summaryrefslogtreecommitdiff
path: root/mpn/generic/sqrtrem.c
blob: 9d5867ac18d3a8b01a0f7dc08440b236f132e054 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* mpn_sqrtrem -- square root and remainder

Copyright 1999, 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA. */


/* Contributed by Paul Zimmermann.
   See "Karatsuba Square Root", reference in gmp.texi.  */


#include <stdio.h>
#include <stdlib.h>

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"



/* Square roots table.  Generated by the following program:
#include "gmp.h"
main(){mpz_t x;int i;mpz_init(x);for(i=64;i<256;i++){mpz_set_ui(x,256*i);
mpz_sqrt(x,x);mpz_out_str(0,10,x);printf(",");if(i%16==15)printf("\n");}}
*/
static const unsigned char approx_tab[192] =
  {
    128,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,
    143,144,144,145,146,147,148,149,150,150,151,152,153,154,155,155,
    156,157,158,159,160,160,161,162,163,163,164,165,166,167,167,168,
    169,170,170,171,172,173,173,174,175,176,176,177,178,178,179,180,
    181,181,182,183,183,184,185,185,186,187,187,188,189,189,190,191,
    192,192,193,193,194,195,195,196,197,197,198,199,199,200,201,201,
    202,203,203,204,204,205,206,206,207,208,208,209,209,210,211,211,
    212,212,213,214,214,215,215,216,217,217,218,218,219,219,220,221,
    221,222,222,223,224,224,225,225,226,226,227,227,228,229,229,230,
    230,231,231,232,232,233,234,234,235,235,236,236,237,237,238,238,
    239,240,240,241,241,242,242,243,243,244,244,245,245,246,246,247,
    247,248,248,249,249,250,250,251,251,252,252,253,253,254,254,255
  };

#define HALF_NAIL (GMP_NAIL_BITS / 2)

/* same as mpn_sqrtrem, but for size=1 and {np, 1} normalized */
static mp_size_t
mpn_sqrtrem1 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
{
  mp_limb_t np0, s, r, q, u;
  int prec;

  ASSERT (np[0] >= GMP_NUMB_HIGHBIT / 2);
  ASSERT (GMP_LIMB_BITS >= 16);

  /* first compute a 8-bit approximation from the high 8-bits of np[0] */
  np0 = np[0] << GMP_NAIL_BITS;
  q = np0 >> (GMP_LIMB_BITS - 8);
  /* 2^6 = 64 <= q < 256 = 2^8 */
  s = approx_tab[q - 64];				/* 128 <= s < 255 */
  r = (np0 >> (GMP_LIMB_BITS - 16)) - s * s;		/* r <= 2*s */
  if (r > 2 * s)
    {
      r -= 2 * s + 1;
      s++;
    }

  prec = 8;
  np0 <<= 2 * prec;
  while (2 * prec < GMP_LIMB_BITS)
    {
      /* invariant: s has prec bits, and r <= 2*s */
      r = (r << prec) + (np0 >> (GMP_LIMB_BITS - prec));
      np0 <<= prec;
      u = 2 * s;
      q = r / u;
      u = r - q * u;
      s = (s << prec) + q;
      u = (u << prec) + (np0 >> (GMP_LIMB_BITS - prec));
      q = q * q;
      r = u - q;
      if (u < q)
	{
	  r += 2 * s - 1;
	  s --;
	}
      np0 <<= prec;
      prec = 2 * prec;
    }

  ASSERT (2 * prec == GMP_LIMB_BITS); /* GMP_LIMB_BITS must be a power of 2 */

  /* normalize back, assuming GMP_NAIL_BITS is even */
  ASSERT (GMP_NAIL_BITS % 2 == 0);
  sp[0] = s >> HALF_NAIL;
  u = s - (sp[0] << HALF_NAIL); /* s mod 2^HALF_NAIL */
  r += u * ((sp[0] << (HALF_NAIL + 1)) + u);
  r = r >> GMP_NAIL_BITS;

  if (rp != NULL)
    rp[0] = r;
  return r != 0 ? 1 : 0;
}


#define Prec (GMP_NUMB_BITS >> 1)

/* same as mpn_sqrtrem, but for size=2 and {np, 2} normalized
   return cc such that {np, 2} = sp[0]^2 + cc*2^GMP_NUMB_BITS + rp[0] */
static mp_limb_t
mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
{
  mp_limb_t qhl, q, u, np0;
  int cc;

  ASSERT (np[1] >= GMP_NUMB_HIGHBIT / 2);

  np0 = np[0];
  mpn_sqrtrem1 (sp, rp, np + 1);
  qhl = 0;
  while (rp[0] >= sp[0])
    {
      qhl++;
      rp[0] -= sp[0];
    }
  /* now rp[0] < sp[0] < 2^Prec */
  rp[0] = (rp[0] << Prec) + (np0 >> Prec);
  u = 2 * sp[0];
  q = rp[0] / u;
  u = rp[0] - q * u;
  q += (qhl & 1) << (Prec - 1);
  qhl >>= 1; /* if qhl=1, necessary q=0 as qhl*2^Prec + q <= 2^Prec */
  /* now we have (initial rp[0])<<Prec + np0>>Prec = (qhl<<Prec + q) * (2sp[0]) + u */
  sp[0] = ((sp[0] + qhl) << Prec) + q;
  cc = u >> Prec;
  rp[0] = ((u << Prec) & GMP_NUMB_MASK) + (np0 & (((mp_limb_t) 1 << Prec) - 1));
  /* subtract q * q or qhl*2^(2*Prec) from rp */
  cc -= mpn_sub_1 (rp, rp, 1, q * q) + qhl;
  /* now subtract 2*q*2^Prec + 2^(2*Prec) if qhl is set */
  if (cc < 0)
    {
      cc += sp[0] != 0 ? mpn_add_1 (rp, rp, 1, sp[0]) : 1;
      cc += mpn_add_1 (rp, rp, 1, --sp[0]);
    }

  return cc;
}

/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n},
   and in {np, n} the low n limbs of the remainder, returns the high
   limb of the remainder (which is 0 or 1).
   Assumes {np, 2n} is normalized, i.e. np[2n-1] >= B/4
   where B=2^GMP_NUMB_BITS.  */
static mp_limb_t
mpn_dc_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n)
{
  mp_limb_t q;			/* carry out of {sp, n} */
  int c, b;			/* carry out of remainder */
  mp_size_t l, h;

