summaryrefslogtreecommitdiff
path: root/mpfr/get_str.c
blob: e100b300ebfa65c508593ea2aca948a82de6da4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* mpfr_get_str -- output a floating-point number to a string

Copyright (C) 1999 PolKA project, Inria Lorraine and Loria

This file is part of the MPFR Library.

The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the MPFR Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#include "mpfr.h"

/*
  Convert op to a string in base 'base' with 'n' digits and writes the 
  mantissa in 'str', the exponent in 'expptr'.
  The result is rounded wrt 'rnd_mode'.

  For op = 3.1416 we get str = "31416" and expptr=1.
 */
#if __STDC__
char *mpfr_get_str(char *str, mp_exp_t *expptr, int base, size_t n,
		  mpfr_srcptr op, unsigned char rnd_mode)
#else
char *mpfr_get_str(str, expptr, base, n, op, rnd_mode)
     char *str;  
     mp_exp_t *expptr;
     int base;
     size_t n;
     mpfr_srcptr op; 
     unsigned char rnd_mode; 
#endif
{
  double d; long e, q, div, p, err, prec, sh; mpfr_t a, b; mpz_t bz;
  char *str0; unsigned char rnd1; int f, pow2, ok=0, neg;

  if (base<2 || 36<base) {
    fprintf(stderr, "Error: too small or too large base in mpfr_get_str: %d\n",
	    base);
    exit(1);
  }

  neg = (SIGN(op)<0) ? 1 : 0;

  if (!NOTZERO(op)) {
    if (str==NULL) str0=str=(*_mp_allocate_func)(neg + n + 2);
    if (SIGN(op)<0) *str++ = '-';
    for (f=0;f<n;f++) *str++ = '0';
    *expptr = 1;
    return str0;
  }

  count_leading_zeros(pow2, (mp_limb_t)base); 
  pow2 = BITS_PER_MP_LIMB - pow2 - 1;
  if (base != (1<<pow2)) pow2=0; 
  /* if pow2 <> 0, then base = 2^pow2 */

  /* first determines the exponent */
  e = EXP(op); 
  d = fabs(mpfr_get_d2(op, 0));
  /* the absolute value of op is between 1/2*2^e and 2^e */
  /* the output exponent f is such that base^(f-1) <= |op| < base^f
     i.e. f = 1 + floor(log(|op|)/log(base))
     = 1 + floor((log(|m|)+e*log(2))/log(base)) */
  f = 1 + (int) floor((log(d)+(double)e*log(2.0))/log((double)base));
  if (n==0) {
    /* performs exact rounding, i.e. returns y such that for rnd_mode=RNDN
       for example, we have:
       y*base^(f-n) <= x*2^(e-p) < (x+1)*2^(e-p) <= (y+1)*base^(f-n)
       which implies 2^(EXP(op)-PREC(op)) <= base^(f-n)
     */
    n = f + (int) ceil(((double)PREC(op)-e)*log(2.0)/log((double)base));
  }
  /* now the first n digits of the mantissa are obtained from
     rnd(op*base^(n-f)) */
  prec = (long) ceil((double)n*log((double)base)/log(2.0));
  err = 5;
  q = prec+err;
  /* one has to use at least q bits */
  q = (((q-1)/BITS_PER_MP_LIMB)+1)*BITS_PER_MP_LIMB;
  mpfr_init2(a,q); mpfr_init2(b,q);

  do {
    p = n-f; if ((div=(p<0))) p=-p;
    rnd1 = rnd_mode;
    if (div) {
      /* if div we divide by base^p so we have to invert the rounding mode */
      switch (rnd1) {
      case GMP_RNDN: rnd1=GMP_RNDN; break;
      case GMP_RNDZ: rnd1=GMP_RNDU; break;
      case GMP_RNDU: rnd1=GMP_RNDZ; break;
      case GMP_RNDD: rnd1=GMP_RNDZ; break;
      }
    }

