summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/libtracker-data/tracker-data-manager.c15
-rw-r--r--src/libtracker-data/tracker-data-update.c19
-rw-r--r--src/libtracker-data/tracker-db-interface-sqlite.c201
-rw-r--r--src/libtracker-data/tracker-db-interface-sqlite.h16
-rw-r--r--src/libtracker-data/tracker-sparql-expression.vala10
-rw-r--r--src/libtracker-data/tracker-sparql-pattern.vala19
-rw-r--r--src/libtracker-fts/Makefile.am25
-rw-r--r--src/libtracker-fts/fts3.c5350
-rw-r--r--src/libtracker-fts/fts3.h32
-rw-r--r--src/libtracker-fts/fts3Int.h560
-rw-r--r--src/libtracker-fts/fts3_aux.c474
-rw-r--r--src/libtracker-fts/fts3_expr.c1013
-rw-r--r--src/libtracker-fts/fts3_hash.c383
-rw-r--r--src/libtracker-fts/fts3_hash.h112
-rw-r--r--src/libtracker-fts/fts3_icu.c261
-rw-r--r--src/libtracker-fts/fts3_porter.c646
-rw-r--r--src/libtracker-fts/fts3_snippet.c1520
-rw-r--r--src/libtracker-fts/fts3_term.c373
-rw-r--r--src/libtracker-fts/fts3_test.c535
-rw-r--r--src/libtracker-fts/fts3_tokenizer.c488
-rw-r--r--src/libtracker-fts/fts3_tokenizer.h161
-rw-r--r--src/libtracker-fts/fts3_tokenizer1.c234
-rw-r--r--src/libtracker-fts/fts3_unicode.c393
-rw-r--r--src/libtracker-fts/fts3_unicode2.c366
-rw-r--r--src/libtracker-fts/fts3_write.c5402
-rw-r--r--src/libtracker-fts/fts5.c20402
-rw-r--r--src/libtracker-fts/fts5.h578
-rw-r--r--src/libtracker-fts/tracker-fts-tokenizer.c549
-rw-r--r--src/libtracker-fts/tracker-fts-tokenizer.h4
-rw-r--r--src/libtracker-fts/tracker-fts.c250
-rw-r--r--src/ontologies/32-nco.ontology3
31 files changed, 21557 insertions, 18837 deletions
diff --git a/src/libtracker-data/tracker-data-manager.c b/src/libtracker-data/tracker-data-manager.c
index b7d2ffea2..5a811bd79 100644
--- a/src/libtracker-data/tracker-data-manager.c
+++ b/src/libtracker-data/tracker-data-manager.c
@@ -3642,14 +3642,11 @@ ontology_get_fts_properties (gboolean only_new,
}
static void
-rebuild_fts_tokens (TrackerDBInterface *iface,
- gboolean creating_db)
+rebuild_fts_tokens (TrackerDBInterface *iface)
{
- if (!creating_db) {
- g_debug ("Rebuilding FTS tokens, this may take a moment...");
- tracker_db_interface_sqlite_fts_rebuild_tokens (iface);
- g_debug ("FTS tokens rebuilt");
- }
+ g_debug ("Rebuilding FTS tokens, this may take a moment...");
+ tracker_db_interface_sqlite_fts_rebuild_tokens (iface);
+ g_debug ("FTS tokens rebuilt");
/* Update the stamp file */
tracker_db_manager_tokenizer_update ();
@@ -4636,9 +4633,9 @@ tracker_data_manager_init (TrackerDBManagerFlags flags,
tracker_db_manager_set_current_locale ();
#if HAVE_TRACKER_FTS
- rebuild_fts_tokens (iface, is_first_time_index);
+ rebuild_fts_tokens (iface);
} else if (!read_only && tracker_db_manager_get_tokenizer_changed ()) {
- rebuild_fts_tokens (iface, is_first_time_index);
+ rebuild_fts_tokens (iface);
#endif
}
diff --git a/src/libtracker-data/tracker-data-update.c b/src/libtracker-data/tracker-data-update.c
index fcf0cc594..9cdfcaf46 100644
--- a/src/libtracker-data/tracker-data-update.c
+++ b/src/libtracker-data/tracker-data-update.c
@@ -949,7 +949,6 @@ tracker_data_resource_buffer_flush (GError **error)
if (resource_buffer->fts_updated) {
TrackerProperty *prop;
GArray *values;
- gboolean create = resource_buffer->create;
GPtrArray *properties, *text;
properties = text = NULL;
@@ -982,8 +981,7 @@ tracker_data_resource_buffer_flush (GError **error)
tracker_db_interface_sqlite_fts_update_text (iface,
resource_buffer->id,
(const gchar **) properties->pdata,
- (const gchar **) text->pdata,
- create);
+ (const gchar **) text->pdata);
update_buffer.fts_ever_updated = TRUE;
g_ptr_array_free (properties, TRUE);
g_ptr_array_free (text, TRUE);
@@ -1465,17 +1463,26 @@ get_old_property_values (TrackerProperty *property,
if (tracker_property_get_fulltext_indexed (prop)
&& check_property_domain (prop)) {
const gchar *property_name;
+ GString *str;
gint i;
old_values = get_property_values (prop);
property_name = tracker_property_get_name (prop);
+ str = g_string_new (NULL);
/* delete old fts entries */
for (i = 0; i < old_values->len; i++) {
- tracker_db_interface_sqlite_fts_delete_text (iface,
- resource_buffer->id,
- property_name);
+ GValue *value = &g_array_index (old_values, GValue, i);
+ if (i != 0)
+ g_string_append_c (str, ',');
+ g_string_append (str, g_value_get_string (value));
}
+
+ tracker_db_interface_sqlite_fts_delete_text (iface,
+ resource_buffer->id,
+ property_name,
+ str->str);
+ g_string_free (str, TRUE);
}
}
diff --git a/src/libtracker-data/tracker-db-interface-sqlite.c b/src/libtracker-data/tracker-db-interface-sqlite.c
index c4f011905..1bd455548 100644
--- a/src/libtracker-data/tracker-db-interface-sqlite.c
+++ b/src/libtracker-data/tracker-db-interface-sqlite.c
@@ -90,8 +90,7 @@ struct TrackerDBInterface {
gpointer busy_user_data;
gchar *busy_status;
- gchar *fts_insert_str;
- gchar *fts_delete_str;
+ gchar *fts_properties;
};
struct TrackerDBInterfaceClass {
@@ -1352,7 +1351,7 @@ tracker_db_interface_sqlite_fts_init (TrackerDBInterface *db_interface,
tracker_fts_init_db (db_interface->db, properties);
if (create &&
- !tracker_fts_create_table (db_interface->db, "fts",
+ !tracker_fts_create_table (db_interface->db, "fts5",
properties, multivalued)) {
g_warning ("FTS tables creation failed");
}
@@ -1360,33 +1359,18 @@ tracker_db_interface_sqlite_fts_init (TrackerDBInterface *db_interface,
fts_columns = _fts_create_properties (properties);
if (fts_columns) {
- GString *insert, *select, *delete, cols;
- gint i = 0;
-
- insert = g_string_new ("INSERT INTO fts (docid");
- select = g_string_new ("SELECT rowid");
- delete = g_string_new ("UPDATE fts SET docid=?");
-
- while (fts_columns[i]) {
- g_string_append_printf (insert, ", \"%s\"",
- fts_columns[i]);
- g_string_append_printf (select, ", \"%s\"",
- fts_columns[i]);
- g_string_append_printf (delete, ", \"%s\"=\"\"",
- fts_columns[i]);
- i++;
- }
-
- g_string_append (select, " FROM fts_view WHERE rowid=?");
- g_string_append (insert, ") ");
- g_string_append (insert, select->str);
+ GString *fts_properties;
+ gint i;
- g_string_free (select, TRUE);
- db_interface->fts_insert_str = g_string_free (insert, FALSE);
+ fts_properties = g_string_new (NULL);
- g_string_append (delete, " WHERE docid=?");
- db_interface->fts_delete_str = g_string_free (delete, FALSE);
+ for (i = 0; fts_columns[i] != NULL; i++) {
+ g_string_append_printf (fts_properties, ", \"%s\"",
+ fts_columns[i]);
+ }
+ db_interface->fts_properties = g_string_free (fts_properties,
+ FALSE);
g_strfreev (fts_columns);
}
#endif
@@ -1399,104 +1383,134 @@ tracker_db_interface_sqlite_fts_alter_table (TrackerDBInterface *db_interface,
GHashTable *properties,
GHashTable *multivalued)
{
- if (!tracker_fts_alter_table (db_interface->db, "fts", properties, multivalued)) {
+ if (!tracker_fts_alter_table (db_interface->db, "fts5", properties, multivalued)) {
g_critical ("Failed to update FTS columns");
}
}
+static gchar *
+tracker_db_interface_sqlite_fts_create_query (TrackerDBInterface *db_interface,
+ gboolean delete,
+ const gchar **properties)
+{
+ GString *insert_str, *values_str;
+ gint i;
+
+ insert_str = g_string_new ("INSERT INTO fts5 (");
+ values_str = g_string_new (NULL);
+
+ if (delete) {
+ g_string_append (insert_str, "fts5,");
+ g_string_append (values_str, "'delete',");
+ }
+
+ g_string_append (insert_str, "rowid");
+ g_string_append (values_str, "?");
+
+ for (i = 0; properties[i] != NULL; i++) {
+ g_string_append_printf (insert_str, ",\"%s\"", properties[i]);
+ g_string_append (values_str, ",?");
+ }
+
+ g_string_append_printf (insert_str, ") VALUES (%s)", values_str->str);
+ g_string_free (values_str, TRUE);
+
+ return g_string_free (insert_str, FALSE);
+}
+
+static gchar *
+tracker_db_interface_sqlite_fts_create_delete_all_query (TrackerDBInterface *db_interface)
+{
+ GString *insert_str;
+
+ insert_str = g_string_new (NULL);
+ g_string_append_printf (insert_str,
+ "INSERT INTO fts5 (fts5, rowid %s) "
+ "SELECT 'delete', rowid %s FROM fts_view "
+ "WHERE rowid = ?",
+ db_interface->fts_properties,
+ db_interface->fts_properties);
+ return g_string_free (insert_str, FALSE);
+}
+
gboolean
tracker_db_interface_sqlite_fts_update_text (TrackerDBInterface *db_interface,
int id,
const gchar **properties,
- const gchar **text,
- gboolean create)
+ const gchar **text)
{
TrackerDBStatement *stmt;
GError *error = NULL;
+ gchar *query;
+ gint i;
- if (!create) {
- stmt = tracker_db_interface_create_statement (db_interface,
- TRACKER_DB_STATEMENT_CACHE_TYPE_UPDATE,
- &error,
- "DELETE FROM fts WHERE docid=?");
-
- if (!stmt || error) {
- if (error) {
- g_warning ("Could not create FTS update statement: %s",
- error->message);
- g_error_free (error);
- }
- return FALSE;
- }
-
- tracker_db_statement_bind_int (stmt, 0, id);
- tracker_db_statement_execute (stmt, &error);
- g_object_unref (stmt);
-
- if (error) {
- g_warning ("Could not update FTS text: %s", error->message);
- g_error_free (error);
- return FALSE;
- }
- }
-
+ query = tracker_db_interface_sqlite_fts_create_query (db_interface,
+ FALSE, properties);
stmt = tracker_db_interface_create_statement (db_interface,
TRACKER_DB_STATEMENT_CACHE_TYPE_UPDATE,
&error,
- "%s",
- db_interface->fts_insert_str);
+ "%s", query);
+ g_free (query);
- if (!stmt || error) {
- if (error) {
- g_warning ("Could not create FTS insert statement: %s\n",
- error->message);
- g_error_free (error);
- }
- return FALSE;
- }
+ if (!stmt || error) {
+ if (error) {
+ g_warning ("Could not create FTS insert statement: %s\n",
+ error->message);
+ g_error_free (error);
+ }
+ return FALSE;
+ }
- tracker_db_statement_bind_int (stmt, 0, id);
- tracker_db_statement_execute (stmt, &error);
- g_object_unref (stmt);
+ tracker_db_statement_bind_int (stmt, 0, id);
+ for (i = 0; text[i] != NULL; i++) {
+ tracker_db_statement_bind_text (stmt, i + 1, text[i]);
+ }
- if (error) {
- g_warning ("Could not insert FTS text: %s", error->message);
- g_error_free (error);
- return FALSE;
- }
+ tracker_db_statement_execute (stmt, &error);
+ g_object_unref (stmt);
- return TRUE;
+ if (error) {
+ g_warning ("Could not insert FTS text: %s", error->message);
+ g_error_free (error);
+ return FALSE;
+ }
+
+ return TRUE;
}
gboolean
-tracker_db_interface_sqlite_fts_delete_text (TrackerDBInterface *db_interface,
- int id,
- const gchar *property)
+tracker_db_interface_sqlite_fts_delete_text (TrackerDBInterface *db_interface,
+ int rowid,
+ const gchar *property,
+ const gchar *old_text)
{
TrackerDBStatement *stmt;
GError *error = NULL;
+ const gchar *properties[] = { property, NULL };
+ gchar *query;
+ query = tracker_db_interface_sqlite_fts_create_query (db_interface,
+ TRUE, properties);
stmt = tracker_db_interface_create_statement (db_interface,
TRACKER_DB_STATEMENT_CACHE_TYPE_UPDATE,
&error,
- "UPDATE fts SET \"%s\" = '' WHERE docid = ?",
- property);
+ "%s", query);
+ g_free (query);
if (!stmt || error) {
- if (error) {
- g_warning ("Could not create FTS update statement: %s\n",
- error->message);
- g_error_free (error);
- }
+ g_warning ("Could not create FTS delete statement: %s",
+ error ? error->message : "No error given");
+ g_clear_error (&error);
return FALSE;
}
- tracker_db_statement_bind_int (stmt, 0, id);
+ tracker_db_statement_bind_int (stmt, 0, rowid);
+ tracker_db_statement_bind_text (stmt, 1, old_text);
tracker_db_statement_execute (stmt, &error);
g_object_unref (stmt);
if (error) {
- g_warning ("Could not execute FTS update: %s", error->message);
+ g_warning ("Could not delete FTS text: %s", error->message);
g_error_free (error);
return FALSE;
}
@@ -1510,12 +1524,15 @@ tracker_db_interface_sqlite_fts_delete_id (TrackerDBInterface *db_interface,
{
TrackerDBStatement *stmt;
GError *error = NULL;
+ gchar *query;
+ query = tracker_db_interface_sqlite_fts_create_delete_all_query (db_interface);
stmt = tracker_db_interface_create_statement (db_interface,
TRACKER_DB_STATEMENT_CACHE_TYPE_UPDATE,
&error,
- "%s",
- db_interface->fts_delete_str);
+ "%s", query);
+ g_free (query);
+
if (!stmt || error) {
if (error) {
g_warning ("Could not create FTS delete statement: %s",
@@ -1526,7 +1543,6 @@ tracker_db_interface_sqlite_fts_delete_id (TrackerDBInterface *db_interface,
}
tracker_db_statement_bind_int (stmt, 0, id);
- tracker_db_statement_bind_int (stmt, 1, id);
tracker_db_statement_execute (stmt, &error);
g_object_unref (stmt);
@@ -1542,7 +1558,7 @@ tracker_db_interface_sqlite_fts_delete_id (TrackerDBInterface *db_interface,
void
tracker_db_interface_sqlite_fts_rebuild_tokens (TrackerDBInterface *interface)
{
- tracker_fts_rebuild_tokens (interface->db, "fts");
+ tracker_fts_rebuild_tokens (interface->db, "fts5");
}
#endif
@@ -1592,8 +1608,7 @@ tracker_db_interface_sqlite_finalize (GObject *object)
db_interface = TRACKER_DB_INTERFACE (object);
close_database (db_interface);
- g_free (db_interface->fts_insert_str);
- g_free (db_interface->fts_delete_str);
+ g_free (db_interface->fts_properties);
g_message ("Closed sqlite3 database:'%s'", db_interface->filename);
diff --git a/src/libtracker-data/tracker-db-interface-sqlite.h b/src/libtracker-data/tracker-db-interface-sqlite.h
index 18c020450..a7e265ef5 100644
--- a/src/libtracker-data/tracker-db-interface-sqlite.h
+++ b/src/libtracker-data/tracker-db-interface-sqlite.h
@@ -52,17 +52,17 @@ void tracker_db_interface_sqlite_wal_hook (TrackerD
void tracker_db_interface_sqlite_fts_alter_table (TrackerDBInterface *interface,
GHashTable *properties,
GHashTable *multivalued);
-int tracker_db_interface_sqlite_fts_update_text (TrackerDBInterface *interface,
- int id,
+gboolean tracker_db_interface_sqlite_fts_update_text (TrackerDBInterface *db_interface,
+ int id,
const gchar **properties,
- const gchar **text,
- gboolean create);
+ const gchar **text);
-gboolean tracker_db_interface_sqlite_fts_delete_text (TrackerDBInterface *db_interface,
- int id,
- const gchar *property);
+gboolean tracker_db_interface_sqlite_fts_delete_text (TrackerDBInterface *interface,
+ int rowid,
+ const gchar *property,
+ const gchar *old_text);
gboolean tracker_db_interface_sqlite_fts_delete_id (TrackerDBInterface *interface,
- int id);
+ int rowid);
void tracker_db_interface_sqlite_fts_update_commit (TrackerDBInterface *interface);
void tracker_db_interface_sqlite_fts_update_rollback (TrackerDBInterface *interface);
diff --git a/src/libtracker-data/tracker-sparql-expression.vala b/src/libtracker-data/tracker-sparql-expression.vala
index d69b908f7..91c6c10a0 100644
--- a/src/libtracker-data/tracker-sparql-expression.vala
+++ b/src/libtracker-data/tracker-sparql-expression.vala
@@ -709,7 +709,7 @@ class Tracker.Sparql.Expression : Object {
var variable = context.get_variable (v);
sql.append (variable.sql_expression);
- fts_sql = "tracker_offsets(offsets(\"fts\"),fts_property_names())";
+ fts_sql = "tracker_offsets(\"fts5\")";
return PropertyType.STRING;
} else if (uri == FTS_NS + "snippet") {
bool is_var;
@@ -718,7 +718,10 @@ class Tracker.Sparql.Expression : Object {
var variable = context.get_variable (v);
var fts = new StringBuilder ();
- fts.append_printf ("snippet(\"fts\"");
+ fts.append_printf ("snippet(\"fts5\"");
+
+ // lookup column
+ fts.append (", -1");
// "start match" text
if (accept (SparqlTokenType.COMMA)) {
@@ -741,9 +744,6 @@ class Tracker.Sparql.Expression : Object {
fts.append (", '...'");
}
- // lookup column
- fts.append (", -1");
-
// Approximate number of words in context
if (accept (SparqlTokenType.COMMA)) {
fts.append (", ");
diff --git a/src/libtracker-data/tracker-sparql-pattern.vala b/src/libtracker-data/tracker-sparql-pattern.vala
index ec9d5471e..73740b7c2 100644
--- a/src/libtracker-data/tracker-sparql-pattern.vala
+++ b/src/libtracker-data/tracker-sparql-pattern.vala
@@ -341,14 +341,14 @@ class Tracker.Sparql.Pattern : Object {
}
if (queries_fts_data && fts_subject != null) {
- // Ensure there's a docid to match on in FTS queries
+ // Ensure there's a rowid to match on in FTS queries
if (!first) {
sql.append (", ");
} else {
first = false;
}
- sql.append ("%s AS docid ".printf (fts_subject.sql_expression));
+ sql.append ("%s AS rowid ".printf (fts_subject.sql_expression));
}
// literals in select expressions need to be bound before literals in the where clause
@@ -459,9 +459,9 @@ class Tracker.Sparql.Pattern : Object {
str.append (fts_var);
}
- str.append (" FROM fts JOIN (");
+ str.append (" FROM fts5 JOIN (");
sql.prepend (str.str);
- sql.append_printf (") AS ranks USING (docid) WHERE fts %s".printf (match_str.str));
+ sql.append_printf (") AS ranks ON fts5.rowid=rowid WHERE fts5 %s".printf (match_str.str));
}
context = context.parent_context;
@@ -1349,7 +1349,7 @@ class Tracker.Sparql.Pattern : Object {
} else if (prop == null) {
if (current_predicate == "http://www.tracker-project.org/ontologies/fts#match") {
// fts:match
- db_table = "fts";
+ db_table = "fts5";
share_table = false;
is_fts_match = true;
fts_subject = context.get_variable (current_subject);
@@ -1477,7 +1477,7 @@ class Tracker.Sparql.Pattern : Object {
binding.table = table;
binding.type = subject_type;
if (is_fts_match) {
- binding.sql_db_column_name = "docid";
+ binding.sql_db_column_name = "rowid";
} else {
binding.sql_db_column_name = "ID";
}
@@ -1532,13 +1532,12 @@ class Tracker.Sparql.Pattern : Object {
binding.literal = object;
// binding.data_type = triple.object.type;
binding.table = table;
- binding.sql_db_column_name = "fts";
+ binding.sql_db_column_name = "fts5";
triple_context.bindings.append (binding);
- sql.append_printf ("\"%s\".\"docid\" AS \"ID\", ",
+ sql.append_printf ("\"%s\".\"rowid\" AS \"ID\", ",
binding.table.sql_query_tablename);
- sql.append_printf ("tracker_rank(matchinfo(\"%s\".\"fts\", 'cl'),fts_column_weights()) " +
- "AS \"%s_u_rank\", ",
+ sql.append_printf ("\"%s\".\"rank\" AS \"%s_u_rank\", ",
binding.table.sql_query_tablename,
context.get_variable (current_subject).name);
} else {
diff --git a/src/libtracker-fts/Makefile.am b/src/libtracker-fts/Makefile.am
index 8021c78b7..327dd03af 100644
--- a/src/libtracker-fts/Makefile.am
+++ b/src/libtracker-fts/Makefile.am
@@ -6,24 +6,9 @@ AM_CPPFLAGS = \
noinst_LTLIBRARIES = libtracker-fts.la
-fts4_sources = \
- fts3_aux.c \
- fts3.c \
- fts3_expr.c \
- fts3.h \
- fts3_hash.c \
- fts3_hash.h \
- fts3_icu.c \
- fts3Int.h \
- fts3_porter.c \
- fts3_snippet.c \
- fts3_term.c \
- fts3_tokenizer1.c \
- fts3_tokenizer.c \
- fts3_tokenizer.h \
- fts3_unicode.c \
- fts3_unicode2.c \
- fts3_write.c
+fts5_sources = \
+ fts5.c \
+ fts5.h
libtracker_fts_la_SOURCES = \
tracker-fts.c \
@@ -34,7 +19,7 @@ libtracker_fts_la_SOURCES = \
tracker-fts-tokenizer.h
if !HAVE_BUILTIN_FTS
- libtracker_fts_la_SOURCES += $(fts4_sources)
+ libtracker_fts_la_SOURCES += $(fts5_sources)
endif
libtracker_fts_la_LIBADD = \
@@ -42,7 +27,7 @@ libtracker_fts_la_LIBADD = \
$(BUILD_LIBS) \
$(LIBTRACKER_FTS_LIBS)
-EXTRA_DIST = $(fts4_sources)
+EXTRA_DIST = $(fts5_sources)
# Configuration / GSettings
gsettings_ENUM_NAMESPACE = org.freedesktop.Tracker
diff --git a/src/libtracker-fts/fts3.c b/src/libtracker-fts/fts3.c
deleted file mode 100644
index 3dc62ba8d..000000000
--- a/src/libtracker-fts/fts3.c
+++ /dev/null
@@ -1,5350 +0,0 @@
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This is an SQLite module implementing full-text search.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-
-/* The full-text index is stored in a series of b+tree (-like)
-** structures called segments which map terms to doclists. The
-** structures are like b+trees in layout, but are constructed from the
-** bottom up in optimal fashion and are not updatable. Since trees
-** are built from the bottom up, things will be described from the
-** bottom up.
-**
-**
-**** Varints ****
-** The basic unit of encoding is a variable-length integer called a
-** varint. We encode variable-length integers in little-endian order
-** using seven bits * per byte as follows:
-**
-** KEY:
-** A = 0xxxxxxx 7 bits of data and one flag bit
-** B = 1xxxxxxx 7 bits of data and one flag bit
-**
-** 7 bits - A
-** 14 bits - BA
-** 21 bits - BBA
-** and so on.
-**
-** This is similar in concept to how sqlite encodes "varints" but
-** the encoding is not the same. SQLite varints are big-endian
-** are are limited to 9 bytes in length whereas FTS3 varints are
-** little-endian and can be up to 10 bytes in length (in theory).
-**
-** Example encodings:
-**
-** 1: 0x01
-** 127: 0x7f
-** 128: 0x81 0x00
-**
-**
-**** Document lists ****
-** A doclist (document list) holds a docid-sorted list of hits for a
-** given term. Doclists hold docids and associated token positions.
-** A docid is the unique integer identifier for a single document.
-** A position is the index of a word within the document. The first
-** word of the document has a position of 0.
-**
-** FTS3 used to optionally store character offsets using a compile-time
-** option. But that functionality is no longer supported.
-**
-** A doclist is stored like this:
-**
-** array {
-** varint docid; (delta from previous doclist)
-** array { (position list for column 0)
-** varint position; (2 more than the delta from previous position)
-** }
-** array {
-** varint POS_COLUMN; (marks start of position list for new column)
-** varint column; (index of new column)
-** array {
-** varint position; (2 more than the delta from previous position)
-** }
-** }
-** varint POS_END; (marks end of positions for this document.
-** }
-**
-** Here, array { X } means zero or more occurrences of X, adjacent in
-** memory. A "position" is an index of a token in the token stream
-** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
-** in the same logical place as the position element, and act as sentinals
-** ending a position list array. POS_END is 0. POS_COLUMN is 1.
-** The positions numbers are not stored literally but rather as two more
-** than the difference from the prior position, or the just the position plus
-** 2 for the first position. Example:
-**
-** label: A B C D E F G H I J K
-** value: 123 5 9 1 1 14 35 0 234 72 0
-**
-** The 123 value is the first docid. For column zero in this document
-** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
-** at D signals the start of a new column; the 1 at E indicates that the
-** new column is column number 1. There are two positions at 12 and 45
-** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
-** 234 at I is the delta to next docid (357). It has one position 70
-** (72-2) and then terminates with the 0 at K.
-**
-** A "position-list" is the list of positions for multiple columns for
-** a single docid. A "column-list" is the set of positions for a single
-** column. Hence, a position-list consists of one or more column-lists,
-** a document record consists of a docid followed by a position-list and
-** a doclist consists of one or more document records.
-**
-** A bare doclist omits the position information, becoming an
-** array of varint-encoded docids.
-**
-**** Segment leaf nodes ****
-** Segment leaf nodes store terms and doclists, ordered by term. Leaf
-** nodes are written using LeafWriter, and read using LeafReader (to
-** iterate through a single leaf node's data) and LeavesReader (to
-** iterate through a segment's entire leaf layer). Leaf nodes have
-** the format:
-**
-** varint iHeight; (height from leaf level, always 0)
-** varint nTerm; (length of first term)
-** char pTerm[nTerm]; (content of first term)
-** varint nDoclist; (length of term's associated doclist)
-** char pDoclist[nDoclist]; (content of doclist)
-** array {
-** (further terms are delta-encoded)
-** varint nPrefix; (length of prefix shared with previous term)
-** varint nSuffix; (length of unshared suffix)
-** char pTermSuffix[nSuffix];(unshared suffix of next term)
-** varint nDoclist; (length of term's associated doclist)
-** char pDoclist[nDoclist]; (content of doclist)
-** }
-**
-** Here, array { X } means zero or more occurrences of X, adjacent in
-** memory.
-**
-** Leaf nodes are broken into blocks which are stored contiguously in
-** the %_segments table in sorted order. This means that when the end
-** of a node is reached, the next term is in the node with the next
-** greater node id.
-**
-** New data is spilled to a new leaf node when the current node
-** exceeds LEAF_MAX bytes (default 2048). New data which itself is
-** larger than STANDALONE_MIN (default 1024) is placed in a standalone
-** node (a leaf node with a single term and doclist). The goal of
-** these settings is to pack together groups of small doclists while
-** making it efficient to directly access large doclists. The
-** assumption is that large doclists represent terms which are more
-** likely to be query targets.
-**
-** TODO(shess) It may be useful for blocking decisions to be more
-** dynamic. For instance, it may make more sense to have a 2.5k leaf
-** node rather than splitting into 2k and .5k nodes. My intuition is
-** that this might extend through 2x or 4x the pagesize.
-**
-**
-**** Segment interior nodes ****
-** Segment interior nodes store blockids for subtree nodes and terms
-** to describe what data is stored by the each subtree. Interior
-** nodes are written using InteriorWriter, and read using
-** InteriorReader. InteriorWriters are created as needed when
-** SegmentWriter creates new leaf nodes, or when an interior node
-** itself grows too big and must be split. The format of interior
-** nodes:
-**
-** varint iHeight; (height from leaf level, always >0)
-** varint iBlockid; (block id of node's leftmost subtree)
-** optional {
-** varint nTerm; (length of first term)
-** char pTerm[nTerm]; (content of first term)
-** array {
-** (further terms are delta-encoded)
-** varint nPrefix; (length of shared prefix with previous term)
-** varint nSuffix; (length of unshared suffix)
-** char pTermSuffix[nSuffix]; (unshared suffix of next term)
-** }
-** }
-**
-** Here, optional { X } means an optional element, while array { X }
-** means zero or more occurrences of X, adjacent in memory.
-**
-** An interior node encodes n terms separating n+1 subtrees. The
-** subtree blocks are contiguous, so only the first subtree's blockid
-** is encoded. The subtree at iBlockid will contain all terms less
-** than the first term encoded (or all terms if no term is encoded).
-** Otherwise, for terms greater than or equal to pTerm[i] but less
-** than pTerm[i+1], the subtree for that term will be rooted at
-** iBlockid+i. Interior nodes only store enough term data to
-** distinguish adjacent children (if the rightmost term of the left
-** child is "something", and the leftmost term of the right child is
-** "wicked", only "w" is stored).
-**
-** New data is spilled to a new interior node at the same height when
-** the current node exceeds INTERIOR_MAX bytes (default 2048).
-** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
-** interior nodes and making the tree too skinny. The interior nodes
-** at a given height are naturally tracked by interior nodes at
-** height+1, and so on.
-**
-**
-**** Segment directory ****
-** The segment directory in table %_segdir stores meta-information for
-** merging and deleting segments, and also the root node of the
-** segment's tree.
-**
-** The root node is the top node of the segment's tree after encoding
-** the entire segment, restricted to ROOT_MAX bytes (default 1024).
-** This could be either a leaf node or an interior node. If the top
-** node requires more than ROOT_MAX bytes, it is flushed to %_segments
-** and a new root interior node is generated (which should always fit
-** within ROOT_MAX because it only needs space for 2 varints, the
-** height and the blockid of the previous root).
-**
-** The meta-information in the segment directory is:
-** level - segment level (see below)
-** idx - index within level
-** - (level,idx uniquely identify a segment)
-** start_block - first leaf node
-** leaves_end_block - last leaf node
-** end_block - last block (including interior nodes)
-** root - contents of root node
-**
-** If the root node is a leaf node, then start_block,
-** leaves_end_block, and end_block are all 0.
-**
-**
-**** Segment merging ****
-** To amortize update costs, segments are grouped into levels and
-** merged in batches. Each increase in level represents exponentially
-** more documents.
-**
-** New documents (actually, document updates) are tokenized and
-** written individually (using LeafWriter) to a level 0 segment, with
-** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
-** level 0 segments are merged into a single level 1 segment. Level 1
-** is populated like level 0, and eventually MERGE_COUNT level 1
-** segments are merged to a single level 2 segment (representing
-** MERGE_COUNT^2 updates), and so on.
-**
-** A segment merge traverses all segments at a given level in
-** parallel, performing a straightforward sorted merge. Since segment
-** leaf nodes are written in to the %_segments table in order, this
-** merge traverses the underlying sqlite disk structures efficiently.
-** After the merge, all segment blocks from the merged level are
-** deleted.
-**
-** MERGE_COUNT controls how often we merge segments. 16 seems to be
-** somewhat of a sweet spot for insertion performance. 32 and 64 show
-** very similar performance numbers to 16 on insertion, though they're
-** a tiny bit slower (perhaps due to more overhead in merge-time
-** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
-** 16, 2 about 66% slower than 16.
-**
-** At query time, high MERGE_COUNT increases the number of segments
-** which need to be scanned and merged. For instance, with 100k docs
-** inserted:
-**
-** MERGE_COUNT segments
-** 16 25
-** 8 12
-** 4 10
-** 2 6
-**
-** This appears to have only a moderate impact on queries for very
-** frequent terms (which are somewhat dominated by segment merge
-** costs), and infrequent and non-existent terms still seem to be fast
-** even with many segments.
-**
-** TODO(shess) That said, it would be nice to have a better query-side
-** argument for MERGE_COUNT of 16. Also, it is possible/likely that
-** optimizations to things like doclist merging will swing the sweet
-** spot around.
-**
-**
-**
-**** Handling of deletions and updates ****
-** Since we're using a segmented structure, with no docid-oriented
-** index into the term index, we clearly cannot simply update the term
-** index when a document is deleted or updated. For deletions, we
-** write an empty doclist (varint(docid) varint(POS_END)), for updates
-** we simply write the new doclist. Segment merges overwrite older
-** data for a particular docid with newer data, so deletes or updates
-** will eventually overtake the earlier data and knock it out. The
-** query logic likewise merges doclists so that newer data knocks out
-** older data.
-*/
-
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
-# define SQLITE_CORE 1
-#endif
-
-#include <assert.h>
-#include <stdlib.h>
-#include <stddef.h>
-#include <stdio.h>
-#include <string.h>
-#include <stdarg.h>
-
-#include "fts3.h"
-#ifndef SQLITE_CORE
-# include "sqlite3ext.h"
- SQLITE_EXTENSION_INIT1
-#endif
-
-static int fts3EvalNext(Fts3Cursor *pCsr);
-static int fts3EvalStart(Fts3Cursor *pCsr);
-static int fts3TermSegReaderCursor(
- Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
-
-/*
-** Write a 64-bit variable-length integer to memory starting at p[0].
-** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
-** The number of bytes written is returned.
-*/
-int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
- unsigned char *q = (unsigned char *) p;
- sqlite_uint64 vu = v;
- do{
- *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
- vu >>= 7;
- }while( vu!=0 );
- q[-1] &= 0x7f; /* turn off high bit in final byte */
- assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
- return (int) (q - (unsigned char *)p);
-}
-
-/*
-** Read a 64-bit variable-length integer from memory starting at p[0].
-** Return the number of bytes read, or 0 on error.
-** The value is stored in *v.
-*/
-int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
- const unsigned char *q = (const unsigned char *) p;
- sqlite_uint64 x = 0, y = 1;
- while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
- x += y * (*q++ & 0x7f);
- y <<= 7;
- }
- x += y * (*q++);
- *v = (sqlite_int64) x;
- return (int) (q - (unsigned char *)p);
-}
-
-/*
-** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
-** 32-bit integer before it is returned.
-*/
-int sqlite3Fts3GetVarint32(const char *p, int *pi){
- sqlite_int64 i;
- int ret = sqlite3Fts3GetVarint(p, &i);
- *pi = (int) i;
- return ret;
-}
-
-/*
-** Return the number of bytes required to encode v as a varint
-*/
-int sqlite3Fts3VarintLen(sqlite3_uint64 v){
- int i = 0;
- do{
- i++;
- v >>= 7;
- }while( v!=0 );
- return i;
-}
-
-/*
-** Convert an SQL-style quoted string into a normal string by removing
-** the quote characters. The conversion is done in-place. If the
-** input does not begin with a quote character, then this routine
-** is a no-op.
-**
-** Examples:
-**
-** "abc" becomes abc
-** 'xyz' becomes xyz
-** [pqr] becomes pqr
-** `mno` becomes mno
-**
-*/
-void sqlite3Fts3Dequote(char *z){
- char quote; /* Quote character (if any ) */
-
- quote = z[0];
- if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
- int iIn = 1; /* Index of next byte to read from input */
- int iOut = 0; /* Index of next byte to write to output */
-
- /* If the first byte was a '[', then the close-quote character is a ']' */
- if( quote=='[' ) quote = ']';
-
- while( ALWAYS(z[iIn]) ){
- if( z[iIn]==quote ){
- if( z[iIn+1]!=quote ) break;
- z[iOut++] = quote;
- iIn += 2;
- }else{
- z[iOut++] = z[iIn++];
- }
- }
- z[iOut] = '\0';
- }
-}
-
-/*
-** Read a single varint from the doclist at *pp and advance *pp to point
-** to the first byte past the end of the varint. Add the value of the varint
-** to *pVal.
-*/
-static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
- sqlite3_int64 iVal;
- *pp += sqlite3Fts3GetVarint(*pp, &iVal);
- *pVal += iVal;
-}
-
-/*
-** When this function is called, *pp points to the first byte following a
-** varint that is part of a doclist (or position-list, or any other list
-** of varints). This function moves *pp to point to the start of that varint,
-** and sets *pVal by the varint value.
-**
-** Argument pStart points to the first byte of the doclist that the
-** varint is part of.
-*/
-static void fts3GetReverseVarint(
- char **pp,
- char *pStart,
- sqlite3_int64 *pVal
-){
- sqlite3_int64 iVal;
- char *p;
-
- /* Pointer p now points at the first byte past the varint we are
- ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
- ** clear on character p[-1]. */
- for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
- p++;
- *pp = p;
-
- sqlite3Fts3GetVarint(p, &iVal);
- *pVal = iVal;
-}
-
-/*
-** The xDisconnect() virtual table method.
-*/
-static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
- Fts3Table *p = (Fts3Table *)pVtab;
- int i;
-
- assert( p->nPendingData==0 );
- assert( p->pSegments==0 );
-
- /* Free any prepared statements held */
- for(i=0; i<SizeofArray(p->aStmt); i++){
- sqlite3_finalize(p->aStmt[i]);
- }
- sqlite3_free(p->zSegmentsTbl);
- sqlite3_free(p->zReadExprlist);
- sqlite3_free(p->zWriteExprlist);
- sqlite3_free(p->zContentTbl);
- sqlite3_free(p->zLanguageid);
-
- /* Invoke the tokenizer destructor to free the tokenizer. */
- p->pTokenizer->pModule->xDestroy(p->pTokenizer);
-
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-/*
-** Construct one or more SQL statements from the format string given
-** and then evaluate those statements. The success code is written
-** into *pRc.
-**
-** If *pRc is initially non-zero then this routine is a no-op.
-*/
-static void fts3DbExec(
- int *pRc, /* Success code */
- sqlite3 *db, /* Database in which to run SQL */
- const char *zFormat, /* Format string for SQL */
- ... /* Arguments to the format string */
-){
- va_list ap;
- char *zSql;
- if( *pRc ) return;
- va_start(ap, zFormat);
- zSql = sqlite3_vmprintf(zFormat, ap);
- va_end(ap);
- if( zSql==0 ){
- *pRc = SQLITE_NOMEM;
- }else{
- *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
- sqlite3_free(zSql);
- }
-}
-
-/*
-** The xDestroy() virtual table method.
-*/
-static int fts3DestroyMethod(sqlite3_vtab *pVtab){
- Fts3Table *p = (Fts3Table *)pVtab;
- int rc = SQLITE_OK; /* Return code */
- const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
- sqlite3 *db = p->db; /* Database handle */
-
- /* Drop the shadow tables */
- if( p->zContentTbl==0 ){
- fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName);
- }
- fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName);
- fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName);
- fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName);
- fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName);
-
- /* If everything has worked, invoke fts3DisconnectMethod() to free the
- ** memory associated with the Fts3Table structure and return SQLITE_OK.
- ** Otherwise, return an SQLite error code.
- */
- return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
-}
-
-
-/*
-** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
-** passed as the first argument. This is done as part of the xConnect()
-** and xCreate() methods.
-**
-** If *pRc is non-zero when this function is called, it is a no-op.
-** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
-** before returning.
-*/
-static void fts3DeclareVtab(int *pRc, Fts3Table *p){
- if( *pRc==SQLITE_OK ){
- int i; /* Iterator variable */
- int rc; /* Return code */
- char *zSql; /* SQL statement passed to declare_vtab() */
- char *zCols; /* List of user defined columns */
- const char *zLanguageid;
-
- zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
- sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
-
- /* Create a list of user columns for the virtual table */
- zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
- for(i=1; zCols && i<p->nColumn; i++){
- zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
- }
-
- /* Create the whole "CREATE TABLE" statement to pass to SQLite */
- zSql = sqlite3_mprintf(
- "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
- zCols, p->zName, zLanguageid
- );
- if( !zCols || !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_declare_vtab(p->db, zSql);
- }
-
- sqlite3_free(zSql);
- sqlite3_free(zCols);
- *pRc = rc;
- }
-}
-
-/*
-** Create the %_stat table if it does not already exist.
-*/
-void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
- fts3DbExec(pRc, p->db,
- "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
- "(id INTEGER PRIMARY KEY, value BLOB);",
- p->zDb, p->zName
- );
- if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
-}
-
-/*
-** Create the backing store tables (%_content, %_segments and %_segdir)
-** required by the FTS3 table passed as the only argument. This is done
-** as part of the vtab xCreate() method.
-**
-** If the p->bHasDocsize boolean is true (indicating that this is an
-** FTS4 table, not an FTS3 table) then also create the %_docsize and
-** %_stat tables required by FTS4.
-*/
-static int fts3CreateTables(Fts3Table *p){
- int rc = SQLITE_OK; /* Return code */
- int i; /* Iterator variable */
- sqlite3 *db = p->db; /* The database connection */
-
- if( p->zContentTbl==0 ){
- const char *zLanguageid = p->zLanguageid;
- char *zContentCols; /* Columns of %_content table */
-
- /* Create a list of user columns for the content table */
- zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
- for(i=0; zContentCols && i<p->nColumn; i++){
- char *z = p->azColumn[i];
- zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
- }
- if( zLanguageid && zContentCols ){
- zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
- }
- if( zContentCols==0 ) rc = SQLITE_NOMEM;
-
- /* Create the content table */
- fts3DbExec(&rc, db,
- "CREATE TABLE %Q.'%q_content'(%s)",
- p->zDb, p->zName, zContentCols
- );
- sqlite3_free(zContentCols);
- }
-
- /* Create other tables */
- fts3DbExec(&rc, db,
- "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
- p->zDb, p->zName
- );
- fts3DbExec(&rc, db,
- "CREATE TABLE %Q.'%q_segdir'("
- "level INTEGER,"
- "idx INTEGER,"
- "start_block INTEGER,"
- "leaves_end_block INTEGER,"
- "end_block INTEGER,"
- "root BLOB,"
- "PRIMARY KEY(level, idx)"
- ");",
- p->zDb, p->zName
- );
- if( p->bHasDocsize ){
- fts3DbExec(&rc, db,
- "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
- p->zDb, p->zName
- );
- }
- assert( p->bHasStat==p->bFts4 );
- if( p->bHasStat ){
- sqlite3Fts3CreateStatTable(&rc, p);
- }
- return rc;
-}
-
-/*
-** Store the current database page-size in bytes in p->nPgsz.
