summaryrefslogtreecommitdiff
path: root/tune/tuneup.c
blob: 9ac5d2a67c5478258b229a3fc4e9cb70655b0819 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
/* Create tuned thresholds for various algorithms. */

/*
Copyright 1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.
*/

/* Usage: tune [-t] [-t] [-p precision]

   -t turns on some diagnostic traces, a second -t turns on more traces.

   The thresholds are determined as follows.  A crossover may not be a
   single size but rather a range where it oscillates between method A or
   method B faster.  If the threshold is set making B used where A is faster
   (or vice versa) that's bad.  Badness is the percentage time lost and
   total badness is the sum of this over all sizes measured.  The threshold
   is set to minimize total badness.

   Suppose, as sizes increase, method B becomes faster than method A.  The
   effect of the rule is that, as you look at increasing sizes, isolated
   points where B is faster are ignored, but when it's consistently faster,
   or faster on balance, then the threshold is set there.  The same result
   is obtained thinking in the other direction of A becoming faster at
   smaller sizes.

   In practice the thresholds tend to be chosen to bring on the next
   algorithm fairly quickly.

   This rule is attractive because it's got a basis in reason and is fairly
   easy to implement, but no work has been done to actually compare it in
   absolute terms to other possibilities.

   Sometimes running the program twice produces slightly different results.
   This is probably because there's so little separating algorithms near
   their crossover, and on that basis it should make little or no difference
   to the final speed of the relevant routines, but nothing has been done to
   check that carefully.

   Remarks:

   The code here isn't a vision of loveliness, mainly because it's subject
   to ongoing modifications according to new things wanting to be tuned and
   practical requirements of systems tested.

   The way parts of the library are recompiled to insinuate the tuning
   variables is a bit subtle, but unavoidable since of course the main
   library has fixed thresholds compiled-in but we want to vary them here.
   Most of the nonsense for this can be found in tune/Makefile.am and under
   TUNE_PROGRAM_BUILD in gmp-impl.h.

   The dirty hack which the "second_start_min" feature could perhaps be done
   more generally, so if say karatsuba is never better than toom3 then it
   can be detected and omitted.  Currently we're hoping very hard that this
   doesn't arise in practice, and if it does then it indicates something
   badly sub-optimal in the karatsuba implementation.

   Limitations:
   
   The FFTs aren't subject to the same badness rule as the other thresholds,
   so each k is probably being brought on a touch early.  This isn't likely
   to make a difference, and the simpler probing means fewer tests.

*/

#define TUNE_PROGRAM_BUILD  1

#include "config.h"

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#if HAVE_UNISTD_H
#include <unistd.h>
#endif

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"

#include "tests.h"
#include "speed.h"

#if !HAVE_DECL_OPTARG
extern char *optarg;
extern int optind, opterr;
#endif


#define MAX_SIZE        1000  /* limbs */
#define MAX_TABLE       5

#if WANT_FFT
mp_size_t  option_fft_max_size = 50000;  /* limbs */
#else
mp_size_t  option_fft_max_size = 0;
#endif
int        option_trace = 0;
int        option_fft_trace = 0;
struct speed_params  s;

struct dat_t {
  mp_size_t  size;
  double     d;
} *dat = NULL;
int  ndat = 0;
int  allocdat = 0;


/* Each "_threshold" array must be 1 bigger than the number of thresholds
   being tuned in a set, because one() stores a value in the entry above
   the one it's determining. */

mp_size_t  mul_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX };
mp_size_t  sqr_threshold[MAX_TABLE+1] = { MP_SIZE_T_MAX };
mp_size_t  sb_preinv_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  dc_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  fib_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  powm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  gcd_accel_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  gcdext_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  divrem_1_norm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  divrem_1_unnorm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  divrem_2_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  mod_1_norm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  mod_1_unnorm_threshold[2] = { MP_SIZE_T_MAX };
mp_size_t  modexact_1_odd_threshold[2] = { MP_SIZE_T_MAX };

mp_size_t  fft_modf_sqr_threshold = MP_SIZE_T_MAX;
mp_size_t  fft_modf_mul_threshold = MP_SIZE_T_MAX;

#ifndef TUNE_KARATSUBA_SQR_MAX
#define TUNE_KARATSUBA_SQR_MAX  0 /* meaning no limit */
#endif

struct param_t {
  const char        *name[MAX_TABLE];
  speed_function_t  function;
  speed_function_t  function2;
  double            step_factor;    /* how much to step sizes (rounded down) */
  double            function_fudge; /* multiplier for "function" speeds */
  int               stop_since_change;
  double            stop_factor;
  mp_size_t         min_size[MAX_TABLE];
  int               min_is_always;
  int               second_start_min;
  mp_size_t         max_size[MAX_TABLE];
  mp_size_t         check_size;
  mp_size_t         size_extra;

#define DATA_HIGH_LT_R  1
#define DATA_HIGH_GE_R  2
  int               data_high;

  int               noprint;
};


mp_limb_t
randlimb_norm (void)
{
  mp_limb_t  n;
  mpn_random (&n, 1);
  n |= MP_LIMB_T_HIGHBIT;
  return n;
}