    if (pow2) {
      if (div) mpfr_div_2exp(b, op, pow2*p, rnd_mode);
      else mpfr_mul_2exp(b, op, pow2*p, rnd_mode);
    } 
    else {
       /* compute base^p with q bits and rounding towards zero */
       mpfr_set_prec(b, q);
       if (p==0) { mpfr_set(b, op, rnd_mode); mpfr_set_ui(a, 1, rnd_mode); }
       else {
	 mpfr_set_prec(a, q);
	 mpfr_ui_pow_ui(a, base, p, rnd1);
	 if (div) {
	   mpfr_set_ui(b, 1, rnd_mode);
	   mpfr_div(a, b, a, rnd_mode);
	 }
	 /* now a is an approximation by default of 1/base^(f-n) */
	 mpfr_mul(b, op, a, rnd_mode);
       }
    }
    if (neg) CHANGE_SIGN(b); /* put b positive */

    if (q>2*prec+BITS_PER_MP_LIMB) {
      /* happens when just in the middle between two digits */
      n--; q-=BITS_PER_MP_LIMB;
      if (n==0) {
          fprintf(stderr, "cannot determine leading digit\n"); exit(1);
        }
    }
    ok = pow2 || mpfr_can_round(b, q-err, rnd_mode, rnd_mode, prec);

    if (ok) { 
      if (pow2) {
	sh = e-PREC(op) + pow2*(n-f); /* error at most 2^e */
	ok = mpfr_can_round(b, EXP(b)-sh-1, rnd_mode, rnd_mode, n*pow2);
      }
      else {
	 /* check that value is the same at distance 2^(e-PREC(op))/base^(f-n)
	  in opposite from rounding direction */
	 if (e>=PREC(op)) mpfr_mul_2exp(a, a, e-PREC(op), rnd_mode);
	 else mpfr_div_2exp(a, a, PREC(op)-e, rnd_mode);
	 if (rnd_mode==GMP_RNDN) {
	   mpfr_div_2exp(a, a, 2, rnd_mode);
	   mpfr_sub(b, b, a, rnd_mode); /* b - a/2 */
	   mpfr_mul_2exp(a, a, 2, rnd_mode);
	   mpfr_add(a, b, a, rnd_mode); /* b + a/2 */
	 }
	 else if ((rnd_mode==GMP_RNDU && neg==0) || (rnd_mode==GMP_RNDD && neg))
	   mpfr_sub(a, b, a, rnd_mode);
	 else mpfr_add(a, b, a, rnd_mode);
	 /* check that a and b are rounded similarly */
	 prec=EXP(b);
	 if (EXP(a) != prec) ok=0;
	 else {
	   mpfr_round(b, rnd_mode, prec);
	   mpfr_round(a, rnd_mode, prec);
	   if (mpfr_cmp(a, b)) ok=0;
	 }
       }
      if (ok==0) { /* n is too large */
	n--;
	if (n==0) {
	  fprintf(stderr, "cannot determine leading digit\n"); exit(1);
	}
	q -= BITS_PER_MP_LIMB;
      }
    }
  } while (ok==0 && (q+=BITS_PER_MP_LIMB) );
  if (neg)
    switch (rnd_mode) {
    case GMP_RNDU: rnd_mode=GMP_RNDZ; break;
    case GMP_RNDD: rnd_mode=GMP_RNDU; break;
  }

  prec=EXP(b); /* may have changed due to rounding */

  /* now the mantissa is the integer part of b */
  mpz_init(bz); q=1+(prec-1)/BITS_PER_MP_LIMB;
  _mpz_realloc(bz, q);
  sh = prec%BITS_PER_MP_LIMB;
  e = 1 + (PREC(b)-1)/BITS_PER_MP_LIMB-q;
  if (sh) mpn_rshift(PTR(bz), MANT(b)+e, q, BITS_PER_MP_LIMB-sh);
  else MPN_COPY(PTR(bz), MANT(b)+e, q);
  bz->_mp_size=q;

  /* computes the number of characters needed */
  q = neg + n + 2; /* n+1 may not be enough for 100000... */
  if (str==NULL) str0=str=(*_mp_allocate_func)(q);
  if (neg) *str++='-';
  mpz_get_str(str, base, bz); /* n digits of mantissa */
  if (strlen(str)==n+1) f++; /* possible due to rounding */
  *expptr = f;
  mpfr_clear(a); mpfr_clear(b); mpz_clear(bz);
  return str0;
}