, ap))
#define DOPRNT_MEMORY(ptr, len)                                 \
  DOPRNT_ACCUMULATE_FUN (funs->memory, (data, ptr, len))
#define DOPRNT_REPS(c, n)                               \
  DOPRNT_ACCUMULATE_FUN (funs->reps, (data, c, n))

#define DOPRNT_STRING(str)      DOPRNT_MEMORY (str, strlen (str))

#define DOPRNT_REPS_MAYBE(c, n) \
  do {                          \
    if ((n) != 0)               \
      DOPRNT_REPS (c, n);       \
  } while (0)
#define DOPRNT_MEMORY_MAYBE(ptr, len)   \
  do {                                  \
    if ((len) != 0)                     \
      DOPRNT_MEMORY (ptr, len);         \
  } while (0)

int __gmp_doprnt _PROTO ((const struct doprnt_funs_t *funs,
                          void *data,
                          const char *fmt,
                          va_list ap));
int __gmp_doprnt_integer _PROTO ((const struct doprnt_funs_t *funs,
                                  void *data,
                                  const struct doprnt_params_t *p,
                                  const char *s));
int __gmp_doprnt_mpf _PROTO ((const struct doprnt_funs_t *funs,
                              void * data,
                              const struct doprnt_params_t *p,
                              mpf_srcptr f));
int __gmp_replacement_vsnprintf _PROTO ((char *buf, size_t buf_size,
                                         const char *fmt, va_list ap));
#endif /* _GMP_H_HAVE_VA_LIST */


typedef int (*gmp_doscan_scan_t)  _PROTO ((void *data, const char *fmt, ...));
typedef void *(*gmp_doscan_step_t) _PROTO ((void *data, int new_chars));
typedef int (*gmp_doscan_get_t)   _PROTO ((void *data));
typedef int (*gmp_doscan_unget_t) _PROTO ((int c, void *data));

struct gmp_doscan_funs_t {
  gmp_doscan_scan_t   scan;
  gmp_doscan_step_t   step;
  gmp_doscan_get_t    get;
  gmp_doscan_unget_t  unget;
};
extern const struct gmp_doscan_funs_t  __gmp_fscanf_funs;
extern const struct gmp_doscan_funs_t  __gmp_sscanf_funs;

#if _GMP_H_HAVE_VA_LIST
int __gmp_doscan _PROTO ((const struct gmp_doscan_funs_t *funs, void *data,
                          const char *orig_fmt, va_list orig_ap));
#endif


/* For testing and debugging.  */
#define MPZ_CHECK_FORMAT(z)					\
  do {								\
    ASSERT_ALWAYS (SIZ(z) == 0 || PTR(z)[ABSIZ(z) - 1] != 0);	\
    ASSERT_ALWAYS (ALLOC(z) >= ABSIZ(z));			\
  } while (0)

#define MPQ_CHECK_FORMAT(q)                             \
  do {                                                  \
    MPZ_CHECK_FORMAT (mpq_numref (q));                  \
    MPZ_CHECK_FORMAT (mpq_denref (q));                  \
    ASSERT_ALWAYS (SIZ(mpq_denref(q)) >= 1);            \
                                                        \
    if (SIZ(mpq_numref(q)) == 0)                        \
      {                                                 \
        /* should have zero as 0/1 */                   \
        ASSERT_ALWAYS (SIZ(mpq_denref(q)) == 1          \
                       && PTR(mpq_denref(q))[0] == 1);  \
      }                                                 \
    else                                                \
      {                                                 \
        /* should have no common factors */             \
        mpz_t  g;                                       \
        mpz_init (g);                                   \
        mpz_gcd (g, mpq_numref(q), mpq_denref(q));      \
        ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0);         \
        mpz_clear (g);                                  \
      }                                                 \
  } while (0)

#define MPF_CHECK_FORMAT(f)                             \
  do {                                                  \
    ASSERT_ALWAYS (PREC(f) >= __GMPF_BITS_TO_PREC(53)); \
    ASSERT_ALWAYS (ABSIZ(f) <= PREC(f)+1);              \
    if (SIZ(f) == 0)                                    \
      ASSERT_ALWAYS (EXP(f) == 0);                      \
    if (SIZ(f) != 0)                                    \
      ASSERT_ALWAYS (PTR(f)[ABSIZ(f) - 1] != 0);        \
  } while (0)


#define MPZ_PROVOKE_REALLOC(z)					\
  do { ALLOC(z) = ABSIZ(z); } while (0)


#if TUNE_PROGRAM_BUILD
/* Some extras wanted when recompiling some .c files for use by the tune
   program.  Not part of a normal build. */

extern mp_size_t  mul_threshold[];
extern mp_size_t  fft_modf_mul_threshold;
extern mp_size_t  sqr_threshold[];
extern mp_size_t  fft_modf_sqr_threshold;
extern mp_size_t  sb_preinv_threshold[];
extern mp_size_t  dc_threshold[];
extern mp_size_t  powm_threshold[];
extern mp_size_t  gcd_accel_threshold[];
extern mp_size_t  gcdext_threshold[];
extern mp_size_t  divrem_1_norm_threshold[];
extern mp_size_t  divrem_1_unnorm_threshold[];
extern mp_size_t  divrem_2_threshold[];
extern mp_size_t  mod_1_norm_threshold[];
extern mp_size_t  mod_1_unnorm_threshold[];
extern mp_size_t  get_str_basecase_threshold[];
extern mp_size_t  get_str_precompute_threshold[];

