summaryrefslogtreecommitdiff
path: root/cogl/cogl-quaternion.c
blob: d1afc3a591769e1428b92f538f1c8054d9d1ac89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/*
 * Cogl
 *
 * A Low-Level GPU Graphics and Utilities API
 *
 * Copyright (C) 2010 Intel Corporation.
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy,
 * modify, merge, publish, distribute, sublicense, and/or sell copies
 * of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@linux.intel.com>
 *
 * Various references relating to quaternions:
 *
 * http://www.cs.caltech.edu/courses/cs171/quatut.pdf
 * http://mathworld.wolfram.com/Quaternion.html
 * http://www.gamedev.net/reference/articles/article1095.asp
 * http://www.cprogramming.com/tutorial/3d/quaternions.html
 * http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
 * http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
 * 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <cogl-util.h>
#include <cogl-quaternion.h>
#include <cogl-quaternion-private.h>
#include <cogl-matrix.h>
#include <cogl-vector.h>
#include <cogl-euler.h>
#include "cogl-gtype-private.h"

#include <string.h>
#include <math.h>

#define FLOAT_EPSILON 1e-03

COGL_GTYPE_DEFINE_BOXED (Quaternion, quaternion,
                         cogl_quaternion_copy,
                         cogl_quaternion_free);

static CoglQuaternion zero_quaternion =
{
  0.0,  0.0, 0.0, 0.0,
};

static CoglQuaternion identity_quaternion =
{
  1.0,  0.0, 0.0, 0.0,
};

/* This function is just here to be called from GDB so we don't really
   want to put a declaration in a header and we just add it here to
   avoid a warning */
void
_cogl_quaternion_print (CoglQuaternion *quarternion);

void
_cogl_quaternion_print (CoglQuaternion *quaternion)
{
  g_print ("[ %6.4f (%6.4f, %6.4f, %6.4f)]\n",
           quaternion->w,
           quaternion->x,
           quaternion->y,
           quaternion->z);
}

void
cogl_quaternion_init (CoglQuaternion *quaternion,
                      float angle,
                      float x,
                      float y,
                      float z)
{
  float axis[3] = { x, y, z};
  cogl_quaternion_init_from_angle_vector (quaternion, angle, axis);
}

void
cogl_quaternion_init_from_angle_vector (CoglQuaternion *quaternion,
                                        float angle,
                                        const float *axis3f_in)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */
  float axis[3];
  float half_angle;
  float sin_half_angle;

  /* XXX: Should we make cogl_vector3_normalize have separate in and
   * out args? */
  axis[0] = axis3f_in[0];
  axis[1] = axis3f_in[1];
  axis[2] = axis3f_in[2];
  cogl_vector3_normalize (axis);

  half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
  sin_half_angle = sinf (half_angle);

  quaternion->w = cosf (half_angle);

  quaternion->x = axis[0] * sin_half_angle;
  quaternion->y = axis[1] * sin_half_angle;
  quaternion->z = axis[2] * sin_half_angle;

  cogl_quaternion_normalize (quaternion);
}

void
cogl_quaternion_init_identity (CoglQuaternion *quaternion)
{
  quaternion->w = 1.0;

  quaternion->x = 0.0;
  quaternion->y = 0.0;
  quaternion->z = 0.0;
}

void
cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
                                 const float *array)
{
  quaternion->w = array[0];
  quaternion->x = array[1];
  quaternion->y = array[2];
  quaternion->z = array[3];
}

void
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,
                                      float angle)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */
  float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;

  quaternion->w = cosf (half_angle);

  quaternion->x = sinf (half_angle);
  quaternion->y = 0.0f;
  quaternion->z = 0.0f;
}

void
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,
                                      float angle)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */
  float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;

  quaternion->w = cosf (half_angle);

  quaternion->x = 0.0f;
  quaternion->y = sinf (half_angle);
  quaternion->z = 0.0f;
}

void
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,
                                      float angle)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */
  float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;

  quaternion->w = cosf (half_angle);

  quaternion->x = 0.0f;
  quaternion->y = 0.0f;
  quaternion->z = sinf (half_angle);
}