-**
-** If *pRc is non-zero when this function is called, it is a no-op.
-** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
-** before returning.
-*/
-static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
- if( *pRc==SQLITE_OK ){
- int rc; /* Return code */
- char *zSql; /* SQL text "PRAGMA %Q.page_size" */
- sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
-
- zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_step(pStmt);
- p->nPgsz = sqlite3_column_int(pStmt, 0);
- rc = sqlite3_finalize(pStmt);
- }else if( rc==SQLITE_AUTH ){
- p->nPgsz = 1024;
- rc = SQLITE_OK;
- }
- }
- assert( p->nPgsz>0 || rc!=SQLITE_OK );
- sqlite3_free(zSql);
- *pRc = rc;
- }
-}
-
-/*
-** "Special" FTS4 arguments are column specifications of the following form:
-**
-** <key> = <value>
-**
-** There may not be whitespace surrounding the "=" character. The <value>
-** term may be quoted, but the <key> may not.
-*/
-static int fts3IsSpecialColumn(
- const char *z,
- int *pnKey,
- char **pzValue
-){
- char *zValue;
- const char *zCsr = z;
-
- while( *zCsr!='=' ){
- if( *zCsr=='\0' ) return 0;
- zCsr++;
- }
-
- *pnKey = (int)(zCsr-z);
- zValue = sqlite3_mprintf("%s", &zCsr[1]);
- if( zValue ){
- sqlite3Fts3Dequote(zValue);
- }
- *pzValue = zValue;
- return 1;
-}
-
-/*
-** Append the output of a printf() style formatting to an existing string.
-*/
-static void fts3Appendf(
- int *pRc, /* IN/OUT: Error code */
- char **pz, /* IN/OUT: Pointer to string buffer */
- const char *zFormat, /* Printf format string to append */
- ... /* Arguments for printf format string */
-){
- if( *pRc==SQLITE_OK ){
- va_list ap;
- char *z;
- va_start(ap, zFormat);
- z = sqlite3_vmprintf(zFormat, ap);
- va_end(ap);
- if( z && *pz ){
- char *z2 = sqlite3_mprintf("%s%s", *pz, z);
- sqlite3_free(z);
- z = z2;
- }
- if( z==0 ) *pRc = SQLITE_NOMEM;
- sqlite3_free(*pz);
- *pz = z;
- }
-}
-
-/*
-** Return a copy of input string zInput enclosed in double-quotes (") and
-** with all double quote characters escaped. For example:
-**
-** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
-**
-** The pointer returned points to memory obtained from sqlite3_malloc(). It
-** is the callers responsibility to call sqlite3_free() to release this
-** memory.
-*/
-static char *fts3QuoteId(char const *zInput){
- int nRet;
- char *zRet;
- nRet = 2 + (int)strlen(zInput)*2 + 1;
- zRet = sqlite3_malloc(nRet);
- if( zRet ){
- int i;
- char *z = zRet;
- *(z++) = '"';
- for(i=0; zInput[i]; i++){
- if( zInput[i]=='"' ) *(z++) = '"';
- *(z++) = zInput[i];
- }
- *(z++) = '"';
- *(z++) = '\0';
- }
- return zRet;
-}
-
-/*
-** Return a list of comma separated SQL expressions and a FROM clause that
-** could be used in a SELECT statement such as the following:
-**
-** SELECT <list of expressions> FROM %_content AS x ...
-**
-** to return the docid, followed by each column of text data in order
-** from left to write. If parameter zFunc is not NULL, then instead of
-** being returned directly each column of text data is passed to an SQL
-** function named zFunc first. For example, if zFunc is "unzip" and the
-** table has the three user-defined columns "a", "b", and "c", the following
-** string is returned:
-**
-** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
-**
-** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
-** is the responsibility of the caller to eventually free it.
-**
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
-** a NULL pointer is returned). Otherwise, if an OOM error is encountered
-** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
-** no error occurs, *pRc is left unmodified.
-*/
-static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
- char *zRet = 0;
- char *zFree = 0;
- char *zFunction;
- int i;
-
- if( p->zContentTbl==0 ){
- if( !zFunc ){
- zFunction = "";
- }else{
- zFree = zFunction = fts3QuoteId(zFunc);
- }
- fts3Appendf(pRc, &zRet, "docid");
- for(i=0; i<p->nColumn; i++){
- fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
- }
- if( p->zLanguageid ){
- fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
- }
- sqlite3_free(zFree);
- }else{
- fts3Appendf(pRc, &zRet, "rowid");
- for(i=0; i<p->nColumn; i++){
- fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
- }
- if( p->zLanguageid ){
- fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
- }
- }
- fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
- p->zDb,
- (p->zContentTbl ? p->zContentTbl : p->zName),
- (p->zContentTbl ? "" : "_content")
- );
- return zRet;
-}
-
-/*
-** Return a list of N comma separated question marks, where N is the number
-** of columns in the %_content table (one for the docid plus one for each
-** user-defined text column).
-**
-** If argument zFunc is not NULL, then all but the first question mark
-** is preceded by zFunc and an open bracket, and followed by a closed
-** bracket. For example, if zFunc is "zip" and the FTS3 table has three
-** user-defined text columns, the following string is returned:
-**
-** "?, zip(?), zip(?), zip(?)"
-**
-** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
-** is the responsibility of the caller to eventually free it.
-**
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
-** a NULL pointer is returned). Otherwise, if an OOM error is encountered
-** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
-** no error occurs, *pRc is left unmodified.
-*/
-static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
- char *zRet = 0;
- char *zFree = 0;
- char *zFunction;
- int i;
-
- if( !zFunc ){
- zFunction = "";
- }else{
- zFree = zFunction = fts3QuoteId(zFunc);
- }
- fts3Appendf(pRc, &zRet, "?");
- for(i=0; i<p->nColumn; i++){
- fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
- }
- if( p->zLanguageid ){
- fts3Appendf(pRc, &zRet, ", ?");
- }
- sqlite3_free(zFree);
- return zRet;
-}
-
-/*
-** This function interprets the string at (*pp) as a non-negative integer
-** value. It reads the integer and sets *pnOut to the value read, then
-** sets *pp to point to the byte immediately following the last byte of
-** the integer value.
-**
-** Only decimal digits ('0'..'9') may be part of an integer value.
-**
-** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
-** the output value undefined. Otherwise SQLITE_OK is returned.
-**
-** This function is used when parsing the "prefix=" FTS4 parameter.
-*/
-static int fts3GobbleInt(const char **pp, int *pnOut){
- const char *p; /* Iterator pointer */
- int nInt = 0; /* Output value */
-
- for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
- nInt = nInt * 10 + (p[0] - '0');
- }
- if( p==*pp ) return SQLITE_ERROR;
- *pnOut = nInt;
- *pp = p;
- return SQLITE_OK;
-}
-
-/*
-** This function is called to allocate an array of Fts3Index structures
-** representing the indexes maintained by the current FTS table. FTS tables
-** always maintain the main "terms" index, but may also maintain one or
-** more "prefix" indexes, depending on the value of the "prefix=" parameter
-** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
-**
-** Argument zParam is passed the value of the "prefix=" option if one was
-** specified, or NULL otherwise.
-**
-** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
-** the allocated array. *pnIndex is set to the number of elements in the
-** array. If an error does occur, an SQLite error code is returned.
-**
-** Regardless of whether or not an error is returned, it is the responsibility
-** of the caller to call sqlite3_free() on the output array to free it.
-*/
-static int fts3PrefixParameter(
- const char *zParam, /* ABC in prefix=ABC parameter to parse */
- int *pnIndex, /* OUT: size of *apIndex[] array */
- struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
-){
- struct Fts3Index *aIndex; /* Allocated array */
- int nIndex = 1; /* Number of entries in array */
-
- if( zParam && zParam[0] ){
- const char *p;
- nIndex++;
- for(p=zParam; *p; p++){
- if( *p==',' ) nIndex++;
- }
- }
-
- aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
- *apIndex = aIndex;
- *pnIndex = nIndex;
- if( !aIndex ){
- return SQLITE_NOMEM;
- }
-
- memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
- if( zParam ){
- const char *p = zParam;
- int i;
- for(i=1; i<nIndex; i++){
- int nPrefix;
- if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
- aIndex[i].nPrefix = nPrefix;
- p++;
- }
- }
-
- return SQLITE_OK;
-}
-
-/*
-** This function is called when initializing an FTS4 table that uses the
-** content=xxx option. It determines the number of and names of the columns
-** of the new FTS4 table.
-**
-** The third argument passed to this function is the value passed to the
-** config=xxx option (i.e. "xxx"). This function queries the database for
-** a table of that name. If found, the output variables are populated
-** as follows:
-**
-** *pnCol: Set to the number of columns table xxx has,
-**
-** *pnStr: Set to the total amount of space required to store a copy
-** of each columns name, including the nul-terminator.
-**
-** *pazCol: Set to point to an array of *pnCol strings. Each string is
-** the name of the corresponding column in table xxx. The array
-** and its contents are allocated using a single allocation. It
-** is the responsibility of the caller to free this allocation
-** by eventually passing the *pazCol value to sqlite3_free().
-**
-** If the table cannot be found, an error code is returned and the output
-** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
-** returned (and the output variables are undefined).
-*/
-static int fts3ContentColumns(
- sqlite3 *db, /* Database handle */
- const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
- const char *zTbl, /* Name of content table */
- const char ***pazCol, /* OUT: Malloc'd array of column names */
- int *pnCol, /* OUT: Size of array *pazCol */
- int *pnStr /* OUT: Bytes of string content */
-){
- int rc = SQLITE_OK; /* Return code */
- char *zSql; /* "SELECT *" statement on zTbl */
- sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
-
- zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
- }
- sqlite3_free(zSql);
-
- if( rc==SQLITE_OK ){
- const char **azCol; /* Output array */
- int nStr = 0; /* Size of all column names (incl. 0x00) */
- int nCol; /* Number of table columns */
- int i; /* Used to iterate through columns */
-
- /* Loop through the returned columns. Set nStr to the number of bytes of
- ** space required to store a copy of each column name, including the
- ** nul-terminator byte. */
- nCol = sqlite3_column_count(pStmt);
- for(i=0; i<nCol; i++){
- const char *zCol = sqlite3_column_name(pStmt, i);
- nStr += (int)strlen(zCol) + 1;
- }
-
- /* Allocate and populate the array to return. */
- azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
- if( azCol==0 ){
- rc = SQLITE_NOMEM;
- }else{
- char *p = (char *)&azCol[nCol];
- for(i=0; i<nCol; i++){
- const char *zCol = sqlite3_column_name(pStmt, i);
- int n = (int)strlen(zCol)+1;
- memcpy(p, zCol, n);
- azCol[i] = p;
- p += n;
- }
- }
- sqlite3_finalize(pStmt);
-
- /* Set the output variables. */
- *pnCol = nCol;
- *pnStr = nStr;
- *pazCol = azCol;
- }
-
- return rc;
-}
-
-/*
-** This function is the implementation of both the xConnect and xCreate
-** methods of the FTS3 virtual table.
-**
-** The argv[] array contains the following:
-**
-** argv[0] -> module name ("fts3" or "fts4")
-** argv[1] -> database name
-** argv[2] -> table name
-** argv[...] -> "column name" and other module argument fields.
-*/
-static int fts3InitVtab(
- int isCreate, /* True for xCreate, false for xConnect */
- sqlite3 *db, /* The SQLite database connection */
- void *pAux, /* Hash table containing tokenizers */
- int argc, /* Number of elements in argv array */
- const char * const *argv, /* xCreate/xConnect argument array */
- sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
- char **pzErr /* Write any error message here */
-){
- Fts3Hash *pHash = (Fts3Hash *)pAux;
- Fts3Table *p = 0; /* Pointer to allocated vtab */
- int rc = SQLITE_OK; /* Return code */
- int i; /* Iterator variable */
- int nByte; /* Size of allocation used for *p */
- int iCol; /* Column index */
- int nString = 0; /* Bytes required to hold all column names */
- int nCol = 0; /* Number of columns in the FTS table */
- char *zCsr; /* Space for holding column names */
- int nDb; /* Bytes required to hold database name */
- int nName; /* Bytes required to hold table name */
- int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
- const char **aCol; /* Array of column names */
- sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
-
- int nIndex; /* Size of aIndex[] array */
- struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
-
- /* The results of parsing supported FTS4 key=value options: */
- int bNoDocsize = 0; /* True to omit %_docsize table */
- int bDescIdx = 0; /* True to store descending indexes */
- char *zPrefix = 0; /* Prefix parameter value (or NULL) */
- char *zCompress = 0; /* compress=? parameter (or NULL) */
- char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
- char *zContent = 0; /* content=? parameter (or NULL) */
- char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
-
- assert( strlen(argv[0])==4 );
- assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
- || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
- );
-
- nDb = (int)strlen(argv[1]) + 1;
- nName = (int)strlen(argv[2]) + 1;
-
- aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
- if( !aCol ) return SQLITE_NOMEM;
- memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
-
- /* Loop through all of the arguments passed by the user to the FTS3/4
- ** module (i.e. all the column names and special arguments). This loop
- ** does the following:
- **
- ** + Figures out the number of columns the FTSX table will have, and
- ** the number of bytes of space that must be allocated to store copies
- ** of the column names.
- **
- ** + If there is a tokenizer specification included in the arguments,
- ** initializes the tokenizer pTokenizer.
- */
- for(i=3; rc==SQLITE_OK && i<argc; i++){
- char const *z = argv[i];
- int nKey;
- char *zVal;
-
- /* Check if this is a tokenizer specification */
- if( !pTokenizer
- && strlen(z)>8
- && 0==sqlite3_strnicmp(z, "tokenize", 8)
- && 0==sqlite3Fts3IsIdChar(z[8])
- ){
- rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
- }
-
- /* Check if it is an FTS4 special argument. */
- else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
- struct Fts4Option {
- const char *zOpt;
- int nOpt;
- } aFts4Opt[] = {
- { "matchinfo", 9 }, /* 0 -> MATCHINFO */
- { "prefix", 6 }, /* 1 -> PREFIX */
- { "compress", 8 }, /* 2 -> COMPRESS */
- { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
- { "order", 5 }, /* 4 -> ORDER */
- { "content", 7 }, /* 5 -> CONTENT */
- { "languageid", 10 } /* 6 -> LANGUAGEID */
- };
-
- int iOpt;
- if( !zVal ){
- rc = SQLITE_NOMEM;
- }else{
- for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
- struct Fts4Option *pOp = &aFts4Opt[iOpt];
- if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
- break;
- }
- }
- if( iOpt==SizeofArray(aFts4Opt) ){
- *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
- rc = SQLITE_ERROR;
- }else{
- switch( iOpt ){
- case 0: /* MATCHINFO */
- if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
- *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
- rc = SQLITE_ERROR;
- }
- bNoDocsize = 1;
- break;
-
- case 1: /* PREFIX */
- sqlite3_free(zPrefix);
- zPrefix = zVal;
- zVal = 0;
- break;
-
- case 2: /* COMPRESS */
- sqlite3_free(zCompress);
- zCompress = zVal;
- zVal = 0;
- break;
-
- case 3: /* UNCOMPRESS */
- sqlite3_free(zUncompress);
- zUncompress = zVal;
- zVal = 0;
- break;
-
- case 4: /* ORDER */
- if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
- && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
- ){
- *pzErr = sqlite3_mprintf("unrecognized order: %s", zVal);
- rc = SQLITE_ERROR;
- }
- bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
- break;
-
- case 5: /* CONTENT */
- sqlite3_free(zContent);
- zContent = zVal;
- zVal = 0;
- break;
-
- case 6: /* LANGUAGEID */
- assert( iOpt==6 );
- sqlite3_free(zLanguageid);
- zLanguageid = zVal;
- zVal = 0;
- break;
- }
- }
- sqlite3_free(zVal);
- }
- }
-
- /* Otherwise, the argument is a column name. */
- else {
- nString += (int)(strlen(z) + 1);
- aCol[nCol++] = z;
- }
- }
-
- /* If a content=xxx option was specified, the following:
- **
- ** 1. Ignore any compress= and uncompress= options.
- **
- ** 2. If no column names were specified as part of the CREATE VIRTUAL
- ** TABLE statement, use all columns from the content table.
- */
- if( rc==SQLITE_OK && zContent ){
- sqlite3_free(zCompress);
- sqlite3_free(zUncompress);
- zCompress = 0;
- zUncompress = 0;
- if( nCol==0 ){
- sqlite3_free((void*)aCol);
- aCol = 0;
- rc = fts3ContentColumns(db, argv[1], zContent, &aCol, &nCol, &nString);
-
- /* If a languageid= option was specified, remove the language id
- ** column from the aCol[] array. */
- if( rc==SQLITE_OK && zLanguageid ){
- int j;
- for(j=0; j<nCol; j++){
- if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
- int k;
- for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
- nCol--;
- break;
- }
- }
- }
- }
- }
- if( rc!=SQLITE_OK ) goto fts3_init_out;
-
- if( nCol==0 ){
- assert( nString==0 );
- aCol[0] = "content";
- nString = 8;
- nCol = 1;
- }
-
- if( pTokenizer==0 ){
- rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
- if( rc!=SQLITE_OK ) goto fts3_init_out;
- }
- assert( pTokenizer );
-
- rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
- if( rc==SQLITE_ERROR ){
- assert( zPrefix );
- *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix);
- }
- if( rc!=SQLITE_OK ) goto fts3_init_out;
-
- /* Allocate and populate the Fts3Table structure. */
- nByte = sizeof(Fts3Table) + /* Fts3Table */
- nCol * sizeof(char *) + /* azColumn */
- nIndex * sizeof(struct Fts3Index) + /* aIndex */
- nName + /* zName */
- nDb + /* zDb */
- nString; /* Space for azColumn strings */
- p = (Fts3Table*)sqlite3_malloc(nByte);
- if( p==0 ){
- rc = SQLITE_NOMEM;
- goto fts3_init_out;
- }
- memset(p, 0, nByte);
- p->db = db;
- p->nColumn = nCol;
- p->nPendingData = 0;
- p->azColumn = (char **)&p[1];
- p->pTokenizer = pTokenizer;
- p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
- p->bHasDocsize = (isFts4 && bNoDocsize==0);
- p->bHasStat = isFts4;
- p->bFts4 = isFts4;
- p->bDescIdx = bDescIdx;
- p->bAutoincrmerge = 0xff; /* 0xff means setting unknown */
- p->zContentTbl = zContent;
- p->zLanguageid = zLanguageid;
- zContent = 0;
- zLanguageid = 0;
- TESTONLY( p->inTransaction = -1 );
- TESTONLY( p->mxSavepoint = -1 );
-
- p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
- memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
- p->nIndex = nIndex;
- for(i=0; i<nIndex; i++){
- fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
- }
-
- /* Fill in the zName and zDb fields of the vtab structure. */
- zCsr = (char *)&p->aIndex[nIndex];
- p->zName = zCsr;
- memcpy(zCsr, argv[2], nName);
- zCsr += nName;
- p->zDb = zCsr;
- memcpy(zCsr, argv[1], nDb);
- zCsr += nDb;
-
- /* Fill in the azColumn array */
- for(iCol=0; iCol<nCol; iCol++){
- char *z;
- int n = 0;
- z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
- memcpy(zCsr, z, n);
- zCsr[n] = '\0';
- sqlite3Fts3Dequote(zCsr);
- p->azColumn[iCol] = zCsr;
- zCsr += n+1;
- assert( zCsr <= &((char *)p)[nByte] );
- }
-
- if( (zCompress==0)!=(zUncompress==0) ){
- char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
- rc = SQLITE_ERROR;
- *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
- }
- p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
- p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
- if( rc!=SQLITE_OK ) goto fts3_init_out;
-
- /* If this is an xCreate call, create the underlying tables in the
- ** database. TODO: For xConnect(), it could verify that said tables exist.
- */
- if( isCreate ){
- rc = fts3CreateTables(p);
- }
-
- /* Check to see if a legacy fts3 table has been "upgraded" by the
- ** addition of a %_stat table so that it can use incremental merge.
- */
- if( !isFts4 && !isCreate ){
- int rc2 = SQLITE_OK;
- fts3DbExec(&rc2, db, "SELECT 1 FROM %Q.'%q_stat' WHERE id=2",
- p->zDb, p->zName);
- if( rc2==SQLITE_OK ) p->bHasStat = 1;
- }
-
- /* Figure out the page-size for the database. This is required in order to
- ** estimate the cost of loading large doclists from the database. */
- fts3DatabasePageSize(&rc, p);
- p->nNodeSize = p->nPgsz-35;
-
- /* Declare the table schema to SQLite. */
- fts3DeclareVtab(&rc, p);
-
-fts3_init_out:
- sqlite3_free(zPrefix);
- sqlite3_free(aIndex);
- sqlite3_free(zCompress);
- sqlite3_free(zUncompress);
- sqlite3_free(zContent);
- sqlite3_free(zLanguageid);
- sqlite3_free((void *)aCol);
- if( rc!=SQLITE_OK ){
- if( p ){
- fts3DisconnectMethod((sqlite3_vtab *)p);
- }else if( pTokenizer ){
- pTokenizer->pModule->xDestroy(pTokenizer);
- }
- }else{
- assert( p->pSegments==0 );
- *ppVTab = &p->base;
- }
- return rc;
-}
-
-/*
-** The xConnect() and xCreate() methods for the virtual table. All the
-** work is done in function fts3InitVtab().
-*/
-static int fts3ConnectMethod(
- sqlite3 *db, /* Database connection */
- void *pAux, /* Pointer to tokenizer hash table */
- int argc, /* Number of elements in argv array */
- const char * const *argv, /* xCreate/xConnect argument array */
- sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
- char **pzErr /* OUT: sqlite3_malloc'd error message */
-){
- return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
-}
-static int fts3CreateMethod(
- sqlite3 *db, /* Database connection */
- void *pAux, /* Pointer to tokenizer hash table */
- int argc, /* Number of elements in argv array */
- const char * const *argv, /* xCreate/xConnect argument array */
- sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
- char **pzErr /* OUT: sqlite3_malloc'd error message */
-){
- return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
-}
-
-/*
-** Implementation of the xBestIndex method for FTS3 tables. There
-** are three possible strategies, in order of preference:
-**
-** 1. Direct lookup by rowid or docid.
-** 2. Full-text search using a MATCH operator on a non-docid column.
-** 3. Linear scan of %_content table.
-*/
-static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
- Fts3Table *p = (Fts3Table *)pVTab;
- int i; /* Iterator variable */
- int iCons = -1; /* Index of constraint to use */
- int iLangidCons = -1; /* Index of langid=x constraint, if present */
-
- /* By default use a full table scan. This is an expensive option,
- ** so search through the constraints to see if a more efficient
- ** strategy is possible.
- */
- pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
- pInfo->estimatedCost = 500000;
- for(i=0; i<pInfo->nConstraint; i++){
- struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
- if( pCons->usable==0 ) continue;
-
- /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
- if( iCons<0
- && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
- && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
- ){
- pInfo->idxNum = FTS3_DOCID_SEARCH;
- pInfo->estimatedCost = 1.0;
- iCons = i;
- }
-
- /* A MATCH constraint. Use a full-text search.
- **
- ** If there is more than one MATCH constraint available, use the first
- ** one encountered. If there is both a MATCH constraint and a direct
- ** rowid/docid lookup, prefer the MATCH strategy. This is done even
- ** though the rowid/docid lookup is faster than a MATCH query, selecting
- ** it would lead to an "unable to use function MATCH in the requested
- ** context" error.
- */
- if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
- && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
- ){
- pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
- pInfo->estimatedCost = 2.0;
- iCons = i;
- }
-
- /* Equality constraint on the langid column */
- if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
- && pCons->iColumn==p->nColumn + 2
- ){
- iLangidCons = i;
- }
- }
-
- if( iCons>=0 ){
- pInfo->aConstraintUsage[iCons].argvIndex = 1;
- pInfo->aConstraintUsage[iCons].omit = 1;
- }
- if( iLangidCons>=0 ){
- pInfo->aConstraintUsage[iLangidCons].argvIndex = 2;
- }
-
- /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
- ** docid) order. Both ascending and descending are possible.
- */
- if( pInfo->nOrderBy==1 ){
- struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
- if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
- if( pOrder->desc ){
- pInfo->idxStr = "DESC";
- }else{
- pInfo->idxStr = "ASC";
- }
- pInfo->orderByConsumed = 1;
- }
- }
-
- assert( p->pSegments==0 );
- return SQLITE_OK;
-}
-
-/*
-** Implementation of xOpen method.
-*/
-static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
- sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
-
- UNUSED_PARAMETER(pVTab);
-
- /* Allocate a buffer large enough for an Fts3Cursor structure. If the
- ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
- ** if the allocation fails, return SQLITE_NOMEM.
- */
- *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
- if( !pCsr ){
- return SQLITE_NOMEM;
- }
- memset(pCsr, 0, sizeof(Fts3Cursor));
- return SQLITE_OK;
-}
-
-/*
-** Close the cursor. For additional information see the documentation
-** on the xClose method of the virtual table interface.
-*/
-static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
- Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
- assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
- sqlite3_finalize(pCsr->pStmt);
- sqlite3Fts3ExprFree(pCsr->pExpr);
- sqlite3Fts3FreeDeferredTokens(pCsr);
- sqlite3_free(pCsr->aDoclist);
- sqlite3_free(pCsr->aMatchinfo);
- assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-/*
-** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
-** compose and prepare an SQL statement of the form:
-**
-** "SELECT <columns> FROM %_content WHERE rowid = ?"
-**
-** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
-** it. If an error occurs, return an SQLite error code.
-**
-** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK.
-*/
-static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){
- int rc = SQLITE_OK;
- if( pCsr->pStmt==0 ){
- Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
- char *zSql;
- zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
- if( !zSql ) return SQLITE_NOMEM;
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
- sqlite3_free(zSql);
- }
- *ppStmt = pCsr->pStmt;
- return rc;
-}
-
-/*
-** Position the pCsr->pStmt statement so that it is on the row
-** of the %_content table that contains the last match. Return
-** SQLITE_OK on success.
-*/
-static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
- int rc = SQLITE_OK;
- if( pCsr->isRequireSeek ){
- sqlite3_stmt *pStmt = 0;
-
- rc = fts3CursorSeekStmt(pCsr, &pStmt);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
- pCsr->isRequireSeek = 0;
- if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
- return SQLITE_OK;
- }else{
- rc = sqlite3_reset(pCsr->pStmt);
- if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
- /* If no row was found and no error has occured, then the %_content
- ** table is missing a row that is present in the full-text index.
- ** The data structures are corrupt. */
- rc = FTS_CORRUPT_VTAB;
- pCsr->isEof = 1;
- }
- }
- }
- }
-
- if( rc!=SQLITE_OK && pContext ){
- sqlite3_result_error_code(pContext, rc);
- }
- return rc;
-}
-
-/*
-** This function is used to process a single interior node when searching
-** a b-tree for a term or term prefix. The node data is passed to this
-** function via the zNode/nNode parameters. The term to search for is
-** passed in zTerm/nTerm.
-**
-** If piFirst is not NULL, then this function sets *piFirst to the blockid
-** of the child node that heads the sub-tree that may contain the term.
-**
-** If piLast is not NULL, then *piLast is set to the right-most child node
-** that heads a sub-tree that may contain a term for which zTerm/nTerm is
-** a prefix.
-**
-** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
-*/
-static int fts3ScanInteriorNode(
- const char *zTerm, /* Term to select leaves for */
- int nTerm, /* Size of term zTerm in bytes */
- const char *zNode, /* Buffer containing segment interior node */
- int nNode, /* Size of buffer at zNode */
- sqlite3_int64 *piFirst, /* OUT: Selected child node */
- sqlite3_int64 *piLast /* OUT: Selected child node */
-){
- int rc = SQLITE_OK; /* Return code */
- const char *zCsr = zNode; /* Cursor to iterate through node */
- const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
- char *zBuffer = 0; /* Buffer to load terms into */
- int nAlloc = 0; /* Size of allocated buffer */
- int isFirstTerm = 1; /* True when processing first term on page */
- sqlite3_int64 iChild; /* Block id of child node to descend to */
-
- /* Skip over the 'height' varint that occurs at the start of every
- ** interior node. Then load the blockid of the left-child of the b-tree
- ** node into variable iChild.
- **
- ** Even if the data structure on disk is corrupted, this (reading two
- ** varints from the buffer) does not risk an overread. If zNode is a
- ** root node, then the buffer comes from a SELECT statement. SQLite does
- ** not make this guarantee explicitly, but in practice there are always
- ** either more than 20 bytes of allocated space following the nNode bytes of
- ** contents, or two zero bytes. Or, if the node is read from the %_segments
- ** table, then there are always 20 bytes of zeroed padding following the
- ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
- */
- zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
- zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
- if( zCsr>zEnd ){
- return FTS_CORRUPT_VTAB;
- }
-
- while( zCsr<zEnd && (piFirst || piLast) ){
- int cmp; /* memcmp() result */
- int nSuffix; /* Size of term suffix */
- int nPrefix = 0; /* Size of term prefix */
- int nBuffer; /* Total term size */
-
- /* Load the next term on the node into zBuffer. Use realloc() to expand
- ** the size of zBuffer if required. */
- if( !isFirstTerm ){
- zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
- }
- isFirstTerm = 0;
- zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
-
- if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
- rc = FTS_CORRUPT_VTAB;
- goto finish_scan;
- }
- if( nPrefix+nSuffix>nAlloc ){
- char *zNew;
- nAlloc = (nPrefix+nSuffix) * 2;
- zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
- if( !zNew ){
- rc = SQLITE_NOMEM;
- goto finish_scan;
- }
- zBuffer = zNew;
- }
- assert( zBuffer );
- memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
- nBuffer = nPrefix + nSuffix;
- zCsr += nSuffix;
-
- /* Compare the term we are searching for with the term just loaded from
- ** the interior node. If the specified term is greater than or equal
- ** to the term from the interior node, then all terms on the sub-tree
- ** headed by node iChild are smaller than zTerm. No need to search
- ** iChild.
- **
- ** If the interior node term is larger than the specified term, then
- ** the tree headed by iChild may contain the specified term.
- */
- cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
- if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
- *piFirst = iChild;
- piFirst = 0;
- }
-
- if( piLast && cmp<0 ){
- *piLast = iChild;
- piLast = 0;
- }
-
- iChild++;
- };
-
- if( piFirst ) *piFirst = iChild;
- if( piLast ) *piLast = iChild;
-
- finish_scan:
- sqlite3_free(zBuffer);
- return rc;
-}
-
-
-/*
-** The buffer pointed to by argument zNode (size nNode bytes) contains an
-** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
-** contains a term. This function searches the sub-tree headed by the zNode
-** node for the range of leaf nodes that may contain the specified term
-** or terms for which the specified term is a prefix.
-**
-** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
-** left-most leaf node in the tree that may contain the specified term.
-** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
-** right-most leaf node that may contain a term for which the specified
-** term is a prefix.
-**
-** It is possible that the range of returned leaf nodes does not contain
-** the specified term or any terms for which it is a prefix. However, if the
-** segment does contain any such terms, they are stored within the identified
-** range. Because this function only inspects interior segment nodes (and
-** never loads leaf nodes into memory), it is not possible to be sure.
-**
-** If an error occurs, an error code other than SQLITE_OK is returned.
-*/
-static int fts3SelectLeaf(
- Fts3Table *p, /* Virtual table handle */
- const char *zTerm, /* Term to select leaves for */
- int nTerm, /* Size of term zTerm in bytes */
- const char *zNode, /* Buffer containing segment interior node */
- int nNode, /* Size of buffer at zNode */
- sqlite3_int64 *piLeaf, /* Selected leaf node */
- sqlite3_int64 *piLeaf2 /* Selected leaf node */
-){
- int rc; /* Return code */
- int iHeight; /* Height of this node in tree */
-
- assert( piLeaf || piLeaf2 );
-
- sqlite3Fts3GetVarint32(zNode, &iHeight);
- rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
- assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
-
- if( rc==SQLITE_OK && iHeight>1 ){
- char *zBlob = 0; /* Blob read from %_segments table */
- int nBlob; /* Size of zBlob in bytes */
-
- if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
- rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
- if( rc==SQLITE_OK ){
- rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
- }
- sqlite3_free(zBlob);
- piLeaf = 0;
- zBlob = 0;
- }
-
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
- }
- if( rc==SQLITE_OK ){
- rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
- }
- sqlite3_free(zBlob);
- }
-
- return rc;
-}
-
-/*
-** This function is used to create delta-encoded serialized lists of FTS3
-** varints. Each call to this function appends a single varint to a list.
-*/
-static void fts3PutDeltaVarint(
- char **pp, /* IN/OUT: Output pointer */
- sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
- sqlite3_int64 iVal /* Write this value to the list */
-){
- assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
- *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
- *piPrev = iVal;
-}
-
-/*
-** When this function is called, *ppPoslist is assumed to point to the
-** start of a position-list. After it returns, *ppPoslist points to the
-** first byte after the position-list.
-**
-** A position list is list of positions (delta encoded) and columns for
-** a single document record of a doclist. So, in other words, this
-** routine advances *ppPoslist so that it points to the next docid in
-** the doclist, or to the first byte past the end of the doclist.
-**
-** If pp is not NULL, then the contents of the position list are copied
-** to *pp. *pp is set to point to the first byte past the last byte copied
-** before this function returns.
-*/
-static void fts3PoslistCopy(char **pp, char **ppPoslist){
- char *pEnd = *ppPoslist;
- char c = 0;
-
- /* The end of a position list is marked by a zero encoded as an FTS3
- ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
- ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
- ** of some other, multi-byte, value.
- **
- ** The following while-loop moves pEnd to point to the first byte that is not
- ** immediately preceded by a byte with the 0x80 bit set. Then increments
- ** pEnd once more so that it points to the byte immediately following the
- ** last byte in the position-list.
- */
- while( *pEnd | c ){
- c = *pEnd++ & 0x80;
- testcase( c!=0 && (*pEnd)==0 );
- }
- pEnd++; /* Advance past the POS_END terminator byte */
-
- if( pp ){
- int n = (int)(pEnd - *ppPoslist);
- char *p = *pp;
- memcpy(p, *ppPoslist, n);
- p += n;
- *pp = p;
- }
- *ppPoslist = pEnd;
-}
-
-/*
-** When this function is called, *ppPoslist is assumed to point to the
-** start of a column-list. After it returns, *ppPoslist points to the
-** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
-**
-** A column-list is list of delta-encoded positions for a single column
-** within a single document within a doclist.
-**
-** The column-list is terminated either by a POS_COLUMN varint (1) or
-** a POS_END varint (0). This routine leaves *ppPoslist pointing to
-** the POS_COLUMN or POS_END that terminates the column-list.
-**
-** If pp is not NULL, then the contents of the column-list are copied
-** to *pp. *pp is set to point to the first byte past the last byte copied
-** before this function returns. The POS_COLUMN or POS_END terminator
-** is not copied into *pp.
-*/
-static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
- char *pEnd = *ppPoslist;
- char c = 0;
-
- /* A column-list is terminated by either a 0x01 or 0x00 byte that is
- ** not part of a multi-byte varint.
- */
- while( 0xFE & (*pEnd | c) ){
- c = *pEnd++ & 0x80;
- testcase( c!=0 && ((*pEnd)&0xfe)==0 );
- }
- if( pp ){
- int n = (int)(pEnd - *ppPoslist);
- char *p = *pp;
- memcpy(p, *ppPoslist, n);
- p += n;
- *pp = p;
- }
- *ppPoslist = pEnd;
-}
-
-/*
-** Value used to signify the end of an position-list. This is safe because
-** it is not possible to have a document with 2^31 terms.
-*/
-#define POSITION_LIST_END 0x7fffffff
-
-/*
-** This function is used to help parse position-lists. When this function is
-** called, *pp may point to the start of the next varint in the position-list
-** being parsed, or it may point to 1 byte past the end of the position-list
-** (in which case **pp will be a terminator bytes POS_END (0) or
-** (1)).
-**
-** If *pp points past the end of the current position-list, set *pi to
-** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
-** increment the current value of *pi by the value read, and set *pp to
-** point to the next value before returning.
-**
-** Before calling this routine *pi must be initialized to the value of
-** the previous position, or zero if we are reading the first position
-** in the position-list. Because positions are delta-encoded, the value
-** of the previous position is needed in order to compute the value of
-** the next position.
-*/
-static void fts3ReadNextPos(
- char **pp, /* IN/OUT: Pointer into position-list buffer */
- sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
-){
- if( (**pp)&0xFE ){
- fts3GetDeltaVarint(pp, pi);
- *pi -= 2;
- }else{
- *pi = POSITION_LIST_END;
- }
-}
-
-/*
-** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
-** the value of iCol encoded as a varint to *pp. This will start a new
-** column list.
-**
-** Set *pp to point to the byte just after the last byte written before
-** returning (do not modify it if iCol==0). Return the total number of bytes
-** written (0 if iCol==0).
-*/
-static int fts3PutColNumber(char **pp, int iCol){
- int n = 0; /* Number of bytes written */
- if( iCol ){
- char *p = *pp; /* Output pointer */
- n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
- *p = 0x01;
- *pp = &p[n];
- }
- return n;
-}
-
-/*
-** Compute the union of two position lists. The output written
-** into *pp contains all positions of both *pp1 and *pp2 in sorted
-** order and with any duplicates removed. All pointers are
-** updated appropriately. The caller is responsible for insuring
-** that there is enough space in *pp to hold the complete output.
-*/
-static void fts3PoslistMerge(
- char **pp, /* Output buffer */
- char **pp1, /* Left input list */
- char **pp2 /* Right input list */
-){
- char *p = *pp;
- char *p1 = *pp1;
- char *p2 = *pp2;
-
- while( *p1 || *p2 ){
- int iCol1; /* The current column index in pp1 */
- int iCol2; /* The current column index in pp2 */
-
- if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
- else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
- else iCol1 = 0;
-
- if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
- else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
- else iCol2 = 0;
-
- if( iCol1==iCol2 ){
- sqlite3_int64 i1 = 0; /* Last position from pp1 */
- sqlite3_int64 i2 = 0; /* Last position from pp2 */
- sqlite3_int64 iPrev = 0;
- int n = fts3PutColNumber(&p, iCol1);
- p1 += n;
- p2 += n;
-
- /* At this point, both p1 and p2 point to the start of column-lists
- ** for the same column (the column with index iCol1 and iCol2).
- ** A column-list is a list of non-negative delta-encoded varints, each
- ** incremented by 2 before being stored. Each list is terminated by a
- ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
- ** and writes the results to buffer p. p is left pointing to the byte
- ** after the list written. No terminator (POS_END or POS_COLUMN) is
- ** written to the output.
- */
- fts3GetDeltaVarint(&p1, &i1);
- fts3GetDeltaVarint(&p2, &i2);
- do {
- fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
- iPrev -= 2;
- if( i1==i2 ){
- fts3ReadNextPos(&p1, &i1);
- fts3ReadNextPos(&p2, &i2);
- }else if( i1<i2 ){
- fts3ReadNextPos(&p1, &i1);
- }else{
- fts3ReadNextPos(&p2, &i2);
- }
- }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
- }else if( iCol1<iCol2 ){
- p1 += fts3PutColNumber(&p, iCol1);
- fts3ColumnlistCopy(&p, &p1);
- }else{
- p2 += fts3PutColNumber(&p, iCol2);
- fts3ColumnlistCopy(&p, &p2);
- }
- }
-
- *p++ = POS_END;
- *pp = p;
- *pp1 = p1 + 1;
- *pp2 = p2 + 1;
-}
-
-/*
-** This function is used to merge two position lists into one. When it is
-** called, *pp1 and *pp2 must both point to position lists. A position-list is
-** the part of a doclist that follows each document id. For example, if a row
-** contains:
-**
-** 'a b c'|'x y z'|'a b b a'
-**
-** Then the position list for this row for token 'b' would consist of:
-**
-** 0x02 0x01 0x02 0x03 0x03 0x00
-**
-** When this function returns, both *pp1 and *pp2 are left pointing to the
-** byte following the 0x00 terminator of their respective position lists.
-**
-** If isSaveLeft is 0, an entry is added to the output position list for
-** each position in *pp2 for which there exists one or more positions in
-** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
-** when the *pp1 token appears before the *pp2 token, but not more than nToken
-** slots before it.
-**
-** e.g. nToken==1 searches for adjacent positions.
-*/
-static int fts3PoslistPhraseMerge(
- char **pp, /* IN/OUT: Preallocated output buffer */
- int nToken, /* Maximum difference in token positions */
- int isSaveLeft, /* Save the left position */
- int isExact, /* If *pp1 is exactly nTokens before *pp2 */
- char **pp1, /* IN/OUT: Left input list */
- char **pp2 /* IN/OUT: Right input list */
-){
- char *p = *pp;
- char *p1 = *pp1;
- char *p2 = *pp2;
- int iCol1 = 0;
- int iCol2 = 0;
-
- /* Never set both isSaveLeft and isExact for the same invocation. */
- assert( isSaveLeft==0 || isExact==0 );
-
- assert( p!=0 && *p1!=0 && *p2!=0 );
- if( *p1==POS_COLUMN ){
- p1++;
- p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
- }
- if( *p2==POS_COLUMN ){
- p2++;
- p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
- }
-
- while( 1 ){
- if( iCol1==iCol2 ){
- char *pSave = p;
- sqlite3_int64 iPrev = 0;
- sqlite3_int64 iPos1 = 0;
- sqlite3_int64 iPos2 = 0;
-
- if( iCol1 ){
- *p++ = POS_COLUMN;
- p += sqlite3Fts3PutVarint(p, iCol1);
- }
-
- assert( *p1!=POS_END && *p1!=POS_COLUMN );
- assert( *p2!=POS_END && *p2!=POS_COLUMN );
- fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
- fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
-
- while( 1 ){
- if( iPos2==iPos1+nToken
- || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
- ){
- sqlite3_int64 iSave;
- iSave = isSaveLeft ? iPos1 : iPos2;
- fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
- pSave = 0;
- assert( p );
- }
- if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
- if( (*p2&0xFE)==0 ) break;
- fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
- }else{
- if( (*p1&0xFE)==0 ) break;
- fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
- }
- }
-
- if( pSave ){
- assert( pp && p );
- p = pSave;
- }
-
- fts3ColumnlistCopy(0, &p1);
- fts3ColumnlistCopy(0, &p2);
- assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
- if( 0==*p1 || 0==*p2 ) break;
-
- p1++;
- p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
- p2++;
- p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
- }
-
- /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
- ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
- ** end of the position list, or the 0x01 that precedes the next
- ** column-number in the position list.
