/* * Clutter. * * An OpenGL based 'interactive canvas' library. * * Authored By Matthew Allum * * Copyright (C) 2006 OpenedHand * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . * * */ /** * SECTION:clutter-util * @short_description: Utility functions * * Various miscellaneous utilility functions. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "clutter-debug.h" #include "clutter-main.h" #include "clutter-interval.h" #include "clutter-private.h" #include "deprecated/clutter-util.h" /** * clutter_util_next_p2: * @a: Value to get the next power * * Calculates the nearest power of two, greater than or equal to @a. * * Return value: The nearest power of two, greater or equal to @a. * * Deprecated: 1.2 */ gint clutter_util_next_p2 (gint a) { int rval = 1; while (rval < a) rval <<= 1; return rval; } /*< private > * _clutter_gettext: * @str: a string to localize * * Retrieves the localized version of @str, using the Clutter domain * * Return value: the translated string */ const gchar * _clutter_gettext (const gchar *str) { return g_dgettext (GETTEXT_PACKAGE, str); } /* Help macros to scale from OpenGL <-1,1> coordinates system to * window coordinates ranging [0,window-size] */ #define MTX_GL_SCALE_X(x,w,v1,v2) ((((((x) / (w)) + 1.0f) / 2.0f) * (v1)) + (v2)) #define MTX_GL_SCALE_Y(y,w,v1,v2) ((v1) - (((((y) / (w)) + 1.0f) / 2.0f) * (v1)) + (v2)) #define MTX_GL_SCALE_Z(z,w,v1,v2) (MTX_GL_SCALE_X ((z), (w), (v1), (v2))) void _clutter_util_fully_transform_vertices (const CoglMatrix *modelview, const CoglMatrix *projection, const float *viewport, const ClutterVertex *vertices_in, ClutterVertex *vertices_out, int n_vertices) { CoglMatrix modelview_projection; ClutterVertex4 *vertices_tmp; int i; vertices_tmp = g_alloca (sizeof (ClutterVertex4) * n_vertices); if (n_vertices >= 4) { /* XXX: we should find a way to cache this per actor */ cogl_matrix_multiply (&modelview_projection, projection, modelview); cogl_matrix_project_points (&modelview_projection, 3, sizeof (ClutterVertex), vertices_in, sizeof (ClutterVertex4), vertices_tmp, n_vertices); } else { cogl_matrix_transform_points (modelview, 3, sizeof (ClutterVertex), vertices_in, sizeof (ClutterVertex4), vertices_tmp, n_vertices); cogl_matrix_project_points (projection, 3, sizeof (ClutterVertex4), vertices_tmp, sizeof (ClutterVertex4), vertices_tmp, n_vertices); } for (i = 0; i < n_vertices; i++) { ClutterVertex4 vertex_tmp = vertices_tmp[i]; ClutterVertex *vertex_out = &vertices_out[i]; /* Finally translate from OpenGL coords to window coords */ vertex_out->x = MTX_GL_SCALE_X (vertex_tmp.x, vertex_tmp.w, viewport[2], viewport[0]); vertex_out->y = MTX_GL_SCALE_Y (vertex_tmp.y, vertex_tmp.w, viewport[3], viewport[1]); } } /*< private > * _clutter_util_rectangle_union: * @src1: first rectangle to union * @src2: second rectangle to union * @dest: (out): return location for the unioned rectangle * * Calculates the union of two rectangles. * * The union of rectangles @src1 and @src2 is the smallest rectangle which * includes both @src1 and @src2 within it. * * It is allowed for @dest to be the same as either @src1 or @src2. * * This function should really be in Cairo. */ void _clutter_util_rectangle_union (const cairo_rectangle_int_t *src1, const cairo_rectangle_int_t *src2, cairo_rectangle_int_t *dest) { int dest_x, dest_y; dest_x = MIN (src1->x, src2->x); dest_y = MIN (src1->y, src2->y); dest->width = MAX (src1->x + src1->width, src2->x + src2->width) - dest_x; dest->height = MAX (src1->y + src1->height, src2->y + src2->height) - dest_y; dest->x = dest_x; dest->y = dest_y; } float _clutter_util_matrix_determinant (const ClutterMatrix *matrix) { return matrix->xw * matrix->yz * matrix->zy * matrix->wz - matrix->xz * matrix->yw * matrix->zy * matrix->wz - matrix->xw * matrix->yy * matrix->zz * matrix->wz + matrix->xy * matrix->yw * matrix->zz * matrix->wz + matrix->xz * matrix->yy * matrix->zw * matrix->wz - matrix->xy * matrix->yz * matrix->zw * matrix->wz - matrix->xw * matrix->yz * matrix->zx * matrix->wy + matrix->xz * matrix->yw * matrix->zx * matrix->wy + matrix->xw * matrix->yx * matrix->zz * matrix->wy - matrix->xx * matrix->yw * matrix->zz * matrix->wy - matrix->xz * matrix->yx * matrix->zw * matrix->wy + matrix->xx * matrix->yz * matrix->zw * matrix->wy + matrix->xw * matrix->yy * matrix->zx * matrix->wz - matrix->xy * matrix->yw * matrix->zx * matrix->wz - matrix->xw * matrix->yx * matrix->zy * matrix->wz + matrix->xx * matrix->yw * matrix->zy * matrix->wz + matrix->xy * matrix->yx * matrix->zw * matrix->wz - matrix->xx * matrix->yy * matrix->zw * matrix->wz - matrix->xz * matrix->yy * matrix->zx * matrix->ww + matrix->xy * matrix->yz * matrix->zx * matrix->ww + matrix->xz * matrix->yx * matrix->zy * matrix->ww - matrix->xx * matrix->yz * matrix->zy * matrix->ww - matrix->xy * matrix->yx * matrix->zz * matrix->ww + matrix->xx * matrix->yy * matrix->zz * matrix->ww; } static void _clutter_util_matrix_transpose_vector4_transform (const ClutterMatrix *matrix, const ClutterVertex4 *point, ClutterVertex4 *res) { res->x = matrix->xx * point->x + matrix->xy * point->y + matrix->xz * point->z + matrix->xw * point->w; res->y = matrix->yx * point->x + matrix->yy * point->y + matrix->yz * point->z + matrix->yw * point->w; res->z = matrix->zx * point->x + matrix->zy * point->y + matrix->zz * point->z + matrix->zw * point->w; res->w = matrix->wz * point->x + matrix->wy * point->w + matrix->wz * point->z + matrix->ww * point->w; } void _clutter_util_matrix_skew_xy (ClutterMatrix *matrix, float factor) { matrix->yx += matrix->xx * factor; matrix->yy += matrix->xy * factor; matrix->yz += matrix->xz * factor; matrix->yw += matrix->xw * factor; } void _clutter_util_matrix_skew_xz (ClutterMatrix *matrix, float factor) { matrix->zx += matrix->xx * factor; matrix->zy += matrix->xy * factor; matrix->zz += matrix->xz * factor; matrix->zw += matrix->xw * factor; } void _clutter_util_matrix_skew_yz (ClutterMatrix *matrix, float factor) { matrix->zx += matrix->yx * factor; matrix->zy += matrix->yy * factor; matrix->zz += matrix->yz * factor; matrix->zw += matrix->yw * factor; } static float _clutter_util_vertex_length (const ClutterVertex *vertex) { return sqrtf (vertex->x * vertex->x + vertex->y * vertex->y + vertex->z * vertex->z); } static void _clutter_util_vertex_normalize (ClutterVertex *vertex) { float factor = _clutter_util_vertex_length (vertex); if (factor == 0.f) return; vertex->x /= factor; vertex->y /= factor; vertex->z /= factor; } static float _clutter_util_vertex_dot (const ClutterVertex *v1, const ClutterVertex *v2) { return v1->x * v2->x + v1->y * v2->y + v1->z * v2->z; } static void _clutter_util_vertex_cross (const ClutterVertex *v1, const ClutterVertex *v2, ClutterVertex *res) { res->x = v1->y * v2->z - v2->y * v1->z; res->y = v1->z * v2->x - v2->z * v1->x; res->z = v1->x * v2->y - v2->x * v1->y; } static void _clutter_util_vertex_combine (const ClutterVertex *a, const ClutterVertex *b, double ascl, double bscl, ClutterVertex *res) { res->x = (ascl * a->x) + (bscl * b->x); res->y = (ascl * a->y) + (bscl * b->y); res->z = (ascl * a->z) + (bscl * b->z); } void _clutter_util_vertex4_interpolate (const ClutterVertex4 *a, const ClutterVertex4 *b, double progress, ClutterVertex4 *res) { res->x = a->x + (b->x - a->x) * progress; res->y = a->y + (b->y - a->y) * progress; res->z = a->z + (b->z - a->z) * progress; res->w = a->w + (b->w - a->w) * progress; } /*< private > * clutter_util_matrix_decompose: * @src: the matrix to decompose * @scale_p: (out caller-allocates): return location for a vertex containing * the scaling factors * @shear_p: (out) (array length=3): return location for an array of 3 * elements containing the skew factors (XY, XZ, and YZ respectively) * @rotate_p: (out caller-allocates): return location for a vertex containing * the Euler angles * @translate_p: (out caller-allocates): return location for a vertex * containing the translation vector * @perspective_p: (out caller-allocates: return location for a 4D vertex * containing the perspective * * Decomposes a #ClutterMatrix into the transformations that compose it. * * This code is based on the matrix decomposition algorithm as published in * the CSS Transforms specification by the W3C CSS working group, available * at http://www.w3.org/TR/css3-transforms/. * * The algorithm, in turn, is based on the "unmatrix" method published in * "Graphics Gems II, edited by Jim Arvo", which is available at: * http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c * * Return value: %TRUE if the decomposition was successful, and %FALSE * if the matrix is singular */ gboolean _clutter_util_matrix_decompose (const ClutterMatrix *src, ClutterVertex *scale_p, float shear_p[3], ClutterVertex *rotate_p, ClutterVertex *translate_p, ClutterVertex4 *perspective_p) { CoglMatrix matrix = *src; CoglMatrix perspective; ClutterVertex4 vertex_tmp; ClutterVertex row[3], pdum; int i, j; #define XY_SHEAR 0 #define XZ_SHEAR 1 #define YZ_SHEAR 2 #define MAT(m,r,c) ((float *)(m))[(c) * 4 + (r)] /* normalize the matrix */ if (matrix.ww == 0.f) return FALSE; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { MAT (&matrix, j, i) /= MAT (&matrix, 3, 3); } } /* perspective is used to solve for perspective, but it also provides * an easy way to test for singularity of the upper 3x3 component */ perspective = matrix; /* transpose */ MAT (&perspective, 3, 0) = 0.f; MAT (&perspective, 3, 1) = 0.f; MAT (&perspective, 3, 2) = 0.f; MAT (&perspective, 3, 3) = 1.f; if (_clutter_util_matrix_determinant (&perspective) == 0.f) return FALSE; if (MAT (&matrix, 3, 0) != 0.f || MAT (&matrix, 3, 1) != 0.f || MAT (&matrix, 3, 2) != 0.f) { CoglMatrix perspective_inv; ClutterVertex4 p; vertex_tmp.x = MAT (&matrix, 3, 0); vertex_tmp.y = MAT (&matrix, 3, 1); vertex_tmp.z = MAT (&matrix, 3, 2); vertex_tmp.w = MAT (&matrix, 3, 3); /* solve the equation by inverting perspective... */ cogl_matrix_get_inverse (&perspective, &perspective_inv); /* ... and multiplying vertex_tmp by the inverse */ _clutter_util_matrix_transpose_vector4_transform (&perspective_inv, &vertex_tmp, &p); *perspective_p = p; /* clear the perspective part */ MAT (&matrix, 3, 0) = 0.0f; MAT (&matrix, 3, 1) = 0.0f; MAT (&matrix, 3, 2) = 0.0f; MAT (&matrix, 3, 3) = 1.0f; } else { /* no perspective */ perspective_p->x = 0.0f; perspective_p->y = 0.0f; perspective_p->z = 0.0f; perspective_p->w = 1.0f; } /* translation */ translate_p->x = MAT (&matrix, 0, 3); MAT (&matrix, 0, 3) = 0.f; translate_p->y = MAT (&matrix, 1, 3); MAT (&matrix, 1, 3) = 0.f; translate_p->z = MAT (&matrix, 2, 3); MAT (&matrix, 2, 3) = 0.f; /* scale and shear; we split the upper 3x3 matrix into rows */ for (i = 0; i < 3; i++) { row[i].x = MAT (&matrix, i, 0); row[i].y = MAT (&matrix, i, 1); row[i].z = MAT (&matrix, i, 2); } /* compute scale.x and normalize the first row */ scale_p->x = _clutter_util_vertex_length (&row[0]); _clutter_util_vertex_normalize (&row[0]); /* compute XY shear and make the second row orthogonal to the first */ shear_p[XY_SHEAR] = _clutter_util_vertex_dot (&row[0], &row[1]); _clutter_util_vertex_combine (&row[1], &row[0], 1.0, -shear_p[XY_SHEAR], &row[1]); /* compute the Y scale and normalize the second row */ scale_p->y = _clutter_util_vertex_length (&row[1]); _clutter_util_vertex_normalize (&row[1]); shear_p[XY_SHEAR] /= scale_p->y; /* compute XZ and YZ shears, orthogonalize the third row */ shear_p[XZ_SHEAR] = _clutter_util_vertex_dot (&row[0], &row[2]); _clutter_util_vertex_combine (&row[2], &row[0], 1.0, -shear_p[XZ_SHEAR], &row[2]); shear_p[YZ_SHEAR] = _clutter_util_vertex_dot (&row[1], &row[2]); _clutter_util_vertex_combine (&row[2], &row[1], 1.0, -shear_p[YZ_SHEAR], &row[2]); /* get the Z scale and normalize the third row*/ scale_p->z = _clutter_util_vertex_length (&row[2]); _clutter_util_vertex_normalize (&row[2]); shear_p[XZ_SHEAR] /= scale_p->z; shear_p[YZ_SHEAR] /= scale_p->z; /* at this point, the matrix (inside row[]) is orthonormal. * check for a coordinate system flip; if the determinant * is -1, then negate the matrix and scaling factors */ _clutter_util_vertex_cross (&row[1], &row[2], &pdum); if (_clutter_util_vertex_dot (&row[0], &pdum) < 0.f) { scale_p->x *= -1.f; for (i = 0; i < 3; i++) { row[i].x *= -1.f; row[i].y *= -1.f; row[i].z *= -1.f; } } /* now get the rotations out */ rotate_p->y = asinf (-row[0].z); if (cosf (rotate_p->y) != 0.f) { rotate_p->x = atan2f (row[1].z, row[2].z); rotate_p->z = atan2f (row[0].y, row[0].x); } else { rotate_p->x = atan2f (-row[2].x, row[1].y); rotate_p->z = 0.f; } #undef XY_SHEAR #undef XZ_SHEAR #undef YZ_SHEAR #undef MAT return TRUE; } typedef struct { GType value_type; ClutterProgressFunc func; } ProgressData; G_LOCK_DEFINE_STATIC (progress_funcs); static GHashTable *progress_funcs = NULL; gboolean _clutter_has_progress_function (GType gtype) { const char *type_name = g_type_name (gtype); if (progress_funcs == NULL) return FALSE; return g_hash_table_lookup (progress_funcs, type_name) != NULL; } gboolean _clutter_run_progress_function (GType gtype, const GValue *initial, const GValue *final, gdouble progress, GValue *retval) { ProgressData *pdata; gboolean res; G_LOCK (progress_funcs); if (G_UNLIKELY (progress_funcs == NULL)) { res = FALSE; goto out; } pdata = g_hash_table_lookup (progress_funcs, g_type_name (gtype)); if (G_UNLIKELY (pdata == NULL)) { res = FALSE; goto out; } res = pdata->func (initial, final, progress, retval); out: G_UNLOCK (progress_funcs); return res; } static void progress_data_destroy (gpointer data_) { g_slice_free (ProgressData, data_); } /** * clutter_interval_register_progress_func: (skip) * @value_type: a #GType * @func: a #ClutterProgressFunc, or %NULL to unset a previously * set progress function * * Sets the progress function for a given @value_type, like: * * |[ * clutter_interval_register_progress_func (MY_TYPE_FOO, * my_foo_progress); * ]| * * Whenever a #ClutterInterval instance using the default * #ClutterInterval::compute_value implementation is set as an * interval between two #GValue of type @value_type, it will call * @func to establish the value depending on the given progress, * for instance: * * |[ * static gboolean * my_int_progress (const GValue *a, * const GValue *b, * gdouble progress, * GValue *retval) * { * gint ia = g_value_get_int (a); * gint ib = g_value_get_int (b); * gint res = factor * (ib - ia) + ia; * * g_value_set_int (retval, res); * * return TRUE; * } * * clutter_interval_register_progress_func (G_TYPE_INT, my_int_progress); * ]| * * To unset a previously set progress function of a #GType, pass %NULL * for @func. * * Since: 1.0 */ void clutter_interval_register_progress_func (GType value_type, ClutterProgressFunc func) { ProgressData *progress_func; const char *type_name; g_return_if_fail (value_type != G_TYPE_INVALID); type_name = g_type_name (value_type); G_LOCK (progress_funcs); if (G_UNLIKELY (progress_funcs == NULL)) progress_funcs = g_hash_table_new_full (NULL, NULL, NULL, progress_data_destroy); progress_func = g_hash_table_lookup (progress_funcs, type_name); if (G_UNLIKELY (progress_func)) { if (func == NULL) { g_hash_table_remove (progress_funcs, type_name); g_slice_free (ProgressData, progress_func); } else progress_func->func = func; } else { progress_func = g_slice_new (ProgressData); progress_func->value_type = value_type; progress_func->func = func; g_hash_table_replace (progress_funcs, (gpointer) type_name, progress_func); } G_UNLOCK (progress_funcs); }