#define MP_LIMB_T_HALFMASK  ((CNST_LIMB(1) << (BITS_PER_MP_LIMB/2)) - 1)

mp_limb_t
randlimb_half (void)
{
  mp_limb_t  n;
  mpn_random (&n, 1);
  n &= MP_LIMB_T_HALFMASK;
  n += (n==0);
  return n;
}


/* Add an entry to the end of the dat[] array, reallocing to make it bigger
   if necessary.  */
void
add_dat (mp_size_t size, double d)
{
#define ALLOCDAT_STEP  500

  ASSERT_ALWAYS (ndat <= allocdat);

  if (ndat == allocdat)
    {
      dat = (struct dat_t *) __gmp_allocate_or_reallocate
        (dat, allocdat * sizeof(dat[0]),
         (allocdat+ALLOCDAT_STEP) * sizeof(dat[0]));
      allocdat += ALLOCDAT_STEP;
    }

  dat[ndat].size = size;
  dat[ndat].d = d;
  ndat++;
}


/* Return the threshold size based on the data accumulated. */
mp_size_t
analyze_dat (int i, int final)
{
  double  x, min_x;
  int     j, min_j;

  /* If the threshold is set at dat[0].size, any positive values are bad. */
  x = 0.0;
  for (j = 0; j < ndat; j++)
    if (dat[j].d > 0.0)
      x += dat[j].d;

  if (option_trace >= 2 && final)
    {
      printf ("\n");
      printf ("x is the sum of the badness from setting thresh at given size\n");
      printf ("  (minimum x is sought)\n");
      printf ("i=%d size=%ld  first x=%.4f\n", i, dat[j].size, x);
    }

  min_x = x;
  min_j = 0;


  /* When stepping to the next dat[j].size, positive values are no longer
     bad (so subtracted), negative values become bad (so add the absolute
     value, meaning subtract). */
  for (j = 0; j < ndat; x -= dat[j].d, j++)
    {
      if (option_trace >= 2 && final)
        printf ("i=%d size=%ld  x=%.4f\n", i, dat[j].size, x);

      if (x < min_x)
        {
          min_x = x;
          min_j = j;
        }
    }
   
  return min_j;
}


/* Measuring for recompiled mpn/generic/divrem_1.c and mpn/generic/mod_1.c */

mp_limb_t mpn_divrem_1_tune _PROTO ((mp_ptr qp, mp_size_t xsize,
                                    mp_srcptr ap, mp_size_t size,
                                    mp_limb_t d));
mp_limb_t mpn_mod_1_tune _PROTO ((mp_srcptr ap, mp_size_t size, mp_limb_t d));

double
speed_mpn_mod_1_tune (struct speed_params *s)
{
  SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_tune);
}
double
speed_mpn_divrem_1_tune (struct speed_params *s)
{
  SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_tune);
}


double
tuneup_measure (speed_function_t fun,
                const struct param_t *param,
                struct speed_params *s)
{
  static struct param_t  dummy;
  double   t;
  TMP_DECL (marker);

  if (! param)
    param = &dummy;

  s->size += param->size_extra;

  TMP_MARK (marker);
  s->xp = SPEED_TMP_ALLOC_LIMBS (s->size, 0);
  s->yp = SPEED_TMP_ALLOC_LIMBS (s->size, 0);

  mpn_random (s->xp, s->size);
  mpn_random (s->yp, s->size);

  switch (param->data_high) {
  case DATA_HIGH_LT_R:
    s->xp[s->size-1] %= s->r;
    s->yp[s->size-1] %= s->r;
    break;
  case DATA_HIGH_GE_R:
    s->xp[s->size-1] |= s->r;
    s->yp[s->size-1] |= s->r;
    break;
  }

  t = speed_measure (fun, s);

  s->size -= param->size_extra;

  TMP_FREE (marker);
  return t;
}  


void
print_define_start (const char *name)
{
  printf ("#define %-25s  ", name);
  if (option_trace)
    printf ("...\n");
}

void
print_define_end (const char *name, mp_size_t value)
{
  if (option_trace)
    printf ("#define %-23s  ", name);

  if (value == MP_SIZE_T_MAX)
    printf ("MP_SIZE_T_MAX\n");
  else
    printf ("%5ld\n", value);
}

void
print_define (const char *name, mp_size_t value)
{
  print_define_start (name);
  print_define_end (name, value);
}


/* table[i+1] needs to be set to a sensible value when testing method i+1
   because mpn_mul_n uses TOOM3_MUL_THRESHOLD to size the temporary
   workspace for mpn_kara_mul_n. */

void
one (mp_size_t table[], size_t max_table, struct param_t *param)
{
  mp_size_t  table_save0 = 0;
  int  since_positive, since_thresh_change;
  int  thresh_idx, new_thresh_idx;
  int  i;

  ASSERT_ALWAYS (max_table <= MAX_TABLE);

#define DEFAULT(x,n)  if (! (param->x))  param->x = (n);

