1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
/* Test for sqrmod_bnm1 function.
Contributed to the GNU project by Marco Bodrato.
Copyright 2009 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
#include "gmp.h"
#include "gmp-impl.h"
#include "tests.h"
#include <stdlib.h>
#include <stdio.h>
/* Sizes are up to 2^SIZE_LOG limbs */
#ifndef SIZE_LOG
#define SIZE_LOG 12
#endif
#ifndef COUNT
#define COUNT 3000
#endif
#define MAX_N (1L << SIZE_LOG)
#define MIN_N 1
/*
Reference function for multiplication modulo B^rn-1.
The result is expected to be ZERO if and only if one of the operand
already is. Otherwise the class [0] Mod(B^rn-1) is represented by
B^rn-1. This should not be a problem if sqrmod_bnm1 is used to
combine results and obtain a natural number when one knows in
advance that the final value is less than (B^rn-1).
*/
static void
ref_sqrmod_bnm1 (mp_ptr rp, mp_size_t rn, mp_srcptr ap, mp_size_t an)
{
mp_limb_t cy;
ASSERT (0 < an && an <= rn);
refmpn_mul (rp, ap, an, ap, an);
an *= 2;
if( UNLIKELY(an <= rn) )
MPN_ZERO (rp + an, rn - an);
else {
cy = mpn_add (rp, rp, rn, rp + rn, an - rn);
/* If cy == 1, then the value of rp is at most B^rn - 2, so there can
* be no overflow when adding in the carry. */
MPN_INCR_U (rp, rn, cy);
}
}
/*
Compare the result of the mpn_sqrmod_bnm1 function in the library
with the reference function above.
*/
int
main (int argc, char **argv)
{
mp_ptr ap, refp, pp, scratch;
int count = COUNT;
int test;
gmp_randstate_ptr rands;
TMP_DECL;
TMP_MARK;
if (argc > 1)
{
char *end;
count = strtol (argv[1], &end, 0);
if (*end || count <= 0)
{
fprintf (stderr, "Invalid test count: %s.\n", argv[1]);
return 1;
}
}
tests_start ();
rands = RANDS;
ASSERT_ALWAYS (mpn_mulmod_bnm1_next_size (MAX_N) == MAX_N);
ap = TMP_ALLOC_LIMBS (MAX_N);
refp = TMP_ALLOC_LIMBS (MAX_N * 4);
pp = 1+TMP_ALLOC_LIMBS (MAX_N + 2);
scratch
= 1+TMP_ALLOC_LIMBS (mpn_mulmod_bnm1_itch (MAX_N) + 2);
for (test = 0; test < count; test++)
{
unsigned size_min;
unsigned size_range;
mp_size_t an,n;
mp_size_t itch;
mp_limb_t p_before, p_after, s_before, s_after;
for (size_min = 1; (1L << size_min) < MIN_N; size_min++)
;
/* We generate an in the MIN_N <= n <= (1 << size_range). */
size_range = size_min
+ gmp_urandomm_ui (rands, SIZE_LOG + 1 - size_min);
n = MIN_N
+ gmp_urandomm_ui (rands, (1L << size_range) + 1 - MIN_N);
n = mpn_mulmod_bnm1_next_size (n);
an = ((n+1) >> 1) + gmp_urandomm_ui (rands, (n+1) >> 1);
mpn_random2 (ap, an);
/* Sometime trigger the borderline conditions
A = -1,0,+1 Mod(B^{n/2}+1).
This only makes sense if there is at least a split, i.e. n is even. */
if ((test & 0x1f) == 1 && (n & 1) == 0) {
mp_size_t x;
MPN_COPY (ap, ap + (n >> 1), an - (n >> 1));
MPN_ZERO (ap + an - (n >> 1) , n - an);
x = (n == an) ? 0 : gmp_urandomm_ui (rands, n - an);
ap[x] += gmp_urandomm_ui (rands, 3) - 1;
}
mpn_random2 (pp-1, n + 2);
p_before = pp[-1];
p_after = pp[n];
itch = mpn_mulmod_bnm1_itch (n);
ASSERT_ALWAYS (itch <= mpn_mulmod_bnm1_itch (MAX_N));
mpn_random2 (scratch-1, itch+2);
s_before = scratch[-1];
s_after = scratch[itch];
mpn_sqrmod_bnm1 ( pp, n, ap, an, scratch);
ref_sqrmod_bnm1 (refp, n, ap, an);
if (pp[-1] != p_before || pp[n] != p_after
|| scratch[-1] != s_before || scratch[itch] != s_after
|| mpn_cmp (refp, pp, n) != 0)
{
printf ("ERROR in test %d, an = %d, n = %d\n",
test, (int) an, (int) n);
if (pp[-1] != p_before)
{
printf ("before pp:"); mpn_dump (pp -1, 1);
printf ("keep: "); mpn_dump (&p_before, 1);
}
if (pp[n] != p_after)
{
printf ("after pp:"); mpn_dump (pp + n, 1);
printf ("keep: "); mpn_dump (&p_after, 1);
}
if (scratch[-1] != s_before)
{
printf ("before scratch:"); mpn_dump (scratch-1, 1);
printf ("keep: "); mpn_dump (&s_before, 1);
}
if (scratch[itch] != s_after)
{
printf ("after scratch:"); mpn_dump (scratch + itch, 1);
printf ("keep: "); mpn_dump (&s_after, 1);
}
mpn_dump (ap, an);
mpn_dump (pp, n);
mpn_dump (refp, n);
abort();
}
}
TMP_FREE;
return 0;
}
|