#undef KARATSUBA_MUL_THRESHOLD
#undef TOOM3_MUL_THRESHOLD
#undef FFT_MUL_TABLE
#undef FFT_MUL_THRESHOLD
#undef FFT_MODF_MUL_THRESHOLD
#undef BASECASE_SQR_THRESHOLD
#undef KARATSUBA_SQR_THRESHOLD
#undef TOOM3_SQR_THRESHOLD
#undef FFT_SQR_TABLE
#undef FFT_SQR_THRESHOLD
#undef FFT_MODF_SQR_THRESHOLD
#undef DC_THRESHOLD
#undef POWM_THRESHOLD
#undef GCD_ACCEL_THRESHOLD
#undef GCDEXT_THRESHOLD
#undef DIVREM_1_NORM_THRESHOLD
#undef DIVREM_1_UNNORM_THRESHOLD
#undef MOD_1_NORM_THRESHOLD
#undef MOD_1_UNNORM_THRESHOLD
#undef GET_STR_BASECASE_THRESHOLD
#undef GET_STR_PRECOMPUTE_THRESHOLD

#define KARATSUBA_MUL_THRESHOLD   mul_threshold[0]
#define TOOM3_MUL_THRESHOLD       mul_threshold[1]
#define FFT_MUL_TABLE             { 0 }
#define FFT_MUL_THRESHOLD         mul_threshold[2]
#define FFT_MODF_MUL_THRESHOLD    fft_modf_mul_threshold
#define BASECASE_SQR_THRESHOLD    sqr_threshold[0]
#define KARATSUBA_SQR_THRESHOLD   sqr_threshold[1]
#define TOOM3_SQR_THRESHOLD       sqr_threshold[2]
#define FFT_SQR_TABLE             { 0 }
#define FFT_SQR_THRESHOLD         sqr_threshold[3]
#define FFT_MODF_SQR_THRESHOLD    fft_modf_sqr_threshold
#define DC_THRESHOLD              dc_threshold[0]
#define POWM_THRESHOLD            powm_threshold[0]
#define GCD_ACCEL_THRESHOLD       gcd_accel_threshold[0]
#define GCDEXT_THRESHOLD          gcdext_threshold[0]
#define DIVREM_1_NORM_THRESHOLD   divrem_1_norm_threshold[0]
#define DIVREM_1_UNNORM_THRESHOLD divrem_1_unnorm_threshold[0]
#define MOD_1_NORM_THRESHOLD      mod_1_norm_threshold[0]
#define MOD_1_UNNORM_THRESHOLD    mod_1_unnorm_threshold[0]
#define GET_STR_BASECASE_THRESHOLD   get_str_basecase_threshold[0]
#define GET_STR_PRECOMPUTE_THRESHOLD get_str_precompute_threshold[0]

#if ! UDIV_PREINV_ALWAYS
#undef SB_PREINV_THRESHOLD
#undef DIVREM_2_THRESHOLD
#define SB_PREINV_THRESHOLD       sb_preinv_threshold[0]
#define DIVREM_2_THRESHOLD        divrem_2_threshold[0]
#endif

/* Sizes the tune program tests up to, used in a couple of recompilations. */
#define KARATSUBA_SQR_MAX_GENERIC  200
#define TOOM3_MUL_THRESHOLD_LIMIT  700
#define GET_STR_THRESHOLD_LIMIT    500

#undef  FFT_TABLE_ATTRS
#define FFT_TABLE_ATTRS
extern mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE];

#if TUNE_PROGRAM_BUILD_SQR
#undef KARATSUBA_SQR_THRESHOLD
#define KARATSUBA_SQR_THRESHOLD  KARATSUBA_SQR_MAX_GENERIC
#endif

#endif /* TUNE_PROGRAM_BUILD */

#if defined (__cplusplus)
}
#endif


#ifdef __cplusplus

/* A little helper for a null-terminated __gmp_allocate_func string.
   The destructor ensures it's freed even if an exception is thrown.  */
class gmp_allocated_string {
 public:
  char *str;
  gmp_allocated_string(char *arg) { str = arg; }
  ~gmp_allocated_string() { (*__gmp_free_func) (str, strlen(str)+1); }
};

int __gmp_istream_set_base (std::istream &, char &, bool &, bool &);
void __gmp_istream_set_digits (std::string &, std::istream &, char &, bool &, int);
void __gmp_doprnt_params_from_ios (struct doprnt_params_t *p, std::ios &o);
std::ostream& __gmp_doprnt_integer_ostream (std::ostream &o, struct doprnt_params_t *p, char *s);
extern const struct doprnt_funs_t  __gmp_asprintf_funs_noformat;

#endif /* __cplusplus */

#endif /* __GMP_IMPL_H__ */