  DEFAULT (function_fudge, 1.0);
  DEFAULT (function2, param->function);
  DEFAULT (step_factor, 0.01);  /* small steps by default */
  DEFAULT (stop_since_change, 80);
  DEFAULT (stop_factor, 1.2);
  for (i = 0; i < max_table; i++)
    DEFAULT (min_size[i], 10);
  for (i = 0; i < max_table; i++)
    DEFAULT (max_size[i], MAX_SIZE);

  if (param->check_size != 0)
    {
      double   t1, t2;
      s.size = param->check_size;

      table[0] = s.size+1;
      table[1] = MAX_SIZE;
      t1 = tuneup_measure (param->function, param, &s);

      table[0] = s.size;
      table[1] = s.size+1;
      t2 = tuneup_measure (param->function2, param, &s);
      if (t1 == -1.0 || t2 == -1.0)
        {
          printf ("Oops, can't run both functions at size %ld\n", s.size);
          abort ();
        }
      t1 *= param->function_fudge;

      /* ask that t2 is at least 4% below t1 */
      if (t1 < t2*1.04)
        {
          if (option_trace)
            printf ("function2 never enough faster: t1=%.9f t2=%.9f\n", t1, t2);
          table[0] = MP_SIZE_T_MAX;
          if (! param->noprint)
            print_define (param->name[0], table[0]);
          return;
        }

      if (option_trace >= 2)
        printf ("function2 enough faster at size=%ld: t1=%.9f t2=%.9f\n",
                s.size, t1, t2);
    }

  for (i = 0, s.size = 1; i < max_table && s.size < MAX_SIZE; i++)
    {
      if (i == 1 && param->second_start_min)
        s.size = 1;

      if (s.size < param->min_size[i])
        s.size = param->min_size[i];

      if (! (param->noprint || (i == 1 && param->second_start_min)))
        print_define_start (param->name[i]);

      ndat = 0;
      since_positive = 0;
      since_thresh_change = 0;
      thresh_idx = 0;

      if (option_trace >= 2)
        {
          printf ("             algorithm-A  algorithm-B   ratio  possible\n");
          printf ("              (seconds)    (seconds)    diff    thresh\n");
        }

      for (;
           s.size < MAX_SIZE; 
           s.size += MAX ((mp_size_t) floor (s.size * param->step_factor), 1))
        {
          double   ti, tiplus1, d;

          /* If there's a size limit and it's reached then it should still
             be sensible to analyze the data since we want the threshold put
             either at or near the limit.  */
          if (s.size >= param->max_size[i])
            {
              if (option_trace)
                printf ("Reached maximum size (%ld) without otherwise stopping\n",
                        param->max_size[i]);
              break;
            }

          /*
            FIXME: check minimum size requirements are met, possibly by just
            checking for the -1 returns from the speed functions.
          */

          /* under this hack, don't let method 0 get used at s.size */
          if (i == 1 && param->second_start_min)
            table[0] = MIN (s.size-1, table_save0);

          /* using method i at this size */
          table[i] = s.size+1;
          table[i+1] = MAX_SIZE;
          ti = tuneup_measure (param->function, param, &s);
          if (ti == -1.0)
            abort ();
          ti *= param->function_fudge;

          /* using method i+1 at this size */
          table[i] = s.size;
          table[i+1] = s.size+1;
          tiplus1 = tuneup_measure (param->function2, param, &s);
          if (tiplus1 == -1.0)
            abort ();

          /* Calculate the fraction by which the one or the other routine is
             slower.  */
          if (tiplus1 >= ti)
            d = (tiplus1 - ti) / tiplus1;  /* negative */
          else
            d = (tiplus1 - ti) / ti;       /* positive */

          add_dat (s.size, d);

          new_thresh_idx = analyze_dat (i, 0);


          if (option_trace >= 2)
            printf ("i=%d size=%ld  %.9f  %.9f  % .4f %c  %ld\n",
                    i, s.size, ti, tiplus1, d,
                    ti > tiplus1 ? '#' : ' ',
                    dat[new_thresh_idx].size);

          /* Stop if the last time method i was faster was more than a
             certain number of measurements ago.  */
#define STOP_SINCE_POSITIVE  200
          if (d >= 0)
            since_positive = 0;            
          else
            if (++since_positive > STOP_SINCE_POSITIVE)
              {
                if (option_trace >= 1)
                  printf ("i=%d stopped due to since_positive (%d)\n",
                          i, STOP_SINCE_POSITIVE);
                break;
              }

          /* Stop if method i has become slower by a certain factor. */
          if (ti >= tiplus1 * param->stop_factor)
            {
              if (option_trace >= 1)
                printf ("i=%d stopped due to ti >= tiplus1 * factor (%.1f)\n",
                        i, param->stop_factor);
              break;
            }

          /* Stop if the threshold implied hasn't changed in a certain
             number of measurements.  (It's this condition that ususally
             stops the loop.) */
          if (thresh_idx != new_thresh_idx)
            since_thresh_change = 0, thresh_idx = new_thresh_idx;
          else
            if (++since_thresh_change > param->stop_since_change)
              {
                if (option_trace >= 1)
                  printf ("i=%d stopped due to since_thresh_change (%d)\n",
                          i, param->stop_since_change);
                break;
              }

          /* Stop if the threshold implied is more than a certain number of
             measurements ago.  */
#define STOP_SINCE_AFTER   500
          if (ndat - thresh_idx > STOP_SINCE_AFTER)
            {
              if (option_trace >= 1)
                printf ("i=%d stopped due to ndat - thresh_idx > amount (%d)\n",
                        i, STOP_SINCE_AFTER);
              break;
            }
        }

      /* Stop when the size limit is reached before the end of the
         crossover, without a specified param->max_size[i]. */
      if (s.size >= MAX_SIZE)
        {
          fprintf (stderr, "%s\n", param->name[i]);
          fprintf (stderr, "i=%d sizes %ld to %ld total %d measurements\n",
                   i, dat[0].size, dat[ndat-1].size, ndat);
          fprintf (stderr, "    max size reached before end of crossover\n");
          break;
        }

      if (option_trace >= 1)
        printf ("i=%d sizes %ld to %ld total %d measurements\n",
                i, dat[0].size, dat[ndat-1].size, ndat);

      if (ndat == 0)
        break;

      table[i] = dat[analyze_dat (i, 1)].size;

      /* fudge here, let min_is_always apply only to i==0, that's what the
         sqr_n thresholds want */
      if (i == 0 && param->min_is_always && table[i] == param->min_size[i])
        table[i] = 0;

      /* under the second_start_min fudge, if the second threshold turns out
         to be lower than the first, then the second method is unwanted, we
         should go straight from algorithm 1 to algorithm 3.  */
      if (param->second_start_min)
        {
          if (i == 0)
            {
              table_save0 = table[0];
              table[0] = 0;
            }
          else if (i == 1)
            {
              table[0] = table_save0;
              if (table[1] <= table[0])
                {
                  table[0] = table[1];
                  table[1] = 0;
                }
            }
          s.size = MAX (table[0], table[1]) + 1;
        }
      
      if (! (param->noprint || (i == 0 && param->second_start_min)))
        {
          if (i == 1 && param->second_start_min)
            {
              print_define_end (param->name[0], table[0]);
              print_define_start (param->name[1]);
            }

          print_define_end (param->name[i], table[i]);
        }

      /* Look for the next threshold starting from the current one, but back
         a bit. */
      s.size = table[i]+1;
    }      
}


/* Special probing for the fft thresholds.  The size restrictions on the
   FFTs mean the graph of time vs size has a step effect.  See this for
   example using

       ./speed -s 4096-16384 -t 128 -P foo mpn_mul_fft.8 mpn_mul_fft.9
       gnuplot foo.gnuplot

   The current approach is to compare routines at the midpoint of relevant
   steps.  Arguably a more sophisticated system of threshold data is wanted
   if this step effect remains. */

struct fft_param_t {
  const char        *table_name;
  const char        *threshold_name;
  const char        *modf_threshold_name;
  mp_size_t         *p_threshold;
  mp_size_t         *p_modf_threshold;
  mp_size_t         first_size;
  mp_size_t         max_size;
  speed_function_t  function;
  speed_function_t  mul_function;
  mp_size_t         sqr;
};


/* mpn_mul_fft requires pl a multiple of 2^k limbs, but with
   N=pl*BIT_PER_MP_LIMB it internally also pads out so N/2^k is a multiple
   of 2^(k-1) bits. */

mp_size_t
fft_step_size (int k)
{
  mp_size_t  step;

  step = MAX ((mp_size_t) 1 << (k-1), BITS_PER_MP_LIMB) / BITS_PER_MP_LIMB;
  step *= (mp_size_t) 1 << k;

  if (step <= 0)
    {
      printf ("Can't handle k=%d\n", k);
      abort ();
    }

  return step;
}

mp_size_t
fft_next_size (mp_size_t pl, int k)
{
  mp_size_t  m = fft_step_size (k);

/*    printf ("[k=%d %ld] %ld ->", k, m, pl); */

  if (pl == 0 || (pl & (m-1)) != 0)
    pl = (pl | (m-1)) + 1;

/*    printf (" %ld\n", pl); */
  return pl;
}

void
fft (struct fft_param_t *p)
{
  mp_size_t  size;
  int        i, k;

  for (i = 0; i < numberof (mpn_fft_table[p->sqr]); i++)
    mpn_fft_table[p->sqr][i] = MP_SIZE_T_MAX;

  *p->p_threshold = MP_SIZE_T_MAX;
  *p->p_modf_threshold = MP_SIZE_T_MAX;

  option_trace = MAX (option_trace, option_fft_trace);

  printf ("#define %s  {", p->table_name);
  if (option_trace >= 2)
    printf ("\n");

  k = FFT_FIRST_K;
  size = p->first_size;
  for (;;)
    {
      double  tk, tk1;

      size = fft_next_size (size+1, k+1);

      if (size >= p->max_size)
        break;
      if (k >= FFT_FIRST_K + numberof (mpn_fft_table[p->sqr]))
        break;