- */
- else if( iCol1<iCol2 ){
- fts3ColumnlistCopy(0, &p1);
- if( 0==*p1 ) break;
- p1++;
- p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
- }else{
- fts3ColumnlistCopy(0, &p2);
- if( 0==*p2 ) break;
- p2++;
- p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
- }
- }
-
- fts3PoslistCopy(0, &p2);
- fts3PoslistCopy(0, &p1);
- *pp1 = p1;
- *pp2 = p2;
- if( *pp==p ){
- return 0;
- }
- *p++ = 0x00;
- *pp = p;
- return 1;
-}
-
-/*
-** Merge two position-lists as required by the NEAR operator. The argument
-** position lists correspond to the left and right phrases of an expression
-** like:
-**
-** "phrase 1" NEAR "phrase number 2"
-**
-** Position list *pp1 corresponds to the left-hand side of the NEAR
-** expression and *pp2 to the right. As usual, the indexes in the position
-** lists are the offsets of the last token in each phrase (tokens "1" and "2"
-** in the example above).
-**
-** The output position list - written to *pp - is a copy of *pp2 with those
-** entries that are not sufficiently NEAR entries in *pp1 removed.
-*/
-static int fts3PoslistNearMerge(
- char **pp, /* Output buffer */
- char *aTmp, /* Temporary buffer space */
- int nRight, /* Maximum difference in token positions */
- int nLeft, /* Maximum difference in token positions */
- char **pp1, /* IN/OUT: Left input list */
- char **pp2 /* IN/OUT: Right input list */
-){
- char *p1 = *pp1;
- char *p2 = *pp2;
-
- char *pTmp1 = aTmp;
- char *pTmp2;
- char *aTmp2;
- int res = 1;
-
- fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
- aTmp2 = pTmp2 = pTmp1;
- *pp1 = p1;
- *pp2 = p2;
- fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
- if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
- fts3PoslistMerge(pp, &aTmp, &aTmp2);
- }else if( pTmp1!=aTmp ){
- fts3PoslistCopy(pp, &aTmp);
- }else if( pTmp2!=aTmp2 ){
- fts3PoslistCopy(pp, &aTmp2);
- }else{
- res = 0;
- }
-
- return res;
-}
-
-/*
-** An instance of this function is used to merge together the (potentially
-** large number of) doclists for each term that matches a prefix query.
-** See function fts3TermSelectMerge() for details.
-*/
-typedef struct TermSelect TermSelect;
-struct TermSelect {
- char *aaOutput[16]; /* Malloc'd output buffers */
- int anOutput[16]; /* Size each output buffer in bytes */
-};
-
-/*
-** This function is used to read a single varint from a buffer. Parameter
-** pEnd points 1 byte past the end of the buffer. When this function is
-** called, if *pp points to pEnd or greater, then the end of the buffer
-** has been reached. In this case *pp is set to 0 and the function returns.
-**
-** If *pp does not point to or past pEnd, then a single varint is read
-** from *pp. *pp is then set to point 1 byte past the end of the read varint.
-**
-** If bDescIdx is false, the value read is added to *pVal before returning.
-** If it is true, the value read is subtracted from *pVal before this
-** function returns.
-*/
-static void fts3GetDeltaVarint3(
- char **pp, /* IN/OUT: Point to read varint from */
- char *pEnd, /* End of buffer */
- int bDescIdx, /* True if docids are descending */
- sqlite3_int64 *pVal /* IN/OUT: Integer value */
-){
- if( *pp>=pEnd ){
- *pp = 0;
- }else{
- sqlite3_int64 iVal;
- *pp += sqlite3Fts3GetVarint(*pp, &iVal);
- if( bDescIdx ){
- *pVal -= iVal;
- }else{
- *pVal += iVal;
- }
- }
-}
-
-/*
-** This function is used to write a single varint to a buffer. The varint
-** is written to *pp. Before returning, *pp is set to point 1 byte past the
-** end of the value written.
-**
-** If *pbFirst is zero when this function is called, the value written to
-** the buffer is that of parameter iVal.
-**
-** If *pbFirst is non-zero when this function is called, then the value
-** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
-** (if bDescIdx is non-zero).
-**
-** Before returning, this function always sets *pbFirst to 1 and *piPrev
-** to the value of parameter iVal.
-*/
-static void fts3PutDeltaVarint3(
- char **pp, /* IN/OUT: Output pointer */
- int bDescIdx, /* True for descending docids */
- sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
- int *pbFirst, /* IN/OUT: True after first int written */
- sqlite3_int64 iVal /* Write this value to the list */
-){
- sqlite3_int64 iWrite;
- if( bDescIdx==0 || *pbFirst==0 ){
- iWrite = iVal - *piPrev;
- }else{
- iWrite = *piPrev - iVal;
- }
- assert( *pbFirst || *piPrev==0 );
- assert( *pbFirst==0 || iWrite>0 );
- *pp += sqlite3Fts3PutVarint(*pp, iWrite);
- *piPrev = iVal;
- *pbFirst = 1;
-}
-
-
-/*
-** This macro is used by various functions that merge doclists. The two
-** arguments are 64-bit docid values. If the value of the stack variable
-** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
-** Otherwise, (i2-i1).
-**
-** Using this makes it easier to write code that can merge doclists that are
-** sorted in either ascending or descending order.
-*/
-#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
-
-/*
-** This function does an "OR" merge of two doclists (output contains all
-** positions contained in either argument doclist). If the docids in the
-** input doclists are sorted in ascending order, parameter bDescDoclist
-** should be false. If they are sorted in ascending order, it should be
-** passed a non-zero value.
-**
-** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
-** containing the output doclist and SQLITE_OK is returned. In this case
-** *pnOut is set to the number of bytes in the output doclist.
-**
-** If an error occurs, an SQLite error code is returned. The output values
-** are undefined in this case.
-*/
-static int fts3DoclistOrMerge(
- int bDescDoclist, /* True if arguments are desc */
- char *a1, int n1, /* First doclist */
- char *a2, int n2, /* Second doclist */
- char **paOut, int *pnOut /* OUT: Malloc'd doclist */
-){
- sqlite3_int64 i1 = 0;
- sqlite3_int64 i2 = 0;
- sqlite3_int64 iPrev = 0;
- char *pEnd1 = &a1[n1];
- char *pEnd2 = &a2[n2];
- char *p1 = a1;
- char *p2 = a2;
- char *p;
- char *aOut;
- int bFirstOut = 0;
-
- *paOut = 0;
- *pnOut = 0;
-
- /* Allocate space for the output. Both the input and output doclists
- ** are delta encoded. If they are in ascending order (bDescDoclist==0),
- ** then the first docid in each list is simply encoded as a varint. For
- ** each subsequent docid, the varint stored is the difference between the
- ** current and previous docid (a positive number - since the list is in
- ** ascending order).
- **
- ** The first docid written to the output is therefore encoded using the
- ** same number of bytes as it is in whichever of the input lists it is
- ** read from. And each subsequent docid read from the same input list
- ** consumes either the same or less bytes as it did in the input (since
- ** the difference between it and the previous value in the output must
- ** be a positive value less than or equal to the delta value read from
- ** the input list). The same argument applies to all but the first docid
- ** read from the 'other' list. And to the contents of all position lists
- ** that will be copied and merged from the input to the output.
- **
- ** However, if the first docid copied to the output is a negative number,
- ** then the encoding of the first docid from the 'other' input list may
- ** be larger in the output than it was in the input (since the delta value
- ** may be a larger positive integer than the actual docid).
- **
- ** The space required to store the output is therefore the sum of the
- ** sizes of the two inputs, plus enough space for exactly one of the input
- ** docids to grow.
- **
- ** A symetric argument may be made if the doclists are in descending
- ** order.
- */
- aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1);
- if( !aOut ) return SQLITE_NOMEM;
-
- p = aOut;
- fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
- fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
- while( p1 || p2 ){
- sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
-
- if( p2 && p1 && iDiff==0 ){
- fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
- fts3PoslistMerge(&p, &p1, &p2);
- fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
- fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
- }else if( !p2 || (p1 && iDiff<0) ){
- fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
- fts3PoslistCopy(&p, &p1);
- fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
- }else{
- fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
- fts3PoslistCopy(&p, &p2);
- fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
- }
- }
-
- *paOut = aOut;
- *pnOut = (int)(p-aOut);
- assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
- return SQLITE_OK;
-}
-
-/*
-** This function does a "phrase" merge of two doclists. In a phrase merge,
-** the output contains a copy of each position from the right-hand input
-** doclist for which there is a position in the left-hand input doclist
-** exactly nDist tokens before it.
-**
-** If the docids in the input doclists are sorted in ascending order,
-** parameter bDescDoclist should be false. If they are sorted in ascending
-** order, it should be passed a non-zero value.
-**
-** The right-hand input doclist is overwritten by this function.
-*/
-static void fts3DoclistPhraseMerge(
- int bDescDoclist, /* True if arguments are desc */
- int nDist, /* Distance from left to right (1=adjacent) */
- char *aLeft, int nLeft, /* Left doclist */
- char *aRight, int *pnRight /* IN/OUT: Right/output doclist */
-){
- sqlite3_int64 i1 = 0;
- sqlite3_int64 i2 = 0;
- sqlite3_int64 iPrev = 0;
- char *pEnd1 = &aLeft[nLeft];
- char *pEnd2 = &aRight[*pnRight];
- char *p1 = aLeft;
- char *p2 = aRight;
- char *p;
- int bFirstOut = 0;
- char *aOut = aRight;
-
- assert( nDist>0 );
-
- p = aOut;
- fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
- fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
-
- while( p1 && p2 ){
- sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
- if( iDiff==0 ){
- char *pSave = p;
- sqlite3_int64 iPrevSave = iPrev;
- int bFirstOutSave = bFirstOut;
-
- fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
- if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
- p = pSave;
- iPrev = iPrevSave;
- bFirstOut = bFirstOutSave;
- }
- fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
- fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
- }else if( iDiff<0 ){
- fts3PoslistCopy(0, &p1);
- fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
- }else{
- fts3PoslistCopy(0, &p2);
- fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
- }
- }
-
- *pnRight = (int)(p - aOut);
-}
-
-/*
-** Argument pList points to a position list nList bytes in size. This
-** function checks to see if the position list contains any entries for
-** a token in position 0 (of any column). If so, it writes argument iDelta
-** to the output buffer pOut, followed by a position list consisting only
-** of the entries from pList at position 0, and terminated by an 0x00 byte.
-** The value returned is the number of bytes written to pOut (if any).
-*/
-int sqlite3Fts3FirstFilter(
- sqlite3_int64 iDelta, /* Varint that may be written to pOut */
- char *pList, /* Position list (no 0x00 term) */
- int nList, /* Size of pList in bytes */
- char *pOut /* Write output here */
-){
- int nOut = 0;
- int bWritten = 0; /* True once iDelta has been written */
- char *p = pList;
- char *pEnd = &pList[nList];
-
- if( *p!=0x01 ){
- if( *p==0x02 ){
- nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
- pOut[nOut++] = 0x02;
- bWritten = 1;
- }
- fts3ColumnlistCopy(0, &p);
- }
-
- while( p<pEnd && *p==0x01 ){
- sqlite3_int64 iCol;
- p++;
- p += sqlite3Fts3GetVarint(p, &iCol);
- if( *p==0x02 ){
- if( bWritten==0 ){
- nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
- bWritten = 1;
- }
- pOut[nOut++] = 0x01;
- nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
- pOut[nOut++] = 0x02;
- }
- fts3ColumnlistCopy(0, &p);
- }
- if( bWritten ){
- pOut[nOut++] = 0x00;
- }
-
- return nOut;
-}
-
-
-/*
-** Merge all doclists in the TermSelect.aaOutput[] array into a single
-** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
-** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
-**
-** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
-** the responsibility of the caller to free any doclists left in the
-** TermSelect.aaOutput[] array.
-*/
-static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
- char *aOut = 0;
- int nOut = 0;
- int i;
-
- /* Loop through the doclists in the aaOutput[] array. Merge them all
- ** into a single doclist.
- */
- for(i=0; i<SizeofArray(pTS->aaOutput); i++){
- if( pTS->aaOutput[i] ){
- if( !aOut ){
- aOut = pTS->aaOutput[i];
- nOut = pTS->anOutput[i];
- pTS->aaOutput[i] = 0;
- }else{
- int nNew;
- char *aNew;
-
- int rc = fts3DoclistOrMerge(p->bDescIdx,
- pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
- );
- if( rc!=SQLITE_OK ){
- sqlite3_free(aOut);
- return rc;
- }
-
- sqlite3_free(pTS->aaOutput[i]);
- sqlite3_free(aOut);
- pTS->aaOutput[i] = 0;
- aOut = aNew;
- nOut = nNew;
- }
- }
- }
-
- pTS->aaOutput[0] = aOut;
- pTS->anOutput[0] = nOut;
- return SQLITE_OK;
-}
-
-/*
-** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
-** as the first argument. The merge is an "OR" merge (see function
-** fts3DoclistOrMerge() for details).
-**
-** This function is called with the doclist for each term that matches
-** a queried prefix. It merges all these doclists into one, the doclist
-** for the specified prefix. Since there can be a very large number of
-** doclists to merge, the merging is done pair-wise using the TermSelect
-** object.
-**
-** This function returns SQLITE_OK if the merge is successful, or an
-** SQLite error code (SQLITE_NOMEM) if an error occurs.
-*/
-static int fts3TermSelectMerge(
- Fts3Table *p, /* FTS table handle */
- TermSelect *pTS, /* TermSelect object to merge into */
- char *aDoclist, /* Pointer to doclist */
- int nDoclist /* Size of aDoclist in bytes */
-){
- if( pTS->aaOutput[0]==0 ){
- /* If this is the first term selected, copy the doclist to the output
- ** buffer using memcpy(). */
- pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
- pTS->anOutput[0] = nDoclist;
- if( pTS->aaOutput[0] ){
- memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
- }else{
- return SQLITE_NOMEM;
- }
- }else{
- char *aMerge = aDoclist;
- int nMerge = nDoclist;
- int iOut;
-
- for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
- if( pTS->aaOutput[iOut]==0 ){
- assert( iOut>0 );
- pTS->aaOutput[iOut] = aMerge;
- pTS->anOutput[iOut] = nMerge;
- break;
- }else{
- char *aNew;
- int nNew;
-
- int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
- pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
- );
- if( rc!=SQLITE_OK ){
- if( aMerge!=aDoclist ) sqlite3_free(aMerge);
- return rc;
- }
-
- if( aMerge!=aDoclist ) sqlite3_free(aMerge);
- sqlite3_free(pTS->aaOutput[iOut]);
- pTS->aaOutput[iOut] = 0;
-
- aMerge = aNew;
- nMerge = nNew;
- if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
- pTS->aaOutput[iOut] = aMerge;
- pTS->anOutput[iOut] = nMerge;
- }
- }
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
-*/
-static int fts3SegReaderCursorAppend(
- Fts3MultiSegReader *pCsr,
- Fts3SegReader *pNew
-){
- if( (pCsr->nSegment%16)==0 ){
- Fts3SegReader **apNew;
- int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
- apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
- if( !apNew ){
- sqlite3Fts3SegReaderFree(pNew);
- return SQLITE_NOMEM;
- }
- pCsr->apSegment = apNew;
- }
- pCsr->apSegment[pCsr->nSegment++] = pNew;
- return SQLITE_OK;
-}
-
-/*
-** Add seg-reader objects to the Fts3MultiSegReader object passed as the
-** 8th argument.
-**
-** This function returns SQLITE_OK if successful, or an SQLite error code
-** otherwise.
-*/
-static int fts3SegReaderCursor(
- Fts3Table *p, /* FTS3 table handle */
- int iLangid, /* Language id */
- int iIndex, /* Index to search (from 0 to p->nIndex-1) */
- int iLevel, /* Level of segments to scan */
- const char *zTerm, /* Term to query for */
- int nTerm, /* Size of zTerm in bytes */
- int isPrefix, /* True for a prefix search */
- int isScan, /* True to scan from zTerm to EOF */
- Fts3MultiSegReader *pCsr /* Cursor object to populate */
-){
- int rc = SQLITE_OK; /* Error code */
- sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
- int rc2; /* Result of sqlite3_reset() */
-
- /* If iLevel is less than 0 and this is not a scan, include a seg-reader
- ** for the pending-terms. If this is a scan, then this call must be being
- ** made by an fts4aux module, not an FTS table. In this case calling
- ** Fts3SegReaderPending might segfault, as the data structures used by
- ** fts4aux are not completely populated. So it's easiest to filter these
- ** calls out here. */
- if( iLevel<0 && p->aIndex ){
- Fts3SegReader *pSeg = 0;
- rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix, &pSeg);
- if( rc==SQLITE_OK && pSeg ){
- rc = fts3SegReaderCursorAppend(pCsr, pSeg);
- }
- }
-
- if( iLevel!=FTS3_SEGCURSOR_PENDING ){
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
- }
-
- while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
- Fts3SegReader *pSeg = 0;
-
- /* Read the values returned by the SELECT into local variables. */
- sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
- sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
- sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
- int nRoot = sqlite3_column_bytes(pStmt, 4);
- char const *zRoot = sqlite3_column_blob(pStmt, 4);
-
- /* If zTerm is not NULL, and this segment is not stored entirely on its
- ** root node, the range of leaves scanned can be reduced. Do this. */
- if( iStartBlock && zTerm ){
- sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
- rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
- if( rc!=SQLITE_OK ) goto finished;
- if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
- }
-
- rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
- (isPrefix==0 && isScan==0),
- iStartBlock, iLeavesEndBlock,
- iEndBlock, zRoot, nRoot, &pSeg
- );
- if( rc!=SQLITE_OK ) goto finished;
- rc = fts3SegReaderCursorAppend(pCsr, pSeg);
- }
- }
-
- finished:
- rc2 = sqlite3_reset(pStmt);
- if( rc==SQLITE_DONE ) rc = rc2;
-
- return rc;
-}
-
-/*
-** Set up a cursor object for iterating through a full-text index or a
-** single level therein.
-*/
-int sqlite3Fts3SegReaderCursor(
- Fts3Table *p, /* FTS3 table handle */
- int iLangid, /* Language-id to search */
- int iIndex, /* Index to search (from 0 to p->nIndex-1) */
- int iLevel, /* Level of segments to scan */
- const char *zTerm, /* Term to query for */
- int nTerm, /* Size of zTerm in bytes */
- int isPrefix, /* True for a prefix search */
- int isScan, /* True to scan from zTerm to EOF */
- Fts3MultiSegReader *pCsr /* Cursor object to populate */
-){
- assert( iIndex>=0 && iIndex<p->nIndex );
- assert( iLevel==FTS3_SEGCURSOR_ALL
- || iLevel==FTS3_SEGCURSOR_PENDING
- || iLevel>=0
- );
- assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
- assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
- assert( isPrefix==0 || isScan==0 );
-
- memset(pCsr, 0, sizeof(Fts3MultiSegReader));
- return fts3SegReaderCursor(
- p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
- );
-}
-
-/*
-** In addition to its current configuration, have the Fts3MultiSegReader
-** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
-**
-** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
-*/
-static int fts3SegReaderCursorAddZero(
- Fts3Table *p, /* FTS virtual table handle */
- int iLangid,
- const char *zTerm, /* Term to scan doclist of */
- int nTerm, /* Number of bytes in zTerm */
- Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
-){
- return fts3SegReaderCursor(p,
- iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
- );
-}
-
-/*
-** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
-** if isPrefix is true, to scan the doclist for all terms for which
-** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
-** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
-** an SQLite error code.
-**
-** It is the responsibility of the caller to free this object by eventually
-** passing it to fts3SegReaderCursorFree()
-**
-** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
-** Output parameter *ppSegcsr is set to 0 if an error occurs.
-*/
-static int fts3TermSegReaderCursor(
- Fts3Cursor *pCsr, /* Virtual table cursor handle */
- const char *zTerm, /* Term to query for */
- int nTerm, /* Size of zTerm in bytes */
- int isPrefix, /* True for a prefix search */
- Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
-){
- Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
- int rc = SQLITE_NOMEM; /* Return code */
-
- pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
- if( pSegcsr ){
- int i;
- int bFound = 0; /* True once an index has been found */
- Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
-
- if( isPrefix ){
- for(i=1; bFound==0 && i<p->nIndex; i++){
- if( p->aIndex[i].nPrefix==nTerm ){
- bFound = 1;
- rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
- i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
- );
- pSegcsr->bLookup = 1;
- }
- }
-
- for(i=1; bFound==0 && i<p->nIndex; i++){
- if( p->aIndex[i].nPrefix==nTerm+1 ){
- bFound = 1;
- rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
- i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
- );
- if( rc==SQLITE_OK ){
- rc = fts3SegReaderCursorAddZero(
- p, pCsr->iLangid, zTerm, nTerm, pSegcsr
- );
- }
- }
- }
- }
-
- if( bFound==0 ){
- rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
- 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
- );
- pSegcsr->bLookup = !isPrefix;
- }
- }
-
- *ppSegcsr = pSegcsr;
- return rc;
-}
-
-/*
-** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
-*/
-static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
- sqlite3Fts3SegReaderFinish(pSegcsr);
- sqlite3_free(pSegcsr);
-}
-
-/*
-** This function retreives the doclist for the specified term (or term
-** prefix) from the database.
-*/
-static int fts3TermSelect(
- Fts3Table *p, /* Virtual table handle */
- Fts3PhraseToken *pTok, /* Token to query for */
- int iColumn, /* Column to query (or -ve for all columns) */
- int *pnOut, /* OUT: Size of buffer at *ppOut */
- char **ppOut /* OUT: Malloced result buffer */
-){
- int rc; /* Return code */
- Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
- TermSelect tsc; /* Object for pair-wise doclist merging */
- Fts3SegFilter filter; /* Segment term filter configuration */
-
- pSegcsr = pTok->pSegcsr;
- memset(&tsc, 0, sizeof(TermSelect));
-
- filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
- | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
- | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
- | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
- filter.iCol = iColumn;
- filter.zTerm = pTok->z;
- filter.nTerm = pTok->n;
-
- rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
- while( SQLITE_OK==rc
- && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
- ){
- rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
- }
-
- if( rc==SQLITE_OK ){
- rc = fts3TermSelectFinishMerge(p, &tsc);
- }
- if( rc==SQLITE_OK ){
- *ppOut = tsc.aaOutput[0];
- *pnOut = tsc.anOutput[0];
- }else{
- int i;
- for(i=0; i<SizeofArray(tsc.aaOutput); i++){
- sqlite3_free(tsc.aaOutput[i]);
- }
- }
-
- fts3SegReaderCursorFree(pSegcsr);
- pTok->pSegcsr = 0;
- return rc;
-}
-
-/*
-** This function counts the total number of docids in the doclist stored
-** in buffer aList[], size nList bytes.
-**
-** If the isPoslist argument is true, then it is assumed that the doclist
-** contains a position-list following each docid. Otherwise, it is assumed
-** that the doclist is simply a list of docids stored as delta encoded
-** varints.
-*/
-static int fts3DoclistCountDocids(char *aList, int nList){
- int nDoc = 0; /* Return value */
- if( aList ){
- char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
- char *p = aList; /* Cursor */
- while( p<aEnd ){
- nDoc++;
- while( (*p++)&0x80 ); /* Skip docid varint */
- fts3PoslistCopy(0, &p); /* Skip over position list */
- }
- }
-
- return nDoc;
-}
-
-/*
-** Advance the cursor to the next row in the %_content table that
-** matches the search criteria. For a MATCH search, this will be
-** the next row that matches. For a full-table scan, this will be
-** simply the next row in the %_content table. For a docid lookup,
-** this routine simply sets the EOF flag.
-**
-** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
-** even if we reach end-of-file. The fts3EofMethod() will be called
-** subsequently to determine whether or not an EOF was hit.
-*/
-static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
- int rc;
- Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
- if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
- if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
- pCsr->isEof = 1;
- rc = sqlite3_reset(pCsr->pStmt);
- }else{
- pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
- rc = SQLITE_OK;
- }
- }else{
- rc = fts3EvalNext((Fts3Cursor *)pCursor);
- }
- assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
- return rc;
-}
-
-/*
-** This is the xFilter interface for the virtual table. See
-** the virtual table xFilter method documentation for additional
-** information.
-**
-** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
-** the %_content table.
-**
-** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
-** in the %_content table.
-**
-** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
-** column on the left-hand side of the MATCH operator is column
-** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
-** side of the MATCH operator.
-*/
-static int fts3FilterMethod(
- sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
- int idxNum, /* Strategy index */
- const char *idxStr, /* Unused */
- int nVal, /* Number of elements in apVal */
- sqlite3_value **apVal /* Arguments for the indexing scheme */
-){
- int rc;
- char *zSql; /* SQL statement used to access %_content */
- Fts3Table *p = (Fts3Table *)pCursor->pVtab;
- Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
-
- UNUSED_PARAMETER(idxStr);
- UNUSED_PARAMETER(nVal);
-
- assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
- assert( nVal==0 || nVal==1 || nVal==2 );
- assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
- assert( p->pSegments==0 );
-
- /* In case the cursor has been used before, clear it now. */
- sqlite3_finalize(pCsr->pStmt);
- sqlite3_free(pCsr->aDoclist);
- sqlite3Fts3ExprFree(pCsr->pExpr);
- memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
-
- if( idxStr ){
- pCsr->bDesc = (idxStr[0]=='D');
- }else{
- pCsr->bDesc = p->bDescIdx;
- }
- pCsr->eSearch = (i16)idxNum;
-
- if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
- int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
- const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
-
- if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
- return SQLITE_NOMEM;
- }
-
- pCsr->iLangid = 0;
- if( nVal==2 ) pCsr->iLangid = sqlite3_value_int(apVal[1]);
-
- rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
- p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr
- );
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_ERROR ){
- static const char *zErr = "malformed MATCH expression: [%s]";
- p->base.zErrMsg = sqlite3_mprintf(zErr, zQuery);
- }
- return rc;
- }
-
- rc = sqlite3Fts3ReadLock(p);
- if( rc!=SQLITE_OK ) return rc;
-
- rc = fts3EvalStart(pCsr);
-
- sqlite3Fts3SegmentsClose(p);
- if( rc!=SQLITE_OK ) return rc;
- pCsr->pNextId = pCsr->aDoclist;
- pCsr->iPrevId = 0;
- }
-
- /* Compile a SELECT statement for this cursor. For a full-table-scan, the
- ** statement loops through all rows of the %_content table. For a
- ** full-text query or docid lookup, the statement retrieves a single
- ** row by docid.
- */
- if( idxNum==FTS3_FULLSCAN_SEARCH ){
- zSql = sqlite3_mprintf(
- "SELECT %s ORDER BY rowid %s",
- p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
- );
- if( zSql ){
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
- sqlite3_free(zSql);
- }else{
- rc = SQLITE_NOMEM;
- }
- }else if( idxNum==FTS3_DOCID_SEARCH ){
- rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt);
- if( rc==SQLITE_OK ){
- rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
- }
- }
- if( rc!=SQLITE_OK ) return rc;
-
- return fts3NextMethod(pCursor);
-}
-
-/*
-** This is the xEof method of the virtual table. SQLite calls this
-** routine to find out if it has reached the end of a result set.
-*/
-static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
- return ((Fts3Cursor *)pCursor)->isEof;
-}
-
-/*
-** This is the xRowid method. The SQLite core calls this routine to
-** retrieve the rowid for the current row of the result set. fts3
-** exposes %_content.docid as the rowid for the virtual table. The
-** rowid should be written to *pRowid.
-*/
-static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
- Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
- *pRowid = pCsr->iPrevId;
- return SQLITE_OK;
-}
-
-/*
-** This is the xColumn method, called by SQLite to request a value from
-** the row that the supplied cursor currently points to.
-**
-** If:
-**
-** (iCol < p->nColumn) -> The value of the iCol'th user column.
-** (iCol == p->nColumn) -> Magic column with the same name as the table.
-** (iCol == p->nColumn+1) -> Docid column
-** (iCol == p->nColumn+2) -> Langid column
-*/
-static int fts3ColumnMethod(
- sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
- sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
- int iCol /* Index of column to read value from */
-){
- int rc = SQLITE_OK; /* Return Code */
- Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
- Fts3Table *p = (Fts3Table *)pCursor->pVtab;
-
- /* The column value supplied by SQLite must be in range. */
- assert( iCol>=0 && iCol<=p->nColumn+2 );
-
- if( iCol==p->nColumn+1 ){
- /* This call is a request for the "docid" column. Since "docid" is an
- ** alias for "rowid", use the xRowid() method to obtain the value.
- */
- sqlite3_result_int64(pCtx, pCsr->iPrevId);
- }else if( iCol==p->nColumn ){
- /* The extra column whose name is the same as the table.
- ** Return a blob which is a pointer to the cursor. */
- sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
- }else if( iCol==p->nColumn+2 && pCsr->pExpr ){
- sqlite3_result_int64(pCtx, pCsr->iLangid);
- }else{
- /* The requested column is either a user column (one that contains
- ** indexed data), or the language-id column. */
- rc = fts3CursorSeek(0, pCsr);
-
- if( rc==SQLITE_OK ){
- if( iCol==p->nColumn+2 ){
- int iLangid = 0;
- if( p->zLanguageid ){
- iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1);
- }
- sqlite3_result_int(pCtx, iLangid);
- }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){
- sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
- }
- }
- }
-
- assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
- return rc;
-}
-
-/*
-** This function is the implementation of the xUpdate callback used by
-** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
-** inserted, updated or deleted.
-*/
-static int fts3UpdateMethod(
- sqlite3_vtab *pVtab, /* Virtual table handle */
- int nArg, /* Size of argument array */
- sqlite3_value **apVal, /* Array of arguments */
- sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
-){
- return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
-}
-
-/*
-** Implementation of xSync() method. Flush the contents of the pending-terms
-** hash-table to the database.
-*/
-static int fts3SyncMethod(sqlite3_vtab *pVtab){
-
- /* Following an incremental-merge operation, assuming that the input
- ** segments are not completely consumed (the usual case), they are updated
- ** in place to remove the entries that have already been merged. This
- ** involves updating the leaf block that contains the smallest unmerged
- ** entry and each block (if any) between the leaf and the root node. So
- ** if the height of the input segment b-trees is N, and input segments
- ** are merged eight at a time, updating the input segments at the end
- ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
- ** small - often between 0 and 2. So the overhead of the incremental
- ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
- ** dwarfing the actual productive work accomplished, the incremental merge
- ** is only attempted if it will write at least 64 leaf blocks. Hence
- ** nMinMerge.
- **
- ** Of course, updating the input segments also involves deleting a bunch
- ** of blocks from the segments table. But this is not considered overhead
- ** as it would also be required by a crisis-merge that used the same input
- ** segments.
- */
- const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
-
- Fts3Table *p = (Fts3Table*)pVtab;
- int rc = sqlite3Fts3PendingTermsFlush(p);
-
- if( rc==SQLITE_OK && p->bAutoincrmerge==1 && p->nLeafAdd>(nMinMerge/16) ){
- int mxLevel = 0; /* Maximum relative level value in db */
- int A; /* Incr-merge parameter A */
-
- rc = sqlite3Fts3MaxLevel(p, &mxLevel);
- assert( rc==SQLITE_OK || mxLevel==0 );
- A = p->nLeafAdd * mxLevel;
- A += (A/2);
- if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, 8);
- }
- sqlite3Fts3SegmentsClose(p);
- return rc;
-}
-
-/*
-** Implementation of xBegin() method. This is a no-op.
-*/
-static int fts3BeginMethod(sqlite3_vtab *pVtab){
- Fts3Table *p = (Fts3Table*)pVtab;
- UNUSED_PARAMETER(pVtab);
- assert( p->pSegments==0 );
- assert( p->nPendingData==0 );
- assert( p->inTransaction!=1 );
- TESTONLY( p->inTransaction = 1 );
- TESTONLY( p->mxSavepoint = -1; );
- p->nLeafAdd = 0;
- return SQLITE_OK;
-}
-
-/*
-** Implementation of xCommit() method. This is a no-op. The contents of
-** the pending-terms hash-table have already been flushed into the database
-** by fts3SyncMethod().
-*/
-static int fts3CommitMethod(sqlite3_vtab *pVtab){
- TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
- UNUSED_PARAMETER(pVtab);
- assert( p->nPendingData==0 );
- assert( p->inTransaction!=0 );
- assert( p->pSegments==0 );
- TESTONLY( p->inTransaction = 0 );
- TESTONLY( p->mxSavepoint = -1; );
- return SQLITE_OK;
-}
-
-/*
-** Implementation of xRollback(). Discard the contents of the pending-terms
-** hash-table. Any changes made to the database are reverted by SQLite.
-*/
-static int fts3RollbackMethod(sqlite3_vtab *pVtab){
- Fts3Table *p = (Fts3Table*)pVtab;
- sqlite3Fts3PendingTermsClear(p);
- assert( p->inTransaction!=0 );
- TESTONLY( p->inTransaction = 0 );
- TESTONLY( p->mxSavepoint = -1; );
- return SQLITE_OK;
-}
-
-/*
-** When called, *ppPoslist must point to the byte immediately following the
-** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
-** moves *ppPoslist so that it instead points to the first byte of the
-** same position list.
-*/
-static void fts3ReversePoslist(char *pStart, char **ppPoslist){
- char *p = &(*ppPoslist)[-2];
- char c = 0;
-
- while( p>pStart && (c=*p--)==0 );
- while( p>pStart && (*p & 0x80) | c ){
- c = *p--;
- }
- if( p>pStart ){ p = &p[2]; }
- while( *p++&0x80 );
- *ppPoslist = p;
-}
-
-/*
-** Helper function used by the implementation of the overloaded snippet(),
-** offsets() and optimize() SQL functions.
-**
-** If the value passed as the third argument is a blob of size
-** sizeof(Fts3Cursor*), then the blob contents are copied to the
-** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
-** message is written to context pContext and SQLITE_ERROR returned. The
-** string passed via zFunc is used as part of the error message.
-*/
-static int fts3FunctionArg(
- sqlite3_context *pContext, /* SQL function call context */
- const char *zFunc, /* Function name */
- sqlite3_value *pVal, /* argv[0] passed to function */
- Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
-){
- Fts3Cursor *pRet;
- if( sqlite3_value_type(pVal)!=SQLITE_BLOB
- || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
- ){
- char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
- sqlite3_result_error(pContext, zErr, -1);
- sqlite3_free(zErr);
- return SQLITE_ERROR;
- }
- memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
- *ppCsr = pRet;
- return SQLITE_OK;
-}
-
-/*
-** Implementation of the snippet() function for FTS3
-*/
-static void fts3SnippetFunc(
- sqlite3_context *pContext, /* SQLite function call context */
- int nVal, /* Size of apVal[] array */
- sqlite3_value **apVal /* Array of arguments */
-){
- Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
- const char *zStart = "<b>";
- const char *zEnd = "</b>";
- const char *zEllipsis = "<b>...</b>";
- int iCol = -1;
- int nToken = 15; /* Default number of tokens in snippet */
-
- /* There must be at least one argument passed to this function (otherwise
- ** the non-overloaded version would have been called instead of this one).
- */
- assert( nVal>=1 );
-
- if( nVal>6 ){
- sqlite3_result_error(pContext,
- "wrong number of arguments to function snippet()", -1);
- return;
- }
- if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
-
- switch( nVal ){
- case 6: nToken = sqlite3_value_int(apVal[5]);
- case 5: iCol = sqlite3_value_int(apVal[4]);
- case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
- case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
- case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
- }
- if( !zEllipsis || !zEnd || !zStart ){
- sqlite3_result_error_nomem(pContext);
- }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
- sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
- }
-}
-
-/*
-** Implementation of the offsets() function for FTS3
-*/
-static void fts3OffsetsFunc(
- sqlite3_context *pContext, /* SQLite function call context */
- int nVal, /* Size of argument array */
- sqlite3_value **apVal /* Array of arguments */
-){
- Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
-
- UNUSED_PARAMETER(nVal);
-
- assert( nVal==1 );
- if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
- assert( pCsr );
- if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
- sqlite3Fts3Offsets(pContext, pCsr);
- }
-}
-
-/*
-** Implementation of the special optimize() function for FTS3. This
-** function merges all segments in the database to a single segment.
-** Example usage is:
-**
-** SELECT optimize(t) FROM t LIMIT 1;
-**
-** where 't' is the name of an FTS3 table.
-*/
-static void fts3OptimizeFunc(
- sqlite3_context *pContext, /* SQLite function call context */
- int nVal, /* Size of argument array */
- sqlite3_value **apVal /* Array of arguments */
-){
- int rc; /* Return code */
- Fts3Table *p; /* Virtual table handle */
- Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
-
- UNUSED_PARAMETER(nVal);
-
- assert( nVal==1 );
- if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
- p = (Fts3Table *)pCursor->base.pVtab;
- assert( p );
-
- rc = sqlite3Fts3Optimize(p);
-
- switch( rc ){
- case SQLITE_OK:
- sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
- break;
- case SQLITE_DONE:
- sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
- break;
- default:
- sqlite3_result_error_code(pContext, rc);
- break;
- }
-}
-
-/*
-** Implementation of the matchinfo() function for FTS3
-*/
-static void fts3MatchinfoFunc(
- sqlite3_context *pContext, /* SQLite function call context */
- int nVal, /* Size of argument array */
- sqlite3_value **apVal /* Array of arguments */
-){
- Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
- assert( nVal==1 || nVal==2 );
- if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
- const char *zArg = 0;
- if( nVal>1 ){
- zArg = (const char *)sqlite3_value_text(apVal[1]);
- }
- sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
- }
-}
-
-/*
-** This routine implements the xFindFunction method for the FTS3
-** virtual table.
-*/
-static int fts3FindFunctionMethod(
- sqlite3_vtab *pVtab, /* Virtual table handle */
- int nArg, /* Number of SQL function arguments */
- const char *zName, /* Name of SQL function */
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
- void **ppArg /* Unused */
-){
- struct Overloaded {
- const char *zName;
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
- } aOverload[] = {
- { "snippet", fts3SnippetFunc },
- { "offsets", fts3OffsetsFunc },
- { "optimize", fts3OptimizeFunc },
- { "matchinfo", fts3MatchinfoFunc },
- };
- int i; /* Iterator variable */
-
- UNUSED_PARAMETER(pVtab);
- UNUSED_PARAMETER(nArg);
- UNUSED_PARAMETER(ppArg);
-
- for(i=0; i<SizeofArray(aOverload); i++){
- if( strcmp(zName, aOverload[i].zName)==0 ){
- *pxFunc = aOverload[i].xFunc;
- return 1;
- }
- }
-
- /* No function of the specified name was found. Return 0. */
- return 0;
-}
-
-/*
-** Implementation of FTS3 xRename method. Rename an fts3 table.
-*/
-static int fts3RenameMethod(
- sqlite3_vtab *pVtab, /* Virtual table handle */
- const char *zName /* New name of table */
-){
- Fts3Table *p = (Fts3Table *)pVtab;
- sqlite3 *db = p->db; /* Database connection */
- int rc; /* Return Code */
-
- /* As it happens, the pending terms table is always empty here. This is
- ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
- ** always opens a savepoint transaction. And the xSavepoint() method
- ** flushes the pending terms table. But leave the (no-op) call to
- ** PendingTermsFlush() in in case that changes.
- */
- assert( p->nPendingData==0 );
- rc = sqlite3Fts3PendingTermsFlush(p);
-
- if( p->zContentTbl==0 ){
- fts3DbExec(&rc, db,
- "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
- p->zDb, p->zName, zName
- );
- }
-
- if( p->bHasDocsize ){
- fts3DbExec(&rc, db,
- "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
- p->zDb, p->zName, zName
- );
- }
- if( p->bHasStat ){
- fts3DbExec(&rc, db,
- "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
- p->zDb, p->zName, zName
- );
- }
- fts3DbExec(&rc, db,
- "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
- p->zDb, p->zName, zName
- );
- fts3DbExec(&rc, db,
- "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
- p->zDb, p->zName, zName
- );
- return rc;
-}
-
-/*
-** The xSavepoint() method.
-**
-** Flush the contents of the pending-terms table to disk.
-*/
-static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
- int rc = SQLITE_OK;
- UNUSED_PARAMETER(iSavepoint);
- assert( ((Fts3Table *)pVtab)->inTransaction );
- assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
- TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
- if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
- rc = fts3SyncMethod(pVtab);
- }
- return rc;
-}
-
-/*
-** The xRelease() method.
-**
-** This is a no-op.
-*/
-static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
- TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
- UNUSED_PARAMETER(iSavepoint);
- UNUSED_PARAMETER(pVtab);
- assert( p->inTransaction );
- assert( p->mxSavepoint >= iSavepoint );
- TESTONLY( p->mxSavepoint = iSavepoint-1 );
- return SQLITE_OK;
-}
-
-/*
-** The xRollbackTo() method.
-**
-** Discard the contents of the pending terms table.
-*/
-static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
- Fts3Table *p = (Fts3Table*)pVtab;
- UNUSED_PARAMETER(iSavepoint);
- assert( p->inTransaction );
- assert( p->mxSavepoint >= iSavepoint );
- TESTONLY( p->mxSavepoint = iSavepoint );
- sqlite3Fts3PendingTermsClear(p);
- return SQLITE_OK;
-}
-
-static const sqlite3_module fts3Module = {
- /* iVersion */ 2,
- /* xCreate */ fts3CreateMethod,
- /* xConnect */ fts3ConnectMethod,
- /* xBestIndex */ fts3BestIndexMethod,
- /* xDisconnect */ fts3DisconnectMethod,
- /* xDestroy */ fts3DestroyMethod,
- /* xOpen */ fts3OpenMethod,
- /* xClose */ fts3CloseMethod,
- /* xFilter */ fts3FilterMethod,
- /* xNext */ fts3NextMethod,
- /* xEof */ fts3EofMethod,
- /* xColumn */ fts3ColumnMethod,
- /* xRowid */ fts3RowidMethod,
- /* xUpdate */ fts3UpdateMethod,
- /* xBegin */ fts3BeginMethod,
- /* xSync */ fts3SyncMethod,
- /* xCommit */ fts3CommitMethod,
- /* xRollback */ fts3RollbackMethod,
- /* xFindFunction */ fts3FindFunctionMethod,
- /* xRename */ fts3RenameMethod,
- /* xSavepoint */ fts3SavepointMethod,
- /* xRelease */ fts3ReleaseMethod,
- /* xRollbackTo */ fts3RollbackToMethod,
-};
-
-/*
-** This function is registered as the module destructor (called when an
-** FTS3 enabled database connection is closed). It frees the memory
-** allocated for the tokenizer hash table.
-*/
-static void hashDestroy(void *p){
- Fts3Hash *pHash = (Fts3Hash *)p;
- sqlite3Fts3HashClear(pHash);
- sqlite3_free(pHash);
-}
-
-/*
-** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
-** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
-** respectively. The following three forward declarations are for functions
-** declared in these files used to retrieve the respective implementations.
-**
-** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
-** to by the argument to point to the "simple" tokenizer implementation.
-** And so on.