  ASSERT (np[2 * n - 1] >= GMP_NUMB_HIGHBIT / 2);

  if (n == 1)
    c = mpn_sqrtrem2 (sp, np, np);
  else
    {
      l = n / 2;
      h = n - l;
      q = mpn_dc_sqrtrem (sp + l, np + 2 * l, h);
      if (q != 0)
        mpn_sub_n (np + 2 * l, np + 2 * l, sp + l, h);
      q += mpn_divrem (sp, 0, np + l, n, sp + l, h);
      c = sp[0] & 1;
      mpn_rshift (sp, sp, l, 1);
      sp[l - 1] |= (q << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK;
      q >>= 1;
      if (c != 0)
        c = mpn_add_n (np + l, np + l, sp + l, h);
      mpn_sqr_n (np + n, sp, l);
      b = q + mpn_sub_n (np, np, np + n, 2 * l);
      c -= (l == h) ? b : mpn_sub_1 (np + 2 * l, np + 2 * l, 1, (mp_limb_t) b);
      q = mpn_add_1 (sp + l, sp + l, h, q);

      if (c < 0)
        {
          c += mpn_addmul_1 (np, sp, n, CNST_LIMB(2)) + 2 * q;
          c -= mpn_sub_1 (np, np, n, CNST_LIMB(1));
          q -= mpn_sub_1 (sp, sp, n, CNST_LIMB(1));
        }
    }

  return c;
}


mp_size_t
mpn_sqrtrem (mp_ptr sp, mp_ptr rp, mp_srcptr np, mp_size_t nn)
{
  mp_limb_t *tp, s0[1], cc, high, rl;
  int c;
  mp_size_t rn, tn;
  TMP_DECL;

  ASSERT (nn >= 0);
  ASSERT_MPN (np, nn);

  /* If OP is zero, both results are zero.  */
  if (nn == 0)
    return 0;

  ASSERT (np[nn - 1] != 0);
  ASSERT (rp == NULL || MPN_SAME_OR_SEPARATE_P (np, rp, nn));
  ASSERT (rp == NULL || ! MPN_OVERLAP_P (sp, (nn + 1) / 2, rp, nn));
  ASSERT (! MPN_OVERLAP_P (sp, (nn + 1) / 2, np, nn));

  high = np[nn - 1];
  if (nn == 1 && (high & GMP_NUMB_HIGHBIT))
    return mpn_sqrtrem1 (sp, rp, np);
  count_leading_zeros (c, high);
  c -= GMP_NAIL_BITS;

  c = c / 2; /* we have to shift left by 2c bits to normalize {np, nn} */
  tn = (nn + 1) / 2; /* 2*tn is the smallest even integer >= nn */

  TMP_MARK;
  if (nn % 2 != 0 || c > 0)
    {
      tp = TMP_ALLOC_LIMBS (2 * tn);
      tp[0] = 0;	     /* needed only when 2*tn > nn, but saves a test */
      if (c != 0)
	mpn_lshift (tp + 2 * tn - nn, np, nn, 2 * c);
      else
	MPN_COPY (tp + 2 * tn - nn, np, nn);
      rl = mpn_dc_sqrtrem (sp, tp, tn);
      /* We have 2^(2k)*N = S^2 + R where k = c + (2tn-nn)*GMP_NUMB_BITS/2,
	 thus 2^(2k)*N = (S-s0)^2 + 2*S*s0 - s0^2 + R where s0=S mod 2^k */
      c += (nn % 2) * GMP_NUMB_BITS / 2;		/* c now represents k */
      s0[0] = sp[0] & (((mp_limb_t) 1 << c) - 1);	/* S mod 2^k */
      rl += mpn_addmul_1 (tp, sp, tn, 2 * s0[0]);	/* R = R + 2*s0*S */
      cc = mpn_submul_1 (tp, s0, 1, s0[0]);
      rl -= (tn > 1) ? mpn_sub_1 (tp + 1, tp + 1, tn - 1, cc) : cc;
      mpn_rshift (sp, sp, tn, c);
      tp[tn] = rl;
      if (rp == NULL)
	rp = tp;
      c = c << 1;
      if (c < GMP_NUMB_BITS)
	tn++;
      else
	{
	  tp++;
	  c -= GMP_NUMB_BITS;
	}
      if (c != 0)
	mpn_rshift (rp, tp, tn, c);
      else
	MPN_COPY_INCR (rp, tp, tn);
      rn = tn;
    }
  else
    {
      if (rp == NULL)
	rp = TMP_ALLOC_LIMBS (nn);
      if (rp != np)
	MPN_COPY (rp, np, nn);
      rn = tn + (rp[tn] = mpn_dc_sqrtrem (sp, rp, tn));
    }

  MPN_NORMALIZE (rp, rn);

  TMP_FREE;
  return rn;
}