summaryrefslogtreecommitdiff
path: root/mpz/remove.c
blob: f5b45e59cc6e259d051658371adc448a4d87e1ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/* mpz_remove -- divide out a factor and return its multiplicity.

Copyright (C) 1998 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
License for more details.

You should have received a copy of the GNU Library General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#include "gmp.h"
#include "gmp-impl.h"

unsigned long int
mpz_remove (mpz_ptr dest, mpz_srcptr src, mpz_srcptr f)
{
  mpz_t fpow[40];		/* inexhastible...until year 2020 or so */
  mpz_t x, rem;
  unsigned long int pwr;
  int p;

  if (mpz_cmp_ui (f, 1) <= 0)
    DIVIDE_BY_ZERO;
  if (mpz_cmp_ui (f, 2) == 0)
    {
      unsigned long int s0;
      s0 = mpz_scan1 (src, 0);
      mpz_div_2exp (dest, src, s0);
      return s0;
    }

  /* We could perhaps compute mpz_scan1(src,0)/mpz_scan1(f,0).  It is an
     upper bound of the result we're seeking.  We could also shift down the
     operands so that they become odd, to make intermediate values smaller.  */

  mpz_init (rem);
  mpz_init (x);

  pwr = 0;
  mpz_init (fpow[0]);
  mpz_set (fpow[0], f);
  mpz_set (dest, src);

  /* Divide by f, f^2, ..., f^(2^k) until we get a remainder for f^(2^k).  */
  for (p = 0;; p++)
    {
      mpz_tdiv_qr (x, rem, dest, fpow[p]);
      if (SIZ (rem) != 0)
	break;
      mpz_init (fpow[p + 1]);
      mpz_mul (fpow[p + 1], fpow[p], fpow[p]);
      mpz_set (dest, x);
    }

  pwr = (1 << p) - 1;

  mpz_clear (fpow[p]);

  /* Divide by f^(2^(k-1)), f^(2^(k-2)), ..., f for all divisors that give a
     zero remainder.  */
  while (--p >= 0)
    {
      mpz_tdiv_qr (x, rem, dest, fpow[p]);
      if (SIZ (rem) == 0)
	{
	  pwr += 1 << p;
	  mpz_set (dest, x);
	}
      mpz_clear (fpow[p]);
    }

  mpz_clear (x);
  mpz_clear (rem);
  return pwr;
}