      /* compare k to k+1 in the middle of the current k+1 step */
      s.size = size + fft_step_size (k+1) / 2;
      s.r = k;
      tk = tuneup_measure (p->function, NULL, &s);
      if (tk == -1.0)
        abort ();

      s.r = k+1;
      tk1 = tuneup_measure (p->function, NULL, &s);
      if (tk1 == -1.0)
        abort ();

      if (option_trace >= 2)
        printf ("at %ld   size=%ld  k=%d  %.9f   k=%d %.9f\n",
                size, s.size, k, tk, k+1, tk1);

      /* declare the k+1 threshold as soon as it's faster at its midpoint */
      if (tk1 < tk)
        {
          mpn_fft_table[p->sqr][k-FFT_FIRST_K] = s.size;
          printf (" %ld,", s.size);
          if (option_trace >= 2) printf ("\n");
          k++;
        }
    }

  mpn_fft_table[p->sqr][k-FFT_FIRST_K] = 0;
  printf (" 0 }\n");


  size = p->first_size;
  
  /* Declare an FFT faster than a plain toom3 etc multiplication found as
     soon as one faster measurement obtained.  A multiplication in the
     middle of the FFT step is tested.  */
  for (;;)
    {
      int     modf = (*p->p_modf_threshold == MP_SIZE_T_MAX);
      double  tk, tm;

      /* k=7 should be the first FFT which can beat toom3 on a full
         multiply, so jump to that threshold and save some probing after the
         modf threshold is found.  */
      if (!modf && size < mpn_fft_table[p->sqr][2])
        {
          size = mpn_fft_table[p->sqr][2];
          if (option_trace >= 2)
            printf ("jump to size=%ld\n", size);
        }

      size = fft_next_size (size+1, mpn_fft_best_k (size, p->sqr));
      k = mpn_fft_best_k (size, p->sqr);

      if (size >= p->max_size)
        break;

      s.size = size + fft_step_size (k) / 2;
      s.r = k;
      tk = tuneup_measure (p->function, NULL, &s);
      if (tk == -1.0)
        abort ();

      if (!modf)  s.size /= 2;
      tm = tuneup_measure (p->mul_function, NULL, &s);
      if (tm == -1.0)
        abort ();

      if (option_trace >= 2)
        printf ("at %ld   size=%ld   k=%d  %.9f   size=%ld %s mul %.9f\n",
                size,
                size + fft_step_size (k) / 2, k, tk,
                s.size, modf ? "modf" : "full", tm);

      if (tk < tm)
        {
          if (modf)
            {
              *p->p_modf_threshold = s.size;
              print_define (p->modf_threshold_name, *p->p_modf_threshold);
            }
          else
            {
              *p->p_threshold = s.size;
              print_define (p->threshold_name,      *p->p_threshold);
              break;
            }
        }
    }

}


void
all (void)
{
  time_t  start_time, end_time;
  TMP_DECL (marker);

  TMP_MARK (marker);
  s.xp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0);
  s.yp_block = SPEED_TMP_ALLOC_LIMBS (SPEED_BLOCK_SIZE, 0);

  mpn_random (s.xp_block, SPEED_BLOCK_SIZE);
  mpn_random (s.yp_block, SPEED_BLOCK_SIZE);

  speed_time_init ();
  fprintf (stderr, "Using: %s\n", speed_time_string);

  if (speed_unittime == 1.0)
    fprintf (stderr, "speed_precision %d, speed_unittime 1 cycle\n",
             speed_precision);
  else
    fprintf (stderr, "speed_precision %d, speed_unittime %.2e secs\n",
             speed_precision, speed_unittime);

  fprintf (stderr, "MAX_SIZE %d, fft_max_size %ld\n",
           MAX_SIZE, option_fft_max_size);
  fprintf (stderr, "\n");

  time (&start_time);
  {
    struct tm  *tp;
    tp = localtime (&start_time);
    printf ("/* Generated by tuneup.c, %d-%02d-%02d, ",
            tp->tm_year+1900, tp->tm_mon+1, tp->tm_mday);

#ifdef __GNUC__
    /* gcc sub-minor version doesn't seem to come through as a define */
    printf ("gcc %d.%d */\n", __GNUC__, __GNUC_MINOR__);
#define PRINTED_COMPILER
#endif
#if defined (__SUNPRO_C)
    printf ("Sun C %d.%d */\n", __SUNPRO_C / 0x100, __SUNPRO_C % 0x100);
#define PRINTED_COMPILER
#endif
#if defined (__sgi) && defined (_COMPILER_VERSION)
    printf ("MIPSpro C %d.%d.%d */\n",
	    _COMPILER_VERSION / 100,
	    _COMPILER_VERSION / 10 % 10,
	    _COMPILER_VERSION % 10);
#define PRINTED_COMPILER
#endif
#if defined (__DECC) && defined (__DECC_VER)
    printf ("DEC C %d */\n", __DECC_VER);
#define PRINTED_COMPILER
#endif
#if ! defined (PRINTED_COMPILER)
    printf ("system compiler */\n");
#endif
  }
  printf ("\n");