void
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,
                                 const CoglEuler *euler)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */
  float sin_heading =
    sinf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
  float sin_pitch =
    sinf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
  float sin_roll =
    sinf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
  float cos_heading =
    cosf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
  float cos_pitch =
    cosf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
  float cos_roll =
    cosf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);

  quaternion->w =
    cos_heading * cos_pitch * cos_roll +
    sin_heading * sin_pitch * sin_roll;

  quaternion->x =
    cos_heading * sin_pitch * cos_roll +
    sin_heading * cos_pitch * sin_roll;
  quaternion->y =
    sin_heading * cos_pitch * cos_roll -
    cos_heading * sin_pitch * sin_roll;
  quaternion->z =
    cos_heading * cos_pitch * sin_roll -
    sin_heading * sin_pitch * cos_roll;
}

/* XXX: it could be nice to make something like this public... */
/*
 * COGL_MATRIX_READ:
 * @MATRIX: A 4x4 transformation matrix
 * @ROW: The row of the value you want to read
 * @COLUMN: The column of the value you want to read
 *
 * Reads a value from the given matrix using integers to index
 * into the matrix.
 */
#define COGL_MATRIX_READ(MATRIX, ROW, COLUMN) \
  (((const float *)matrix)[COLUMN * 4 + ROW])

void
cogl_quaternion_init_from_matrix (CoglQuaternion *quaternion,
                                  const CoglMatrix *matrix)
{
  /* Algorithm devised by Ken Shoemake, Ref:
   * http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf
   */

  /* 3D maths literature refers to the diagonal of a matrix as the
   * "trace" of a matrix... */
  float trace = matrix->xx + matrix->yy + matrix->zz;
  float root;

  if (trace > 0.0f)
    {
      root = sqrtf (trace + 1);
      quaternion->w = root * 0.5f;
      root = 0.5f / root;
      quaternion->x = (matrix->zy - matrix->yz) * root;
      quaternion->y = (matrix->xz - matrix->zx) * root;
      quaternion->z = (matrix->yx - matrix->xy) * root;
    }
  else
    {
#define X 0
#define Y 1
#define Z 2
#define W 3
      int h = X;
      if (matrix->yy > matrix->xx)
        h = Y;
      if (matrix->zz > COGL_MATRIX_READ (matrix, h, h))
        h = Z;
      switch (h)
        {
#define CASE_MACRO(i, j, k, I, J, K) \
        case I: \
          root = sqrtf ((COGL_MATRIX_READ (matrix, I, I) - \
                         (COGL_MATRIX_READ (matrix, J, J) + \
                          COGL_MATRIX_READ (matrix, K, K))) + \
                        COGL_MATRIX_READ (matrix, W, W)); \
          quaternion->i = root * 0.5f;\
          root = 0.5f / root;\
          quaternion->j = (COGL_MATRIX_READ (matrix, I, J) + \
                           COGL_MATRIX_READ (matrix, J, I)) * root; \
          quaternion->k = (COGL_MATRIX_READ (matrix, K, I) + \
                           COGL_MATRIX_READ (matrix, I, K)) * root; \
          quaternion->w = (COGL_MATRIX_READ (matrix, K, J) - \
                           COGL_MATRIX_READ (matrix, J, K)) * root;\
          break
          CASE_MACRO (x, y, z, X, Y, Z);
          CASE_MACRO (y, z, x, Y, Z, X);
          CASE_MACRO (z, x, y, Z, X, Y);
#undef CASE_MACRO
#undef X
#undef Y
#undef Z
        }
    }

  if (matrix->ww != 1.0f)
    {
      float s = 1.0 / sqrtf (matrix->ww);
      quaternion->w *= s;
      quaternion->x *= s;
      quaternion->y *= s;
      quaternion->z *= s;
    }
}

CoglBool
cogl_quaternion_equal (const void *v1, const void *v2)
{
  const CoglQuaternion *a = v1;
  const CoglQuaternion *b = v2;

  _COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
  _COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);

  if (v1 == v2)
    return TRUE;

  return (a->w == b->w &&
          a->x == b->x &&
          a->y == b->y &&
          a->z == b->z);
}