-*/
-void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
-void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
-#endif
-#ifdef SQLITE_ENABLE_ICU
-void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-#endif
-
-/*
-** Initialise the fts3 extension. If this extension is built as part
-** of the sqlite library, then this function is called directly by
-** SQLite. If fts3 is built as a dynamically loadable extension, this
-** function is called by the sqlite3_extension_init() entry point.
-*/
-int sqlite3Fts3Init(sqlite3 *db){
- int rc = SQLITE_OK;
- Fts3Hash *pHash = 0;
- const sqlite3_tokenizer_module *pSimple = 0;
- const sqlite3_tokenizer_module *pPorter = 0;
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
- const sqlite3_tokenizer_module *pUnicode = 0;
-#endif
-
-#ifdef SQLITE_ENABLE_ICU
- const sqlite3_tokenizer_module *pIcu = 0;
- sqlite3Fts3IcuTokenizerModule(&pIcu);
-#endif
-
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
- sqlite3Fts3UnicodeTokenizer(&pUnicode);
-#endif
-
-#ifdef SQLITE_TEST
- rc = sqlite3Fts3InitTerm(db);
- if( rc!=SQLITE_OK ) return rc;
-#endif
-
- rc = sqlite3Fts3InitAux(db);
- if( rc!=SQLITE_OK ) return rc;
-
- sqlite3Fts3SimpleTokenizerModule(&pSimple);
- sqlite3Fts3PorterTokenizerModule(&pPorter);
-
- /* Allocate and initialise the hash-table used to store tokenizers. */
- pHash = sqlite3_malloc(sizeof(Fts3Hash));
- if( !pHash ){
- rc = SQLITE_NOMEM;
- }else{
- sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
- }
-
- /* Load the built-in tokenizers into the hash table */
- if( rc==SQLITE_OK ){
- if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
- || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
-
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
- || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode)
-#endif
-#ifdef SQLITE_ENABLE_ICU
- || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
-#endif
- ){
- rc = SQLITE_NOMEM;
- }
- }
-
-#ifdef SQLITE_TEST
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3ExprInitTestInterface(db);
- }
-#endif
-
- /* Create the virtual table wrapper around the hash-table and overload
- ** the two scalar functions. If this is successful, register the
- ** module with sqlite.
- */
- if( SQLITE_OK==rc
- && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
- ){
- rc = sqlite3_create_module_v2(
- db, "fts3", &fts3Module, (void *)pHash, hashDestroy
- );
- if( rc==SQLITE_OK ){
- rc = sqlite3_create_module_v2(
- db, "fts4", &fts3Module, (void *)pHash, 0
- );
- }
- return rc;
- }
-
- /* An error has occurred. Delete the hash table and return the error code. */
- assert( rc!=SQLITE_OK );
- if( pHash ){
- sqlite3Fts3HashClear(pHash);
- sqlite3_free(pHash);
- }
- return rc;
-}
-
-/*
-** Allocate an Fts3MultiSegReader for each token in the expression headed
-** by pExpr.
-**
-** An Fts3SegReader object is a cursor that can seek or scan a range of
-** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
-** Fts3SegReader objects internally to provide an interface to seek or scan
-** within the union of all segments of a b-tree. Hence the name.
-**
-** If the allocated Fts3MultiSegReader just seeks to a single entry in a
-** segment b-tree (if the term is not a prefix or it is a prefix for which
-** there exists prefix b-tree of the right length) then it may be traversed
-** and merged incrementally. Otherwise, it has to be merged into an in-memory
-** doclist and then traversed.
-*/
-static void fts3EvalAllocateReaders(
- Fts3Cursor *pCsr, /* FTS cursor handle */
- Fts3Expr *pExpr, /* Allocate readers for this expression */
- int *pnToken, /* OUT: Total number of tokens in phrase. */
- int *pnOr, /* OUT: Total number of OR nodes in expr. */
- int *pRc /* IN/OUT: Error code */
-){
- if( pExpr && SQLITE_OK==*pRc ){
- if( pExpr->eType==FTSQUERY_PHRASE ){
- int i;
- int nToken = pExpr->pPhrase->nToken;
- *pnToken += nToken;
- for(i=0; i<nToken; i++){
- Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
- int rc = fts3TermSegReaderCursor(pCsr,
- pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
- );
- if( rc!=SQLITE_OK ){
- *pRc = rc;
- return;
- }
- }
- assert( pExpr->pPhrase->iDoclistToken==0 );
- pExpr->pPhrase->iDoclistToken = -1;
- }else{
- *pnOr += (pExpr->eType==FTSQUERY_OR);
- fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
- fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
- }
- }
-}
-
-/*
-** Arguments pList/nList contain the doclist for token iToken of phrase p.
-** It is merged into the main doclist stored in p->doclist.aAll/nAll.
-**
-** This function assumes that pList points to a buffer allocated using
-** sqlite3_malloc(). This function takes responsibility for eventually
-** freeing the buffer.
-*/
-static void fts3EvalPhraseMergeToken(
- Fts3Table *pTab, /* FTS Table pointer */
- Fts3Phrase *p, /* Phrase to merge pList/nList into */
- int iToken, /* Token pList/nList corresponds to */
- char *pList, /* Pointer to doclist */
- int nList /* Number of bytes in pList */
-){
- assert( iToken!=p->iDoclistToken );
-
- if( pList==0 ){
- sqlite3_free(p->doclist.aAll);
- p->doclist.aAll = 0;
- p->doclist.nAll = 0;
- }
-
- else if( p->iDoclistToken<0 ){
- p->doclist.aAll = pList;
- p->doclist.nAll = nList;
- }
-
- else if( p->doclist.aAll==0 ){
- sqlite3_free(pList);
- }
-
- else {
- char *pLeft;
- char *pRight;
- int nLeft;
- int nRight;
- int nDiff;
-
- if( p->iDoclistToken<iToken ){
- pLeft = p->doclist.aAll;
- nLeft = p->doclist.nAll;
- pRight = pList;
- nRight = nList;
- nDiff = iToken - p->iDoclistToken;
- }else{
- pRight = p->doclist.aAll;
- nRight = p->doclist.nAll;
- pLeft = pList;
- nLeft = nList;
- nDiff = p->iDoclistToken - iToken;
- }
-
- fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight);
- sqlite3_free(pLeft);
- p->doclist.aAll = pRight;
- p->doclist.nAll = nRight;
- }
-
- if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
-}
-
-/*
-** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
-** does not take deferred tokens into account.
-**
-** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
-*/
-static int fts3EvalPhraseLoad(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Phrase *p /* Phrase object */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int iToken;
- int rc = SQLITE_OK;
-
- for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
- Fts3PhraseToken *pToken = &p->aToken[iToken];
- assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
-
- if( pToken->pSegcsr ){
- int nThis = 0;
- char *pThis = 0;
- rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
- if( rc==SQLITE_OK ){
- fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
- }
- }
- assert( pToken->pSegcsr==0 );
- }
-
- return rc;
-}
-
-/*
-** This function is called on each phrase after the position lists for
-** any deferred tokens have been loaded into memory. It updates the phrases
-** current position list to include only those positions that are really
-** instances of the phrase (after considering deferred tokens). If this
-** means that the phrase does not appear in the current row, doclist.pList
-** and doclist.nList are both zeroed.
-**
-** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
-*/
-static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
- int iToken; /* Used to iterate through phrase tokens */
- char *aPoslist = 0; /* Position list for deferred tokens */
- int nPoslist = 0; /* Number of bytes in aPoslist */
- int iPrev = -1; /* Token number of previous deferred token */
-
- assert( pPhrase->doclist.bFreeList==0 );
-
- for(iToken=0; iToken<pPhrase->nToken; iToken++){
- Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
- Fts3DeferredToken *pDeferred = pToken->pDeferred;
-
- if( pDeferred ){
- char *pList;
- int nList;
- int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
- if( rc!=SQLITE_OK ) return rc;
-
- if( pList==0 ){
- sqlite3_free(aPoslist);
- pPhrase->doclist.pList = 0;
- pPhrase->doclist.nList = 0;
- return SQLITE_OK;
-
- }else if( aPoslist==0 ){
- aPoslist = pList;
- nPoslist = nList;
-
- }else{
- char *aOut = pList;
- char *p1 = aPoslist;
- char *p2 = aOut;
-
- assert( iPrev>=0 );
- fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
- sqlite3_free(aPoslist);
- aPoslist = pList;
- nPoslist = (int)(aOut - aPoslist);
- if( nPoslist==0 ){
- sqlite3_free(aPoslist);
- pPhrase->doclist.pList = 0;
- pPhrase->doclist.nList = 0;
- return SQLITE_OK;
- }
- }
- iPrev = iToken;
- }
- }
-
- if( iPrev>=0 ){
- int nMaxUndeferred = pPhrase->iDoclistToken;
- if( nMaxUndeferred<0 ){
- pPhrase->doclist.pList = aPoslist;
- pPhrase->doclist.nList = nPoslist;
- pPhrase->doclist.iDocid = pCsr->iPrevId;
- pPhrase->doclist.bFreeList = 1;
- }else{
- int nDistance;
- char *p1;
- char *p2;
- char *aOut;
-
- if( nMaxUndeferred>iPrev ){
- p1 = aPoslist;
- p2 = pPhrase->doclist.pList;
- nDistance = nMaxUndeferred - iPrev;
- }else{
- p1 = pPhrase->doclist.pList;
- p2 = aPoslist;
- nDistance = iPrev - nMaxUndeferred;
- }
-
- aOut = (char *)sqlite3_malloc(nPoslist+8);
- if( !aOut ){
- sqlite3_free(aPoslist);
- return SQLITE_NOMEM;
- }
-
- pPhrase->doclist.pList = aOut;
- if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
- pPhrase->doclist.bFreeList = 1;
- pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
- }else{
- sqlite3_free(aOut);
- pPhrase->doclist.pList = 0;
- pPhrase->doclist.nList = 0;
- }
- sqlite3_free(aPoslist);
- }
- }
-
- return SQLITE_OK;
-}
-
-/*
-** This function is called for each Fts3Phrase in a full-text query
-** expression to initialize the mechanism for returning rows. Once this
-** function has been called successfully on an Fts3Phrase, it may be
-** used with fts3EvalPhraseNext() to iterate through the matching docids.
-**
-** If parameter bOptOk is true, then the phrase may (or may not) use the
-** incremental loading strategy. Otherwise, the entire doclist is loaded into
-** memory within this call.
-**
-** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
-*/
-static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
- int rc; /* Error code */
- Fts3PhraseToken *pFirst = &p->aToken[0];
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
-
- if( pCsr->bDesc==pTab->bDescIdx
- && bOptOk==1
- && p->nToken==1
- && pFirst->pSegcsr
- && pFirst->pSegcsr->bLookup
- && pFirst->bFirst==0
- ){
- /* Use the incremental approach. */
- int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
- rc = sqlite3Fts3MsrIncrStart(
- pTab, pFirst->pSegcsr, iCol, pFirst->z, pFirst->n);
- p->bIncr = 1;
-
- }else{
- /* Load the full doclist for the phrase into memory. */
- rc = fts3EvalPhraseLoad(pCsr, p);
- p->bIncr = 0;
- }
-
- assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
- return rc;
-}
-
-/*
-** This function is used to iterate backwards (from the end to start)
-** through doclists. It is used by this module to iterate through phrase
-** doclists in reverse and by the fts3_write.c module to iterate through
-** pending-terms lists when writing to databases with "order=desc".
-**
-** The doclist may be sorted in ascending (parameter bDescIdx==0) or
-** descending (parameter bDescIdx==1) order of docid. Regardless, this
-** function iterates from the end of the doclist to the beginning.
-*/
-void sqlite3Fts3DoclistPrev(
- int bDescIdx, /* True if the doclist is desc */
- char *aDoclist, /* Pointer to entire doclist */
- int nDoclist, /* Length of aDoclist in bytes */
- char **ppIter, /* IN/OUT: Iterator pointer */
- sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
- int *pnList, /* OUT: List length pointer */
- u8 *pbEof /* OUT: End-of-file flag */
-){
- char *p = *ppIter;
-
- assert( nDoclist>0 );
- assert( *pbEof==0 );
- assert( p || *piDocid==0 );
- assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
-
- if( p==0 ){
- sqlite3_int64 iDocid = 0;
- char *pNext = 0;
- char *pDocid = aDoclist;
- char *pEnd = &aDoclist[nDoclist];
- int iMul = 1;
-
- while( pDocid<pEnd ){
- sqlite3_int64 iDelta;
- pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
- iDocid += (iMul * iDelta);
- pNext = pDocid;
- fts3PoslistCopy(0, &pDocid);
- while( pDocid<pEnd && *pDocid==0 ) pDocid++;
- iMul = (bDescIdx ? -1 : 1);
- }
-
- *pnList = (int)(pEnd - pNext);
- *ppIter = pNext;
- *piDocid = iDocid;
- }else{
- int iMul = (bDescIdx ? -1 : 1);
- sqlite3_int64 iDelta;
- fts3GetReverseVarint(&p, aDoclist, &iDelta);
- *piDocid -= (iMul * iDelta);
-
- if( p==aDoclist ){
- *pbEof = 1;
- }else{
- char *pSave = p;
- fts3ReversePoslist(aDoclist, &p);
- *pnList = (int)(pSave - p);
- }
- *ppIter = p;
- }
-}
-
-/*
-** Iterate forwards through a doclist.
-*/
-void sqlite3Fts3DoclistNext(
- int bDescIdx, /* True if the doclist is desc */
- char *aDoclist, /* Pointer to entire doclist */
- int nDoclist, /* Length of aDoclist in bytes */
- char **ppIter, /* IN/OUT: Iterator pointer */
- sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
- u8 *pbEof /* OUT: End-of-file flag */
-){
- char *p = *ppIter;
-
- assert( nDoclist>0 );
- assert( *pbEof==0 );
- assert( p || *piDocid==0 );
- assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
-
- if( p==0 ){
- p = aDoclist;
- p += sqlite3Fts3GetVarint(p, piDocid);
- }else{
- fts3PoslistCopy(0, &p);
- if( p>=&aDoclist[nDoclist] ){
- *pbEof = 1;
- }else{
- sqlite3_int64 iVar;
- p += sqlite3Fts3GetVarint(p, &iVar);
- *piDocid += ((bDescIdx ? -1 : 1) * iVar);
- }
- }
-
- *ppIter = p;
-}
-
-/*
-** Attempt to move the phrase iterator to point to the next matching docid.
-** If an error occurs, return an SQLite error code. Otherwise, return
-** SQLITE_OK.
-**
-** If there is no "next" entry and no error occurs, then *pbEof is set to
-** 1 before returning. Otherwise, if no error occurs and the iterator is
-** successfully advanced, *pbEof is set to 0.
-*/
-static int fts3EvalPhraseNext(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Phrase *p, /* Phrase object to advance to next docid */
- u8 *pbEof /* OUT: Set to 1 if EOF */
-){
- int rc = SQLITE_OK;
- Fts3Doclist *pDL = &p->doclist;
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
-
- if( p->bIncr ){
- assert( p->nToken==1 );
- assert( pDL->pNextDocid==0 );
- rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
- &pDL->iDocid, &pDL->pList, &pDL->nList
- );
- if( rc==SQLITE_OK && !pDL->pList ){
- *pbEof = 1;
- }
- }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
- sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
- &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
- );
- pDL->pList = pDL->pNextDocid;
- }else{
- char *pIter; /* Used to iterate through aAll */
- char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */
- if( pDL->pNextDocid ){
- pIter = pDL->pNextDocid;
- }else{
- pIter = pDL->aAll;
- }
-
- if( pIter>=pEnd ){
- /* We have already reached the end of this doclist. EOF. */
- *pbEof = 1;
- }else{
- sqlite3_int64 iDelta;
- pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
- if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
- pDL->iDocid += iDelta;
- }else{
- pDL->iDocid -= iDelta;
- }
- pDL->pList = pIter;
- fts3PoslistCopy(0, &pIter);
- pDL->nList = (int)(pIter - pDL->pList);
-
- /* pIter now points just past the 0x00 that terminates the position-
- ** list for document pDL->iDocid. However, if this position-list was
- ** edited in place by fts3EvalNearTrim(), then pIter may not actually
- ** point to the start of the next docid value. The following line deals
- ** with this case by advancing pIter past the zero-padding added by
- ** fts3EvalNearTrim(). */
- while( pIter<pEnd && *pIter==0 ) pIter++;
-
- pDL->pNextDocid = pIter;
- assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
- *pbEof = 0;
- }
- }
-
- return rc;
-}
-
-/*
-**
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
-** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
-** expression. Also the Fts3Expr.bDeferred variable is set to true for any
-** expressions for which all descendent tokens are deferred.
-**
-** If parameter bOptOk is zero, then it is guaranteed that the
-** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
-** each phrase in the expression (subject to deferred token processing).
-** Or, if bOptOk is non-zero, then one or more tokens within the expression
-** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
-**
-** If an error occurs within this function, *pRc is set to an SQLite error
-** code before returning.
-*/
-static void fts3EvalStartReaders(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Expr *pExpr, /* Expression to initialize phrases in */
- int bOptOk, /* True to enable incremental loading */
- int *pRc /* IN/OUT: Error code */
-){
- if( pExpr && SQLITE_OK==*pRc ){
- if( pExpr->eType==FTSQUERY_PHRASE ){
- int i;
- int nToken = pExpr->pPhrase->nToken;
- for(i=0; i<nToken; i++){
- if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
- }
- pExpr->bDeferred = (i==nToken);
- *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase);
- }else{
- fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc);
- fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc);
- pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
- }
- }
-}
-
-/*
-** An array of the following structures is assembled as part of the process
-** of selecting tokens to defer before the query starts executing (as part
-** of the xFilter() method). There is one element in the array for each
-** token in the FTS expression.
-**
-** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
-** to phrases that are connected only by AND and NEAR operators (not OR or
-** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
-** separately. The root of a tokens AND/NEAR cluster is stored in
-** Fts3TokenAndCost.pRoot.
-*/
-typedef struct Fts3TokenAndCost Fts3TokenAndCost;
-struct Fts3TokenAndCost {
- Fts3Phrase *pPhrase; /* The phrase the token belongs to */
- int iToken; /* Position of token in phrase */
- Fts3PhraseToken *pToken; /* The token itself */
- Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
- int nOvfl; /* Number of overflow pages to load doclist */
- int iCol; /* The column the token must match */
-};
-
-/*
-** This function is used to populate an allocated Fts3TokenAndCost array.
-**
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
-** Otherwise, if an error occurs during execution, *pRc is set to an
-** SQLite error code.
-*/
-static void fts3EvalTokenCosts(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
- Fts3Expr *pExpr, /* Expression to consider */
- Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
- Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
- int *pRc /* IN/OUT: Error code */
-){
- if( *pRc==SQLITE_OK ){
- if( pExpr->eType==FTSQUERY_PHRASE ){
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- int i;
- for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
- Fts3TokenAndCost *pTC = (*ppTC)++;
- pTC->pPhrase = pPhrase;
- pTC->iToken = i;
- pTC->pRoot = pRoot;
- pTC->pToken = &pPhrase->aToken[i];
- pTC->iCol = pPhrase->iColumn;
- *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
- }
- }else if( pExpr->eType!=FTSQUERY_NOT ){
- assert( pExpr->eType==FTSQUERY_OR
- || pExpr->eType==FTSQUERY_AND
- || pExpr->eType==FTSQUERY_NEAR
- );
- assert( pExpr->pLeft && pExpr->pRight );
- if( pExpr->eType==FTSQUERY_OR ){
- pRoot = pExpr->pLeft;
- **ppOr = pRoot;
- (*ppOr)++;
- }
- fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
- if( pExpr->eType==FTSQUERY_OR ){
- pRoot = pExpr->pRight;
- **ppOr = pRoot;
- (*ppOr)++;
- }
- fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
- }
- }
-}
-
-/*
-** Determine the average document (row) size in pages. If successful,
-** write this value to *pnPage and return SQLITE_OK. Otherwise, return
-** an SQLite error code.
-**
-** The average document size in pages is calculated by first calculating
-** determining the average size in bytes, B. If B is less than the amount
-** of data that will fit on a single leaf page of an intkey table in
-** this database, then the average docsize is 1. Otherwise, it is 1 plus
-** the number of overflow pages consumed by a record B bytes in size.
-*/
-static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
- if( pCsr->nRowAvg==0 ){
- /* The average document size, which is required to calculate the cost
- ** of each doclist, has not yet been determined. Read the required
- ** data from the %_stat table to calculate it.
- **
- ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
- ** varints, where nCol is the number of columns in the FTS3 table.
- ** The first varint is the number of documents currently stored in
- ** the table. The following nCol varints contain the total amount of
- ** data stored in all rows of each column of the table, from left
- ** to right.
- */
- int rc;
- Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
- sqlite3_stmt *pStmt;
- sqlite3_int64 nDoc = 0;
- sqlite3_int64 nByte = 0;
- const char *pEnd;
- const char *a;
-
- rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
- if( rc!=SQLITE_OK ) return rc;
- a = sqlite3_column_blob(pStmt, 0);
- assert( a );
-
- pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
- a += sqlite3Fts3GetVarint(a, &nDoc);
- while( a<pEnd ){
- a += sqlite3Fts3GetVarint(a, &nByte);
- }
- if( nDoc==0 || nByte==0 ){
- sqlite3_reset(pStmt);
- return FTS_CORRUPT_VTAB;
- }
-
- pCsr->nDoc = nDoc;
- pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
- assert( pCsr->nRowAvg>0 );
- rc = sqlite3_reset(pStmt);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- *pnPage = pCsr->nRowAvg;
- return SQLITE_OK;
-}
-
-/*
-** This function is called to select the tokens (if any) that will be
-** deferred. The array aTC[] has already been populated when this is
-** called.
-**
-** This function is called once for each AND/NEAR cluster in the
-** expression. Each invocation determines which tokens to defer within
-** the cluster with root node pRoot. See comments above the definition
-** of struct Fts3TokenAndCost for more details.
-**
-** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
-** called on each token to defer. Otherwise, an SQLite error code is
-** returned.
-*/
-static int fts3EvalSelectDeferred(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Expr *pRoot, /* Consider tokens with this root node */
- Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
- int nTC /* Number of entries in aTC[] */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int nDocSize = 0; /* Number of pages per doc loaded */
- int rc = SQLITE_OK; /* Return code */
- int ii; /* Iterator variable for various purposes */
- int nOvfl = 0; /* Total overflow pages used by doclists */
- int nToken = 0; /* Total number of tokens in cluster */
-
- int nMinEst = 0; /* The minimum count for any phrase so far. */
- int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
-
- /* Tokens are never deferred for FTS tables created using the content=xxx
- ** option. The reason being that it is not guaranteed that the content
- ** table actually contains the same data as the index. To prevent this from
- ** causing any problems, the deferred token optimization is completely
- ** disabled for content=xxx tables. */
- if( pTab->zContentTbl ){
- return SQLITE_OK;
- }
-
- /* Count the tokens in this AND/NEAR cluster. If none of the doclists
- ** associated with the tokens spill onto overflow pages, or if there is
- ** only 1 token, exit early. No tokens to defer in this case. */
- for(ii=0; ii<nTC; ii++){
- if( aTC[ii].pRoot==pRoot ){
- nOvfl += aTC[ii].nOvfl;
- nToken++;
- }
- }
- if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
-
- /* Obtain the average docsize (in pages). */
- rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
- assert( rc!=SQLITE_OK || nDocSize>0 );
-
-
- /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
- ** of the number of overflow pages that will be loaded by the pager layer
- ** to retrieve the entire doclist for the token from the full-text index.
- ** Load the doclists for tokens that are either:
- **
- ** a. The cheapest token in the entire query (i.e. the one visited by the
- ** first iteration of this loop), or
- **
- ** b. Part of a multi-token phrase.
- **
- ** After each token doclist is loaded, merge it with the others from the
- ** same phrase and count the number of documents that the merged doclist
- ** contains. Set variable "nMinEst" to the smallest number of documents in
- ** any phrase doclist for which 1 or more token doclists have been loaded.
- ** Let nOther be the number of other phrases for which it is certain that
- ** one or more tokens will not be deferred.
- **
- ** Then, for each token, defer it if loading the doclist would result in
- ** loading N or more overflow pages into memory, where N is computed as:
- **
- ** (nMinEst + 4^nOther - 1) / (4^nOther)
- */
- for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
- int iTC; /* Used to iterate through aTC[] array. */
- Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
-
- /* Set pTC to point to the cheapest remaining token. */
- for(iTC=0; iTC<nTC; iTC++){
- if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
- && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
- ){
- pTC = &aTC[iTC];
- }
- }
- assert( pTC );
-
- if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
- /* The number of overflow pages to load for this (and therefore all
- ** subsequent) tokens is greater than the estimated number of pages
- ** that will be loaded if all subsequent tokens are deferred.
- */
- Fts3PhraseToken *pToken = pTC->pToken;
- rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
- fts3SegReaderCursorFree(pToken->pSegcsr);
- pToken->pSegcsr = 0;
- }else{
- /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
- ** for-loop. Except, limit the value to 2^24 to prevent it from
- ** overflowing the 32-bit integer it is stored in. */
- if( ii<12 ) nLoad4 = nLoad4*4;
-
- if( ii==0 || pTC->pPhrase->nToken>1 ){
- /* Either this is the cheapest token in the entire query, or it is
- ** part of a multi-token phrase. Either way, the entire doclist will
- ** (eventually) be loaded into memory. It may as well be now. */
- Fts3PhraseToken *pToken = pTC->pToken;
- int nList = 0;
- char *pList = 0;
- rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
- assert( rc==SQLITE_OK || pList==0 );
- if( rc==SQLITE_OK ){
- int nCount;
- fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);
- nCount = fts3DoclistCountDocids(
- pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
- );
- if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
- }
- }
- }
- pTC->pToken = 0;
- }
-
- return rc;
-}
-
-/*
-** This function is called from within the xFilter method. It initializes
-** the full-text query currently stored in pCsr->pExpr. To iterate through
-** the results of a query, the caller does:
-**
-** fts3EvalStart(pCsr);
-** while( 1 ){
-** fts3EvalNext(pCsr);
-** if( pCsr->bEof ) break;
-** ... return row pCsr->iPrevId to the caller ...
-** }
-*/
-static int fts3EvalStart(Fts3Cursor *pCsr){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc = SQLITE_OK;
- int nToken = 0;
- int nOr = 0;
-
- /* Allocate a MultiSegReader for each token in the expression. */
- fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
-
- /* Determine which, if any, tokens in the expression should be deferred. */
-#ifndef SQLITE_DISABLE_FTS4_DEFERRED
- if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
- Fts3TokenAndCost *aTC;
- Fts3Expr **apOr;
- aTC = (Fts3TokenAndCost *)sqlite3_malloc(
- sizeof(Fts3TokenAndCost) * nToken
- + sizeof(Fts3Expr *) * nOr * 2
- );
- apOr = (Fts3Expr **)&aTC[nToken];
-
- if( !aTC ){
- rc = SQLITE_NOMEM;
- }else{
- int ii;
- Fts3TokenAndCost *pTC = aTC;
- Fts3Expr **ppOr = apOr;
-
- fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
- nToken = (int)(pTC-aTC);
- nOr = (int)(ppOr-apOr);
-
- if( rc==SQLITE_OK ){
- rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
- for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
- rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
- }
- }
-
- sqlite3_free(aTC);
- }
- }
-#endif
-
- fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc);
- return rc;
-}
-
-/*
-** Invalidate the current position list for phrase pPhrase.
-*/
-static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
- if( pPhrase->doclist.bFreeList ){
- sqlite3_free(pPhrase->doclist.pList);
- }
- pPhrase->doclist.pList = 0;
- pPhrase->doclist.nList = 0;
- pPhrase->doclist.bFreeList = 0;
-}
-
-/*
-** This function is called to edit the position list associated with
-** the phrase object passed as the fifth argument according to a NEAR
-** condition. For example:
-**
-** abc NEAR/5 "def ghi"
-**
-** Parameter nNear is passed the NEAR distance of the expression (5 in
-** the example above). When this function is called, *paPoslist points to
-** the position list, and *pnToken is the number of phrase tokens in, the
-** phrase on the other side of the NEAR operator to pPhrase. For example,
-** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
-** the position list associated with phrase "abc".
-**
-** All positions in the pPhrase position list that are not sufficiently
-** close to a position in the *paPoslist position list are removed. If this
-** leaves 0 positions, zero is returned. Otherwise, non-zero.
-**
-** Before returning, *paPoslist is set to point to the position lsit
-** associated with pPhrase. And *pnToken is set to the number of tokens in
-** pPhrase.
-*/
-static int fts3EvalNearTrim(
- int nNear, /* NEAR distance. As in "NEAR/nNear". */
- char *aTmp, /* Temporary space to use */
- char **paPoslist, /* IN/OUT: Position list */
- int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
- Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
-){
- int nParam1 = nNear + pPhrase->nToken;
- int nParam2 = nNear + *pnToken;
- int nNew;
- char *p2;
- char *pOut;
- int res;
-
- assert( pPhrase->doclist.pList );
-
- p2 = pOut = pPhrase->doclist.pList;
- res = fts3PoslistNearMerge(
- &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
- );
- if( res ){
- nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
- assert( pPhrase->doclist.pList[nNew]=='\0' );
- assert( nNew<=pPhrase->doclist.nList && nNew>0 );
- memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
- pPhrase->doclist.nList = nNew;
- *paPoslist = pPhrase->doclist.pList;
- *pnToken = pPhrase->nToken;
- }
-
- return res;
-}
-
-/*
-** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
-** Otherwise, it advances the expression passed as the second argument to
-** point to the next matching row in the database. Expressions iterate through
-** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
-** or descending if it is non-zero.
-**
-** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
-** successful, the following variables in pExpr are set:
-**
-** Fts3Expr.bEof (non-zero if EOF - there is no next row)
-** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
-**
-** If the expression is of type FTSQUERY_PHRASE, and the expression is not
-** at EOF, then the following variables are populated with the position list
-** for the phrase for the visited row:
-**
-** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
-** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
-**
-** It says above that this function advances the expression to the next
-** matching row. This is usually true, but there are the following exceptions:
-**
-** 1. Deferred tokens are not taken into account. If a phrase consists
-** entirely of deferred tokens, it is assumed to match every row in
-** the db. In this case the position-list is not populated at all.
-**
-** Or, if a phrase contains one or more deferred tokens and one or
-** more non-deferred tokens, then the expression is advanced to the
-** next possible match, considering only non-deferred tokens. In other
-** words, if the phrase is "A B C", and "B" is deferred, the expression
-** is advanced to the next row that contains an instance of "A * C",
-** where "*" may match any single token. The position list in this case
-** is populated as for "A * C" before returning.
-**
-** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
-** advanced to point to the next row that matches "x AND y".
-**
-** See fts3EvalTestDeferredAndNear() for details on testing if a row is
-** really a match, taking into account deferred tokens and NEAR operators.
-*/
-static void fts3EvalNextRow(
- Fts3Cursor *pCsr, /* FTS Cursor handle */
- Fts3Expr *pExpr, /* Expr. to advance to next matching row */
- int *pRc /* IN/OUT: Error code */
-){
- if( *pRc==SQLITE_OK ){
- int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
- assert( pExpr->bEof==0 );
- pExpr->bStart = 1;
-
- switch( pExpr->eType ){
- case FTSQUERY_NEAR:
- case FTSQUERY_AND: {
- Fts3Expr *pLeft = pExpr->pLeft;
- Fts3Expr *pRight = pExpr->pRight;
- assert( !pLeft->bDeferred || !pRight->bDeferred );
-
- if( pLeft->bDeferred ){
- /* LHS is entirely deferred. So we assume it matches every row.
- ** Advance the RHS iterator to find the next row visited. */
- fts3EvalNextRow(pCsr, pRight, pRc);
- pExpr->iDocid = pRight->iDocid;
- pExpr->bEof = pRight->bEof;
- }else if( pRight->bDeferred ){
- /* RHS is entirely deferred. So we assume it matches every row.
- ** Advance the LHS iterator to find the next row visited. */
- fts3EvalNextRow(pCsr, pLeft, pRc);
- pExpr->iDocid = pLeft->iDocid;
- pExpr->bEof = pLeft->bEof;
- }else{
- /* Neither the RHS or LHS are deferred. */
- fts3EvalNextRow(pCsr, pLeft, pRc);
- fts3EvalNextRow(pCsr, pRight, pRc);
- while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
- sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
- if( iDiff==0 ) break;
- if( iDiff<0 ){
- fts3EvalNextRow(pCsr, pLeft, pRc);
- }else{
- fts3EvalNextRow(pCsr, pRight, pRc);
- }
- }
- pExpr->iDocid = pLeft->iDocid;
- pExpr->bEof = (pLeft->bEof || pRight->bEof);
- }
- break;
- }
-
- case FTSQUERY_OR: {
- Fts3Expr *pLeft = pExpr->pLeft;
- Fts3Expr *pRight = pExpr->pRight;
- sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
-
- assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
- assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );
-
- if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
- fts3EvalNextRow(pCsr, pLeft, pRc);
- }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
- fts3EvalNextRow(pCsr, pRight, pRc);
- }else{
- fts3EvalNextRow(pCsr, pLeft, pRc);
- fts3EvalNextRow(pCsr, pRight, pRc);
- }
-
- pExpr->bEof = (pLeft->bEof && pRight->bEof);
- iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
- if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
- pExpr->iDocid = pLeft->iDocid;
- }else{
- pExpr->iDocid = pRight->iDocid;
- }
-
- break;
- }
-
- case FTSQUERY_NOT: {
- Fts3Expr *pLeft = pExpr->pLeft;
- Fts3Expr *pRight = pExpr->pRight;
-
- if( pRight->bStart==0 ){
- fts3EvalNextRow(pCsr, pRight, pRc);
- assert( *pRc!=SQLITE_OK || pRight->bStart );
- }
-
- fts3EvalNextRow(pCsr, pLeft, pRc);
- if( pLeft->bEof==0 ){
- while( !*pRc
- && !pRight->bEof
- && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
- ){
- fts3EvalNextRow(pCsr, pRight, pRc);
- }
- }
- pExpr->iDocid = pLeft->iDocid;
- pExpr->bEof = pLeft->bEof;
- break;
- }
-
- default: {
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- fts3EvalInvalidatePoslist(pPhrase);
- *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
- pExpr->iDocid = pPhrase->doclist.iDocid;
- break;
- }
- }
- }
-}
-
-/*
-** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
-** cluster, then this function returns 1 immediately.
-**
-** Otherwise, it checks if the current row really does match the NEAR
-** expression, using the data currently stored in the position lists
-** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
-**
-** If the current row is a match, the position list associated with each
-** phrase in the NEAR expression is edited in place to contain only those
-** phrase instances sufficiently close to their peers to satisfy all NEAR
-** constraints. In this case it returns 1. If the NEAR expression does not
-** match the current row, 0 is returned. The position lists may or may not
-** be edited if 0 is returned.
-*/
-static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
- int res = 1;
-
- /* The following block runs if pExpr is the root of a NEAR query.
- ** For example, the query:
- **
- ** "w" NEAR "x" NEAR "y" NEAR "z"
- **
- ** which is represented in tree form as:
- **
- ** |
- ** +--NEAR--+ <-- root of NEAR query
- ** | |
- ** +--NEAR--+ "z"
- ** | |
- ** +--NEAR--+ "y"
- ** | |
- ** "w" "x"
- **
- ** The right-hand child of a NEAR node is always a phrase. The
- ** left-hand child may be either a phrase or a NEAR node. There are
- ** no exceptions to this - it's the way the parser in fts3_expr.c works.
- */
- if( *pRc==SQLITE_OK
- && pExpr->eType==FTSQUERY_NEAR
- && pExpr->bEof==0
- && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
- ){
- Fts3Expr *p;
- int nTmp = 0; /* Bytes of temp space */
- char *aTmp; /* Temp space for PoslistNearMerge() */
-
- /* Allocate temporary working space. */
- for(p=pExpr; p->pLeft; p=p->pLeft){
- nTmp += p->pRight->pPhrase->doclist.nList;
- }
- nTmp += p->pPhrase->doclist.nList;
- if( nTmp==0 ){
- res = 0;
- }else{
- aTmp = sqlite3_malloc(nTmp*2);
- if( !aTmp ){
- *pRc = SQLITE_NOMEM;
- res = 0;
- }else{
- char *aPoslist = p->pPhrase->doclist.pList;
- int nToken = p->pPhrase->nToken;
-
- for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
- Fts3Phrase *pPhrase = p->pRight->pPhrase;
- int nNear = p->nNear;
- res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
- }
-
- aPoslist = pExpr->pRight->pPhrase->doclist.pList;
- nToken = pExpr->pRight->pPhrase->nToken;
- for(p=pExpr->pLeft; p && res; p=p->pLeft){
- int nNear;
- Fts3Phrase *pPhrase;
- assert( p->pParent && p->pParent->pLeft==p );
- nNear = p->pParent->nNear;
- pPhrase = (
- p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
- );
- res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
- }
- }
-
- sqlite3_free(aTmp);
- }
- }
-
- return res;
-}
-
-/*
-** This function is a helper function for fts3EvalTestDeferredAndNear().
-** Assuming no error occurs or has occurred, It returns non-zero if the
-** expression passed as the second argument matches the row that pCsr
-** currently points to, or zero if it does not.
-**
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
-** If an error occurs during execution of this function, *pRc is set to
-** the appropriate SQLite error code. In this case the returned value is
-** undefined.
-*/
-static int fts3EvalTestExpr(
- Fts3Cursor *pCsr, /* FTS cursor handle */
- Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
- int *pRc /* IN/OUT: Error code */
-){
- int bHit = 1; /* Return value */
- if( *pRc==SQLITE_OK ){
- switch( pExpr->eType ){
- case FTSQUERY_NEAR:
- case FTSQUERY_AND:
- bHit = (
- fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
- && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
- && fts3EvalNearTest(pExpr, pRc)
- );
-
- /* If the NEAR expression does not match any rows, zero the doclist for
- ** all phrases involved in the NEAR. This is because the snippet(),
- ** offsets() and matchinfo() functions are not supposed to recognize
- ** any instances of phrases that are part of unmatched NEAR queries.
- ** For example if this expression:
- **
- ** ... MATCH 'a OR (b NEAR c)'
- **
- ** is matched against a row containing:
- **
- ** 'a b d e'
- **
- ** then any snippet() should ony highlight the "a" term, not the "b"
- ** (as "b" is part of a non-matching NEAR clause).
- */
- if( bHit==0
- && pExpr->eType==FTSQUERY_NEAR
- && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
- ){
- Fts3Expr *p;
- for(p=pExpr; p->pPhrase==0; p=p->pLeft){
- if( p->pRight->iDocid==pCsr->iPrevId ){
- fts3EvalInvalidatePoslist(p->pRight->pPhrase);
- }
- }
- if( p->iDocid==pCsr->iPrevId ){
- fts3EvalInvalidatePoslist(p->pPhrase);
- }
- }
-
- break;
-
- case FTSQUERY_OR: {
- int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
- int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
- bHit = bHit1 || bHit2;
- break;
- }
-
- case FTSQUERY_NOT:
- bHit = (
- fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
- && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
- );
- break;
-
- default: {
-#ifndef SQLITE_DISABLE_FTS4_DEFERRED
- if( pCsr->pDeferred
- && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
- ){
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
- if( pExpr->bDeferred ){
- fts3EvalInvalidatePoslist(pPhrase);
- }
- *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
- bHit = (pPhrase->doclist.pList!=0);
- pExpr->iDocid = pCsr->iPrevId;
- }else
-#endif
- {
- bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
- }
- break;
- }
- }
- }
- return bHit;
-}
-
-/*
-** This function is called as the second part of each xNext operation when
-** iterating through the results of a full-text query. At this point the
-** cursor points to a row that matches the query expression, with the
-** following caveats:
-**
-** * Up until this point, "NEAR" operators in the expression have been
-** treated as "AND".
-**
-** * Deferred tokens have not yet been considered.
-**
-** If *pRc is not SQLITE_OK when this function is called, it immediately
-** returns 0. Otherwise, it tests whether or not after considering NEAR
-** operators and deferred tokens the current row is still a match for the
-** expression. It returns 1 if both of the following are true:
-**
-** 1. *pRc is SQLITE_OK when this function returns, and
-**
-** 2. After scanning the current FTS table row for the deferred tokens,
-** it is determined that the row does *not* match the query.
-**
-** Or, if no error occurs and it seems the current row does match the FTS
-** query, return 0.
-*/
-static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){
- int rc = *pRc;
- int bMiss = 0;
- if( rc==SQLITE_OK ){
-
- /* If there are one or more deferred tokens, load the current row into
- ** memory and scan it to determine the position list for each deferred
- ** token. Then, see if this row is really a match, considering deferred
- ** tokens and NEAR operators (neither of which were taken into account
- ** earlier, by fts3EvalNextRow()).
- */
- if( pCsr->pDeferred ){
- rc = fts3CursorSeek(0, pCsr);
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
- }
- }
- bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
-
- /* Free the position-lists accumulated for each deferred token above. */
- sqlite3Fts3FreeDeferredDoclists(pCsr);
- *pRc = rc;
- }
- return (rc==SQLITE_OK && bMiss);
-}
-
-/*
-** Advance to the next document that matches the FTS expression in
-** Fts3Cursor.pExpr.
-*/
-static int fts3EvalNext(Fts3Cursor *pCsr){
- int rc = SQLITE_OK; /* Return Code */
- Fts3Expr *pExpr = pCsr->pExpr;
- assert( pCsr->isEof==0 );
- if( pExpr==0 ){
- pCsr->isEof = 1;
- }else{
- do {
- if( pCsr->isRequireSeek==0 ){
- sqlite3_reset(pCsr->pStmt);
- }
- assert( sqlite3_data_count(pCsr->pStmt)==0 );
- fts3EvalNextRow(pCsr, pExpr, &rc);
- pCsr->isEof = pExpr->bEof;
- pCsr->isRequireSeek = 1;
- pCsr->isMatchinfoNeeded = 1;
- pCsr->iPrevId = pExpr->iDocid;
- }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) );
- }
- return rc;
-}
-
-/*
-** Restart interation for expression pExpr so that the next call to
-** fts3EvalNext() visits the first row. Do not allow incremental
-** loading or merging of phrase doclists for this iteration.
-**
-** If *pRc is other than SQLITE_OK when this function is called, it is
-** a no-op. If an error occurs within this function, *pRc is set to an
-** SQLite error code before returning.