  /* Start karatsuba from 4, since the Cray t90 ieee code is much faster at
     2, giving wrong results.  */
  {
    static struct param_t  param;
    param.name[0] = "KARATSUBA_MUL_THRESHOLD";
    param.name[1] = "TOOM3_MUL_THRESHOLD";
    param.function = speed_mpn_mul_n;
    param.min_size[0] = MAX (4, MPN_KARA_MUL_N_MINSIZE);
    param.max_size[0] = TOOM3_MUL_THRESHOLD_LIMIT-1;
    param.max_size[1] = TOOM3_MUL_THRESHOLD_LIMIT-1;
    one (mul_threshold, 2, &param);
  }
  printf("\n");

  /* Start the basecase from 3, since 1 is a special case, and if
     mul_basecase is faster only at size==2 then we don't want to bother
     with extra code just for that.  Start karatsuba from 4 same as MUL
     above.  */
  {
    static struct param_t  param;
    param.name[0] = "BASECASE_SQR_THRESHOLD";
    param.name[1] = "KARATSUBA_SQR_THRESHOLD";
    param.name[2] = "TOOM3_SQR_THRESHOLD";
    param.function = speed_mpn_sqr_n;
    param.min_is_always = 1;
    param.second_start_min = 1;
    param.min_size[0] = 3;
    param.min_size[1] = MAX (4, MPN_KARA_SQR_N_MINSIZE);
    param.min_size[2] = MPN_TOOM3_SQR_N_MINSIZE;
    param.max_size[0] = TUNE_KARATSUBA_SQR_MAX;
    param.max_size[1] = TUNE_KARATSUBA_SQR_MAX;
    one (sqr_threshold, 3, &param);
  }
  printf("\n");

#if UDIV_PREINV_ALWAYS
  printf ("#define SB_PREINV_THRESHOLD            0  /* (preinv always) */\n");
#else
  {
    static struct param_t  param;
    param.check_size = 256;
    param.min_size[0] = 3;
    param.min_is_always = 1;
    param.size_extra = 3;
    param.stop_factor = 2.0;
    param.name[0] = "SB_PREINV_THRESHOLD";
    param.function = speed_mpn_sb_divrem_m3;
    one (sb_preinv_threshold, 1, &param);
  }
#endif

  {
    static struct param_t  param;
    param.name[0] = "DC_THRESHOLD";
    param.function = speed_mpn_dc_tdiv_qr;
    one (dc_threshold, 1, &param);
  }

  /* This is an indirect determination, based on a comparison between redc
     and mpz_mod.  A fudge factor of 1.04 is applied to redc, to represent
     additional overheads it gets in mpz_powm.  */
  {
    static struct param_t  param;
    param.name[0] = "POWM_THRESHOLD";
    param.function = speed_redc;
    param.function2 = speed_mpz_mod;
    param.step_factor = 0.03;
    param.function_fudge = 1.04;
    one (powm_threshold, 1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "FIB_THRESHOLD";
    param.function = speed_mpz_fib_ui;

    /* Bigcase odd and even sizes run at noticably different speeds, so
       always step by 1, and don't let stop_factor truncate the search.  */
    param.step_factor = 0.001;
    param.stop_factor = 5.0;

    /* start the search from a point after the table data */
    switch (BITS_PER_MP_LIMB) {
    case 32: param.min_size[0] = 93; break;
    case 64: param.min_size[0] = 186; break;
    default:
      printf ("Don't know FIB_THRESHOLD starting point for BITS_PER_MP_LIMB == %d\n",
              BITS_PER_MP_LIMB);
      abort ();
    }

    one (fib_threshold, 1, &param);
  }
  printf("\n");

  {
    static struct param_t  param;
    param.name[0] = "GCD_ACCEL_THRESHOLD";
    param.function = speed_mpn_gcd;
    param.min_size[0] = 1;
    one (gcd_accel_threshold, 1, &param);
  }

  /* A comparison between the speed of a single limb step and a double limb
     step is made.  On a 32-bit limb the ratio is about 2.2 single steps to
     equal a double step, or on a 64-bit limb about 2.09.  (These were found
     from counting the steps on a 10000 limb gcdext.  */
  {
    static struct param_t  param;
    param.name[0] = "GCDEXT_THRESHOLD";
    param.function = speed_mpn_gcdext_one_single;
    param.function2 = speed_mpn_gcdext_one_double;
    switch (BITS_PER_MP_LIMB) {
    case 32: param.function_fudge = 2.2; break;
    case 64: param.function_fudge = 2.09; break;
    default: 
      printf ("Don't know GCDEXT_THERSHOLD factor for BITS_PER_MP_LIMB == %d\n",
              BITS_PER_MP_LIMB);
      abort ();
    }
    param.min_size[0] = 5;
    param.min_is_always = 1;
    param.max_size[0] = 300;
    param.check_size = 300;
    one (gcdext_threshold, 1, &param);
  }
  printf("\n");