CoglQuaternion *
cogl_quaternion_copy (const CoglQuaternion *src)
{
  if (G_LIKELY (src))
    {
      CoglQuaternion *new = g_slice_new (CoglQuaternion);
      memcpy (new, src, sizeof (float) * 4);
      return new;
    }
  else
    return NULL;
}

void
cogl_quaternion_free (CoglQuaternion *quaternion)
{
  g_slice_free (CoglQuaternion, quaternion);
}

float
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion)
{
  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */

  /* FIXME: clamp [-1, 1] */
  return 2.0f * acosf (quaternion->w) * _COGL_QUATERNION_RADIANS_TO_DEGREES;
}

void
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,
                                   float *vector3)
{
  float sin_half_angle_sqr;
  float one_over_sin_angle_over_2;

  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */

  /* NB: sinΒ²(πœƒ) + cosΒ²(πœƒ) = 1 */

  sin_half_angle_sqr = 1.0f - quaternion->w * quaternion->w;

  if (sin_half_angle_sqr <= 0.0f)
    {
      /* Either an identity quaternion or numerical imprecision.
       * Either way we return an arbitrary vector. */
      vector3[0] = 1;
      vector3[1] = 0;
      vector3[2] = 0;
      return;
    }

  /* Calculate 1 / sin(πœƒ/2) */
  one_over_sin_angle_over_2 = 1.0f / sqrtf (sin_half_angle_sqr);

  vector3[0] = quaternion->x * one_over_sin_angle_over_2;
  vector3[1] = quaternion->y * one_over_sin_angle_over_2;
  vector3[2] = quaternion->z * one_over_sin_angle_over_2;
}

void
cogl_quaternion_normalize (CoglQuaternion *quaternion)
{
  float slen = _COGL_QUATERNION_NORM (quaternion);
  float factor = 1.0f / sqrtf (slen);

  quaternion->x *= factor;
  quaternion->y *= factor;
  quaternion->z *= factor;

  quaternion->w *= factor;

  return;
}

float
cogl_quaternion_dot_product (const CoglQuaternion *a,
                             const CoglQuaternion *b)
{
  return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
}

void
cogl_quaternion_invert (CoglQuaternion *quaternion)
{
  quaternion->x = -quaternion->x;
  quaternion->y = -quaternion->y;
  quaternion->z = -quaternion->z;
}

void
cogl_quaternion_multiply (CoglQuaternion *result,
                          const CoglQuaternion *a,
                          const CoglQuaternion *b)
{
  float w = a->w;
  float x = a->x;
  float y = a->y;
  float z = a->z;

  _COGL_RETURN_IF_FAIL (b != result);

  result->w = w * b->w - x * b->x - y * b->y - z * b->z;

  result->x = w * b->x + x * b->w + y * b->z - z * b->y;
  result->y = w * b->y + y * b->w + z * b->x - x * b->z;
  result->z = w * b->z + z * b->w + x * b->y - y * b->x;
}

void
cogl_quaternion_pow (CoglQuaternion *quaternion, float exponent)
{
  float half_angle;
  float new_half_angle;
  float factor;

  /* Try and identify and nop identity quaternions to avoid
   * dividing by zero */
  if (fabs (quaternion->w) > 0.9999f)
    return;

  /* NB: We are using quaternions to represent an axis (a), angle (πœƒ) pair
   * in this form:
   * [w=cos(πœƒ/2) ( x=sin(πœƒ/2)*a.x, y=sin(πœƒ/2)*a.y, z=sin(πœƒ/2)*a.x )]
   */

  /* FIXME: clamp [-1, 1] */
  /* Extract πœƒ/2 from w */
  half_angle = acosf (quaternion->w);

  /* Compute the new πœƒ/2 */
  new_half_angle = half_angle * exponent;

  /* Compute the new w value */
  quaternion->w = cosf (new_half_angle);

  /* And new xyz values */
  factor = sinf (new_half_angle) / sinf (half_angle);
  quaternion->x *= factor;
  quaternion->y *= factor;
  quaternion->z *= factor;
}

void
cogl_quaternion_slerp (CoglQuaternion *result,
                       const CoglQuaternion *a,
                       const CoglQuaternion *b,
                       float t)
{
  float cos_difference;
  float qb_w;
  float qb_x;
  float qb_y;
  float qb_z;
  float fa;
  float fb;

  _COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);

  if (t == 0)
    {
      *result = *a;
      return;
    }
  else if (t == 1)
    {
      *result = *b;
      return;
    }