-*/
-static void fts3EvalRestart(
- Fts3Cursor *pCsr,
- Fts3Expr *pExpr,
- int *pRc
-){
- if( pExpr && *pRc==SQLITE_OK ){
- Fts3Phrase *pPhrase = pExpr->pPhrase;
-
- if( pPhrase ){
- fts3EvalInvalidatePoslist(pPhrase);
- if( pPhrase->bIncr ){
- assert( pPhrase->nToken==1 );
- assert( pPhrase->aToken[0].pSegcsr );
- sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr);
- *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
- }
-
- pPhrase->doclist.pNextDocid = 0;
- pPhrase->doclist.iDocid = 0;
- }
-
- pExpr->iDocid = 0;
- pExpr->bEof = 0;
- pExpr->bStart = 0;
-
- fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
- fts3EvalRestart(pCsr, pExpr->pRight, pRc);
- }
-}
-
-/*
-** After allocating the Fts3Expr.aMI[] array for each phrase in the
-** expression rooted at pExpr, the cursor iterates through all rows matched
-** by pExpr, calling this function for each row. This function increments
-** the values in Fts3Expr.aMI[] according to the position-list currently
-** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
-** expression nodes.
-*/
-static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
- if( pExpr ){
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- if( pPhrase && pPhrase->doclist.pList ){
- int iCol = 0;
- char *p = pPhrase->doclist.pList;
-
- assert( *p );
- while( 1 ){
- u8 c = 0;
- int iCnt = 0;
- while( 0xFE & (*p | c) ){
- if( (c&0x80)==0 ) iCnt++;
- c = *p++ & 0x80;
- }
-
- /* aMI[iCol*3 + 1] = Number of occurrences
- ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
- */
- pExpr->aMI[iCol*3 + 1] += iCnt;
- pExpr->aMI[iCol*3 + 2] += (iCnt>0);
- if( *p==0x00 ) break;
- p++;
- p += sqlite3Fts3GetVarint32(p, &iCol);
- }
- }
-
- fts3EvalUpdateCounts(pExpr->pLeft);
- fts3EvalUpdateCounts(pExpr->pRight);
- }
-}
-
-/*
-** Expression pExpr must be of type FTSQUERY_PHRASE.
-**
-** If it is not already allocated and populated, this function allocates and
-** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
-** of a NEAR expression, then it also allocates and populates the same array
-** for all other phrases that are part of the NEAR expression.
-**
-** SQLITE_OK is returned if the aMI[] array is successfully allocated and
-** populated. Otherwise, if an error occurs, an SQLite error code is returned.
-*/
-static int fts3EvalGatherStats(
- Fts3Cursor *pCsr, /* Cursor object */
- Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
-){
- int rc = SQLITE_OK; /* Return code */
-
- assert( pExpr->eType==FTSQUERY_PHRASE );
- if( pExpr->aMI==0 ){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- Fts3Expr *pRoot; /* Root of NEAR expression */
- Fts3Expr *p; /* Iterator used for several purposes */
-
- sqlite3_int64 iPrevId = pCsr->iPrevId;
- sqlite3_int64 iDocid;
- u8 bEof;
-
- /* Find the root of the NEAR expression */
- pRoot = pExpr;
- while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
- pRoot = pRoot->pParent;
- }
- iDocid = pRoot->iDocid;
- bEof = pRoot->bEof;
- assert( pRoot->bStart );
-
- /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
- for(p=pRoot; p; p=p->pLeft){
- Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
- assert( pE->aMI==0 );
- pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
- if( !pE->aMI ) return SQLITE_NOMEM;
- memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
- }
-
- fts3EvalRestart(pCsr, pRoot, &rc);
-
- while( pCsr->isEof==0 && rc==SQLITE_OK ){
-
- do {
- /* Ensure the %_content statement is reset. */
- if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
- assert( sqlite3_data_count(pCsr->pStmt)==0 );
-
- /* Advance to the next document */
- fts3EvalNextRow(pCsr, pRoot, &rc);
- pCsr->isEof = pRoot->bEof;
- pCsr->isRequireSeek = 1;
- pCsr->isMatchinfoNeeded = 1;
- pCsr->iPrevId = pRoot->iDocid;
- }while( pCsr->isEof==0
- && pRoot->eType==FTSQUERY_NEAR
- && fts3EvalTestDeferredAndNear(pCsr, &rc)
- );
-
- if( rc==SQLITE_OK && pCsr->isEof==0 ){
- fts3EvalUpdateCounts(pRoot);
- }
- }
-
- pCsr->isEof = 0;
- pCsr->iPrevId = iPrevId;
-
- if( bEof ){
- pRoot->bEof = bEof;
- }else{
- /* Caution: pRoot may iterate through docids in ascending or descending
- ** order. For this reason, even though it seems more defensive, the
- ** do loop can not be written:
- **
- ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
- */
- fts3EvalRestart(pCsr, pRoot, &rc);
- do {
- fts3EvalNextRow(pCsr, pRoot, &rc);
- assert( pRoot->bEof==0 );
- }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
- fts3EvalTestDeferredAndNear(pCsr, &rc);
- }
- }
- return rc;
-}
-
-/*
-** This function is used by the matchinfo() module to query a phrase
-** expression node for the following information:
-**
-** 1. The total number of occurrences of the phrase in each column of
-** the FTS table (considering all rows), and
-**
-** 2. For each column, the number of rows in the table for which the
-** column contains at least one instance of the phrase.
-**
-** If no error occurs, SQLITE_OK is returned and the values for each column
-** written into the array aiOut as follows:
-**
-** aiOut[iCol*3 + 1] = Number of occurrences
-** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
-**
-** Caveats:
-**
-** * If a phrase consists entirely of deferred tokens, then all output
-** values are set to the number of documents in the table. In other
-** words we assume that very common tokens occur exactly once in each
-** column of each row of the table.
-**
-** * If a phrase contains some deferred tokens (and some non-deferred
-** tokens), count the potential occurrence identified by considering
-** the non-deferred tokens instead of actual phrase occurrences.
-**
-** * If the phrase is part of a NEAR expression, then only phrase instances
-** that meet the NEAR constraint are included in the counts.
-*/
-int sqlite3Fts3EvalPhraseStats(
- Fts3Cursor *pCsr, /* FTS cursor handle */
- Fts3Expr *pExpr, /* Phrase expression */
- u32 *aiOut /* Array to write results into (see above) */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc = SQLITE_OK;
- int iCol;
-
- if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
- assert( pCsr->nDoc>0 );
- for(iCol=0; iCol<pTab->nColumn; iCol++){
- aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
- aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
- }
- }else{
- rc = fts3EvalGatherStats(pCsr, pExpr);
- if( rc==SQLITE_OK ){
- assert( pExpr->aMI );
- for(iCol=0; iCol<pTab->nColumn; iCol++){
- aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
- aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
- }
- }
- }
-
- return rc;
-}
-
-/*
-** The expression pExpr passed as the second argument to this function
-** must be of type FTSQUERY_PHRASE.
-**
-** The returned value is either NULL or a pointer to a buffer containing
-** a position-list indicating the occurrences of the phrase in column iCol
-** of the current row.
-**
-** More specifically, the returned buffer contains 1 varint for each
-** occurence of the phrase in the column, stored using the normal (delta+2)
-** compression and is terminated by either an 0x01 or 0x00 byte. For example,
-** if the requested column contains "a b X c d X X" and the position-list
-** for 'X' is requested, the buffer returned may contain:
-**
-** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
-**
-** This function works regardless of whether or not the phrase is deferred,
-** incremental, or neither.
-*/
-int sqlite3Fts3EvalPhrasePoslist(
- Fts3Cursor *pCsr, /* FTS3 cursor object */
- Fts3Expr *pExpr, /* Phrase to return doclist for */
- int iCol, /* Column to return position list for */
- char **ppOut /* OUT: Pointer to position list */
-){
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- char *pIter;
- int iThis;
- sqlite3_int64 iDocid;
-
- /* If this phrase is applies specifically to some column other than
- ** column iCol, return a NULL pointer. */
- *ppOut = 0;
- assert( iCol>=0 && iCol<pTab->nColumn );
- if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
- return SQLITE_OK;
- }
-
- iDocid = pExpr->iDocid;
- pIter = pPhrase->doclist.pList;
- if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
- int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
- int bOr = 0;
- u8 bEof = 0;
- Fts3Expr *p;
-
- /* Check if this phrase descends from an OR expression node. If not,
- ** return NULL. Otherwise, the entry that corresponds to docid
- ** pCsr->iPrevId may lie earlier in the doclist buffer. */
- for(p=pExpr->pParent; p; p=p->pParent){
- if( p->eType==FTSQUERY_OR ) bOr = 1;
- }
- if( bOr==0 ) return SQLITE_OK;
-
- /* This is the descendent of an OR node. In this case we cannot use
- ** an incremental phrase. Load the entire doclist for the phrase
- ** into memory in this case. */
- if( pPhrase->bIncr ){
- int rc = SQLITE_OK;
- int bEofSave = pExpr->bEof;
- fts3EvalRestart(pCsr, pExpr, &rc);
- while( rc==SQLITE_OK && !pExpr->bEof ){
- fts3EvalNextRow(pCsr, pExpr, &rc);
- if( bEofSave==0 && pExpr->iDocid==iDocid ) break;
- }
- pIter = pPhrase->doclist.pList;
- assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
- if( rc!=SQLITE_OK ) return rc;
- }
-
- if( pExpr->bEof ){
- pIter = 0;
- iDocid = 0;
- }
- bEof = (pPhrase->doclist.nAll==0);
- assert( bDescDoclist==0 || bDescDoclist==1 );
- assert( pCsr->bDesc==0 || pCsr->bDesc==1 );
-
- if( pCsr->bDesc==bDescDoclist ){
- int dummy;
- while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
- sqlite3Fts3DoclistPrev(
- bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll,
- &pIter, &iDocid, &dummy, &bEof
- );
- }
- }else{
- while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
- sqlite3Fts3DoclistNext(
- bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll,
- &pIter, &iDocid, &bEof
- );
- }
- }
-
- if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0;
- }
- if( pIter==0 ) return SQLITE_OK;
-
- if( *pIter==0x01 ){
- pIter++;
- pIter += sqlite3Fts3GetVarint32(pIter, &iThis);
- }else{
- iThis = 0;
- }
- while( iThis<iCol ){
- fts3ColumnlistCopy(0, &pIter);
- if( *pIter==0x00 ) return 0;
- pIter++;
- pIter += sqlite3Fts3GetVarint32(pIter, &iThis);
- }
-
- *ppOut = ((iCol==iThis)?pIter:0);
- return SQLITE_OK;
-}
-
-/*
-** Free all components of the Fts3Phrase structure that were allocated by
-** the eval module. Specifically, this means to free:
-**
-** * the contents of pPhrase->doclist, and
-** * any Fts3MultiSegReader objects held by phrase tokens.
-*/
-void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
- if( pPhrase ){
- int i;
- sqlite3_free(pPhrase->doclist.aAll);
- fts3EvalInvalidatePoslist(pPhrase);
- memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
- for(i=0; i<pPhrase->nToken; i++){
- fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
- pPhrase->aToken[i].pSegcsr = 0;
- }
- }
-}
-
-
-/*
-** Return SQLITE_CORRUPT_VTAB.
-*/
-#ifdef SQLITE_DEBUG
-int sqlite3Fts3Corrupt(){
- return SQLITE_CORRUPT_VTAB;
-}
-#endif
-
-#if !SQLITE_CORE
-/*
-** Initialize API pointer table, if required.
-*/
-int fts4_extension_init(
- sqlite3 *db,
- char **pzErrMsg,
- void *pApi
-){
- SQLITE_EXTENSION_INIT2(pApi)
- return sqlite3Fts3Init(db);
-}
-#endif
-
-#endif
diff --git a/src/libtracker-fts/fts3.h b/src/libtracker-fts/fts3.h
deleted file mode 100644
index b0346826d..000000000
--- a/src/libtracker-fts/fts3.h
+++ /dev/null
@@ -1,32 +0,0 @@
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This header file is used by programs that want to link against the
-** FTS3 library. All it does is declare the sqlite3Fts3Init() interface.
-*/
-#include "sqlite3.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-
-int sqlite3Fts3Init(sqlite3 *db);
-
-int fts4_extension_init(
- sqlite3 *db,
- char **pzErrMsg,
- void *pApi
-);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif /* __cplusplus */
diff --git a/src/libtracker-fts/fts3Int.h b/src/libtracker-fts/fts3Int.h
deleted file mode 100644
index 77ca4704e..000000000
--- a/src/libtracker-fts/fts3Int.h
+++ /dev/null
@@ -1,560 +0,0 @@
-/*
-** 2009 Nov 12
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-*/
-#ifndef _FTSINT_H
-#define _FTSINT_H
-
-#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
-# define NDEBUG 1
-#endif
-
-/*
-** FTS4 is really an extension for FTS3. It is enabled using the
-** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all
-** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
-*/
-#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
-# define SQLITE_ENABLE_FTS3
-#endif
-
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-/* If not building as part of the core, include sqlite3ext.h. */
-#ifndef SQLITE_CORE
-# include "sqlite3ext.h"
-extern const sqlite3_api_routines *sqlite3_api;
-#endif
-
-#include "sqlite3.h"
-#include "fts3_tokenizer.h"
-#include "fts3_hash.h"
-
-/*
-** This constant controls how often segments are merged. Once there are
-** FTS3_MERGE_COUNT segments of level N, they are merged into a single
-** segment of level N+1.
-*/
-#define FTS3_MERGE_COUNT 16
-
-/*
-** This is the maximum amount of data (in bytes) to store in the
-** Fts3Table.pendingTerms hash table. Normally, the hash table is
-** populated as documents are inserted/updated/deleted in a transaction
-** and used to create a new segment when the transaction is committed.
-** However if this limit is reached midway through a transaction, a new
-** segment is created and the hash table cleared immediately.
-*/
-#define FTS3_MAX_PENDING_DATA (1*1024*1024)
-
-/*
-** Macro to return the number of elements in an array. SQLite has a
-** similar macro called ArraySize(). Use a different name to avoid
-** a collision when building an amalgamation with built-in FTS3.
-*/
-#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))
-
-
-#ifndef MIN
-# define MIN(x,y) ((x)<(y)?(x):(y))
-#endif
-#ifndef MAX
-# define MAX(x,y) ((x)>(y)?(x):(y))
-#endif
-
-/*
-** Maximum length of a varint encoded integer. The varint format is different
-** from that used by SQLite, so the maximum length is 10, not 9.
-*/
-#define FTS3_VARINT_MAX 10
-
-/*
-** FTS4 virtual tables may maintain multiple indexes - one index of all terms
-** in the document set and zero or more prefix indexes. All indexes are stored
-** as one or more b+-trees in the %_segments and %_segdir tables.
-**
-** It is possible to determine which index a b+-tree belongs to based on the
-** value stored in the "%_segdir.level" column. Given this value L, the index
-** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with
-** level values between 0 and 1023 (inclusive) belong to index 0, all levels
-** between 1024 and 2047 to index 1, and so on.
-**
-** It is considered impossible for an index to use more than 1024 levels. In
-** theory though this may happen, but only after at least
-** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables.
-*/
-#define FTS3_SEGDIR_MAXLEVEL 1024
-#define FTS3_SEGDIR_MAXLEVEL_STR "1024"
-
-/*
-** The testcase() macro is only used by the amalgamation. If undefined,
-** make it a no-op.
-*/
-#ifndef testcase
-# define testcase(X)
-#endif
-
-/*
-** Terminator values for position-lists and column-lists.
-*/
-#define POS_COLUMN (1) /* Column-list terminator */
-#define POS_END (0) /* Position-list terminator */
-
-/*
-** This section provides definitions to allow the
-** FTS3 extension to be compiled outside of the
-** amalgamation.
-*/
-#ifndef SQLITE_AMALGAMATION
-/*
-** Macros indicating that conditional expressions are always true or
-** false.
-*/
-#ifdef SQLITE_COVERAGE_TEST
-# define ALWAYS(x) (1)
-# define NEVER(X) (0)
-#else
-# define ALWAYS(x) (x)
-# define NEVER(x) (x)
-#endif
-
-/*
-** Internal types used by SQLite.
-*/
-typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */
-typedef short int i16; /* 2-byte (or larger) signed integer */
-typedef unsigned int u32; /* 4-byte unsigned integer */
-typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */
-typedef sqlite3_int64 i64; /* 8-byte signed integer */
-
-/*
-** Macro used to suppress compiler warnings for unused parameters.
-*/
-#define UNUSED_PARAMETER(x) (void)(x)
-
-/*
-** Activate assert() only if SQLITE_TEST is enabled.
-*/
-#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
-# define NDEBUG 1
-#endif
-
-/*
-** The TESTONLY macro is used to enclose variable declarations or
-** other bits of code that are needed to support the arguments
-** within testcase() and assert() macros.
-*/
-#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
-# define TESTONLY(X) X
-#else
-# define TESTONLY(X)
-#endif
-
-#endif /* SQLITE_AMALGAMATION */
-
-#ifdef SQLITE_DEBUG
-int sqlite3Fts3Corrupt(void);
-# define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt()
-#else
-# define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB
-#endif
-
-typedef struct Fts3Table Fts3Table;
-typedef struct Fts3Cursor Fts3Cursor;
-typedef struct Fts3Expr Fts3Expr;
-typedef struct Fts3Phrase Fts3Phrase;
-typedef struct Fts3PhraseToken Fts3PhraseToken;
-
-typedef struct Fts3Doclist Fts3Doclist;
-typedef struct Fts3SegFilter Fts3SegFilter;
-typedef struct Fts3DeferredToken Fts3DeferredToken;
-typedef struct Fts3SegReader Fts3SegReader;
-typedef struct Fts3MultiSegReader Fts3MultiSegReader;
-
-/*
-** A connection to a fulltext index is an instance of the following
-** structure. The xCreate and xConnect methods create an instance
-** of this structure and xDestroy and xDisconnect free that instance.
-** All other methods receive a pointer to the structure as one of their
-** arguments.
-*/
-struct Fts3Table {
- sqlite3_vtab base; /* Base class used by SQLite core */
- sqlite3 *db; /* The database connection */
- const char *zDb; /* logical database name */
- const char *zName; /* virtual table name */
- int nColumn; /* number of named columns in virtual table */
- char **azColumn; /* column names. malloced */
- sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
- char *zContentTbl; /* content=xxx option, or NULL */
- char *zLanguageid; /* languageid=xxx option, or NULL */
- u8 bAutoincrmerge; /* True if automerge=1 */
- u32 nLeafAdd; /* Number of leaf blocks added this trans */
-
- /* Precompiled statements used by the implementation. Each of these
- ** statements is run and reset within a single virtual table API call.
- */
- sqlite3_stmt *aStmt[37];
-
- char *zReadExprlist;
- char *zWriteExprlist;
-
- int nNodeSize; /* Soft limit for node size */
- u8 bFts4; /* True for FTS4, false for FTS3 */
- u8 bHasStat; /* True if %_stat table exists */
- u8 bHasDocsize; /* True if %_docsize table exists */
- u8 bDescIdx; /* True if doclists are in reverse order */
- u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */
- int nPgsz; /* Page size for host database */
- char *zSegmentsTbl; /* Name of %_segments table */
- sqlite3_blob *pSegments; /* Blob handle open on %_segments table */
-
- /*
- ** The following array of hash tables is used to buffer pending index
- ** updates during transactions. All pending updates buffered at any one
- ** time must share a common language-id (see the FTS4 langid= feature).
- ** The current language id is stored in variable iPrevLangid.
- **
- ** A single FTS4 table may have multiple full-text indexes. For each index
- ** there is an entry in the aIndex[] array. Index 0 is an index of all the
- ** terms that appear in the document set. Each subsequent index in aIndex[]
- ** is an index of prefixes of a specific length.
- **
- ** Variable nPendingData contains an estimate the memory consumed by the
- ** pending data structures, including hash table overhead, but not including
- ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash
- ** tables are flushed to disk. Variable iPrevDocid is the docid of the most
- ** recently inserted record.
- */
- int nIndex; /* Size of aIndex[] */
- struct Fts3Index {
- int nPrefix; /* Prefix length (0 for main terms index) */
- Fts3Hash hPending; /* Pending terms table for this index */
- } *aIndex;
- int nMaxPendingData; /* Max pending data before flush to disk */
- int nPendingData; /* Current bytes of pending data */
- sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */
- int iPrevLangid; /* Langid of recently inserted document */
-
-#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
- /* State variables used for validating that the transaction control
- ** methods of the virtual table are called at appropriate times. These
- ** values do not contribute to FTS functionality; they are used for
- ** verifying the operation of the SQLite core.
- */
- int inTransaction; /* True after xBegin but before xCommit/xRollback */
- int mxSavepoint; /* Largest valid xSavepoint integer */
-#endif
-};
-
-/*
-** When the core wants to read from the virtual table, it creates a
-** virtual table cursor (an instance of the following structure) using
-** the xOpen method. Cursors are destroyed using the xClose method.
-*/
-struct Fts3Cursor {
- sqlite3_vtab_cursor base; /* Base class used by SQLite core */
- i16 eSearch; /* Search strategy (see below) */
- u8 isEof; /* True if at End Of Results */
- u8 isRequireSeek; /* True if must seek pStmt to %_content row */
- sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
- Fts3Expr *pExpr; /* Parsed MATCH query string */
- int iLangid; /* Language being queried for */
- int nPhrase; /* Number of matchable phrases in query */
- Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */
- sqlite3_int64 iPrevId; /* Previous id read from aDoclist */
- char *pNextId; /* Pointer into the body of aDoclist */
- char *aDoclist; /* List of docids for full-text queries */
- int nDoclist; /* Size of buffer at aDoclist */
- u8 bDesc; /* True to sort in descending order */
- int eEvalmode; /* An FTS3_EVAL_XX constant */
- int nRowAvg; /* Average size of database rows, in pages */
- sqlite3_int64 nDoc; /* Documents in table */
-
- int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */
- u32 *aMatchinfo; /* Information about most recent match */
- int nMatchinfo; /* Number of elements in aMatchinfo[] */
- char *zMatchinfo; /* Matchinfo specification */
-};
-
-#define FTS3_EVAL_FILTER 0
-#define FTS3_EVAL_NEXT 1
-#define FTS3_EVAL_MATCHINFO 2
-
-/*
-** The Fts3Cursor.eSearch member is always set to one of the following.
-** Actualy, Fts3Cursor.eSearch can be greater than or equal to
-** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index
-** of the column to be searched. For example, in
-**
-** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d);
-** SELECT docid FROM ex1 WHERE b MATCH 'one two three';
-**
-** Because the LHS of the MATCH operator is 2nd column "b",
-** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a,
-** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1"
-** indicating that all columns should be searched,
-** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
-*/
-#define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */
-#define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */
-#define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */
-
-
-struct Fts3Doclist {
- char *aAll; /* Array containing doclist (or NULL) */
- int nAll; /* Size of a[] in bytes */
- char *pNextDocid; /* Pointer to next docid */
-
- sqlite3_int64 iDocid; /* Current docid (if pList!=0) */
- int bFreeList; /* True if pList should be sqlite3_free()d */
- char *pList; /* Pointer to position list following iDocid */
- int nList; /* Length of position list */
-};
-
-/*
-** A "phrase" is a sequence of one or more tokens that must match in
-** sequence. A single token is the base case and the most common case.
-** For a sequence of tokens contained in double-quotes (i.e. "one two three")
-** nToken will be the number of tokens in the string.
-*/
-struct Fts3PhraseToken {
- char *z; /* Text of the token */
- int n; /* Number of bytes in buffer z */
- int isPrefix; /* True if token ends with a "*" character */
- int bFirst; /* True if token must appear at position 0 */
-
- /* Variables above this point are populated when the expression is
- ** parsed (by code in fts3_expr.c). Below this point the variables are
- ** used when evaluating the expression. */
- Fts3DeferredToken *pDeferred; /* Deferred token object for this token */
- Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */
-};
-
-struct Fts3Phrase {
- /* Cache of doclist for this phrase. */
- Fts3Doclist doclist;
- int bIncr; /* True if doclist is loaded incrementally */
- int iDoclistToken;
-
- /* Variables below this point are populated by fts3_expr.c when parsing
- ** a MATCH expression. Everything above is part of the evaluation phase.
- */
- int nToken; /* Number of tokens in the phrase */
- int iColumn; /* Index of column this phrase must match */
- Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
-};
-
-/*
-** A tree of these objects forms the RHS of a MATCH operator.
-**
-** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist
-** points to a malloced buffer, size nDoclist bytes, containing the results
-** of this phrase query in FTS3 doclist format. As usual, the initial
-** "Length" field found in doclists stored on disk is omitted from this
-** buffer.
-**
-** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global
-** matchinfo data. If it is not NULL, it points to an array of size nCol*3,
-** where nCol is the number of columns in the queried FTS table. The array
-** is populated as follows:
-**
-** aMI[iCol*3 + 0] = Undefined
-** aMI[iCol*3 + 1] = Number of occurrences
-** aMI[iCol*3 + 2] = Number of rows containing at least one instance
-**
-** The aMI array is allocated using sqlite3_malloc(). It should be freed
-** when the expression node is.
-*/
-struct Fts3Expr {
- int eType; /* One of the FTSQUERY_XXX values defined below */
- int nNear; /* Valid if eType==FTSQUERY_NEAR */
- Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */
- Fts3Expr *pLeft; /* Left operand */
- Fts3Expr *pRight; /* Right operand */
- Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */
-
- /* The following are used by the fts3_eval.c module. */
- sqlite3_int64 iDocid; /* Current docid */
- u8 bEof; /* True this expression is at EOF already */
- u8 bStart; /* True if iDocid is valid */
- u8 bDeferred; /* True if this expression is entirely deferred */
-
- u32 *aMI;
-};
-
-/*
-** Candidate values for Fts3Query.eType. Note that the order of the first
-** four values is in order of precedence when parsing expressions. For
-** example, the following:
-**
-** "a OR b AND c NOT d NEAR e"
-**
-** is equivalent to:
-**
-** "a OR (b AND (c NOT (d NEAR e)))"
-*/
-#define FTSQUERY_NEAR 1
-#define FTSQUERY_NOT 2
-#define FTSQUERY_AND 3
-#define FTSQUERY_OR 4
-#define FTSQUERY_PHRASE 5
-
-
-/* fts3_write.c */
-int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
-int sqlite3Fts3PendingTermsFlush(Fts3Table *);
-void sqlite3Fts3PendingTermsClear(Fts3Table *);
-int sqlite3Fts3Optimize(Fts3Table *);
-int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64,
- sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
-int sqlite3Fts3SegReaderPending(
- Fts3Table*,int,const char*,int,int,Fts3SegReader**);
-void sqlite3Fts3SegReaderFree(Fts3SegReader *);
-int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
-int sqlite3Fts3ReadLock(Fts3Table *);
-int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);
-
-int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
-int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);
-
-#ifndef SQLITE_DISABLE_FTS4_DEFERRED
-void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
-int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
-int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
-void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
-int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);
-#else
-# define sqlite3Fts3FreeDeferredTokens(x)
-# define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK
-# define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK
-# define sqlite3Fts3FreeDeferredDoclists(x)
-# define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK
-#endif
-
-void sqlite3Fts3SegmentsClose(Fts3Table *);
-int sqlite3Fts3MaxLevel(Fts3Table *, int *);
-
-/* Special values interpreted by sqlite3SegReaderCursor() */
-#define FTS3_SEGCURSOR_PENDING -1
-#define FTS3_SEGCURSOR_ALL -2
-
-int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*);
-int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *);
-void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *);
-
-int sqlite3Fts3SegReaderCursor(Fts3Table *,
- int, int, int, const char *, int, int, int, Fts3MultiSegReader *);
-
-/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
-#define FTS3_SEGMENT_REQUIRE_POS 0x00000001
-#define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002
-#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
-#define FTS3_SEGMENT_PREFIX 0x00000008
-#define FTS3_SEGMENT_SCAN 0x00000010
-#define FTS3_SEGMENT_FIRST 0x00000020
-
-/* Type passed as 4th argument to SegmentReaderIterate() */
-struct Fts3SegFilter {
- const char *zTerm;
- int nTerm;
- int iCol;
- int flags;
-};
-
-struct Fts3MultiSegReader {
- /* Used internally by sqlite3Fts3SegReaderXXX() calls */
- Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */
- int nSegment; /* Size of apSegment array */
- int nAdvance; /* How many seg-readers to advance */
- Fts3SegFilter *pFilter; /* Pointer to filter object */
- char *aBuffer; /* Buffer to merge doclists in */
- int nBuffer; /* Allocated size of aBuffer[] in bytes */
-
- int iColFilter; /* If >=0, filter for this column */
- int bRestart;
-
- /* Used by fts3.c only. */
- int nCost; /* Cost of running iterator */
- int bLookup; /* True if a lookup of a single entry. */
-
- /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
- char *zTerm; /* Pointer to term buffer */
- int nTerm; /* Size of zTerm in bytes */
- char *aDoclist; /* Pointer to doclist buffer */
- int nDoclist; /* Size of aDoclist[] in bytes */
-};
-
-int sqlite3Fts3Incrmerge(Fts3Table*,int,int);
-
-/* fts3.c */
-int sqlite3Fts3PutVarint(char *, sqlite3_int64);
-int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
-int sqlite3Fts3GetVarint32(const char *, int *);
-int sqlite3Fts3VarintLen(sqlite3_uint64);
-void sqlite3Fts3Dequote(char *);
-void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);
-int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);
-int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *);
-void sqlite3Fts3CreateStatTable(int*, Fts3Table*);
-
-/* fts3_tokenizer.c */
-const char *sqlite3Fts3NextToken(const char *, int *);
-int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
-int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *,
- sqlite3_tokenizer **, char **
-);
-int sqlite3Fts3IsIdChar(char);
-
-/* fts3_snippet.c */
-void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*);
-void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *,
- const char *, const char *, int, int
-);
-void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *);
-
-/* fts3_expr.c */
-int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int,
- char **, int, int, int, const char *, int, Fts3Expr **
-);
-void sqlite3Fts3ExprFree(Fts3Expr *);
-#ifdef SQLITE_TEST
-int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
-int sqlite3Fts3InitTerm(sqlite3 *db);
-#endif
-
-int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int,
- sqlite3_tokenizer_cursor **
-);
-
-/* fts3_aux.c */
-int sqlite3Fts3InitAux(sqlite3 *db);
-
-void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);
-
-int sqlite3Fts3MsrIncrStart(
- Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
-int sqlite3Fts3MsrIncrNext(
- Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
-int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **);
-int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
-int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);
-
-/* fts3_unicode2.c (functions generated by parsing unicode text files) */
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
-int sqlite3FtsUnicodeFold(int, int);
-int sqlite3FtsUnicodeIsalnum(int);
-int sqlite3FtsUnicodeIsdiacritic(int);
-#endif
-
-#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
-#endif /* _FTSINT_H */
diff --git a/src/libtracker-fts/fts3_aux.c b/src/libtracker-fts/fts3_aux.c
deleted file mode 100644
index a2bff2e1d..000000000
--- a/src/libtracker-fts/fts3_aux.c
+++ /dev/null
@@ -1,474 +0,0 @@
-/*
-** 2011 Jan 27
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <string.h>
-#include <assert.h>
-
-typedef struct Fts3auxTable Fts3auxTable;
-typedef struct Fts3auxCursor Fts3auxCursor;
-
-struct Fts3auxTable {
- sqlite3_vtab base; /* Base class used by SQLite core */
- Fts3Table *pFts3Tab;
-};
-
-struct Fts3auxCursor {
- sqlite3_vtab_cursor base; /* Base class used by SQLite core */
- Fts3MultiSegReader csr; /* Must be right after "base" */
- Fts3SegFilter filter;
- char *zStop;
- int nStop; /* Byte-length of string zStop */
- int isEof; /* True if cursor is at EOF */
- sqlite3_int64 iRowid; /* Current rowid */
-
- int iCol; /* Current value of 'col' column */
- int nStat; /* Size of aStat[] array */
- struct Fts3auxColstats {
- sqlite3_int64 nDoc; /* 'documents' values for current csr row */
- sqlite3_int64 nOcc; /* 'occurrences' values for current csr row */
- } *aStat;
-};
-
-/*
-** Schema of the terms table.
-*/
-#define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, col, documents, occurrences)"
-
-/*
-** This function does all the work for both the xConnect and xCreate methods.
-** These tables have no persistent representation of their own, so xConnect
-** and xCreate are identical operations.
-*/
-static int fts3auxConnectMethod(
- sqlite3 *db, /* Database connection */
- void *pUnused, /* Unused */
- int argc, /* Number of elements in argv array */
- const char * const *argv, /* xCreate/xConnect argument array */
- sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
- char **pzErr /* OUT: sqlite3_malloc'd error message */
-){
- char const *zDb; /* Name of database (e.g. "main") */
- char const *zFts3; /* Name of fts3 table */
- int nDb; /* Result of strlen(zDb) */
- int nFts3; /* Result of strlen(zFts3) */
- int nByte; /* Bytes of space to allocate here */
- int rc; /* value returned by declare_vtab() */
- Fts3auxTable *p; /* Virtual table object to return */
-
- UNUSED_PARAMETER(pUnused);
-
- /* The user should specify a single argument - the name of an fts3 table. */
- if( argc!=4 ){
- *pzErr = sqlite3_mprintf(
- "wrong number of arguments to fts4aux constructor"
- );
- return SQLITE_ERROR;
- }
-
- zDb = argv[1];
- nDb = (int)strlen(zDb);
- zFts3 = argv[3];
- nFts3 = (int)strlen(zFts3);
-
- rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
- if( rc!=SQLITE_OK ) return rc;
-
- nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
- p = (Fts3auxTable *)sqlite3_malloc(nByte);
- if( !p ) return SQLITE_NOMEM;
- memset(p, 0, nByte);
-
- p->pFts3Tab = (Fts3Table *)&p[1];
- p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
- p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
- p->pFts3Tab->db = db;
- p->pFts3Tab->nIndex = 1;
-
- memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
- memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
- sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
-
- *ppVtab = (sqlite3_vtab *)p;
- return SQLITE_OK;
-}
-
-/*
-** This function does the work for both the xDisconnect and xDestroy methods.
-** These tables have no persistent representation of their own, so xDisconnect
-** and xDestroy are identical operations.
-*/
-static int fts3auxDisconnectMethod(sqlite3_vtab *pVtab){
- Fts3auxTable *p = (Fts3auxTable *)pVtab;
- Fts3Table *pFts3 = p->pFts3Tab;
- int i;
-
- /* Free any prepared statements held */
- for(i=0; i<SizeofArray(pFts3->aStmt); i++){
- sqlite3_finalize(pFts3->aStmt[i]);
- }
- sqlite3_free(pFts3->zSegmentsTbl);
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-#define FTS4AUX_EQ_CONSTRAINT 1
-#define FTS4AUX_GE_CONSTRAINT 2
-#define FTS4AUX_LE_CONSTRAINT 4
-
-/*
-** xBestIndex - Analyze a WHERE and ORDER BY clause.
-*/
-static int fts3auxBestIndexMethod(
- sqlite3_vtab *pVTab,
- sqlite3_index_info *pInfo
-){
- int i;
- int iEq = -1;
- int iGe = -1;
- int iLe = -1;
-
- UNUSED_PARAMETER(pVTab);
-
- /* This vtab delivers always results in "ORDER BY term ASC" order. */
- if( pInfo->nOrderBy==1
- && pInfo->aOrderBy[0].iColumn==0
- && pInfo->aOrderBy[0].desc==0
- ){
- pInfo->orderByConsumed = 1;
- }
-
- /* Search for equality and range constraints on the "term" column. */
- for(i=0; i<pInfo->nConstraint; i++){
- if( pInfo->aConstraint[i].usable && pInfo->aConstraint[i].iColumn==0 ){
- int op = pInfo->aConstraint[i].op;
- if( op==SQLITE_INDEX_CONSTRAINT_EQ ) iEq = i;
- if( op==SQLITE_INDEX_CONSTRAINT_LT ) iLe = i;
- if( op==SQLITE_INDEX_CONSTRAINT_LE ) iLe = i;
- if( op==SQLITE_INDEX_CONSTRAINT_GT ) iGe = i;
- if( op==SQLITE_INDEX_CONSTRAINT_GE ) iGe = i;
- }
- }
-
- if( iEq>=0 ){
- pInfo->idxNum = FTS4AUX_EQ_CONSTRAINT;
- pInfo->aConstraintUsage[iEq].argvIndex = 1;
- pInfo->estimatedCost = 5;
- }else{
- pInfo->idxNum = 0;
- pInfo->estimatedCost = 20000;
- if( iGe>=0 ){
- pInfo->idxNum += FTS4AUX_GE_CONSTRAINT;
- pInfo->aConstraintUsage[iGe].argvIndex = 1;
- pInfo->estimatedCost /= 2;
- }
- if( iLe>=0 ){
- pInfo->idxNum += FTS4AUX_LE_CONSTRAINT;
- pInfo->aConstraintUsage[iLe].argvIndex = 1 + (iGe>=0);
- pInfo->estimatedCost /= 2;
- }
- }
-
- return SQLITE_OK;
-}
-
-/*
-** xOpen - Open a cursor.
-*/
-static int fts3auxOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
- Fts3auxCursor *pCsr; /* Pointer to cursor object to return */
-
- UNUSED_PARAMETER(pVTab);
-
- pCsr = (Fts3auxCursor *)sqlite3_malloc(sizeof(Fts3auxCursor));
- if( !pCsr ) return SQLITE_NOMEM;
- memset(pCsr, 0, sizeof(Fts3auxCursor));
-
- *ppCsr = (sqlite3_vtab_cursor *)pCsr;
- return SQLITE_OK;
-}
-
-/*
-** xClose - Close a cursor.
-*/
-static int fts3auxCloseMethod(sqlite3_vtab_cursor *pCursor){
- Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
- Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
-
- sqlite3Fts3SegmentsClose(pFts3);
- sqlite3Fts3SegReaderFinish(&pCsr->csr);
- sqlite3_free((void *)pCsr->filter.zTerm);
- sqlite3_free(pCsr->zStop);
- sqlite3_free(pCsr->aStat);
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-static int fts3auxGrowStatArray(Fts3auxCursor *pCsr, int nSize){
- if( nSize>pCsr->nStat ){
- struct Fts3auxColstats *aNew;
- aNew = (struct Fts3auxColstats *)sqlite3_realloc(pCsr->aStat,
- sizeof(struct Fts3auxColstats) * nSize
- );
- if( aNew==0 ) return SQLITE_NOMEM;
- memset(&aNew[pCsr->nStat], 0,
- sizeof(struct Fts3auxColstats) * (nSize - pCsr->nStat)
- );
- pCsr->aStat = aNew;
- pCsr->nStat = nSize;
- }
- return SQLITE_OK;
-}
-
-/*
-** xNext - Advance the cursor to the next row, if any.
-*/
-static int fts3auxNextMethod(sqlite3_vtab_cursor *pCursor){
- Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
- Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
- int rc;
-
- /* Increment our pretend rowid value. */
- pCsr->iRowid++;
-
- for(pCsr->iCol++; pCsr->iCol<pCsr->nStat; pCsr->iCol++){
- if( pCsr->aStat[pCsr->iCol].nDoc>0 ) return SQLITE_OK;
- }
-
- rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
- if( rc==SQLITE_ROW ){
- int i = 0;
- int nDoclist = pCsr->csr.nDoclist;
- char *aDoclist = pCsr->csr.aDoclist;
- int iCol;
-
- int eState = 0;
-
- if( pCsr->zStop ){
- int n = (pCsr->nStop<pCsr->csr.nTerm) ? pCsr->nStop : pCsr->csr.nTerm;
- int mc = memcmp(pCsr->zStop, pCsr->csr.zTerm, n);
- if( mc<0 || (mc==0 && pCsr->csr.nTerm>pCsr->nStop) ){
- pCsr->isEof = 1;
- return SQLITE_OK;
- }
- }
-
- if( fts3auxGrowStatArray(pCsr, 2) ) return SQLITE_NOMEM;
- memset(pCsr->aStat, 0, sizeof(struct Fts3auxColstats) * pCsr->nStat);
- iCol = 0;
-
- while( i<nDoclist ){
- sqlite3_int64 v = 0;
-
- i += sqlite3Fts3GetVarint(&aDoclist[i], &v);
- switch( eState ){
- /* State 0. In this state the integer just read was a docid. */
- case 0:
- pCsr->aStat[0].nDoc++;
- eState = 1;
- iCol = 0;
- break;
-
- /* State 1. In this state we are expecting either a 1, indicating
- ** that the following integer will be a column number, or the
- ** start of a position list for column 0.
- **
- ** The only difference between state 1 and state 2 is that if the
- ** integer encountered in state 1 is not 0 or 1, then we need to
- ** increment the column 0 "nDoc" count for this term.
- */
- case 1:
- assert( iCol==0 );
- if( v>1 ){
- pCsr->aStat[1].nDoc++;
- }
- eState = 2;
- /* fall through */
-
- case 2:
- if( v==0 ){ /* 0x00. Next integer will be a docid. */
- eState = 0;
- }else if( v==1 ){ /* 0x01. Next integer will be a column number. */
- eState = 3;
- }else{ /* 2 or greater. A position. */
- pCsr->aStat[iCol+1].nOcc++;
- pCsr->aStat[0].nOcc++;
- }
- break;
-
- /* State 3. The integer just read is a column number. */
- default: assert( eState==3 );
- iCol = (int)v;
- if( fts3auxGrowStatArray(pCsr, iCol+2) ) return SQLITE_NOMEM;
- pCsr->aStat[iCol+1].nDoc++;
- eState = 2;
- break;
- }
- }
-
- pCsr->iCol = 0;
- rc = SQLITE_OK;
- }else{
- pCsr->isEof = 1;
- }
- return rc;
-}
-
-/*
-** xFilter - Initialize a cursor to point at the start of its data.
-*/
-static int fts3auxFilterMethod(
- sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
- int idxNum, /* Strategy index */
- const char *idxStr, /* Unused */
- int nVal, /* Number of elements in apVal */
- sqlite3_value **apVal /* Arguments for the indexing scheme */
-){
- Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
- Fts3Table *pFts3 = ((Fts3auxTable *)pCursor->pVtab)->pFts3Tab;
- int rc;
- int isScan;
-
- UNUSED_PARAMETER(nVal);
- UNUSED_PARAMETER(idxStr);
-
- assert( idxStr==0 );
- assert( idxNum==FTS4AUX_EQ_CONSTRAINT || idxNum==0
- || idxNum==FTS4AUX_LE_CONSTRAINT || idxNum==FTS4AUX_GE_CONSTRAINT
- || idxNum==(FTS4AUX_LE_CONSTRAINT|FTS4AUX_GE_CONSTRAINT)
- );
- isScan = (idxNum!=FTS4AUX_EQ_CONSTRAINT);
-
- /* In case this cursor is being reused, close and zero it. */
- testcase(pCsr->filter.zTerm);
- sqlite3Fts3SegReaderFinish(&pCsr->csr);
- sqlite3_free((void *)pCsr->filter.zTerm);
- sqlite3_free(pCsr->aStat);
- memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
-
- pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
- if( isScan ) pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
-
- if( idxNum&(FTS4AUX_EQ_CONSTRAINT|FTS4AUX_GE_CONSTRAINT) ){
- const unsigned char *zStr = sqlite3_value_text(apVal[0]);
- if( zStr ){
- pCsr->filter.zTerm = sqlite3_mprintf("%s", zStr);
- pCsr->filter.nTerm = sqlite3_value_bytes(apVal[0]);
- if( pCsr->filter.zTerm==0 ) return SQLITE_NOMEM;
- }
- }
- if( idxNum&FTS4AUX_LE_CONSTRAINT ){
- int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0;
- pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx]));
- pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]);
- if( pCsr->zStop==0 ) return SQLITE_NOMEM;
- }
-
- rc = sqlite3Fts3SegReaderCursor(pFts3, 0, 0, FTS3_SEGCURSOR_ALL,
- pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
- );
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
- }
-
- if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
- return rc;
-}
-
-/*
-** xEof - Return true if the cursor is at EOF, or false otherwise.