#if UDIV_PREINV_ALWAYS
  printf ("#define DIVREM_1_NORM_THRESHOLD        0  /* (preinv always) */\n");
  printf ("#define DIVREM_1_UNNORM_THRESHOLD      0\n");
  printf ("#define MOD_1_NORM_THRESHOLD           0\n");
  printf ("#define MOD_1_UNNORM_THRESHOLD         0\n");

#else
  /* size_extra==1 reflects the fact that with high<divisor one division is
     always skipped.  Forcing high<divisor while testing ensures consistency
     while stepping through sizes, ie. that size-1 divides will be done each
     time.

     min_size==2 and min_is_always are used so that if plain division is
     only better at size==1 then don't bother including that code just for
     that case, instead go with preinv always and get a size saving.  */

#define DIV_1_PARAMS                    \
  param.check_size = 256;               \
  param.min_size[0] = 2;                   \
  param.min_is_always = 1;              \
  param.data_high = DATA_HIGH_LT_R;     \
  param.size_extra = 1;                 \
  param.stop_factor = 2.0;

  /* No support for tuning native assembler code, do that by hand and put
     the results in the .asm file, and there's no need for such thresholds
     to appear in gmp-mparam.h.  */
#if ! HAVE_NATIVE_mpn_divrem_1

  /* Tune for the integer part of mpn_divrem_1.  This will very possibly be
     a bit out for the fractional part, but that's too bad, the integer part
     is more important. */
  {
    static struct param_t  param;
    param.name[0] = "DIVREM_1_NORM_THRESHOLD";
    DIV_1_PARAMS;
    s.r = randlimb_norm ();
    param.function = speed_mpn_divrem_1_tune;
    one (divrem_1_norm_threshold, 1, &param);
  }
  {
    static struct param_t  param;
    param.name[0] = "DIVREM_1_UNNORM_THRESHOLD";
    DIV_1_PARAMS;
    s.r = randlimb_half ();
    param.function = speed_mpn_divrem_1_tune;
    one (divrem_1_unnorm_threshold, 1, &param);
  }
#endif /* ! HAVE_NATIVE_mpn_divrem_1 */
#if ! HAVE_NATIVE_mpn_mod_1
#define SPEED_MPN_MOD_1  speed_mpn_mod_1_tune
  {
    static struct param_t  param;
    param.name[0] = "MOD_1_NORM_THRESHOLD";
    DIV_1_PARAMS;
    s.r = randlimb_norm ();
    param.function = speed_mpn_mod_1_tune;
    one (mod_1_norm_threshold, 1, &param);
  }
  {
    static struct param_t  param;
    param.name[0] = "MOD_1_UNNORM_THRESHOLD";
    DIV_1_PARAMS;
    s.r = randlimb_half ();
    param.function = speed_mpn_mod_1_tune;
    one (mod_1_unnorm_threshold, 1, &param);
  }
#endif /* ! HAVE_NATIVE_mpn_mod_1 */
#endif /* ! UDIV_PREINV_ALWAYS */

  /* use the regular mpn_mod_1 if there's no tuned version */
#ifndef SPEED_MPN_MOD_1
#define SPEED_MPN_MOD_1  speed_mpn_mod_1
#endif

#if HAVE_NATIVE_mpn_preinv_mod_1
  /* Any native version of mpn_preinv_mod_1 is assumed to exist because it's
     faster than mpn_mod_1.  */
  printf ("#define USE_PREINV_MOD_1               1  /* (native) */\n");
#else
#if UDIV_PREINV_ALWAYS
  /* If udiv_qrnnd_preinv is the only division method then of course
     mpn_preinv_mod_1 should be used.  */
  printf ("#define USE_PREINV_MOD_1               1  /* (preinv always) */\n");
#else
  {
    static struct param_t  param;
    double   t1, t2;

    param.data_high = DATA_HIGH_LT_R; /* let mpn_mod_1 skip one division */
    s.size = 200;                     /* generous but not too big */
    s.r = randlimb_norm();            /* divisor */

    t1 = tuneup_measure (speed_mpn_preinv_mod_1, &param, &s);
    t2 = tuneup_measure (SPEED_MPN_MOD_1, &param, &s);
    if (t1 == -1.0 || t2 == -1.0)
      {
        printf ("Oops, can't measure mpn_preinv_mod_1 and mpn_mod_1 at %ld\n",
                s.size);
        abort ();
      }
    if (option_trace >= 1)
      printf ("size=%ld, mpn_preinv_mod_1 %.9f, mpn_mod_1 %.9f\n",
              s.size, t1, t2);

    printf ("#define USE_PREINV_MOD_1               %d\n", t1 < t2);
  }
#endif /* ! UDIV_PREINV_ALWAYS */
#endif /* ! HAVE_NATIVE_mpn_preinv_mod_1 */


#if UDIV_PREINV_ALWAYS
  printf ("#define DIVREM_2_THRESHOLD             0  /* (preinv always) */\n");
#else

  /* No support for tuning native assembler code, do that by hand and put
     the results in the .asm file, and there's no need for such thresholds
     to appear in gmp-mparam.h.  */
#if ! HAVE_NATIVE_mpn_divrem_2