  /* compute the cosine of the angle between the two given quaternions */
  cos_difference = cogl_quaternion_dot_product (a, b);

  /* If negative, use -b. Two quaternions q and -q represent the same angle but
   * may produce a different slerp. We choose b or -b to rotate using the acute
   * angle.
   */
  if (cos_difference < 0.0f)
    {
      qb_w = -b->w;
      qb_x = -b->x;
      qb_y = -b->y;
      qb_z = -b->z;
      cos_difference = -cos_difference;
    }
  else
    {
      qb_w = b->w;
      qb_x = b->x;
      qb_y = b->y;
      qb_z = b->z;
    }

  /* If we have two unit quaternions the dot should be <= 1.0 */
  g_assert (cos_difference < 1.1f);


  /* Determine the interpolation factors for each quaternion, simply using
   * linear interpolation for quaternions that are nearly exactly the same.
   * (this will avoid divisions by zero)
   */

  if (cos_difference > 0.9999f)
    {
      fa = 1.0f - t;
      fb = t;

      /* XXX: should we also normalize() at the end in this case? */
    }
  else
    {
      /* Calculate the sin of the angle between the two quaternions using the
       * trig identity: sinΒ²(πœƒ) + cosΒ²(πœƒ) = 1
       */
      float sin_difference =  sqrtf (1.0f - cos_difference * cos_difference);

      float difference = atan2f (sin_difference, cos_difference);
      float one_over_sin_difference = 1.0f / sin_difference;
      fa = sinf ((1.0f - t) * difference) * one_over_sin_difference;
      fb = sinf (t * difference) * one_over_sin_difference;
    }

  /* Finally interpolate the two quaternions */

  result->x = fa * a->x + fb * qb_x;
  result->y = fa * a->y + fb * qb_y;
  result->z = fa * a->z + fb * qb_z;
  result->w = fa * a->w + fb * qb_w;
}

void
cogl_quaternion_nlerp (CoglQuaternion *result,
                       const CoglQuaternion *a,
                       const CoglQuaternion *b,
                       float t)
{
  float cos_difference;
  float qb_w;
  float qb_x;
  float qb_y;
  float qb_z;
  float fa;
  float fb;

  _COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);

  if (t == 0)
    {
      *result = *a;
      return;
    }
  else if (t == 1)
    {
      *result = *b;
      return;
    }

  /* compute the cosine of the angle between the two given quaternions */
  cos_difference = cogl_quaternion_dot_product (a, b);

  /* If negative, use -b. Two quaternions q and -q represent the same angle but
   * may produce a different slerp. We choose b or -b to rotate using the acute
   * angle.
   */
  if (cos_difference < 0.0f)
    {
      qb_w = -b->w;
      qb_x = -b->x;
      qb_y = -b->y;
      qb_z = -b->z;
      cos_difference = -cos_difference;
    }
  else
    {
      qb_w = b->w;
      qb_x = b->x;
      qb_y = b->y;
      qb_z = b->z;
    }

  /* If we have two unit quaternions the dot should be <= 1.0 */
  g_assert (cos_difference < 1.1f);

  fa = 1.0f - t;
  fb = t;

  result->x = fa * a->x + fb * qb_x;
  result->y = fa * a->y + fb * qb_y;
  result->z = fa * a->z + fb * qb_z;
  result->w = fa * a->w + fb * qb_w;

  cogl_quaternion_normalize (result);
}

void
cogl_quaternion_squad (CoglQuaternion *result,
                       const CoglQuaternion *prev,
                       const CoglQuaternion *a,
                       const CoglQuaternion *b,
                       const CoglQuaternion *next,
                       float t)
{
  CoglQuaternion slerp0;
  CoglQuaternion slerp1;

  cogl_quaternion_slerp (&slerp0, a, b, t);
  cogl_quaternion_slerp (&slerp1, prev, next, t);
  cogl_quaternion_slerp (result, &slerp0, &slerp1, 2.0f * t * (1.0f - t));
}

const CoglQuaternion *
cogl_get_static_identity_quaternion (void)
{
  return &identity_quaternion;
}

const CoglQuaternion *
cogl_get_static_zero_quaternion (void)
{
  return &zero_quaternion;
}