-*/
-static int fts3auxEofMethod(sqlite3_vtab_cursor *pCursor){
- Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
- return pCsr->isEof;
-}
-
-/*
-** xColumn - Return a column value.
-*/
-static int fts3auxColumnMethod(
- sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
- sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */
- int iCol /* Index of column to read value from */
-){
- Fts3auxCursor *p = (Fts3auxCursor *)pCursor;
-
- assert( p->isEof==0 );
- if( iCol==0 ){ /* Column "term" */
- sqlite3_result_text(pContext, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
- }else if( iCol==1 ){ /* Column "col" */
- if( p->iCol ){
- sqlite3_result_int(pContext, p->iCol-1);
- }else{
- sqlite3_result_text(pContext, "*", -1, SQLITE_STATIC);
- }
- }else if( iCol==2 ){ /* Column "documents" */
- sqlite3_result_int64(pContext, p->aStat[p->iCol].nDoc);
- }else{ /* Column "occurrences" */
- sqlite3_result_int64(pContext, p->aStat[p->iCol].nOcc);
- }
-
- return SQLITE_OK;
-}
-
-/*
-** xRowid - Return the current rowid for the cursor.
-*/
-static int fts3auxRowidMethod(
- sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
- sqlite_int64 *pRowid /* OUT: Rowid value */
-){
- Fts3auxCursor *pCsr = (Fts3auxCursor *)pCursor;
- *pRowid = pCsr->iRowid;
- return SQLITE_OK;
-}
-
-/*
-** Register the fts3aux module with database connection db. Return SQLITE_OK
-** if successful or an error code if sqlite3_create_module() fails.
-*/
-int sqlite3Fts3InitAux(sqlite3 *db){
- static const sqlite3_module fts3aux_module = {
- 0, /* iVersion */
- fts3auxConnectMethod, /* xCreate */
- fts3auxConnectMethod, /* xConnect */
- fts3auxBestIndexMethod, /* xBestIndex */
- fts3auxDisconnectMethod, /* xDisconnect */
- fts3auxDisconnectMethod, /* xDestroy */
- fts3auxOpenMethod, /* xOpen */
- fts3auxCloseMethod, /* xClose */
- fts3auxFilterMethod, /* xFilter */
- fts3auxNextMethod, /* xNext */
- fts3auxEofMethod, /* xEof */
- fts3auxColumnMethod, /* xColumn */
- fts3auxRowidMethod, /* xRowid */
- 0, /* xUpdate */
- 0, /* xBegin */
- 0, /* xSync */
- 0, /* xCommit */
- 0, /* xRollback */
- 0, /* xFindFunction */
- 0, /* xRename */
- 0, /* xSavepoint */
- 0, /* xRelease */
- 0 /* xRollbackTo */
- };
- int rc; /* Return code */
-
- rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
- return rc;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_expr.c b/src/libtracker-fts/fts3_expr.c
deleted file mode 100644
index 7612789de..000000000
--- a/src/libtracker-fts/fts3_expr.c
+++ /dev/null
@@ -1,1013 +0,0 @@
-/*
-** 2008 Nov 28
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This module contains code that implements a parser for fts3 query strings
-** (the right-hand argument to the MATCH operator). Because the supported
-** syntax is relatively simple, the whole tokenizer/parser system is
-** hand-coded.
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-/*
-** By default, this module parses the legacy syntax that has been
-** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
-** is defined, then it uses the new syntax. The differences between
-** the new and the old syntaxes are:
-**
-** a) The new syntax supports parenthesis. The old does not.
-**
-** b) The new syntax supports the AND and NOT operators. The old does not.
-**
-** c) The old syntax supports the "-" token qualifier. This is not
-** supported by the new syntax (it is replaced by the NOT operator).
-**
-** d) When using the old syntax, the OR operator has a greater precedence
-** than an implicit AND. When using the new, both implicity and explicit
-** AND operators have a higher precedence than OR.
-**
-** If compiled with SQLITE_TEST defined, then this module exports the
-** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
-** to zero causes the module to use the old syntax. If it is set to
-** non-zero the new syntax is activated. This is so both syntaxes can
-** be tested using a single build of testfixture.
-**
-** The following describes the syntax supported by the fts3 MATCH
-** operator in a similar format to that used by the lemon parser
-** generator. This module does not use actually lemon, it uses a
-** custom parser.
-**
-** query ::= andexpr (OR andexpr)*.
-**
-** andexpr ::= notexpr (AND? notexpr)*.
-**
-** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
-** notexpr ::= LP query RP.
-**
-** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
-**
-** distance_opt ::= .
-** distance_opt ::= / INTEGER.
-**
-** phrase ::= TOKEN.
-** phrase ::= COLUMN:TOKEN.
-** phrase ::= "TOKEN TOKEN TOKEN...".
-*/
-
-#ifdef SQLITE_TEST
-int sqlite3_fts3_enable_parentheses = 0;
-#else
-# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
-# define sqlite3_fts3_enable_parentheses 1
-# else
-# define sqlite3_fts3_enable_parentheses 0
-# endif
-#endif
-
-/*
-** Default span for NEAR operators.
-*/
-#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
-
-#include <string.h>
-#include <assert.h>
-
-/*
-** isNot:
-** This variable is used by function getNextNode(). When getNextNode() is
-** called, it sets ParseContext.isNot to true if the 'next node' is a
-** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
-** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
-** zero.
-*/
-typedef struct ParseContext ParseContext;
-struct ParseContext {
- sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
- int iLangid; /* Language id used with tokenizer */
- const char **azCol; /* Array of column names for fts3 table */
- int bFts4; /* True to allow FTS4-only syntax */
- int nCol; /* Number of entries in azCol[] */
- int iDefaultCol; /* Default column to query */
- int isNot; /* True if getNextNode() sees a unary - */
- sqlite3_context *pCtx; /* Write error message here */
- int nNest; /* Number of nested brackets */
-};
-
-/*
-** This function is equivalent to the standard isspace() function.
-**
-** The standard isspace() can be awkward to use safely, because although it
-** is defined to accept an argument of type int, its behaviour when passed
-** an integer that falls outside of the range of the unsigned char type
-** is undefined (and sometimes, "undefined" means segfault). This wrapper
-** is defined to accept an argument of type char, and always returns 0 for
-** any values that fall outside of the range of the unsigned char type (i.e.
-** negative values).
-*/
-static int fts3isspace(char c){
- return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
-}
-
-/*
-** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
-** zero the memory before returning a pointer to it. If unsuccessful,
-** return NULL.
-*/
-static void *fts3MallocZero(int nByte){
- void *pRet = sqlite3_malloc(nByte);
- if( pRet ) memset(pRet, 0, nByte);
- return pRet;
-}
-
-int sqlite3Fts3OpenTokenizer(
- sqlite3_tokenizer *pTokenizer,
- int iLangid,
- const char *z,
- int n,
- sqlite3_tokenizer_cursor **ppCsr
-){
- sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
- sqlite3_tokenizer_cursor *pCsr = 0;
- int rc;
-
- rc = pModule->xOpen(pTokenizer, z, n, &pCsr);
- assert( rc==SQLITE_OK || pCsr==0 );
- if( rc==SQLITE_OK ){
- pCsr->pTokenizer = pTokenizer;
- if( pModule->iVersion>=1 ){
- rc = pModule->xLanguageid(pCsr, iLangid);
- if( rc!=SQLITE_OK ){
- pModule->xClose(pCsr);
- pCsr = 0;
- }
- }
- }
- *ppCsr = pCsr;
- return rc;
-}
-
-
-/*
-** Extract the next token from buffer z (length n) using the tokenizer
-** and other information (column names etc.) in pParse. Create an Fts3Expr
-** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
-** single token and set *ppExpr to point to it. If the end of the buffer is
-** reached before a token is found, set *ppExpr to zero. It is the
-** responsibility of the caller to eventually deallocate the allocated
-** Fts3Expr structure (if any) by passing it to sqlite3_free().
-**
-** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
-** fails.
-*/
-static int getNextToken(
- ParseContext *pParse, /* fts3 query parse context */
- int iCol, /* Value for Fts3Phrase.iColumn */
- const char *z, int n, /* Input string */
- Fts3Expr **ppExpr, /* OUT: expression */
- int *pnConsumed /* OUT: Number of bytes consumed */
-){
- sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
- sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
- int rc;
- sqlite3_tokenizer_cursor *pCursor;
- Fts3Expr *pRet = 0;
- int nConsumed = 0;
-
- rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, n, &pCursor);
- if( rc==SQLITE_OK ){
- const char *zToken;
- int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
- int nByte; /* total space to allocate */
-
- rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
- if( rc==SQLITE_OK ){
- nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
- pRet = (Fts3Expr *)fts3MallocZero(nByte);
- if( !pRet ){
- rc = SQLITE_NOMEM;
- }else{
- pRet->eType = FTSQUERY_PHRASE;
- pRet->pPhrase = (Fts3Phrase *)&pRet[1];
- pRet->pPhrase->nToken = 1;
- pRet->pPhrase->iColumn = iCol;
- pRet->pPhrase->aToken[0].n = nToken;
- pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
- memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
-
- if( iEnd<n && z[iEnd]=='*' ){
- pRet->pPhrase->aToken[0].isPrefix = 1;
- iEnd++;
- }
-
- while( 1 ){
- if( !sqlite3_fts3_enable_parentheses
- && iStart>0 && z[iStart-1]=='-'
- ){
- pParse->isNot = 1;
- iStart--;
- }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){
- pRet->pPhrase->aToken[0].bFirst = 1;
- iStart--;
- }else{
- break;
- }
- }
-
- }
- nConsumed = iEnd;
- }
-
- pModule->xClose(pCursor);
- }
-
- *pnConsumed = nConsumed;
- *ppExpr = pRet;
- return rc;
-}
-
-
-/*
-** Enlarge a memory allocation. If an out-of-memory allocation occurs,
-** then free the old allocation.
-*/
-static void *fts3ReallocOrFree(void *pOrig, int nNew){
- void *pRet = sqlite3_realloc(pOrig, nNew);
- if( !pRet ){
- sqlite3_free(pOrig);
- }
- return pRet;
-}
-
-/*
-** Buffer zInput, length nInput, contains the contents of a quoted string
-** that appeared as part of an fts3 query expression. Neither quote character
-** is included in the buffer. This function attempts to tokenize the entire
-** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
-** containing the results.
-**
-** If successful, SQLITE_OK is returned and *ppExpr set to point at the
-** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
-** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
-** to 0.
-*/
-static int getNextString(
- ParseContext *pParse, /* fts3 query parse context */
- const char *zInput, int nInput, /* Input string */
- Fts3Expr **ppExpr /* OUT: expression */
-){
- sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
- sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
- int rc;
- Fts3Expr *p = 0;
- sqlite3_tokenizer_cursor *pCursor = 0;
- char *zTemp = 0;
- int nTemp = 0;
-
- const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
- int nToken = 0;
-
- /* The final Fts3Expr data structure, including the Fts3Phrase,
- ** Fts3PhraseToken structures token buffers are all stored as a single
- ** allocation so that the expression can be freed with a single call to
- ** sqlite3_free(). Setting this up requires a two pass approach.
- **
- ** The first pass, in the block below, uses a tokenizer cursor to iterate
- ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
- ** to assemble data in two dynamic buffers:
- **
- ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
- ** structure, followed by the array of Fts3PhraseToken
- ** structures. This pass only populates the Fts3PhraseToken array.
- **
- ** Buffer zTemp: Contains copies of all tokens.
- **
- ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
- ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
- ** structures.
- */
- rc = sqlite3Fts3OpenTokenizer(
- pTokenizer, pParse->iLangid, zInput, nInput, &pCursor);
- if( rc==SQLITE_OK ){
- int ii;
- for(ii=0; rc==SQLITE_OK; ii++){
- const char *zByte;
- int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0;
- rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
- if( rc==SQLITE_OK ){
- Fts3PhraseToken *pToken;
-
- p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));
- if( !p ) goto no_mem;
-
- zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
- if( !zTemp ) goto no_mem;
-
- assert( nToken==ii );
- pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
- memset(pToken, 0, sizeof(Fts3PhraseToken));
-
- memcpy(&zTemp[nTemp], zByte, nByte);
- nTemp += nByte;
-
- pToken->n = nByte;
- pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
- pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^');
- nToken = ii+1;
- }
- }
-
- pModule->xClose(pCursor);
- pCursor = 0;
- }
-
- if( rc==SQLITE_DONE ){
- int jj;
- char *zBuf = 0;
-
- p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
- if( !p ) goto no_mem;
- memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
- p->eType = FTSQUERY_PHRASE;
- p->pPhrase = (Fts3Phrase *)&p[1];
- p->pPhrase->iColumn = pParse->iDefaultCol;
- p->pPhrase->nToken = nToken;
-
- zBuf = (char *)&p->pPhrase->aToken[nToken];
- if( zTemp ){
- memcpy(zBuf, zTemp, nTemp);
- sqlite3_free(zTemp);
- }else{
- assert( nTemp==0 );
- }
-
- for(jj=0; jj<p->pPhrase->nToken; jj++){
- p->pPhrase->aToken[jj].z = zBuf;
- zBuf += p->pPhrase->aToken[jj].n;
- }
- rc = SQLITE_OK;
- }
-
- *ppExpr = p;
- return rc;
-no_mem:
-
- if( pCursor ){
- pModule->xClose(pCursor);
- }
- sqlite3_free(zTemp);
- sqlite3_free(p);
- *ppExpr = 0;
- return SQLITE_NOMEM;
-}
-
-/*
-** Function getNextNode(), which is called by fts3ExprParse(), may itself
-** call fts3ExprParse(). So this forward declaration is required.
-*/
-static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
-
-/*
-** The output variable *ppExpr is populated with an allocated Fts3Expr
-** structure, or set to 0 if the end of the input buffer is reached.
-**
-** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
-** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
-** If SQLITE_ERROR is returned, pContext is populated with an error message.
-*/
-static int getNextNode(
- ParseContext *pParse, /* fts3 query parse context */
- const char *z, int n, /* Input string */
- Fts3Expr **ppExpr, /* OUT: expression */
- int *pnConsumed /* OUT: Number of bytes consumed */
-){
- static const struct Fts3Keyword {
- char *z; /* Keyword text */
- unsigned char n; /* Length of the keyword */
- unsigned char parenOnly; /* Only valid in paren mode */
- unsigned char eType; /* Keyword code */
- } aKeyword[] = {
- { "OR" , 2, 0, FTSQUERY_OR },
- { "AND", 3, 1, FTSQUERY_AND },
- { "NOT", 3, 1, FTSQUERY_NOT },
- { "NEAR", 4, 0, FTSQUERY_NEAR }
- };
- int ii;
- int iCol;
- int iColLen;
- int rc;
- Fts3Expr *pRet = 0;
-
- const char *zInput = z;
- int nInput = n;
-
- pParse->isNot = 0;
-
- /* Skip over any whitespace before checking for a keyword, an open or
- ** close bracket, or a quoted string.
- */
- while( nInput>0 && fts3isspace(*zInput) ){
- nInput--;
- zInput++;
- }
- if( nInput==0 ){
- return SQLITE_DONE;
- }
-
- /* See if we are dealing with a keyword. */
- for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
- const struct Fts3Keyword *pKey = &aKeyword[ii];
-
- if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
- continue;
- }
-
- if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
- int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
- int nKey = pKey->n;
- char cNext;
-
- /* If this is a "NEAR" keyword, check for an explicit nearness. */
- if( pKey->eType==FTSQUERY_NEAR ){
- assert( nKey==4 );
- if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
- nNear = 0;
- for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){
- nNear = nNear * 10 + (zInput[nKey] - '0');
- }
- }
- }
-
- /* At this point this is probably a keyword. But for that to be true,
- ** the next byte must contain either whitespace, an open or close
- ** parenthesis, a quote character, or EOF.
- */
- cNext = zInput[nKey];
- if( fts3isspace(cNext)
- || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
- ){
- pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr));
- if( !pRet ){
- return SQLITE_NOMEM;
- }
- pRet->eType = pKey->eType;
- pRet->nNear = nNear;
- *ppExpr = pRet;
- *pnConsumed = (int)((zInput - z) + nKey);
- return SQLITE_OK;
- }
-
- /* Turns out that wasn't a keyword after all. This happens if the
- ** user has supplied a token such as "ORacle". Continue.
- */
- }
- }
-
- /* Check for an open bracket. */
- if( sqlite3_fts3_enable_parentheses ){
- if( *zInput=='(' ){
- int nConsumed;
- pParse->nNest++;
- rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed);
- if( rc==SQLITE_OK && !*ppExpr ){
- rc = SQLITE_DONE;
- }
- *pnConsumed = (int)((zInput - z) + 1 + nConsumed);
- return rc;
- }
-
- /* Check for a close bracket. */
- if( *zInput==')' ){
- pParse->nNest--;
- *pnConsumed = (int)((zInput - z) + 1);
- return SQLITE_DONE;
- }
- }
-
- /* See if we are dealing with a quoted phrase. If this is the case, then
- ** search for the closing quote and pass the whole string to getNextString()
- ** for processing. This is easy to do, as fts3 has no syntax for escaping
- ** a quote character embedded in a string.
- */
- if( *zInput=='"' ){
- for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
- *pnConsumed = (int)((zInput - z) + ii + 1);
- if( ii==nInput ){
- return SQLITE_ERROR;
- }
- return getNextString(pParse, &zInput[1], ii-1, ppExpr);
- }
-
-
- /* If control flows to this point, this must be a regular token, or
- ** the end of the input. Read a regular token using the sqlite3_tokenizer
- ** interface. Before doing so, figure out if there is an explicit
- ** column specifier for the token.
- **
- ** TODO: Strangely, it is not possible to associate a column specifier
- ** with a quoted phrase, only with a single token. Not sure if this was
- ** an implementation artifact or an intentional decision when fts3 was
- ** first implemented. Whichever it was, this module duplicates the
- ** limitation.
- */
- iCol = pParse->iDefaultCol;
- iColLen = 0;
- for(ii=0; ii<pParse->nCol; ii++){
- const char *zStr = pParse->azCol[ii];
- int nStr = (int)strlen(zStr);
- if( nInput>nStr && zInput[nStr]==':'
- && sqlite3_strnicmp(zStr, zInput, nStr)==0
- ){
- iCol = ii;
- iColLen = (int)((zInput - z) + nStr + 1);
- break;
- }
- }
- rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
- *pnConsumed += iColLen;
- return rc;
-}
-
-/*
-** The argument is an Fts3Expr structure for a binary operator (any type
-** except an FTSQUERY_PHRASE). Return an integer value representing the
-** precedence of the operator. Lower values have a higher precedence (i.e.
-** group more tightly). For example, in the C language, the == operator
-** groups more tightly than ||, and would therefore have a higher precedence.
-**
-** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
-** is defined), the order of the operators in precedence from highest to
-** lowest is:
-**
-** NEAR
-** NOT
-** AND (including implicit ANDs)
-** OR
-**
-** Note that when using the old query syntax, the OR operator has a higher
-** precedence than the AND operator.
-*/
-static int opPrecedence(Fts3Expr *p){
- assert( p->eType!=FTSQUERY_PHRASE );
- if( sqlite3_fts3_enable_parentheses ){
- return p->eType;
- }else if( p->eType==FTSQUERY_NEAR ){
- return 1;
- }else if( p->eType==FTSQUERY_OR ){
- return 2;
- }
- assert( p->eType==FTSQUERY_AND );
- return 3;
-}
-
-/*
-** Argument ppHead contains a pointer to the current head of a query
-** expression tree being parsed. pPrev is the expression node most recently
-** inserted into the tree. This function adds pNew, which is always a binary
-** operator node, into the expression tree based on the relative precedence
-** of pNew and the existing nodes of the tree. This may result in the head
-** of the tree changing, in which case *ppHead is set to the new root node.
-*/
-static void insertBinaryOperator(
- Fts3Expr **ppHead, /* Pointer to the root node of a tree */
- Fts3Expr *pPrev, /* Node most recently inserted into the tree */
- Fts3Expr *pNew /* New binary node to insert into expression tree */
-){
- Fts3Expr *pSplit = pPrev;
- while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
- pSplit = pSplit->pParent;
- }
-
- if( pSplit->pParent ){
- assert( pSplit->pParent->pRight==pSplit );
- pSplit->pParent->pRight = pNew;
- pNew->pParent = pSplit->pParent;
- }else{
- *ppHead = pNew;
- }
- pNew->pLeft = pSplit;
- pSplit->pParent = pNew;
-}
-
-/*
-** Parse the fts3 query expression found in buffer z, length n. This function
-** returns either when the end of the buffer is reached or an unmatched
-** closing bracket - ')' - is encountered.
-**
-** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
-** parsed form of the expression and *pnConsumed is set to the number of
-** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
-** (out of memory error) or SQLITE_ERROR (parse error) is returned.
-*/
-static int fts3ExprParse(
- ParseContext *pParse, /* fts3 query parse context */
- const char *z, int n, /* Text of MATCH query */
- Fts3Expr **ppExpr, /* OUT: Parsed query structure */
- int *pnConsumed /* OUT: Number of bytes consumed */
-){
- Fts3Expr *pRet = 0;
- Fts3Expr *pPrev = 0;
- Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
- int nIn = n;
- const char *zIn = z;
- int rc = SQLITE_OK;
- int isRequirePhrase = 1;
-
- while( rc==SQLITE_OK ){
- Fts3Expr *p = 0;
- int nByte = 0;
- rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
- if( rc==SQLITE_OK ){
- int isPhrase;
-
- if( !sqlite3_fts3_enable_parentheses
- && p->eType==FTSQUERY_PHRASE && pParse->isNot
- ){
- /* Create an implicit NOT operator. */
- Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr));
- if( !pNot ){
- sqlite3Fts3ExprFree(p);
- rc = SQLITE_NOMEM;
- goto exprparse_out;
- }
- pNot->eType = FTSQUERY_NOT;
- pNot->pRight = p;
- if( pNotBranch ){
- pNot->pLeft = pNotBranch;
- }
- pNotBranch = pNot;
- p = pPrev;
- }else{
- int eType = p->eType;
- isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
-
- /* The isRequirePhrase variable is set to true if a phrase or
- ** an expression contained in parenthesis is required. If a
- ** binary operator (AND, OR, NOT or NEAR) is encounted when
- ** isRequirePhrase is set, this is a syntax error.
- */
- if( !isPhrase && isRequirePhrase ){
- sqlite3Fts3ExprFree(p);
- rc = SQLITE_ERROR;
- goto exprparse_out;
- }
-
- if( isPhrase && !isRequirePhrase ){
- /* Insert an implicit AND operator. */
- Fts3Expr *pAnd;
- assert( pRet && pPrev );
- pAnd = fts3MallocZero(sizeof(Fts3Expr));
- if( !pAnd ){
- sqlite3Fts3ExprFree(p);
- rc = SQLITE_NOMEM;
- goto exprparse_out;
- }
- pAnd->eType = FTSQUERY_AND;
- insertBinaryOperator(&pRet, pPrev, pAnd);
- pPrev = pAnd;
- }
-
- /* This test catches attempts to make either operand of a NEAR
- ** operator something other than a phrase. For example, either of
- ** the following:
- **
- ** (bracketed expression) NEAR phrase
- ** phrase NEAR (bracketed expression)
- **
- ** Return an error in either case.
- */
- if( pPrev && (
- (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
- || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
- )){
- sqlite3Fts3ExprFree(p);
- rc = SQLITE_ERROR;
- goto exprparse_out;
- }
-
- if( isPhrase ){
- if( pRet ){
- assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
- pPrev->pRight = p;
- p->pParent = pPrev;
- }else{
- pRet = p;
- }
- }else{
- insertBinaryOperator(&pRet, pPrev, p);
- }
- isRequirePhrase = !isPhrase;
- }
- assert( nByte>0 );
- }
- assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
- nIn -= nByte;
- zIn += nByte;
- pPrev = p;
- }
-
- if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
- rc = SQLITE_ERROR;
- }
-
- if( rc==SQLITE_DONE ){
- rc = SQLITE_OK;
- if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
- if( !pRet ){
- rc = SQLITE_ERROR;
- }else{
- Fts3Expr *pIter = pNotBranch;
- while( pIter->pLeft ){
- pIter = pIter->pLeft;
- }
- pIter->pLeft = pRet;
- pRet = pNotBranch;
- }
- }
- }
- *pnConsumed = n - nIn;
-
-exprparse_out:
- if( rc!=SQLITE_OK ){
- sqlite3Fts3ExprFree(pRet);
- sqlite3Fts3ExprFree(pNotBranch);
- pRet = 0;
- }
- *ppExpr = pRet;
- return rc;
-}
-
-/*
-** Parameters z and n contain a pointer to and length of a buffer containing
-** an fts3 query expression, respectively. This function attempts to parse the
-** query expression and create a tree of Fts3Expr structures representing the
-** parsed expression. If successful, *ppExpr is set to point to the head
-** of the parsed expression tree and SQLITE_OK is returned. If an error
-** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
-** error) is returned and *ppExpr is set to 0.
-**
-** If parameter n is a negative number, then z is assumed to point to a
-** nul-terminated string and the length is determined using strlen().
-**
-** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
-** use to normalize query tokens while parsing the expression. The azCol[]
-** array, which is assumed to contain nCol entries, should contain the names
-** of each column in the target fts3 table, in order from left to right.
-** Column names must be nul-terminated strings.
-**
-** The iDefaultCol parameter should be passed the index of the table column
-** that appears on the left-hand-side of the MATCH operator (the default
-** column to match against for tokens for which a column name is not explicitly
-** specified as part of the query string), or -1 if tokens may by default
-** match any table column.
-*/
-int sqlite3Fts3ExprParse(
- sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
- int iLangid, /* Language id for tokenizer */
- char **azCol, /* Array of column names for fts3 table */
- int bFts4, /* True to allow FTS4-only syntax */
- int nCol, /* Number of entries in azCol[] */
- int iDefaultCol, /* Default column to query */
- const char *z, int n, /* Text of MATCH query */
- Fts3Expr **ppExpr /* OUT: Parsed query structure */
-){
- int nParsed;
- int rc;
- ParseContext sParse;
-
- memset(&sParse, 0, sizeof(ParseContext));
- sParse.pTokenizer = pTokenizer;
- sParse.iLangid = iLangid;
- sParse.azCol = (const char **)azCol;
- sParse.nCol = nCol;
- sParse.iDefaultCol = iDefaultCol;
- sParse.bFts4 = bFts4;
- if( z==0 ){
- *ppExpr = 0;
- return SQLITE_OK;
- }
- if( n<0 ){
- n = (int)strlen(z);
- }
- rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
-
- /* Check for mismatched parenthesis */
- if( rc==SQLITE_OK && sParse.nNest ){
- rc = SQLITE_ERROR;
- sqlite3Fts3ExprFree(*ppExpr);
- *ppExpr = 0;
- }
-
- return rc;
-}
-
-/*
-** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
-*/
-void sqlite3Fts3ExprFree(Fts3Expr *p){
- if( p ){
- assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
- sqlite3Fts3ExprFree(p->pLeft);
- sqlite3Fts3ExprFree(p->pRight);
- sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
- sqlite3_free(p->aMI);
- sqlite3_free(p);
- }
-}
-
-/****************************************************************************
-*****************************************************************************
-** Everything after this point is just test code.
-*/
-
-#ifdef SQLITE_TEST
-
-#include <stdio.h>
-
-/*
-** Function to query the hash-table of tokenizers (see README.tokenizers).
-*/
-static int queryTestTokenizer(
- sqlite3 *db,
- const char *zName,
- const sqlite3_tokenizer_module **pp
-){
- int rc;
- sqlite3_stmt *pStmt;
- const char zSql[] = "SELECT fts3_tokenizer(?)";
-
- *pp = 0;
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
- memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
- }
- }
-
- return sqlite3_finalize(pStmt);
-}
-
-/*
-** Return a pointer to a buffer containing a text representation of the
-** expression passed as the first argument. The buffer is obtained from
-** sqlite3_malloc(). It is the responsibility of the caller to use
-** sqlite3_free() to release the memory. If an OOM condition is encountered,
-** NULL is returned.
-**
-** If the second argument is not NULL, then its contents are prepended to
-** the returned expression text and then freed using sqlite3_free().
-*/
-static char *exprToString(Fts3Expr *pExpr, char *zBuf){
- switch( pExpr->eType ){
- case FTSQUERY_PHRASE: {
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- int i;
- zBuf = sqlite3_mprintf(
- "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
- for(i=0; zBuf && i<pPhrase->nToken; i++){
- zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
- pPhrase->aToken[i].n, pPhrase->aToken[i].z,
- (pPhrase->aToken[i].isPrefix?"+":"")
- );
- }
- return zBuf;
- }
-
- case FTSQUERY_NEAR:
- zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
- break;
- case FTSQUERY_NOT:
- zBuf = sqlite3_mprintf("%zNOT ", zBuf);
- break;
- case FTSQUERY_AND:
- zBuf = sqlite3_mprintf("%zAND ", zBuf);
- break;
- case FTSQUERY_OR:
- zBuf = sqlite3_mprintf("%zOR ", zBuf);
- break;
- }
-
- if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
- if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
- if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
-
- if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
- if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
-
- return zBuf;
-}
-
-/*
-** This is the implementation of a scalar SQL function used to test the
-** expression parser. It should be called as follows:
-**
-** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
-**
-** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
-** to parse the query expression (see README.tokenizers). The second argument
-** is the query expression to parse. Each subsequent argument is the name
-** of a column of the fts3 table that the query expression may refer to.
-** For example:
-**
-** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
-*/
-static void fts3ExprTest(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- sqlite3_tokenizer_module const *pModule = 0;
- sqlite3_tokenizer *pTokenizer = 0;
- int rc;
- char **azCol = 0;
- const char *zExpr;
- int nExpr;
- int nCol;
- int ii;
- Fts3Expr *pExpr;
- char *zBuf = 0;
- sqlite3 *db = sqlite3_context_db_handle(context);
-
- if( argc<3 ){
- sqlite3_result_error(context,
- "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
- );
- return;
- }
-
- rc = queryTestTokenizer(db,
- (const char *)sqlite3_value_text(argv[0]), &pModule);
- if( rc==SQLITE_NOMEM ){
- sqlite3_result_error_nomem(context);
- goto exprtest_out;
- }else if( !pModule ){
- sqlite3_result_error(context, "No such tokenizer module", -1);
- goto exprtest_out;
- }
-
- rc = pModule->xCreate(0, 0, &pTokenizer);
- assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
- if( rc==SQLITE_NOMEM ){
- sqlite3_result_error_nomem(context);
- goto exprtest_out;
- }
- pTokenizer->pModule = pModule;
-
- zExpr = (const char *)sqlite3_value_text(argv[1]);
- nExpr = sqlite3_value_bytes(argv[1]);
- nCol = argc-2;
- azCol = (char **)sqlite3_malloc(nCol*sizeof(char *));
- if( !azCol ){
- sqlite3_result_error_nomem(context);
- goto exprtest_out;
- }
- for(ii=0; ii<nCol; ii++){
- azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
- }
-
- rc = sqlite3Fts3ExprParse(
- pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr
- );
- if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
- sqlite3_result_error(context, "Error parsing expression", -1);
- }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
- sqlite3_result_error_nomem(context);
- }else{
- sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
- sqlite3_free(zBuf);
- }
-
- sqlite3Fts3ExprFree(pExpr);
-
-exprtest_out:
- if( pModule && pTokenizer ){
- rc = pModule->xDestroy(pTokenizer);
- }
- sqlite3_free(azCol);
-}
-
-/*
-** Register the query expression parser test function fts3_exprtest()
-** with database connection db.
-*/
-int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
- return sqlite3_create_function(
- db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
- );
-}
-
-#endif
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_hash.c b/src/libtracker-fts/fts3_hash.c
deleted file mode 100644
index 57c59b587..000000000
--- a/src/libtracker-fts/fts3_hash.c
+++ /dev/null
@@ -1,383 +0,0 @@
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the implementation of generic hash-tables used in SQLite.
-** We've modified it slightly to serve as a standalone hash table
-** implementation for the full-text indexing module.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <assert.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "fts3_hash.h"
-
-/*
-** Malloc and Free functions
-*/
-static void *fts3HashMalloc(int n){
- void *p = sqlite3_malloc(n);
- if( p ){
- memset(p, 0, n);
- }
- return p;
-}
-static void fts3HashFree(void *p){
- sqlite3_free(p);
-}
-
-/* Turn bulk memory into a hash table object by initializing the
-** fields of the Hash structure.
-**
-** "pNew" is a pointer to the hash table that is to be initialized.
-** keyClass is one of the constants
-** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass
-** determines what kind of key the hash table will use. "copyKey" is
-** true if the hash table should make its own private copy of keys and
-** false if it should just use the supplied pointer.
-*/
-void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey){
- assert( pNew!=0 );
- assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
- pNew->keyClass = keyClass;
- pNew->copyKey = copyKey;
- pNew->first = 0;
- pNew->count = 0;
- pNew->htsize = 0;
- pNew->ht = 0;
-}
-
-/* Remove all entries from a hash table. Reclaim all memory.
-** Call this routine to delete a hash table or to reset a hash table
-** to the empty state.
-*/
-void sqlite3Fts3HashClear(Fts3Hash *pH){
- Fts3HashElem *elem; /* For looping over all elements of the table */
-
- assert( pH!=0 );
- elem = pH->first;
- pH->first = 0;
- fts3HashFree(pH->ht);
- pH->ht = 0;
- pH->htsize = 0;
- while( elem ){
- Fts3HashElem *next_elem = elem->next;
- if( pH->copyKey && elem->pKey ){
- fts3HashFree(elem->pKey);
- }
- fts3HashFree(elem);
- elem = next_elem;
- }
- pH->count = 0;
-}
-
-/*
-** Hash and comparison functions when the mode is FTS3_HASH_STRING
-*/
-static int fts3StrHash(const void *pKey, int nKey){
- const char *z = (const char *)pKey;
- int h = 0;
- if( nKey<=0 ) nKey = (int) strlen(z);
- while( nKey > 0 ){
- h = (h<<3) ^ h ^ *z++;
- nKey--;
- }
- return h & 0x7fffffff;
-}
-static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return strncmp((const char*)pKey1,(const char*)pKey2,n1);
-}
-
-/*
-** Hash and comparison functions when the mode is FTS3_HASH_BINARY
-*/
-static int fts3BinHash(const void *pKey, int nKey){
- int h = 0;
- const char *z = (const char *)pKey;
- while( nKey-- > 0 ){
- h = (h<<3) ^ h ^ *(z++);
- }
- return h & 0x7fffffff;
-}
-static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
- if( n1!=n2 ) return 1;
- return memcmp(pKey1,pKey2,n1);
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** The C syntax in this function definition may be unfamilar to some
-** programmers, so we provide the following additional explanation:
-**
-** The name of the function is "ftsHashFunction". The function takes a
-** single parameter "keyClass". The return value of ftsHashFunction()
-** is a pointer to another function. Specifically, the return value
-** of ftsHashFunction() is a pointer to a function that takes two parameters
-** with types "const void*" and "int" and returns an "int".
-*/
-static int (*ftsHashFunction(int keyClass))(const void*,int){
- if( keyClass==FTS3_HASH_STRING ){
- return &fts3StrHash;
- }else{
- assert( keyClass==FTS3_HASH_BINARY );
- return &fts3BinHash;
- }
-}
-
-/*
-** Return a pointer to the appropriate hash function given the key class.
-**
-** For help in interpreted the obscure C code in the function definition,
-** see the header comment on the previous function.
-*/
-static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
- if( keyClass==FTS3_HASH_STRING ){
- return &fts3StrCompare;
- }else{
- assert( keyClass==FTS3_HASH_BINARY );
- return &fts3BinCompare;
- }
-}
-
-/* Link an element into the hash table
-*/
-static void fts3HashInsertElement(
- Fts3Hash *pH, /* The complete hash table */
- struct _fts3ht *pEntry, /* The entry into which pNew is inserted */
- Fts3HashElem *pNew /* The element to be inserted */
-){
- Fts3HashElem *pHead; /* First element already in pEntry */
- pHead = pEntry->chain;
- if( pHead ){
- pNew->next = pHead;
- pNew->prev = pHead->prev;
- if( pHead->prev ){ pHead->prev->next = pNew; }
- else { pH->first = pNew; }
- pHead->prev = pNew;
- }else{
- pNew->next = pH->first;
- if( pH->first ){ pH->first->prev = pNew; }
- pNew->prev = 0;
- pH->first = pNew;
- }
- pEntry->count++;
- pEntry->chain = pNew;
-}
-
-
-/* Resize the hash table so that it cantains "new_size" buckets.
-** "new_size" must be a power of 2. The hash table might fail
-** to resize if sqliteMalloc() fails.
-**
-** Return non-zero if a memory allocation error occurs.
-*/
-static int fts3Rehash(Fts3Hash *pH, int new_size){
- struct _fts3ht *new_ht; /* The new hash table */
- Fts3HashElem *elem, *next_elem; /* For looping over existing elements */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( (new_size & (new_size-1))==0 );
- new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
- if( new_ht==0 ) return 1;
- fts3HashFree(pH->ht);
- pH->ht = new_ht;
- pH->htsize = new_size;
- xHash = ftsHashFunction(pH->keyClass);
- for(elem=pH->first, pH->first=0; elem; elem = next_elem){
- int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
- next_elem = elem->next;
- fts3HashInsertElement(pH, &new_ht[h], elem);
- }
- return 0;
-}
-
-/* This function (for internal use only) locates an element in an
-** hash table that matches the given key. The hash for this key has
-** already been computed and is passed as the 4th parameter.
-*/
-static Fts3HashElem *fts3FindElementByHash(
- const Fts3Hash *pH, /* The pH to be searched */
- const void *pKey, /* The key we are searching for */
- int nKey,
- int h /* The hash for this key. */
-){
- Fts3HashElem *elem; /* Used to loop thru the element list */
- int count; /* Number of elements left to test */
- int (*xCompare)(const void*,int,const void*,int); /* comparison function */
-
- if( pH->ht ){
- struct _fts3ht *pEntry = &pH->ht[h];
- elem = pEntry->chain;
- count = pEntry->count;
- xCompare = ftsCompareFunction(pH->keyClass);
- while( count-- && elem ){
- if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
- return elem;
- }
- elem = elem->next;
- }
- }
- return 0;
-}
-
-/* Remove a single entry from the hash table given a pointer to that
-** element and a hash on the element's key.
-*/
-static void fts3RemoveElementByHash(
- Fts3Hash *pH, /* The pH containing "elem" */
- Fts3HashElem* elem, /* The element to be removed from the pH */
- int h /* Hash value for the element */
-){
- struct _fts3ht *pEntry;
- if( elem->prev ){
- elem->prev->next = elem->next;
- }else{
- pH->first = elem->next;
- }
- if( elem->next ){
- elem->next->prev = elem->prev;
- }
- pEntry = &pH->ht[h];
- if( pEntry->chain==elem ){
- pEntry->chain = elem->next;
- }
- pEntry->count--;
- if( pEntry->count<=0 ){
- pEntry->chain = 0;
- }
- if( pH->copyKey && elem->pKey ){
- fts3HashFree(elem->pKey);
- }
- fts3HashFree( elem );
- pH->count--;
- if( pH->count<=0 ){
- assert( pH->first==0 );
- assert( pH->count==0 );
- fts3HashClear(pH);
- }
-}
-
-Fts3HashElem *sqlite3Fts3HashFindElem(
- const Fts3Hash *pH,
- const void *pKey,
- int nKey
-){
- int h; /* A hash on key */
- int (*xHash)(const void*,int); /* The hash function */
-
- if( pH==0 || pH->ht==0 ) return 0;
- xHash = ftsHashFunction(pH->keyClass);
- assert( xHash!=0 );
- h = (*xHash)(pKey,nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
-}
-
-/*
-** Attempt to locate an element of the hash table pH with a key
-** that matches pKey,nKey. Return the data for this element if it is
-** found, or NULL if there is no match.
-*/
-void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
- Fts3HashElem *pElem; /* The element that matches key (if any) */
-
- pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
- return pElem ? pElem->data : 0;
-}
-
-/* Insert an element into the hash table pH. The key is pKey,nKey
-** and the data is "data".
-**
-** If no element exists with a matching key, then a new
-** element is created. A copy of the key is made if the copyKey
-** flag is set. NULL is returned.
-**
-** If another element already exists with the same key, then the
-** new data replaces the old data and the old data is returned.
-** The key is not copied in this instance. If a malloc fails, then
-** the new data is returned and the hash table is unchanged.
-**
-** If the "data" parameter to this function is NULL, then the
-** element corresponding to "key" is removed from the hash table.
-*/
-void *sqlite3Fts3HashInsert(
- Fts3Hash *pH, /* The hash table to insert into */
- const void *pKey, /* The key */
- int nKey, /* Number of bytes in the key */
- void *data /* The data */
-){
- int hraw; /* Raw hash value of the key */
- int h; /* the hash of the key modulo hash table size */
- Fts3HashElem *elem; /* Used to loop thru the element list */
- Fts3HashElem *new_elem; /* New element added to the pH */
- int (*xHash)(const void*,int); /* The hash function */
-
- assert( pH!=0 );
- xHash = ftsHashFunction(pH->keyClass);
- assert( xHash!=0 );
- hraw = (*xHash)(pKey, nKey);
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- elem = fts3FindElementByHash(pH,pKey,nKey,h);
- if( elem ){
- void *old_data = elem->data;
- if( data==0 ){
- fts3RemoveElementByHash(pH,elem,h);
- }else{
- elem->data = data;
- }
- return old_data;
- }
- if( data==0 ) return 0;
- if( (pH->htsize==0 && fts3Rehash(pH,8))
- || (pH->count>=pH->htsize && fts3Rehash(pH, pH->htsize*2))
- ){
- pH->count = 0;
- return data;
- }
- assert( pH->htsize>0 );
- new_elem = (Fts3HashElem*)fts3HashMalloc( sizeof(Fts3HashElem) );
- if( new_elem==0 ) return data;
- if( pH->copyKey && pKey!=0 ){
- new_elem->pKey = fts3HashMalloc( nKey );
- if( new_elem->pKey==0 ){
- fts3HashFree(new_elem);
- return data;
- }
- memcpy((void*)new_elem->pKey, pKey, nKey);
- }else{
- new_elem->pKey = (void*)pKey;
- }
- new_elem->nKey = nKey;
- pH->count++;
- assert( pH->htsize>0 );
- assert( (pH->htsize & (pH->htsize-1))==0 );
- h = hraw & (pH->htsize-1);
- fts3HashInsertElement(pH, &pH->ht[h], new_elem);
- new_elem->data = data;
- return 0;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_hash.h b/src/libtracker-fts/fts3_hash.h
deleted file mode 100644
index 399f51544..000000000
--- a/src/libtracker-fts/fts3_hash.h
+++ /dev/null
@@ -1,112 +0,0 @@
-/*
-** 2001 September 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This is the header file for the generic hash-table implemenation
-** used in SQLite. We've modified it slightly to serve as a standalone
-** hash table implementation for the full-text indexing module.
