/* * Cogl * * An object oriented GL/GLES Abstraction/Utility Layer * * Copyright (C) 2010 Intel Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Authors: * Robert Bragg */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #define X 0 #define Y 1 #define Z 2 #define W 3 void cogl_vector3_init (float *vector, float x, float y, float z) { vector[X] = x; vector[Y] = y; vector[Z] = z; } void cogl_vector3_init_zero (float *vector) { memset (vector, 0, sizeof (float) * 3); } CoglBool cogl_vector3_equal (const void *v1, const void *v2) { float *vector0 = (float *)v1; float *vector1 = (float *)v2; _COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE); _COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE); /* There's no point picking an arbitrary epsilon that's appropriate * for comparing the components so we just use == that will at least * consider -0 and 0 to be equal. */ return vector0[X] == vector1[X] && vector0[Y] == vector1[Y] && vector0[Z] == vector1[Z]; } CoglBool cogl_vector3_equal_with_epsilon (const float *vector0, const float *vector1, float epsilon) { _COGL_RETURN_VAL_IF_FAIL (vector0 != NULL, FALSE); _COGL_RETURN_VAL_IF_FAIL (vector1 != NULL, FALSE); if (fabsf (vector0[X] - vector1[X]) < epsilon && fabsf (vector0[Y] - vector1[Y]) < epsilon && fabsf (vector0[Z] - vector1[Z]) < epsilon) return TRUE; else return FALSE; } float * cogl_vector3_copy (const float *vector) { if (vector) return g_slice_copy (sizeof (float) * 3, vector); return NULL; } void cogl_vector3_free (float *vector) { g_slice_free1 (sizeof (float) * 3, vector); } void cogl_vector3_invert (float *vector) { vector[X] = -vector[X]; vector[Y] = -vector[Y]; vector[Z] = -vector[Z]; } void cogl_vector3_add (float *result, const float *a, const float *b) { result[X] = a[X] + b[X]; result[Y] = a[Y] + b[Y]; result[Z] = a[Z] + b[Z]; } void cogl_vector3_subtract (float *result, const float *a, const float *b) { result[X] = a[X] - b[X]; result[Y] = a[Y] - b[Y]; result[Z] = a[Z] - b[Z]; } void cogl_vector3_multiply_scalar (float *vector, float scalar) { vector[X] *= scalar; vector[Y] *= scalar; vector[Z] *= scalar; } void cogl_vector3_divide_scalar (float *vector, float scalar) { float one_over_scalar = 1.0f / scalar; vector[X] *= one_over_scalar; vector[Y] *= one_over_scalar; vector[Z] *= one_over_scalar; } void cogl_vector3_normalize (float *vector) { float mag_squared = vector[X] * vector[X] + vector[Y] * vector[Y] + vector[Z] * vector[Z]; if (mag_squared > 0.0f) { float one_over_mag = 1.0f / sqrtf (mag_squared); vector[X] *= one_over_mag; vector[Y] *= one_over_mag; vector[Z] *= one_over_mag; } } float cogl_vector3_magnitude (const float *vector) { return sqrtf (vector[X] * vector[X] + vector[Y] * vector[Y] + vector[Z] * vector[Z]); } void cogl_vector3_cross_product (float *result, const float *a, const float *b) { float tmp[3]; tmp[X] = a[Y] * b[Z] - a[Z] * b[Y]; tmp[Y] = a[Z] * b[X] - a[X] * b[Z]; tmp[Z] = a[X] * b[Y] - a[Y] * b[X]; result[X] = tmp[X]; result[Y] = tmp[Y]; result[Z] = tmp[Z]; } float cogl_vector3_dot_product (const float *a, const float *b) { return a[X] * b[X] + a[Y] * b[Y] + a[Z] * b[Z]; } float cogl_vector3_distance (const float *a, const float *b) { float dx = b[X] - a[X]; float dy = b[Y] - a[Y]; float dz = b[Z] - a[Z]; return sqrtf (dx * dx + dy * dy + dz * dz); } #if 0 void cogl_vector4_init (float *vector, float x, float y, float z) { vector[X] = x; vector[Y] = y; vector[Z] = z; vector[W] = w; } void cogl_vector4_init_zero (float *vector) { memset (vector, 0, sizeof (CoglVector4)); } void cogl_vector4_init_from_vector4 (float *vector, float *src) { *vector4 = *src; } CoglBool cogl_vector4_equal (const void *v0, const void *v1) { _COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE); _COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE); return memcmp (v1, v2, sizeof (float) * 4) == 0 ? TRUE : FALSE; } float * cogl_vector4_copy (float *vector) { if (vector) return g_slice_dup (CoglVector4, vector); return NULL; } void cogl_vector4_free (float *vector) { g_slice_free (CoglVector4, vector); } void cogl_vector4_invert (float *vector) { vector.x = -vector.x; vector.y = -vector.y; vector.z = -vector.z; vector.w = -vector.w; } void cogl_vector4_add (float *result, float *a, float *b) { result.x = a.x + b.x; result.y = a.y + b.y; result.z = a.z + b.z; result.w = a.w + b.w; } void cogl_vector4_subtract (float *result, float *a, float *b) { result.x = a.x - b.x; result.y = a.y - b.y; result.z = a.z - b.z; result.w = a.w - b.w; } void cogl_vector4_divide (float *vector, float scalar) { float one_over_scalar = 1.0f / scalar; result.x *= one_over_scalar; result.y *= one_over_scalar; result.z *= one_over_scalar; result.w *= one_over_scalar; } #endif