  /* Tune for the integer part of mpn_divrem_2.  This will very possibly be
     a bit out for the fractional part, but that's too bad, the integer part
     is more important.

     min_size must be >=2 since nsize>=2 is required, but is set to 4 to save
     code space if plain division is better only at size==2 or size==3. */
  {
    static struct param_t  param;
    param.name[0] = "DIVREM_2_THRESHOLD";
    param.check_size = 256;
    param.min_size[0] = 4;
    param.min_is_always = 1;
    param.size_extra = 2;      /* does qsize==nsize-2 divisions */
    param.stop_factor = 2.0;

    s.r = randlimb_norm ();
    param.function = speed_mpn_divrem_2;
    one (divrem_2_threshold, 1, &param);
  }
#endif
#endif


  /* The generic mpn_modexact_1_odd skips a divide step if high<divisor, the
     same as mpn_mod_1, but this might not be true of an assembler
     implementation.  The threshold used is an average based on data where a
     divide can be skipped and where it can't.

     If modexact turns out to be better as early as 3 limbs, then use it
     always, so as to reduce code size and conditional jumps.  */
  {
    static struct param_t  param;
    mp_size_t  thresh_lt;
    param.name[0] = "MODEXACT_1_ODD_THRESHOLD";
    param.check_size = 256;
    param.min_size[0] = 2;
    param.stop_factor = 1.5;
    param.function  = SPEED_MPN_MOD_1;
    param.function2 = speed_mpn_modexact_1c_odd;
    param.noprint = 1;
    s.r = randlimb_half () | 1;

    print_define_start (param.name[0]);

    param.data_high = DATA_HIGH_LT_R;
    one (modexact_1_odd_threshold, 1, &param);
    if (option_trace)
      printf ("lt thresh %ld\n", modexact_1_odd_threshold[0]);

    thresh_lt = modexact_1_odd_threshold[0];
    if (modexact_1_odd_threshold[0] != MP_SIZE_T_MAX)
      {
        param.data_high = DATA_HIGH_GE_R;
        one (modexact_1_odd_threshold, 1, &param);
        if (option_trace)
          printf ("ge thresh %ld\n", modexact_1_odd_threshold[0]);

        if (modexact_1_odd_threshold[0] != MP_SIZE_T_MAX)
          {
            modexact_1_odd_threshold[0]
              = (modexact_1_odd_threshold[0] + thresh_lt) / 2;
            if (modexact_1_odd_threshold[0] <= 3)
              modexact_1_odd_threshold[0] = 0;
          }
      }

    print_define_end (param.name[0], modexact_1_odd_threshold[0]);
  }

  printf("\n");


  if (option_fft_max_size != 0)
    {
      {
        static struct fft_param_t  param;
        param.table_name          = "FFT_MUL_TABLE";
        param.threshold_name      = "FFT_MUL_THRESHOLD";
        param.p_threshold         = &FFT_MUL_THRESHOLD;
        param.modf_threshold_name = "FFT_MODF_MUL_THRESHOLD";
        param.p_modf_threshold    = &FFT_MODF_MUL_THRESHOLD;
        param.first_size          = TOOM3_MUL_THRESHOLD / 2;
        param.max_size            = option_fft_max_size;
        param.function            = speed_mpn_mul_fft;
        param.mul_function        = speed_mpn_mul_n;
        param.sqr = 0;
        fft (&param);
      }
      printf("\n");
      {
        static struct fft_param_t  param;
        param.table_name          = "FFT_SQR_TABLE";
        param.threshold_name      = "FFT_SQR_THRESHOLD";
        param.p_threshold         = &FFT_SQR_THRESHOLD;
        param.modf_threshold_name = "FFT_MODF_SQR_THRESHOLD";
        param.p_modf_threshold    = &FFT_MODF_SQR_THRESHOLD;
        param.first_size          = TOOM3_SQR_THRESHOLD / 2;
        param.max_size            = option_fft_max_size;
        param.function            = speed_mpn_mul_fft_sqr;
        param.mul_function        = speed_mpn_sqr_n;
        param.sqr = 0;
        fft (&param);
      }
      printf ("\n");
    }

  time (&end_time);
  printf ("/* Tuneup completed successfully, took %ld seconds */\n",
          end_time - start_time);

  TMP_FREE (marker);
}


int
main (int argc, char *argv[])
{
  int  opt;

  /* Unbuffered so if output is redirected to a file it isn't lost if the
     program is killed part way through.  */
  setbuf (stdout, NULL);
  setbuf (stderr, NULL);

  while ((opt = getopt(argc, argv, "f:o:p:t")) != EOF)
    {
      switch (opt) {
      case 'f':
        if (optarg[0] == 't')
          option_fft_trace = 2;
        else
          option_fft_max_size = atol (optarg);
        break;
      case 'o':
        speed_option_set (optarg);
        break;
      case 'p':
        speed_precision = atoi (optarg);
        break;
      case 't':
        option_trace++;
        break;
      case '?':
        exit(1);
      }
    }
		
  all ();
  exit (0);
}