-**
-*/
-#ifndef _FTS3_HASH_H_
-#define _FTS3_HASH_H_
-
-/* Forward declarations of structures. */
-typedef struct Fts3Hash Fts3Hash;
-typedef struct Fts3HashElem Fts3HashElem;
-
-/* A complete hash table is an instance of the following structure.
-** The internals of this structure are intended to be opaque -- client
-** code should not attempt to access or modify the fields of this structure
-** directly. Change this structure only by using the routines below.
-** However, many of the "procedures" and "functions" for modifying and
-** accessing this structure are really macros, so we can't really make
-** this structure opaque.
-*/
-struct Fts3Hash {
- char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */
- char copyKey; /* True if copy of key made on insert */
- int count; /* Number of entries in this table */
- Fts3HashElem *first; /* The first element of the array */
- int htsize; /* Number of buckets in the hash table */
- struct _fts3ht { /* the hash table */
- int count; /* Number of entries with this hash */
- Fts3HashElem *chain; /* Pointer to first entry with this hash */
- } *ht;
-};
-
-/* Each element in the hash table is an instance of the following
-** structure. All elements are stored on a single doubly-linked list.
-**
-** Again, this structure is intended to be opaque, but it can't really
-** be opaque because it is used by macros.
-*/
-struct Fts3HashElem {
- Fts3HashElem *next, *prev; /* Next and previous elements in the table */
- void *data; /* Data associated with this element */
- void *pKey; int nKey; /* Key associated with this element */
-};
-
-/*
-** There are 2 different modes of operation for a hash table:
-**
-** FTS3_HASH_STRING pKey points to a string that is nKey bytes long
-** (including the null-terminator, if any). Case
-** is respected in comparisons.
-**
-** FTS3_HASH_BINARY pKey points to binary data nKey bytes long.
-** memcmp() is used to compare keys.
-**
-** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.
-*/
-#define FTS3_HASH_STRING 1
-#define FTS3_HASH_BINARY 2
-
-/*
-** Access routines. To delete, insert a NULL pointer.
-*/
-void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
-void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
-void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
-void sqlite3Fts3HashClear(Fts3Hash*);
-Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);
-
-/*
-** Shorthand for the functions above
-*/
-#define fts3HashInit sqlite3Fts3HashInit
-#define fts3HashInsert sqlite3Fts3HashInsert
-#define fts3HashFind sqlite3Fts3HashFind
-#define fts3HashClear sqlite3Fts3HashClear
-#define fts3HashFindElem sqlite3Fts3HashFindElem
-
-/*
-** Macros for looping over all elements of a hash table. The idiom is
-** like this:
-**
-** Fts3Hash h;
-** Fts3HashElem *p;
-** ...
-** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
-** SomeStructure *pData = fts3HashData(p);
-** // do something with pData
-** }
-*/
-#define fts3HashFirst(H) ((H)->first)
-#define fts3HashNext(E) ((E)->next)
-#define fts3HashData(E) ((E)->data)
-#define fts3HashKey(E) ((E)->pKey)
-#define fts3HashKeysize(E) ((E)->nKey)
-
-/*
-** Number of entries in a hash table
-*/
-#define fts3HashCount(H) ((H)->count)
-
-#endif /* _FTS3_HASH_H_ */
diff --git a/src/libtracker-fts/fts3_icu.c b/src/libtracker-fts/fts3_icu.c
deleted file mode 100644
index 52df8c7d8..000000000
--- a/src/libtracker-fts/fts3_icu.c
+++ /dev/null
@@ -1,261 +0,0 @@
-/*
-** 2007 June 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This file implements a tokenizer for fts3 based on the ICU library.
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-#ifdef SQLITE_ENABLE_ICU
-
-#include <assert.h>
-#include <string.h>
-#include "fts3_tokenizer.h"
-
-#include <unicode/ubrk.h>
-#include <unicode/ucol.h>
-#include <unicode/ustring.h>
-#include <unicode/utf16.h>
-
-typedef struct IcuTokenizer IcuTokenizer;
-typedef struct IcuCursor IcuCursor;
-
-struct IcuTokenizer {
- sqlite3_tokenizer base;
- char *zLocale;
-};
-
-struct IcuCursor {
- sqlite3_tokenizer_cursor base;
-
- UBreakIterator *pIter; /* ICU break-iterator object */
- int nChar; /* Number of UChar elements in pInput */
- UChar *aChar; /* Copy of input using utf-16 encoding */
- int *aOffset; /* Offsets of each character in utf-8 input */
-
- int nBuffer;
- char *zBuffer;
-
- int iToken;
-};
-
-/*
-** Create a new tokenizer instance.
-*/
-static int icuCreate(
- int argc, /* Number of entries in argv[] */
- const char * const *argv, /* Tokenizer creation arguments */
- sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
-){
- IcuTokenizer *p;
- int n = 0;
-
- if( argc>0 ){
- n = strlen(argv[0])+1;
- }
- p = (IcuTokenizer *)sqlite3_malloc(sizeof(IcuTokenizer)+n);
- if( !p ){
- return SQLITE_NOMEM;
- }
- memset(p, 0, sizeof(IcuTokenizer));
-
- if( n ){
- p->zLocale = (char *)&p[1];
- memcpy(p->zLocale, argv[0], n);
- }
-
- *ppTokenizer = (sqlite3_tokenizer *)p;
-
- return SQLITE_OK;
-}
-
-/*
-** Destroy a tokenizer
-*/
-static int icuDestroy(sqlite3_tokenizer *pTokenizer){
- IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is pInput[0..nBytes-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int icuOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *zInput, /* Input string */
- int nInput, /* Length of zInput in bytes */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- IcuTokenizer *p = (IcuTokenizer *)pTokenizer;
- IcuCursor *pCsr;
-
- const int32_t opt = U_FOLD_CASE_DEFAULT;
- UErrorCode status = U_ZERO_ERROR;
- int nChar;
-
- UChar32 c;
- int iInput = 0;
- int iOut = 0;
-
- *ppCursor = 0;
-
- if( zInput==0 ){
- nInput = 0;
- zInput = "";
- }else if( nInput<0 ){
- nInput = strlen(zInput);
- }
- nChar = nInput+1;
- pCsr = (IcuCursor *)sqlite3_malloc(
- sizeof(IcuCursor) + /* IcuCursor */
- ((nChar+3)&~3) * sizeof(UChar) + /* IcuCursor.aChar[] */
- (nChar+1) * sizeof(int) /* IcuCursor.aOffset[] */
- );
- if( !pCsr ){
- return SQLITE_NOMEM;
- }
- memset(pCsr, 0, sizeof(IcuCursor));
- pCsr->aChar = (UChar *)&pCsr[1];
- pCsr->aOffset = (int *)&pCsr->aChar[(nChar+3)&~3];
-
- pCsr->aOffset[iOut] = iInput;
- U8_NEXT(zInput, iInput, nInput, c);
- while( c>0 ){
- int isError = 0;
- c = u_foldCase(c, opt);
- U16_APPEND(pCsr->aChar, iOut, nChar, c, isError);
- if( isError ){
- sqlite3_free(pCsr);
- return SQLITE_ERROR;
- }
- pCsr->aOffset[iOut] = iInput;
-
- if( iInput<nInput ){
- U8_NEXT(zInput, iInput, nInput, c);
- }else{
- c = 0;
- }
- }
-
- pCsr->pIter = ubrk_open(UBRK_WORD, p->zLocale, pCsr->aChar, iOut, &status);
- if( !U_SUCCESS(status) ){
- sqlite3_free(pCsr);
- return SQLITE_ERROR;
- }
- pCsr->nChar = iOut;
-
- ubrk_first(pCsr->pIter);
- *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to icuOpen().
-*/
-static int icuClose(sqlite3_tokenizer_cursor *pCursor){
- IcuCursor *pCsr = (IcuCursor *)pCursor;
- ubrk_close(pCsr->pIter);
- sqlite3_free(pCsr->zBuffer);
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-/*
-** Extract the next token from a tokenization cursor.
-*/
-static int icuNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
- const char **ppToken, /* OUT: *ppToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- IcuCursor *pCsr = (IcuCursor *)pCursor;
-
- int iStart = 0;
- int iEnd = 0;
- int nByte = 0;
-
- while( iStart==iEnd ){
- UChar32 c;
-
- iStart = ubrk_current(pCsr->pIter);
- iEnd = ubrk_next(pCsr->pIter);
- if( iEnd==UBRK_DONE ){
- return SQLITE_DONE;
- }
-
- while( iStart<iEnd ){
- int iWhite = iStart;
- U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
- if( u_isspace(c) ){
- iStart = iWhite;
- }else{
- break;
- }
- }
- assert(iStart<=iEnd);
- }
-
- do {
- UErrorCode status = U_ZERO_ERROR;
- if( nByte ){
- char *zNew = sqlite3_realloc(pCsr->zBuffer, nByte);
- if( !zNew ){
- return SQLITE_NOMEM;
- }
- pCsr->zBuffer = zNew;
- pCsr->nBuffer = nByte;
- }
-
- u_strToUTF8(
- pCsr->zBuffer, pCsr->nBuffer, &nByte, /* Output vars */
- &pCsr->aChar[iStart], iEnd-iStart, /* Input vars */
- &status /* Output success/failure */
- );
- } while( nByte>pCsr->nBuffer );
-
- *ppToken = pCsr->zBuffer;
- *pnBytes = nByte;
- *piStartOffset = pCsr->aOffset[iStart];
- *piEndOffset = pCsr->aOffset[iEnd];
- *piPosition = pCsr->iToken++;
-
- return SQLITE_OK;
-}
-
-/*
-** The set of routines that implement the simple tokenizer
-*/
-static const sqlite3_tokenizer_module icuTokenizerModule = {
- 0, /* iVersion */
- icuCreate, /* xCreate */
- icuDestroy, /* xCreate */
- icuOpen, /* xOpen */
- icuClose, /* xClose */
- icuNext, /* xNext */
-};
-
-/*
-** Set *ppModule to point at the implementation of the ICU tokenizer.
-*/
-void sqlite3Fts3IcuTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
-){
- *ppModule = &icuTokenizerModule;
-}
-
-#endif /* defined(SQLITE_ENABLE_ICU) */
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_porter.c b/src/libtracker-fts/fts3_porter.c
deleted file mode 100644
index 579745b85..000000000
--- a/src/libtracker-fts/fts3_porter.c
+++ /dev/null
@@ -1,646 +0,0 @@
-/*
-** 2006 September 30
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-*************************************************************************
-** Implementation of the full-text-search tokenizer that implements
-** a Porter stemmer.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <assert.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-
-#include "fts3_tokenizer.h"
-
-/*
-** Class derived from sqlite3_tokenizer
-*/
-typedef struct porter_tokenizer {
- sqlite3_tokenizer base; /* Base class */
-} porter_tokenizer;
-
-/*
-** Class derived from sqlite3_tokenizer_cursor
-*/
-typedef struct porter_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *zInput; /* input we are tokenizing */
- int nInput; /* size of the input */
- int iOffset; /* current position in zInput */
- int iToken; /* index of next token to be returned */
- char *zToken; /* storage for current token */
- int nAllocated; /* space allocated to zToken buffer */
-} porter_tokenizer_cursor;
-
-
-/*
-** Create a new tokenizer instance.
-*/
-static int porterCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
-){
- porter_tokenizer *t;
-
- UNUSED_PARAMETER(argc);
- UNUSED_PARAMETER(argv);
-
- t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
- if( t==NULL ) return SQLITE_NOMEM;
- memset(t, 0, sizeof(*t));
- *ppTokenizer = &t->base;
- return SQLITE_OK;
-}
-
-/*
-** Destroy a tokenizer
-*/
-static int porterDestroy(sqlite3_tokenizer *pTokenizer){
- sqlite3_free(pTokenizer);
- return SQLITE_OK;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is zInput[0..nInput-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int porterOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *zInput, int nInput, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- porter_tokenizer_cursor *c;
-
- UNUSED_PARAMETER(pTokenizer);
-
- c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
- if( c==NULL ) return SQLITE_NOMEM;
-
- c->zInput = zInput;
- if( zInput==0 ){
- c->nInput = 0;
- }else if( nInput<0 ){
- c->nInput = (int)strlen(zInput);
- }else{
- c->nInput = nInput;
- }
- c->iOffset = 0; /* start tokenizing at the beginning */
- c->iToken = 0;
- c->zToken = NULL; /* no space allocated, yet. */
- c->nAllocated = 0;
-
- *ppCursor = &c->base;
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to
-** porterOpen() above.
-*/
-static int porterClose(sqlite3_tokenizer_cursor *pCursor){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- sqlite3_free(c->zToken);
- sqlite3_free(c);
- return SQLITE_OK;
-}
-/*
-** Vowel or consonant
-*/
-static const char cType[] = {
- 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
- 1, 1, 1, 2, 1
-};
-
-/*
-** isConsonant() and isVowel() determine if their first character in
-** the string they point to is a consonant or a vowel, according
-** to Porter ruls.
-**
-** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
-** 'Y' is a consonant unless it follows another consonant,
-** in which case it is a vowel.
-**
-** In these routine, the letters are in reverse order. So the 'y' rule
-** is that 'y' is a consonant unless it is followed by another
-** consonent.
-*/
-static int isVowel(const char*);
-static int isConsonant(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return j;
- return z[1]==0 || isVowel(z + 1);
-}
-static int isVowel(const char *z){
- int j;
- char x = *z;
- if( x==0 ) return 0;
- assert( x>='a' && x<='z' );
- j = cType[x-'a'];
- if( j<2 ) return 1-j;
- return isConsonant(z + 1);
-}
-
-/*
-** Let any sequence of one or more vowels be represented by V and let
-** C be sequence of one or more consonants. Then every word can be
-** represented as:
-**
-** [C] (VC){m} [V]
-**
-** In prose: A word is an optional consonant followed by zero or
-** vowel-consonant pairs followed by an optional vowel. "m" is the
-** number of vowel consonant pairs. This routine computes the value
-** of m for the first i bytes of a word.
-**
-** Return true if the m-value for z is 1 or more. In other words,
-** return true if z contains at least one vowel that is followed
-** by a consonant.
-**
-** In this routine z[] is in reverse order. So we are really looking
-** for an instance of of a consonant followed by a vowel.
-*/
-static int m_gt_0(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/* Like mgt0 above except we are looking for a value of m which is
-** exactly 1
-*/
-static int m_eq_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 1;
- while( isConsonant(z) ){ z++; }
- return *z==0;
-}
-
-/* Like mgt0 above except we are looking for a value of m>1 instead
-** or m>0
-*/
-static int m_gt_1(const char *z){
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isVowel(z) ){ z++; }
- if( *z==0 ) return 0;
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/*
-** Return TRUE if there is a vowel anywhere within z[0..n-1]
-*/
-static int hasVowel(const char *z){
- while( isConsonant(z) ){ z++; }
- return *z!=0;
-}
-
-/*
-** Return TRUE if the word ends in a double consonant.
-**
-** The text is reversed here. So we are really looking at
-** the first two characters of z[].
-*/
-static int doubleConsonant(const char *z){
- return isConsonant(z) && z[0]==z[1];
-}
-
-/*
-** Return TRUE if the word ends with three letters which
-** are consonant-vowel-consonent and where the final consonant
-** is not 'w', 'x', or 'y'.
-**
-** The word is reversed here. So we are really checking the
-** first three letters and the first one cannot be in [wxy].
-*/
-static int star_oh(const char *z){
- return
- isConsonant(z) &&
- z[0]!='w' && z[0]!='x' && z[0]!='y' &&
- isVowel(z+1) &&
- isConsonant(z+2);
-}
-
-/*
-** If the word ends with zFrom and xCond() is true for the stem
-** of the word that preceeds the zFrom ending, then change the
-** ending to zTo.
-**
-** The input word *pz and zFrom are both in reverse order. zTo
-** is in normal order.
-**
-** Return TRUE if zFrom matches. Return FALSE if zFrom does not
-** match. Not that TRUE is returned even if xCond() fails and
-** no substitution occurs.
-*/
-static int stem(
- char **pz, /* The word being stemmed (Reversed) */
- const char *zFrom, /* If the ending matches this... (Reversed) */
- const char *zTo, /* ... change the ending to this (not reversed) */
- int (*xCond)(const char*) /* Condition that must be true */
-){
- char *z = *pz;
- while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
- if( *zFrom!=0 ) return 0;
- if( xCond && !xCond(z) ) return 1;
- while( *zTo ){
- *(--z) = *(zTo++);
- }
- *pz = z;
- return 1;
-}
-
-/*
-** This is the fallback stemmer used when the porter stemmer is
-** inappropriate. The input word is copied into the output with
-** US-ASCII case folding. If the input word is too long (more
-** than 20 bytes if it contains no digits or more than 6 bytes if
-** it contains digits) then word is truncated to 20 or 6 bytes
-** by taking 10 or 3 bytes from the beginning and end.
-*/
-static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, mx, j;
- int hasDigit = 0;
- for(i=0; i<nIn; i++){
- char c = zIn[i];
- if( c>='A' && c<='Z' ){
- zOut[i] = c - 'A' + 'a';
- }else{
- if( c>='0' && c<='9' ) hasDigit = 1;
- zOut[i] = c;
- }
- }
- mx = hasDigit ? 3 : 10;
- if( nIn>mx*2 ){
- for(j=mx, i=nIn-mx; i<nIn; i++, j++){
- zOut[j] = zOut[i];
- }
- i = j;
- }
- zOut[i] = 0;
- *pnOut = i;
-}
-
-
-/*
-** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
-** zOut is at least big enough to hold nIn bytes. Write the actual
-** size of the output word (exclusive of the '\0' terminator) into *pnOut.
-**
-** Any upper-case characters in the US-ASCII character set ([A-Z])
-** are converted to lower case. Upper-case UTF characters are
-** unchanged.
-**
-** Words that are longer than about 20 bytes are stemmed by retaining
-** a few bytes from the beginning and the end of the word. If the
-** word contains digits, 3 bytes are taken from the beginning and
-** 3 bytes from the end. For long words without digits, 10 bytes
-** are taken from each end. US-ASCII case folding still applies.
-**
-** If the input word contains not digits but does characters not
-** in [a-zA-Z] then no stemming is attempted and this routine just
-** copies the input into the input into the output with US-ASCII
-** case folding.
-**
-** Stemming never increases the length of the word. So there is
-** no chance of overflowing the zOut buffer.
-*/
-static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
- int i, j;
- char zReverse[28];
- char *z, *z2;
- if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){
- /* The word is too big or too small for the porter stemmer.
- ** Fallback to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
- char c = zIn[i];
- if( c>='A' && c<='Z' ){
- zReverse[j] = c + 'a' - 'A';
- }else if( c>='a' && c<='z' ){
- zReverse[j] = c;
- }else{
- /* The use of a character not in [a-zA-Z] means that we fallback
- ** to the copy stemmer */
- copy_stemmer(zIn, nIn, zOut, pnOut);
- return;
- }
- }
- memset(&zReverse[sizeof(zReverse)-5], 0, 5);
- z = &zReverse[j+1];
-
-
- /* Step 1a */
- if( z[0]=='s' ){
- if(
- !stem(&z, "sess", "ss", 0) &&
- !stem(&z, "sei", "i", 0) &&
- !stem(&z, "ss", "ss", 0)
- ){
- z++;
- }
- }
-
- /* Step 1b */
- z2 = z;
- if( stem(&z, "dee", "ee", m_gt_0) ){
- /* Do nothing. The work was all in the test */
- }else if(
- (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
- && z!=z2
- ){
- if( stem(&z, "ta", "ate", 0) ||
- stem(&z, "lb", "ble", 0) ||
- stem(&z, "zi", "ize", 0) ){
- /* Do nothing. The work was all in the test */
- }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
- z++;
- }else if( m_eq_1(z) && star_oh(z) ){
- *(--z) = 'e';
- }
- }
-
- /* Step 1c */
- if( z[0]=='y' && hasVowel(z+1) ){
- z[0] = 'i';
- }
-
- /* Step 2 */
- switch( z[1] ){
- case 'a':
- stem(&z, "lanoita", "ate", m_gt_0) ||
- stem(&z, "lanoit", "tion", m_gt_0);
- break;
- case 'c':
- stem(&z, "icne", "ence", m_gt_0) ||
- stem(&z, "icna", "ance", m_gt_0);
- break;
- case 'e':
- stem(&z, "rezi", "ize", m_gt_0);
- break;
- case 'g':
- stem(&z, "igol", "log", m_gt_0);
- break;
- case 'l':
- stem(&z, "ilb", "ble", m_gt_0) ||
- stem(&z, "illa", "al", m_gt_0) ||
- stem(&z, "iltne", "ent", m_gt_0) ||
- stem(&z, "ile", "e", m_gt_0) ||
- stem(&z, "ilsuo", "ous", m_gt_0);
- break;
- case 'o':
- stem(&z, "noitazi", "ize", m_gt_0) ||
- stem(&z, "noita", "ate", m_gt_0) ||
- stem(&z, "rota", "ate", m_gt_0);
- break;
- case 's':
- stem(&z, "msila", "al", m_gt_0) ||
- stem(&z, "ssenevi", "ive", m_gt_0) ||
- stem(&z, "ssenluf", "ful", m_gt_0) ||
- stem(&z, "ssensuo", "ous", m_gt_0);
- break;
- case 't':
- stem(&z, "itila", "al", m_gt_0) ||
- stem(&z, "itivi", "ive", m_gt_0) ||
- stem(&z, "itilib", "ble", m_gt_0);
- break;
- }
-
- /* Step 3 */
- switch( z[0] ){
- case 'e':
- stem(&z, "etaci", "ic", m_gt_0) ||
- stem(&z, "evita", "", m_gt_0) ||
- stem(&z, "ezila", "al", m_gt_0);
- break;
- case 'i':
- stem(&z, "itici", "ic", m_gt_0);
- break;
- case 'l':
- stem(&z, "laci", "ic", m_gt_0) ||
- stem(&z, "luf", "", m_gt_0);
- break;
- case 's':
- stem(&z, "ssen", "", m_gt_0);
- break;
- }
-
- /* Step 4 */
- switch( z[1] ){
- case 'a':
- if( z[0]=='l' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'c':
- if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'e':
- if( z[0]=='r' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'i':
- if( z[0]=='c' && m_gt_1(z+2) ){
- z += 2;
- }
- break;
- case 'l':
- if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
- z += 4;
- }
- break;
- case 'n':
- if( z[0]=='t' ){
- if( z[2]=='a' ){
- if( m_gt_1(z+3) ){
- z += 3;
- }
- }else if( z[2]=='e' ){
- stem(&z, "tneme", "", m_gt_1) ||
- stem(&z, "tnem", "", m_gt_1) ||
- stem(&z, "tne", "", m_gt_1);
- }
- }
- break;
- case 'o':
- if( z[0]=='u' ){
- if( m_gt_1(z+2) ){
- z += 2;
- }
- }else if( z[3]=='s' || z[3]=='t' ){
- stem(&z, "noi", "", m_gt_1);
- }
- break;
- case 's':
- if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 't':
- stem(&z, "eta", "", m_gt_1) ||
- stem(&z, "iti", "", m_gt_1);
- break;
- case 'u':
- if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- case 'v':
- case 'z':
- if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
- z += 3;
- }
- break;
- }
-
- /* Step 5a */
- if( z[0]=='e' ){
- if( m_gt_1(z+1) ){
- z++;
- }else if( m_eq_1(z+1) && !star_oh(z+1) ){
- z++;
- }
- }
-
- /* Step 5b */
- if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
- z++;
- }
-
- /* z[] is now the stemmed word in reverse order. Flip it back
- ** around into forward order and return.
- */
- *pnOut = i = (int)strlen(z);
- zOut[i] = 0;
- while( *z ){
- zOut[--i] = *(z++);
- }
-}
-
-/*
-** Characters that can be part of a token. We assume any character
-** whose value is greater than 0x80 (any UTF character) can be
-** part of a token. In other words, delimiters all must have
-** values of 0x7f or lower.
-*/
-static const char porterIdChar[] = {
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
-};
-#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
-
-/*
-** Extract the next token from a tokenization cursor. The cursor must
-** have been opened by a prior call to porterOpen().
-*/
-static int porterNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
- const char **pzToken, /* OUT: *pzToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
- const char *z = c->zInput;
-
- while( c->iOffset<c->nInput ){
- int iStartOffset, ch;
-
- /* Scan past delimiter characters */
- while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
-
- /* Count non-delimiter characters. */
- iStartOffset = c->iOffset;
- while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
- c->iOffset++;
- }
-
- if( c->iOffset>iStartOffset ){
- int n = c->iOffset-iStartOffset;
- if( n>c->nAllocated ){
- char *pNew;
- c->nAllocated = n+20;
- pNew = sqlite3_realloc(c->zToken, c->nAllocated);
- if( !pNew ) return SQLITE_NOMEM;
- c->zToken = pNew;
- }
- porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
- *pzToken = c->zToken;
- *piStartOffset = iStartOffset;
- *piEndOffset = c->iOffset;
- *piPosition = c->iToken++;
- return SQLITE_OK;
- }
- }
- return SQLITE_DONE;
-}
-
-/*
-** The set of routines that implement the porter-stemmer tokenizer
-*/
-static const sqlite3_tokenizer_module porterTokenizerModule = {
- 0,
- porterCreate,
- porterDestroy,
- porterOpen,
- porterClose,
- porterNext,
- 0
-};
-
-/*
-** Allocate a new porter tokenizer. Return a pointer to the new
-** tokenizer in *ppModule
-*/
-void sqlite3Fts3PorterTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
-){
- *ppModule = &porterTokenizerModule;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_snippet.c b/src/libtracker-fts/fts3_snippet.c
deleted file mode 100644
index 4bee014dc..000000000
--- a/src/libtracker-fts/fts3_snippet.c
+++ /dev/null
@@ -1,1520 +0,0 @@
-/*
-** 2009 Oct 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-*/
-
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <string.h>
-#include <assert.h>
-
-/*
-** Characters that may appear in the second argument to matchinfo().
-*/
-#define FTS3_MATCHINFO_NPHRASE 'p' /* 1 value */
-#define FTS3_MATCHINFO_NCOL 'c' /* 1 value */
-#define FTS3_MATCHINFO_NDOC 'n' /* 1 value */
-#define FTS3_MATCHINFO_AVGLENGTH 'a' /* nCol values */
-#define FTS3_MATCHINFO_LENGTH 'l' /* nCol values */
-#define FTS3_MATCHINFO_LCS 's' /* nCol values */
-#define FTS3_MATCHINFO_HITS 'x' /* 3*nCol*nPhrase values */
-
-/*
-** The default value for the second argument to matchinfo().
-*/
-#define FTS3_MATCHINFO_DEFAULT "pcx"
-
-
-/*
-** Used as an fts3ExprIterate() context when loading phrase doclists to
-** Fts3Expr.aDoclist[]/nDoclist.
-*/
-typedef struct LoadDoclistCtx LoadDoclistCtx;
-struct LoadDoclistCtx {
- Fts3Cursor *pCsr; /* FTS3 Cursor */
- int nPhrase; /* Number of phrases seen so far */
- int nToken; /* Number of tokens seen so far */
-};
-
-/*
-** The following types are used as part of the implementation of the
-** fts3BestSnippet() routine.
-*/
-typedef struct SnippetIter SnippetIter;
-typedef struct SnippetPhrase SnippetPhrase;
-typedef struct SnippetFragment SnippetFragment;
-
-struct SnippetIter {
- Fts3Cursor *pCsr; /* Cursor snippet is being generated from */
- int iCol; /* Extract snippet from this column */
- int nSnippet; /* Requested snippet length (in tokens) */
- int nPhrase; /* Number of phrases in query */
- SnippetPhrase *aPhrase; /* Array of size nPhrase */
- int iCurrent; /* First token of current snippet */
-};
-
-struct SnippetPhrase {
- int nToken; /* Number of tokens in phrase */
- char *pList; /* Pointer to start of phrase position list */
- int iHead; /* Next value in position list */
- char *pHead; /* Position list data following iHead */
- int iTail; /* Next value in trailing position list */
- char *pTail; /* Position list data following iTail */
-};
-
-struct SnippetFragment {
- int iCol; /* Column snippet is extracted from */
- int iPos; /* Index of first token in snippet */
- u64 covered; /* Mask of query phrases covered */
- u64 hlmask; /* Mask of snippet terms to highlight */
-};
-
-/*
-** This type is used as an fts3ExprIterate() context object while
-** accumulating the data returned by the matchinfo() function.
-*/
-typedef struct MatchInfo MatchInfo;
-struct MatchInfo {
- Fts3Cursor *pCursor; /* FTS3 Cursor */
- int nCol; /* Number of columns in table */
- int nPhrase; /* Number of matchable phrases in query */
- sqlite3_int64 nDoc; /* Number of docs in database */
- u32 *aMatchinfo; /* Pre-allocated buffer */
-};
-
-
-
-/*
-** The snippet() and offsets() functions both return text values. An instance
-** of the following structure is used to accumulate those values while the
-** functions are running. See fts3StringAppend() for details.
-*/
-typedef struct StrBuffer StrBuffer;
-struct StrBuffer {
- char *z; /* Pointer to buffer containing string */
- int n; /* Length of z in bytes (excl. nul-term) */
- int nAlloc; /* Allocated size of buffer z in bytes */
-};
-
-
-/*
-** This function is used to help iterate through a position-list. A position
-** list is a list of unique integers, sorted from smallest to largest. Each
-** element of the list is represented by an FTS3 varint that takes the value
-** of the difference between the current element and the previous one plus
-** two. For example, to store the position-list:
-**
-** 4 9 113
-**
-** the three varints:
-**
-** 6 7 106
-**
-** are encoded.
-**
-** When this function is called, *pp points to the start of an element of
-** the list. *piPos contains the value of the previous entry in the list.
-** After it returns, *piPos contains the value of the next element of the
-** list and *pp is advanced to the following varint.
-*/
-static void fts3GetDeltaPosition(char **pp, int *piPos){
- int iVal;
- *pp += sqlite3Fts3GetVarint32(*pp, &iVal);
- *piPos += (iVal-2);
-}
-
-/*
-** Helper function for fts3ExprIterate() (see below).
-*/
-static int fts3ExprIterate2(
- Fts3Expr *pExpr, /* Expression to iterate phrases of */
- int *piPhrase, /* Pointer to phrase counter */
- int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
- void *pCtx /* Second argument to pass to callback */
-){
- int rc; /* Return code */
- int eType = pExpr->eType; /* Type of expression node pExpr */
-
- if( eType!=FTSQUERY_PHRASE ){
- assert( pExpr->pLeft && pExpr->pRight );
- rc = fts3ExprIterate2(pExpr->pLeft, piPhrase, x, pCtx);
- if( rc==SQLITE_OK && eType!=FTSQUERY_NOT ){
- rc = fts3ExprIterate2(pExpr->pRight, piPhrase, x, pCtx);
- }
- }else{
- rc = x(pExpr, *piPhrase, pCtx);
- (*piPhrase)++;
- }
- return rc;
-}
-
-/*
-** Iterate through all phrase nodes in an FTS3 query, except those that
-** are part of a sub-tree that is the right-hand-side of a NOT operator.
-** For each phrase node found, the supplied callback function is invoked.
-**
-** If the callback function returns anything other than SQLITE_OK,
-** the iteration is abandoned and the error code returned immediately.
-** Otherwise, SQLITE_OK is returned after a callback has been made for
-** all eligible phrase nodes.
-*/
-static int fts3ExprIterate(
- Fts3Expr *pExpr, /* Expression to iterate phrases of */
- int (*x)(Fts3Expr*,int,void*), /* Callback function to invoke for phrases */
- void *pCtx /* Second argument to pass to callback */
-){
- int iPhrase = 0; /* Variable used as the phrase counter */
- return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
-}
-
-/*
-** This is an fts3ExprIterate() callback used while loading the doclists
-** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
-** fts3ExprLoadDoclists().
-*/
-static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
- int rc = SQLITE_OK;
- Fts3Phrase *pPhrase = pExpr->pPhrase;
- LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;
-
- UNUSED_PARAMETER(iPhrase);
-
- p->nPhrase++;
- p->nToken += pPhrase->nToken;
-
- return rc;
-}
-
-/*
-** Load the doclists for each phrase in the query associated with FTS3 cursor
-** pCsr.
-**
-** If pnPhrase is not NULL, then *pnPhrase is set to the number of matchable
-** phrases in the expression (all phrases except those directly or
-** indirectly descended from the right-hand-side of a NOT operator). If
-** pnToken is not NULL, then it is set to the number of tokens in all
-** matchable phrases of the expression.
-*/
-static int fts3ExprLoadDoclists(
- Fts3Cursor *pCsr, /* Fts3 cursor for current query */
- int *pnPhrase, /* OUT: Number of phrases in query */
- int *pnToken /* OUT: Number of tokens in query */
-){
- int rc; /* Return Code */
- LoadDoclistCtx sCtx = {0,0,0}; /* Context for fts3ExprIterate() */
- sCtx.pCsr = pCsr;
- rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx);
- if( pnPhrase ) *pnPhrase = sCtx.nPhrase;
- if( pnToken ) *pnToken = sCtx.nToken;
- return rc;
-}
-
-static int fts3ExprPhraseCountCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
- (*(int *)ctx)++;
- UNUSED_PARAMETER(pExpr);
- UNUSED_PARAMETER(iPhrase);
- return SQLITE_OK;
-}
-static int fts3ExprPhraseCount(Fts3Expr *pExpr){
- int nPhrase = 0;
- (void)fts3ExprIterate(pExpr, fts3ExprPhraseCountCb, (void *)&nPhrase);
- return nPhrase;
-}
-
-/*
-** Advance the position list iterator specified by the first two
-** arguments so that it points to the first element with a value greater
-** than or equal to parameter iNext.
-*/
-static void fts3SnippetAdvance(char **ppIter, int *piIter, int iNext){
- char *pIter = *ppIter;
- if( pIter ){
- int iIter = *piIter;
-
- while( iIter<iNext ){
- if( 0==(*pIter & 0xFE) ){
- iIter = -1;
- pIter = 0;
- break;
- }
- fts3GetDeltaPosition(&pIter, &iIter);
- }
-
- *piIter = iIter;
- *ppIter = pIter;
- }
-}
-
-/*
-** Advance the snippet iterator to the next candidate snippet.
-*/
-static int fts3SnippetNextCandidate(SnippetIter *pIter){
- int i; /* Loop counter */
-
- if( pIter->iCurrent<0 ){
- /* The SnippetIter object has just been initialized. The first snippet
- ** candidate always starts at offset 0 (even if this candidate has a
- ** score of 0.0).
- */
- pIter->iCurrent = 0;
-
- /* Advance the 'head' iterator of each phrase to the first offset that
- ** is greater than or equal to (iNext+nSnippet).
- */
- for(i=0; i<pIter->nPhrase; i++){
- SnippetPhrase *pPhrase = &pIter->aPhrase[i];
- fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, pIter->nSnippet);
- }
- }else{
- int iStart;
- int iEnd = 0x7FFFFFFF;
-
- for(i=0; i<pIter->nPhrase; i++){
- SnippetPhrase *pPhrase = &pIter->aPhrase[i];
- if( pPhrase->pHead && pPhrase->iHead<iEnd ){
- iEnd = pPhrase->iHead;
- }
- }
- if( iEnd==0x7FFFFFFF ){
- return 1;
- }
-
- pIter->iCurrent = iStart = iEnd - pIter->nSnippet + 1;
- for(i=0; i<pIter->nPhrase; i++){
- SnippetPhrase *pPhrase = &pIter->aPhrase[i];
- fts3SnippetAdvance(&pPhrase->pHead, &pPhrase->iHead, iEnd+1);
- fts3SnippetAdvance(&pPhrase->pTail, &pPhrase->iTail, iStart);
- }
- }
-
- return 0;
-}
-
-/*
-** Retrieve information about the current candidate snippet of snippet
-** iterator pIter.
-*/
-static void fts3SnippetDetails(
- SnippetIter *pIter, /* Snippet iterator */
- u64 mCovered, /* Bitmask of phrases already covered */
- int *piToken, /* OUT: First token of proposed snippet */
- int *piScore, /* OUT: "Score" for this snippet */
- u64 *pmCover, /* OUT: Bitmask of phrases covered */
- u64 *pmHighlight /* OUT: Bitmask of terms to highlight */
-){
- int iStart = pIter->iCurrent; /* First token of snippet */
- int iScore = 0; /* Score of this snippet */
- int i; /* Loop counter */
- u64 mCover = 0; /* Mask of phrases covered by this snippet */
- u64 mHighlight = 0; /* Mask of tokens to highlight in snippet */
-
- for(i=0; i<pIter->nPhrase; i++){
- SnippetPhrase *pPhrase = &pIter->aPhrase[i];
- if( pPhrase->pTail ){
- char *pCsr = pPhrase->pTail;
- int iCsr = pPhrase->iTail;
-
- while( iCsr<(iStart+pIter->nSnippet) ){
- int j;
- u64 mPhrase = (u64)1 << i;
- u64 mPos = (u64)1 << (iCsr - iStart);
- assert( iCsr>=iStart );
- if( (mCover|mCovered)&mPhrase ){
- iScore++;
- }else{
- iScore += 1000;
- }
- mCover |= mPhrase;
-
- for(j=0; j<pPhrase->nToken; j++){
- mHighlight |= (mPos>>j);
- }
-
- if( 0==(*pCsr & 0x0FE) ) break;
- fts3GetDeltaPosition(&pCsr, &iCsr);
- }
- }
- }
-
- /* Set the output variables before returning. */
- *piToken = iStart;
- *piScore = iScore;
- *pmCover = mCover;
- *pmHighlight = mHighlight;
-}
-
-/*
-** This function is an fts3ExprIterate() callback used by fts3BestSnippet().
-** Each invocation populates an element of the SnippetIter.aPhrase[] array.
-*/
-static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
- SnippetIter *p = (SnippetIter *)ctx;
- SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
- char *pCsr;
- int rc;
-
- pPhrase->nToken = pExpr->pPhrase->nToken;
- rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pCsr);
- assert( rc==SQLITE_OK || pCsr==0 );
- if( pCsr ){
- int iFirst = 0;
- pPhrase->pList = pCsr;
- fts3GetDeltaPosition(&pCsr, &iFirst);
- assert( iFirst>=0 );
- pPhrase->pHead = pCsr;
- pPhrase->pTail = pCsr;
- pPhrase->iHead = iFirst;
- pPhrase->iTail = iFirst;
- }else{
- assert( rc!=SQLITE_OK || (
- pPhrase->pList==0 && pPhrase->pHead==0 && pPhrase->pTail==0
- ));
- }
-
- return rc;
-}
-
-/*
-** Select the fragment of text consisting of nFragment contiguous tokens
-** from column iCol that represent the "best" snippet. The best snippet
-** is the snippet with the highest score, where scores are calculated
-** by adding:
-**
-** (a) +1 point for each occurence of a matchable phrase in the snippet.
-**
-** (b) +1000 points for the first occurence of each matchable phrase in
-** the snippet for which the corresponding mCovered bit is not set.
-**
-** The selected snippet parameters are stored in structure *pFragment before
-** returning. The score of the selected snippet is stored in *piScore
-** before returning.
-*/
-static int fts3BestSnippet(
- int nSnippet, /* Desired snippet length */
- Fts3Cursor *pCsr, /* Cursor to create snippet for */
- int iCol, /* Index of column to create snippet from */
- u64 mCovered, /* Mask of phrases already covered */
- u64 *pmSeen, /* IN/OUT: Mask of phrases seen */
- SnippetFragment *pFragment, /* OUT: Best snippet found */
- int *piScore /* OUT: Score of snippet pFragment */
-){
- int rc; /* Return Code */
- int nList; /* Number of phrases in expression */
- SnippetIter sIter; /* Iterates through snippet candidates */
- int nByte; /* Number of bytes of space to allocate */
- int iBestScore = -1; /* Best snippet score found so far */
- int i; /* Loop counter */
-
- memset(&sIter, 0, sizeof(sIter));
-
- /* Iterate through the phrases in the expression to count them. The same
- ** callback makes sure the doclists are loaded for each phrase.
- */
- rc = fts3ExprLoadDoclists(pCsr, &nList, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- /* Now that it is known how many phrases there are, allocate and zero
- ** the required space using malloc().
- */
- nByte = sizeof(SnippetPhrase) * nList;
- sIter.aPhrase = (SnippetPhrase *)sqlite3_malloc(nByte);
- if( !sIter.aPhrase ){
- return SQLITE_NOMEM;
- }
- memset(sIter.aPhrase, 0, nByte);
-
- /* Initialize the contents of the SnippetIter object. Then iterate through
- ** the set of phrases in the expression to populate the aPhrase[] array.
- */
- sIter.pCsr = pCsr;
- sIter.iCol = iCol;
- sIter.nSnippet = nSnippet;
- sIter.nPhrase = nList;
- sIter.iCurrent = -1;
- (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter);
-
- /* Set the *pmSeen output variable. */
- for(i=0; i<nList; i++){
- if( sIter.aPhrase[i].pHead ){
- *pmSeen |= (u64)1 << i;
- }
- }
-
- /* Loop through all candidate snippets. Store the best snippet in
- ** *pFragment. Store its associated 'score' in iBestScore.
- */
- pFragment->iCol = iCol;
- while( !fts3SnippetNextCandidate(&sIter) ){
- int iPos;
- int iScore;
- u64 mCover;
- u64 mHighlight;
- fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover, &mHighlight);
- assert( iScore>=0 );
- if( iScore>iBestScore ){
- pFragment->iPos = iPos;
- pFragment->hlmask = mHighlight;
- pFragment->covered = mCover;
- iBestScore = iScore;
- }
- }
-
- sqlite3_free(sIter.aPhrase);
- *piScore = iBestScore;
- return SQLITE_OK;
-}
-
-
-/*
-** Append a string to the string-buffer passed as the first argument.
-**
-** If nAppend is negative, then the length of the string zAppend is
-** determined using strlen().
-*/
-static int fts3StringAppend(
- StrBuffer *pStr, /* Buffer to append to */
- const char *zAppend, /* Pointer to data to append to buffer */
- int nAppend /* Size of zAppend in bytes (or -1) */
-){
- if( nAppend<0 ){
- nAppend = (int)strlen(zAppend);
- }
-
- /* If there is insufficient space allocated at StrBuffer.z, use realloc()
- ** to grow the buffer until so that it is big enough to accomadate the
- ** appended data.
- */
- if( pStr->n+nAppend+1>=pStr->nAlloc ){
- int nAlloc = pStr->nAlloc+nAppend+100;
- char *zNew = sqlite3_realloc(pStr->z, nAlloc);
- if( !zNew ){
- return SQLITE_NOMEM;
- }
- pStr->z = zNew;
- pStr->nAlloc = nAlloc;
- }
-
- /* Append the data to the string buffer. */
- memcpy(&pStr->z[pStr->n], zAppend, nAppend);
- pStr->n += nAppend;
- pStr->z[pStr->n] = '\0';
-
- return SQLITE_OK;
-}
-
-/*
-** The fts3BestSnippet() function often selects snippets that end with a
-** query term. That is, the final term of the snippet is always a term
-** that requires highlighting. For example, if 'X' is a highlighted term
-** and '.' is a non-highlighted term, BestSnippet() may select:
-**
-** ........X.....X
-**
-** This function "shifts" the beginning of the snippet forward in the
-** document so that there are approximately the same number of
-** non-highlighted terms to the right of the final highlighted term as there
-** are to the left of the first highlighted term. For example, to this:
-**
-** ....X.....X....
-**
-** This is done as part of extracting the snippet text, not when selecting
-** the snippet. Snippet selection is done based on doclists only, so there
-** is no way for fts3BestSnippet() to know whether or not the document
-** actually contains terms that follow the final highlighted term.
-*/
-static int fts3SnippetShift(
- Fts3Table *pTab, /* FTS3 table snippet comes from */
- int iLangid, /* Language id to use in tokenizing */
- int nSnippet, /* Number of tokens desired for snippet */
- const char *zDoc, /* Document text to extract snippet from */
- int nDoc, /* Size of buffer zDoc in bytes */
- int *piPos, /* IN/OUT: First token of snippet */
- u64 *pHlmask /* IN/OUT: Mask of tokens to highlight */
-){
- u64 hlmask = *pHlmask; /* Local copy of initial highlight-mask */
-
- if( hlmask ){
- int nLeft; /* Tokens to the left of first highlight */
- int nRight; /* Tokens to the right of last highlight */
- int nDesired; /* Ideal number of tokens to shift forward */
-
- for(nLeft=0; !(hlmask & ((u64)1 << nLeft)); nLeft++);
- for(nRight=0; !(hlmask & ((u64)1 << (nSnippet-1-nRight))); nRight++);
- nDesired = (nLeft-nRight)/2;
-
- /* Ideally, the start of the snippet should be pushed forward in the
- ** document nDesired tokens. This block checks if there are actually
- ** nDesired tokens to the right of the snippet. If so, *piPos and
- ** *pHlMask are updated to shift the snippet nDesired tokens to the
- ** right. Otherwise, the snippet is shifted by the number of tokens
- ** available.
- */
- if( nDesired>0 ){
- int nShift; /* Number of tokens to shift snippet by */
- int iCurrent = 0; /* Token counter */
- int rc; /* Return Code */
- sqlite3_tokenizer_module *pMod;
- sqlite3_tokenizer_cursor *pC;
- pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
-
- /* Open a cursor on zDoc/nDoc. Check if there are (nSnippet+nDesired)
- ** or more tokens in zDoc/nDoc.
- */
- rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, iLangid, zDoc, nDoc, &pC);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- while( rc==SQLITE_OK && iCurrent<(nSnippet+nDesired) ){
- const char *ZDUMMY; int DUMMY1 = 0, DUMMY2 = 0, DUMMY3 = 0;
- rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent);
- }
- pMod->xClose(pC);
- if( rc!=SQLITE_OK && rc!=SQLITE_DONE ){ return rc; }
-
- nShift = (rc==SQLITE_DONE)+iCurrent-nSnippet;
- assert( nShift<=nDesired );
- if( nShift>0 ){
- *piPos += nShift;
- *pHlmask = hlmask >> nShift;
- }
- }
- }
- return SQLITE_OK;
-}
-
-/*
-** Extract the snippet text for fragment pFragment from cursor pCsr and
-** append it to string buffer pOut.
-*/
-static int fts3SnippetText(
- Fts3Cursor *pCsr, /* FTS3 Cursor */
- SnippetFragment *pFragment, /* Snippet to extract */
- int iFragment, /* Fragment number */
- int isLast, /* True for final fragment in snippet */
- int nSnippet, /* Number of tokens in extracted snippet */
- const char *zOpen, /* String inserted before highlighted term */
- const char *zClose, /* String inserted after highlighted term */
- const char *zEllipsis, /* String inserted between snippets */
- StrBuffer *pOut /* Write output here */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc; /* Return code */
- const char *zDoc; /* Document text to extract snippet from */
- int nDoc; /* Size of zDoc in bytes */
- int iCurrent = 0; /* Current token number of document */
- int iEnd = 0; /* Byte offset of end of current token */
- int isShiftDone = 0; /* True after snippet is shifted */
- int iPos = pFragment->iPos; /* First token of snippet */
- u64 hlmask = pFragment->hlmask; /* Highlight-mask for snippet */
- int iCol = pFragment->iCol+1; /* Query column to extract text from */
- sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */
- sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */
-
- zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol);
- if( zDoc==0 ){
- if( sqlite3_column_type(pCsr->pStmt, iCol)!=SQLITE_NULL ){
- return SQLITE_NOMEM;
- }
- return SQLITE_OK;
- }
- nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol);
-
- /* Open a token cursor on the document. */
- pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule;
- rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid, zDoc,nDoc,&pC);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- while( rc==SQLITE_OK ){
- const char *ZDUMMY; /* Dummy argument used with tokenizer */
- int DUMMY1 = -1; /* Dummy argument used with tokenizer */
- int iBegin = 0; /* Offset in zDoc of start of token */
- int iFin = 0; /* Offset in zDoc of end of token */
- int isHighlight = 0; /* True for highlighted terms */
-
- /* Variable DUMMY1 is initialized to a negative value above. Elsewhere
- ** in the FTS code the variable that the third argument to xNext points to
- ** is initialized to zero before the first (*but not necessarily
- ** subsequent*) call to xNext(). This is done for a particular application
- ** that needs to know whether or not the tokenizer is being used for
- ** snippet generation or for some other purpose.
- **
- ** Extreme care is required when writing code to depend on this
- ** initialization. It is not a documented part of the tokenizer interface.
- ** If a tokenizer is used directly by any code outside of FTS, this
- ** convention might not be respected. */
- rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent);
- if( rc!=SQLITE_OK ){
- if( rc==SQLITE_DONE ){
- /* Special case - the last token of the snippet is also the last token
- ** of the column. Append any punctuation that occurred between the end
- ** of the previous token and the end of the document to the output.
- ** Then break out of the loop. */
- rc = fts3StringAppend(pOut, &zDoc[iEnd], -1);
- }
- break;
- }
- if( iCurrent<iPos ){ continue; }
-
- if( !isShiftDone ){
- int n = nDoc - iBegin;
- rc = fts3SnippetShift(
- pTab, pCsr->iLangid, nSnippet, &zDoc[iBegin], n, &iPos, &hlmask
- );
- isShiftDone = 1;
-
- /* Now that the shift has been done, check if the initial "..." are
- ** required. They are required if (a) this is not the first fragment,
- ** or (b) this fragment does not begin at position 0 of its column.
- */
- if( rc==SQLITE_OK && (iPos>0 || iFragment>0) ){
- rc = fts3StringAppend(pOut, zEllipsis, -1);
- }
- if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
- }
-
- if( iCurrent>=(iPos+nSnippet) ){
- if( isLast ){
- rc = fts3StringAppend(pOut, zEllipsis, -1);
- }
- break;
- }
-
- /* Set isHighlight to true if this term should be highlighted. */
- isHighlight = (hlmask & ((u64)1 << (iCurrent-iPos)))!=0;
-
- if( iCurrent>iPos ) rc = fts3StringAppend(pOut, &zDoc[iEnd], iBegin-iEnd);
- if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zOpen, -1);
- if( rc==SQLITE_OK ) rc = fts3StringAppend(pOut, &zDoc[iBegin], iFin-iBegin);
- if( rc==SQLITE_OK && isHighlight ) rc = fts3StringAppend(pOut, zClose, -1);
-
- iEnd = iFin;
- }
-
- pMod->xClose(pC);
- return rc;
-}
-
-
-/*
-** This function is used to count the entries in a column-list (a
-** delta-encoded list of term offsets within a single column of a single
-** row). When this function is called, *ppCollist should point to the
-** beginning of the first varint in the column-list (the varint that
-** contains the position of the first matching term in the column data).
-** Before returning, *ppCollist is set to point to the first byte after
-** the last varint in the column-list (either the 0x00 signifying the end
-** of the position-list, or the 0x01 that precedes the column number of
-** the next column in the position-list).
-**
-** The number of elements in the column-list is returned.
-*/
-static int fts3ColumnlistCount(char **ppCollist){
- char *pEnd = *ppCollist;
- char c = 0;
- int nEntry = 0;
-
- /* A column-list is terminated by either a 0x01 or 0x00. */
- while( 0xFE & (*pEnd | c) ){
- c = *pEnd++ & 0x80;
- if( !c ) nEntry++;
- }
-
- *ppCollist = pEnd;
- return nEntry;
-}
-
-/*
-** fts3ExprIterate() callback used to collect the "global" matchinfo stats
-** for a single query.
-**
-** fts3ExprIterate() callback to load the 'global' elements of a
-** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements
-** of the matchinfo array that are constant for all rows returned by the
-** current query.
-**
-** Argument pCtx is actually a pointer to a struct of type MatchInfo. This
-** function populates Matchinfo.aMatchinfo[] as follows:
-**
-** for(iCol=0; iCol<nCol; iCol++){
-** aMatchinfo[3*iPhrase*nCol + 3*iCol + 1] = X;
-** aMatchinfo[3*iPhrase*nCol + 3*iCol + 2] = Y;
-** }
-**
-** where X is the number of matches for phrase iPhrase is column iCol of all
-** rows of the table. Y is the number of rows for which column iCol contains
-** at least one instance of phrase iPhrase.
-**
-** If the phrase pExpr consists entirely of deferred tokens, then all X and
-** Y values are set to nDoc, where nDoc is the number of documents in the
-** file system. This is done because the full-text index doclist is required
-** to calculate these values properly, and the full-text index doclist is
-** not available for deferred tokens.
-*/
-static int fts3ExprGlobalHitsCb(
- Fts3Expr *pExpr, /* Phrase expression node */
- int iPhrase, /* Phrase number (numbered from zero) */
- void *pCtx /* Pointer to MatchInfo structure */
-){
- MatchInfo *p = (MatchInfo *)pCtx;
- return sqlite3Fts3EvalPhraseStats(
- p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol]
- );
-}
-
-/*
-** fts3ExprIterate() callback used to collect the "local" part of the
-** FTS3_MATCHINFO_HITS array. The local stats are those elements of the
-** array that are different for each row returned by the query.
-*/
-static int fts3ExprLocalHitsCb(
- Fts3Expr *pExpr, /* Phrase expression node */
- int iPhrase, /* Phrase number */
- void *pCtx /* Pointer to MatchInfo structure */
-){
- int rc = SQLITE_OK;
- MatchInfo *p = (MatchInfo *)pCtx;
- int iStart = iPhrase * p->nCol * 3;
- int i;
-
- for(i=0; i<p->nCol && rc==SQLITE_OK; i++){
- char *pCsr;
- rc = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i, &pCsr);
- if( pCsr ){
- p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr);
- }else{
- p->aMatchinfo[iStart+i*3] = 0;
- }
- }
-
- return rc;
-}
-
-static int fts3MatchinfoCheck(
- Fts3Table *pTab,
- char cArg,
- char **pzErr
-){
- if( (cArg==FTS3_MATCHINFO_NPHRASE)
- || (cArg==FTS3_MATCHINFO_NCOL)
- || (cArg==FTS3_MATCHINFO_NDOC && pTab->bFts4)
- || (cArg==FTS3_MATCHINFO_AVGLENGTH && pTab->bFts4)
- || (cArg==FTS3_MATCHINFO_LENGTH && pTab->bHasDocsize)
- || (cArg==FTS3_MATCHINFO_LCS)
- || (cArg==FTS3_MATCHINFO_HITS)
- ){
- return SQLITE_OK;
- }
- *pzErr = sqlite3_mprintf("unrecognized matchinfo request: %c", cArg);
- return SQLITE_ERROR;
-}
-
-static int fts3MatchinfoSize(MatchInfo *pInfo, char cArg){
- int nVal; /* Number of integers output by cArg */
-
- switch( cArg ){
- case FTS3_MATCHINFO_NDOC:
- case FTS3_MATCHINFO_NPHRASE:
- case FTS3_MATCHINFO_NCOL:
- nVal = 1;
- break;
-
- case FTS3_MATCHINFO_AVGLENGTH:
- case FTS3_MATCHINFO_LENGTH:
- case FTS3_MATCHINFO_LCS:
- nVal = pInfo->nCol;
- break;
-
- default:
- assert( cArg==FTS3_MATCHINFO_HITS );
- nVal = pInfo->nCol * pInfo->nPhrase * 3;
- break;
- }
-
- return nVal;
-}
-
-static int fts3MatchinfoSelectDoctotal(
- Fts3Table *pTab,
- sqlite3_stmt **ppStmt,
- sqlite3_int64 *pnDoc,
- const char **paLen
-){
- sqlite3_stmt *pStmt;
- const char *a;
- sqlite3_int64 nDoc;
-
- if( !*ppStmt ){
- int rc = sqlite3Fts3SelectDoctotal(pTab, ppStmt);
- if( rc!=SQLITE_OK ) return rc;
- }
- pStmt = *ppStmt;
- assert( sqlite3_data_count(pStmt)==1 );
-
- a = sqlite3_column_blob(pStmt, 0);
- a += sqlite3Fts3GetVarint(a, &nDoc);
- if( nDoc==0 ) return FTS_CORRUPT_VTAB;
- *pnDoc = (u32)nDoc;
-
- if( paLen ) *paLen = a;
- return SQLITE_OK;
-}
-
-/*
-** An instance of the following structure is used to store state while
-** iterating through a multi-column position-list corresponding to the
-** hits for a single phrase on a single row in order to calculate the
-** values for a matchinfo() FTS3_MATCHINFO_LCS request.
-*/
-typedef struct LcsIterator LcsIterator;
-struct LcsIterator {
- Fts3Expr *pExpr; /* Pointer to phrase expression */
- int iPosOffset; /* Tokens count up to end of this phrase */
- char *pRead; /* Cursor used to iterate through aDoclist */
- int iPos; /* Current position */
-};
-
-/*
-** If LcsIterator.iCol is set to the following value, the iterator has
-** finished iterating through all offsets for all columns.
-*/
-#define LCS_ITERATOR_FINISHED 0x7FFFFFFF;
-
-static int fts3MatchinfoLcsCb(
- Fts3Expr *pExpr, /* Phrase expression node */
- int iPhrase, /* Phrase number (numbered from zero) */
- void *pCtx /* Pointer to MatchInfo structure */
-){
- LcsIterator *aIter = (LcsIterator *)pCtx;
- aIter[iPhrase].pExpr = pExpr;
- return SQLITE_OK;
-}
-
-/*
-** Advance the iterator passed as an argument to the next position. Return
-** 1 if the iterator is at EOF or if it now points to the start of the
-** position list for the next column.
-*/
-static int fts3LcsIteratorAdvance(LcsIterator *pIter){
- char *pRead = pIter->pRead;
- sqlite3_int64 iRead;
- int rc = 0;
-
- pRead += sqlite3Fts3GetVarint(pRead, &iRead);
- if( iRead==0 || iRead==1 ){
- pRead = 0;
- rc = 1;
- }else{
- pIter->iPos += (int)(iRead-2);
- }
-
- pIter->pRead = pRead;
- return rc;
-}
-
-/*
-** This function implements the FTS3_MATCHINFO_LCS matchinfo() flag.
-**
-** If the call is successful, the longest-common-substring lengths for each
-** column are written into the first nCol elements of the pInfo->aMatchinfo[]
-** array before returning. SQLITE_OK is returned in this case.
-**
-** Otherwise, if an error occurs, an SQLite error code is returned and the
-** data written to the first nCol elements of pInfo->aMatchinfo[] is
-** undefined.
-*/
-static int fts3MatchinfoLcs(Fts3Cursor *pCsr, MatchInfo *pInfo){
- LcsIterator *aIter;
- int i;
- int iCol;
- int nToken = 0;
-
- /* Allocate and populate the array of LcsIterator objects. The array
- ** contains one element for each matchable phrase in the query.
- **/
- aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
- if( !aIter ) return SQLITE_NOMEM;
- memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
- (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);
-
- for(i=0; i<pInfo->nPhrase; i++){
- LcsIterator *pIter = &aIter[i];
- nToken -= pIter->pExpr->pPhrase->nToken;
- pIter->iPosOffset = nToken;
- }
-
- for(iCol=0; iCol<pInfo->nCol; iCol++){
- int nLcs = 0; /* LCS value for this column */
- int nLive = 0; /* Number of iterators in aIter not at EOF */
-
- for(i=0; i<pInfo->nPhrase; i++){
- int rc;
- LcsIterator *pIt = &aIter[i];
- rc = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol, &pIt->pRead);
- if( rc!=SQLITE_OK ) return rc;
- if( pIt->pRead ){
- pIt->iPos = pIt->iPosOffset;
- fts3LcsIteratorAdvance(&aIter[i]);
- nLive++;
- }
- }
-
- while( nLive>0 ){
- LcsIterator *pAdv = 0; /* The iterator to advance by one position */
- int nThisLcs = 0; /* LCS for the current iterator positions */
-
- for(i=0; i<pInfo->nPhrase; i++){
- LcsIterator *pIter = &aIter[i];
- if( pIter->pRead==0 ){
- /* This iterator is already at EOF for this column. */
- nThisLcs = 0;
- }else{
- if( pAdv==0 || pIter->iPos<pAdv->iPos ){
- pAdv = pIter;
- }
- if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
- nThisLcs++;
- }else{
- nThisLcs = 1;
- }
- if( nThisLcs>nLcs ) nLcs = nThisLcs;
- }
- }
- if( fts3LcsIteratorAdvance(pAdv) ) nLive--;
- }
-
- pInfo->aMatchinfo[iCol] = nLcs;
- }
-
- sqlite3_free(aIter);
- return SQLITE_OK;
-}
-
-/*
-** Populate the buffer pInfo->aMatchinfo[] with an array of integers to
-** be returned by the matchinfo() function. Argument zArg contains the
-** format string passed as the second argument to matchinfo (or the
-** default value "pcx" if no second argument was specified). The format
-** string has already been validated and the pInfo->aMatchinfo[] array
-** is guaranteed to be large enough for the output.
-**
-** If bGlobal is true, then populate all fields of the matchinfo() output.
-** If it is false, then assume that those fields that do not change between
-** rows (i.e. FTS3_MATCHINFO_NPHRASE, NCOL, NDOC, AVGLENGTH and part of HITS)
-** have already been populated.
-**
-** Return SQLITE_OK if successful, or an SQLite error code if an error
-** occurs. If a value other than SQLITE_OK is returned, the state the
-** pInfo->aMatchinfo[] buffer is left in is undefined.
-*/
-static int fts3MatchinfoValues(
- Fts3Cursor *pCsr, /* FTS3 cursor object */
- int bGlobal, /* True to grab the global stats */
- MatchInfo *pInfo, /* Matchinfo context object */
- const char *zArg /* Matchinfo format string */
-){
- int rc = SQLITE_OK;
- int i;
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- sqlite3_stmt *pSelect = 0;
-
- for(i=0; rc==SQLITE_OK && zArg[i]; i++){
-
- switch( zArg[i] ){
- case FTS3_MATCHINFO_NPHRASE:
- if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nPhrase;
- break;
-
- case FTS3_MATCHINFO_NCOL:
- if( bGlobal ) pInfo->aMatchinfo[0] = pInfo->nCol;
- break;
-
- case FTS3_MATCHINFO_NDOC:
- if( bGlobal ){
- sqlite3_int64 nDoc = 0;
- rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, 0);
- pInfo->aMatchinfo[0] = (u32)nDoc;
- }
- break;
-
- case FTS3_MATCHINFO_AVGLENGTH:
- if( bGlobal ){
- sqlite3_int64 nDoc; /* Number of rows in table */
- const char *a; /* Aggregate column length array */
-
- rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &nDoc, &a);
- if( rc==SQLITE_OK ){
- int iCol;
- for(iCol=0; iCol<pInfo->nCol; iCol++){
- u32 iVal;
- sqlite3_int64 nToken;
- a += sqlite3Fts3GetVarint(a, &nToken);
- iVal = (u32)(((u32)(nToken&0xffffffff)+nDoc/2)/nDoc);
- pInfo->aMatchinfo[iCol] = iVal;
- }
- }
- }
- break;
-
- case FTS3_MATCHINFO_LENGTH: {
- sqlite3_stmt *pSelectDocsize = 0;
- rc = sqlite3Fts3SelectDocsize(pTab, pCsr->iPrevId, &pSelectDocsize);
- if( rc==SQLITE_OK ){
- int iCol;
- const char *a = sqlite3_column_blob(pSelectDocsize, 0);
- for(iCol=0; iCol<pInfo->nCol; iCol++){
- sqlite3_int64 nToken;
- a += sqlite3Fts3GetVarint(a, &nToken);
- pInfo->aMatchinfo[iCol] = (u32)nToken;
- }
- }
- sqlite3_reset(pSelectDocsize);
- break;
- }
-
- case FTS3_MATCHINFO_LCS:
- rc = fts3ExprLoadDoclists(pCsr, 0, 0);
- if( rc==SQLITE_OK ){
- rc = fts3MatchinfoLcs(pCsr, pInfo);
- }
- break;
-
- default: {
- Fts3Expr *pExpr;
- assert( zArg[i]==FTS3_MATCHINFO_HITS );
- pExpr = pCsr->pExpr;
- rc = fts3ExprLoadDoclists(pCsr, 0, 0);
- if( rc!=SQLITE_OK ) break;
- if( bGlobal ){
- if( pCsr->pDeferred ){
- rc = fts3MatchinfoSelectDoctotal(pTab, &pSelect, &pInfo->nDoc, 0);
- if( rc!=SQLITE_OK ) break;
- }
- rc = fts3ExprIterate(pExpr, fts3ExprGlobalHitsCb,(void*)pInfo);
- if( rc!=SQLITE_OK ) break;
- }
- (void)fts3ExprIterate(pExpr, fts3ExprLocalHitsCb,(void*)pInfo);
- break;
- }
- }
-
- pInfo->aMatchinfo += fts3MatchinfoSize(pInfo, zArg[i]);
- }
-
- sqlite3_reset(pSelect);
- return rc;
-}
-
-
-/*
-** Populate pCsr->aMatchinfo[] with data for the current row. The
-** 'matchinfo' data is an array of 32-bit unsigned integers (C type u32).
-*/
-static int fts3GetMatchinfo(
- Fts3Cursor *pCsr, /* FTS3 Cursor object */
- const char *zArg /* Second argument to matchinfo() function */
-){
- MatchInfo sInfo;
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc = SQLITE_OK;
- int bGlobal = 0; /* Collect 'global' stats as well as local */
-
- memset(&sInfo, 0, sizeof(MatchInfo));
- sInfo.pCursor = pCsr;
- sInfo.nCol = pTab->nColumn;
-
- /* If there is cached matchinfo() data, but the format string for the
- ** cache does not match the format string for this request, discard
- ** the cached data. */
- if( pCsr->zMatchinfo && strcmp(pCsr->zMatchinfo, zArg) ){
- assert( pCsr->aMatchinfo );
- sqlite3_free(pCsr->aMatchinfo);
- pCsr->zMatchinfo = 0;
- pCsr->aMatchinfo = 0;
- }
-
- /* If Fts3Cursor.aMatchinfo[] is NULL, then this is the first time the
- ** matchinfo function has been called for this query. In this case
- ** allocate the array used to accumulate the matchinfo data and
- ** initialize those elements that are constant for every row.
- */
- if( pCsr->aMatchinfo==0 ){
- int nMatchinfo = 0; /* Number of u32 elements in match-info */
- int nArg; /* Bytes in zArg */
- int i; /* Used to iterate through zArg */
-
- /* Determine the number of phrases in the query */
- pCsr->nPhrase = fts3ExprPhraseCount(pCsr->pExpr);
- sInfo.nPhrase = pCsr->nPhrase;
-
- /* Determine the number of integers in the buffer returned by this call. */
- for(i=0; zArg[i]; i++){
- nMatchinfo += fts3MatchinfoSize(&sInfo, zArg[i]);
- }
-
- /* Allocate space for Fts3Cursor.aMatchinfo[] and Fts3Cursor.zMatchinfo. */
- nArg = (int)strlen(zArg);
- pCsr->aMatchinfo = (u32 *)sqlite3_malloc(sizeof(u32)*nMatchinfo + nArg + 1);
- if( !pCsr->aMatchinfo ) return SQLITE_NOMEM;
-
- pCsr->zMatchinfo = (char *)&pCsr->aMatchinfo[nMatchinfo];
- pCsr->nMatchinfo = nMatchinfo;
- memcpy(pCsr->zMatchinfo, zArg, nArg+1);
- memset(pCsr->aMatchinfo, 0, sizeof(u32)*nMatchinfo);
- pCsr->isMatchinfoNeeded = 1;
- bGlobal = 1;
- }
-
- sInfo.aMatchinfo = pCsr->aMatchinfo;
- sInfo.nPhrase = pCsr->nPhrase;
- if( pCsr->isMatchinfoNeeded ){
- rc = fts3MatchinfoValues(pCsr, bGlobal, &sInfo, zArg);
- pCsr->isMatchinfoNeeded = 0;
- }
-
- return rc;
-}
-
-/*
-** Implementation of snippet() function.
-*/
-void sqlite3Fts3Snippet(
- sqlite3_context *pCtx, /* SQLite function call context */
- Fts3Cursor *pCsr, /* Cursor object */
- const char *zStart, /* Snippet start text - "<b>" */
- const char *zEnd, /* Snippet end text - "</b>" */
- const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */
- int iCol, /* Extract snippet from this column */
- int nToken /* Approximate number of tokens in snippet */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc = SQLITE_OK;
- int i;
- StrBuffer res = {0, 0, 0};
-
- /* The returned text includes up to four fragments of text extracted from
- ** the data in the current row. The first iteration of the for(...) loop
- ** below attempts to locate a single fragment of text nToken tokens in
- ** size that contains at least one instance of all phrases in the query
- ** expression that appear in the current row. If such a fragment of text
- ** cannot be found, the second iteration of the loop attempts to locate
- ** a pair of fragments, and so on.
- */
- int nSnippet = 0; /* Number of fragments in this snippet */
- SnippetFragment aSnippet[4]; /* Maximum of 4 fragments per snippet */
- int nFToken = -1; /* Number of tokens in each fragment */
-
- if( !pCsr->pExpr ){
- sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
- return;
- }
-
- for(nSnippet=1; 1; nSnippet++){
-
- int iSnip; /* Loop counter 0..nSnippet-1 */
- u64 mCovered = 0; /* Bitmask of phrases covered by snippet */
- u64 mSeen = 0; /* Bitmask of phrases seen by BestSnippet() */
-
- if( nToken>=0 ){
- nFToken = (nToken+nSnippet-1) / nSnippet;
- }else{
- nFToken = -1 * nToken;
- }
-
- for(iSnip=0; iSnip<nSnippet; iSnip++){
- int iBestScore = -1; /* Best score of columns checked so far */
- int iRead; /* Used to iterate through columns */
- SnippetFragment *pFragment = &aSnippet[iSnip];
-
- memset(pFragment, 0, sizeof(*pFragment));
-
- /* Loop through all columns of the table being considered for snippets.
- ** If the iCol argument to this function was negative, this means all
- ** columns of the FTS3 table. Otherwise, only column iCol is considered.
- */
- for(iRead=0; iRead<pTab->nColumn; iRead++){
- SnippetFragment sF = {0, 0, 0, 0};
- int iS;
- if( iCol>=0 && iRead!=iCol ) continue;
-
- /* Find the best snippet of nFToken tokens in column iRead. */
- rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
- if( rc!=SQLITE_OK ){
- goto snippet_out;
- }
- if( iS>iBestScore ){
- *pFragment = sF;
- iBestScore = iS;
- }
- }
-
- mCovered |= pFragment->covered;
- }
-
- /* If all query phrases seen by fts3BestSnippet() are present in at least
- ** one of the nSnippet snippet fragments, break out of the loop.
- */
- assert( (mCovered&mSeen)==mCovered );
- if( mSeen==mCovered || nSnippet==SizeofArray(aSnippet) ) break;
- }
-
- assert( nFToken>0 );
-
- for(i=0; i<nSnippet && rc==SQLITE_OK; i++){
- rc = fts3SnippetText(pCsr, &aSnippet[i],
- i, (i==nSnippet-1), nFToken, zStart, zEnd, zEllipsis, &res
- );
- }
-
- snippet_out:
- sqlite3Fts3SegmentsClose(pTab);
- if( rc!=SQLITE_OK ){
- sqlite3_result_error_code(pCtx, rc);
- sqlite3_free(res.z);
- }else{
- sqlite3_result_text(pCtx, res.z, -1, sqlite3_free);
- }
-}
-
-
-typedef struct TermOffset TermOffset;
-typedef struct TermOffsetCtx TermOffsetCtx;
-
-struct TermOffset {
- char *pList; /* Position-list */
- int iPos; /* Position just read from pList */
- int iOff; /* Offset of this term from read positions */
-};
-
-struct TermOffsetCtx {
- Fts3Cursor *pCsr;
- int iCol; /* Column of table to populate aTerm for */
- int iTerm;
- sqlite3_int64 iDocid;
- TermOffset *aTerm;
-};
-
-/*
-** This function is an fts3ExprIterate() callback used by sqlite3Fts3Offsets().
-*/
-static int fts3ExprTermOffsetInit(Fts3Expr *pExpr, int iPhrase, void *ctx){
- TermOffsetCtx *p = (TermOffsetCtx *)ctx;
- int nTerm; /* Number of tokens in phrase */
- int iTerm; /* For looping through nTerm phrase terms */
- char *pList; /* Pointer to position list for phrase */
- int iPos = 0; /* First position in position-list */
- int rc;
-
- UNUSED_PARAMETER(iPhrase);
- rc = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol, &pList);
- nTerm = pExpr->pPhrase->nToken;
- if( pList ){
- fts3GetDeltaPosition(&pList, &iPos);
- assert( iPos>=0 );
- }
-
- for(iTerm=0; iTerm<nTerm; iTerm++){
- TermOffset *pT = &p->aTerm[p->iTerm++];
- pT->iOff = nTerm-iTerm-1;
- pT->pList = pList;
- pT->iPos = iPos;
- }
-
- return rc;
-}
-
-/*
-** Implementation of offsets() function.
-*/
-void sqlite3Fts3Offsets(
- sqlite3_context *pCtx, /* SQLite function call context */
- Fts3Cursor *pCsr /* Cursor object */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- sqlite3_tokenizer_module const *pMod = pTab->pTokenizer->pModule;
- int rc; /* Return Code */
- int nToken; /* Number of tokens in query */
- int iCol; /* Column currently being processed */
- StrBuffer res = {0, 0, 0}; /* Result string */
- TermOffsetCtx sCtx; /* Context for fts3ExprTermOffsetInit() */
-
- if( !pCsr->pExpr ){
- sqlite3_result_text(pCtx, "", 0, SQLITE_STATIC);
- return;
- }
-
- memset(&sCtx, 0, sizeof(sCtx));
- assert( pCsr->isRequireSeek==0 );
-
- /* Count the number of terms in the query */
- rc = fts3ExprLoadDoclists(pCsr, 0, &nToken);
- if( rc!=SQLITE_OK ) goto offsets_out;
-
- /* Allocate the array of TermOffset iterators. */
- sCtx.aTerm = (TermOffset *)sqlite3_malloc(sizeof(TermOffset)*nToken);
- if( 0==sCtx.aTerm ){
- rc = SQLITE_NOMEM;
- goto offsets_out;
- }
- sCtx.iDocid = pCsr->iPrevId;
- sCtx.pCsr = pCsr;
-
- /* Loop through the table columns, appending offset information to
- ** string-buffer res for each column.
- */
- for(iCol=0; iCol<pTab->nColumn; iCol++){
- sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor */
- const char *ZDUMMY; /* Dummy argument used with xNext() */
- int NDUMMY = 0; /* Dummy argument used with xNext() */
- int iStart = 0;
- int iEnd = 0;
- int iCurrent = 0;
- const char *zDoc;
- int nDoc;
-
- /* Initialize the contents of sCtx.aTerm[] for column iCol. There is
- ** no way that this operation can fail, so the return code from
- ** fts3ExprIterate() can be discarded.
- */
- sCtx.iCol = iCol;
- sCtx.iTerm = 0;
- (void)fts3ExprIterate(pCsr->pExpr, fts3ExprTermOffsetInit, (void *)&sCtx);
-
- /* Retreive the text stored in column iCol. If an SQL NULL is stored
- ** in column iCol, jump immediately to the next iteration of the loop.
- ** If an OOM occurs while retrieving the data (this can happen if SQLite
- ** needs to transform the data from utf-16 to utf-8), return SQLITE_NOMEM
- ** to the caller.
- */
- zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1);
- nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
- if( zDoc==0 ){
- if( sqlite3_column_type(pCsr->pStmt, iCol+1)==SQLITE_NULL ){
- continue;
- }
- rc = SQLITE_NOMEM;
- goto offsets_out;
- }
-
- /* Initialize a tokenizer iterator to iterate through column iCol. */
- rc = sqlite3Fts3OpenTokenizer(pTab->pTokenizer, pCsr->iLangid,
- zDoc, nDoc, &pC
- );
- if( rc!=SQLITE_OK ) goto offsets_out;
-
- rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
- while( rc==SQLITE_OK ){
- int i; /* Used to loop through terms */
- int iMinPos = 0x7FFFFFFF; /* Position of next token */
- TermOffset *pTerm = 0; /* TermOffset associated with next token */
-
- for(i=0; i<nToken; i++){
- TermOffset *pT = &sCtx.aTerm[i];
- if( pT->pList && (pT->iPos-pT->iOff)<iMinPos ){
- iMinPos = pT->iPos-pT->iOff;
- pTerm = pT;
- }
- }
-
- if( !pTerm ){
- /* All offsets for this column have been gathered. */
- rc = SQLITE_DONE;
- }else{
- assert( iCurrent<=iMinPos );
- if( 0==(0xFE&*pTerm->pList) ){
- pTerm->pList = 0;
- }else{
- fts3GetDeltaPosition(&pTerm->pList, &pTerm->iPos);
- }
- while( rc==SQLITE_OK && iCurrent<iMinPos ){
- rc = pMod->xNext(pC, &ZDUMMY, &NDUMMY, &iStart, &iEnd, &iCurrent);
- }
- if( rc==SQLITE_OK ){
- char aBuffer[64];
- sqlite3_snprintf(sizeof(aBuffer), aBuffer,
- "%d %d %d %d ", iCol, pTerm-sCtx.aTerm, iStart, iEnd-iStart
- );
- rc = fts3StringAppend(&res, aBuffer, -1);
- }else if( rc==SQLITE_DONE && pTab->zContentTbl==0 ){
- rc = FTS_CORRUPT_VTAB;
- }
- }
- }
- if( rc==SQLITE_DONE ){
- rc = SQLITE_OK;
- }
-
- pMod->xClose(pC);
- if( rc!=SQLITE_OK ) goto offsets_out;
- }
-
- offsets_out:
- sqlite3_free(sCtx.aTerm);
- assert( rc!=SQLITE_DONE );
- sqlite3Fts3SegmentsClose(pTab);
- if( rc!=SQLITE_OK ){
- sqlite3_result_error_code(pCtx, rc);
- sqlite3_free(res.z);
- }else{
- sqlite3_result_text(pCtx, res.z, res.n-1, sqlite3_free);
- }
- return;
-}
-
-/*
-** Implementation of matchinfo() function.
-*/
-void sqlite3Fts3Matchinfo(
- sqlite3_context *pContext, /* Function call context */
- Fts3Cursor *pCsr, /* FTS3 table cursor */
- const char *zArg /* Second arg to matchinfo() function */
-){
- Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
- int rc;
- int i;
- const char *zFormat;
-
- if( zArg ){
- for(i=0; zArg[i]; i++){
- char *zErr = 0;
- if( fts3MatchinfoCheck(pTab, zArg[i], &zErr) ){
- sqlite3_result_error(pContext, zErr, -1);
- sqlite3_free(zErr);
- return;
- }
- }
- zFormat = zArg;
- }else{
- zFormat = FTS3_MATCHINFO_DEFAULT;
- }
-
- if( !pCsr->pExpr ){
- sqlite3_result_blob(pContext, "", 0, SQLITE_STATIC);
- return;
- }
-
- /* Retrieve matchinfo() data. */
- rc = fts3GetMatchinfo(pCsr, zFormat);
- sqlite3Fts3SegmentsClose(pTab);
-
- if( rc!=SQLITE_OK ){
- sqlite3_result_error_code(pContext, rc);
- }else{
- int n = pCsr->nMatchinfo * sizeof(u32);
- sqlite3_result_blob(pContext, pCsr->aMatchinfo, n, SQLITE_TRANSIENT);
- }
-}
-
-#endif
diff --git a/src/libtracker-fts/fts3_term.c b/src/libtracker-fts/fts3_term.c
deleted file mode 100644
index c49d5cb65..000000000
--- a/src/libtracker-fts/fts3_term.c
+++ /dev/null
@@ -1,373 +0,0 @@
-/*
-** 2011 Jan 27
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file is not part of the production FTS code. It is only used for
-** testing. It contains a virtual table implementation that provides direct
-** access to the full-text index of an FTS table.
-*/
-
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-#ifdef SQLITE_TEST
-
-#include <string.h>
-#include <assert.h>
-#include <stdlib.h>
-
-typedef struct Fts3termTable Fts3termTable;
-typedef struct Fts3termCursor Fts3termCursor;
-
-struct Fts3termTable {
- sqlite3_vtab base; /* Base class used by SQLite core */
- int iIndex; /* Index for Fts3Table.aIndex[] */
- Fts3Table *pFts3Tab;
-};
-
-struct Fts3termCursor {
- sqlite3_vtab_cursor base; /* Base class used by SQLite core */
- Fts3MultiSegReader csr; /* Must be right after "base" */
- Fts3SegFilter filter;
-
- int isEof; /* True if cursor is at EOF */
- char *pNext;
-
- sqlite3_int64 iRowid; /* Current 'rowid' value */
- sqlite3_int64 iDocid; /* Current 'docid' value */
- int iCol; /* Current 'col' value */
- int iPos; /* Current 'pos' value */
-};
-
-/*
-** Schema of the terms table.
-*/
-#define FTS3_TERMS_SCHEMA "CREATE TABLE x(term, docid, col, pos)"
-
-/*
-** This function does all the work for both the xConnect and xCreate methods.
-** These tables have no persistent representation of their own, so xConnect
-** and xCreate are identical operations.
-*/
-static int fts3termConnectMethod(
- sqlite3 *db, /* Database connection */
- void *pCtx, /* Non-zero for an fts4prefix table */
- int argc, /* Number of elements in argv array */
- const char * const *argv, /* xCreate/xConnect argument array */
- sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
- char **pzErr /* OUT: sqlite3_malloc'd error message */
-){
- char const *zDb; /* Name of database (e.g. "main") */
- char const *zFts3; /* Name of fts3 table */
- int nDb; /* Result of strlen(zDb) */
- int nFts3; /* Result of strlen(zFts3) */
- int nByte; /* Bytes of space to allocate here */
- int rc; /* value returned by declare_vtab() */
- Fts3termTable *p; /* Virtual table object to return */
- int iIndex = 0;
-
- UNUSED_PARAMETER(pCtx);
- if( argc==5 ){
- iIndex = atoi(argv[4]);
- argc--;
- }
-
- /* The user should specify a single argument - the name of an fts3 table. */
- if( argc!=4 ){
- *pzErr = sqlite3_mprintf(
- "wrong number of arguments to fts4term constructor"
- );
- return SQLITE_ERROR;
- }
-
- zDb = argv[1];
- nDb = (int)strlen(zDb);
- zFts3 = argv[3];
- nFts3 = (int)strlen(zFts3);
-
- rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
- if( rc!=SQLITE_OK ) return rc;
-
- nByte = sizeof(Fts3termTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
- p = (Fts3termTable *)sqlite3_malloc(nByte);
- if( !p ) return SQLITE_NOMEM;
- memset(p, 0, nByte);
-
- p->pFts3Tab = (Fts3Table *)&p[1];
- p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
- p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
- p->pFts3Tab->db = db;
- p->pFts3Tab->nIndex = iIndex+1;
- p->iIndex = iIndex;
-
- memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
- memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
- sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);
-
- *ppVtab = (sqlite3_vtab *)p;
- return SQLITE_OK;
-}
-
-/*
-** This function does the work for both the xDisconnect and xDestroy methods.
-** These tables have no persistent representation of their own, so xDisconnect
-** and xDestroy are identical operations.
-*/
-static int fts3termDisconnectMethod(sqlite3_vtab *pVtab){
- Fts3termTable *p = (Fts3termTable *)pVtab;
- Fts3Table *pFts3 = p->pFts3Tab;
- int i;
-
- /* Free any prepared statements held */
- for(i=0; i<SizeofArray(pFts3->aStmt); i++){
- sqlite3_finalize(pFts3->aStmt[i]);
- }
- sqlite3_free(pFts3->zSegmentsTbl);
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-#define FTS4AUX_EQ_CONSTRAINT 1
-#define FTS4AUX_GE_CONSTRAINT 2
-#define FTS4AUX_LE_CONSTRAINT 4
-
-/*
-** xBestIndex - Analyze a WHERE and ORDER BY clause.
-*/
-static int fts3termBestIndexMethod(
- sqlite3_vtab *pVTab,
- sqlite3_index_info *pInfo
-){
- UNUSED_PARAMETER(pVTab);
-
- /* This vtab naturally does "ORDER BY term, docid, col, pos". */
- if( pInfo->nOrderBy ){
- int i;
- for(i=0; i<pInfo->nOrderBy; i++){
- if( pInfo->aOrderBy[i].iColumn!=i || pInfo->aOrderBy[i].desc ) break;
- }
- if( i==pInfo->nOrderBy ){
- pInfo->orderByConsumed = 1;
- }
- }
-
- return SQLITE_OK;
-}
-
-/*
-** xOpen - Open a cursor.
-*/
-static int fts3termOpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
- Fts3termCursor *pCsr; /* Pointer to cursor object to return */
-
- UNUSED_PARAMETER(pVTab);
-
- pCsr = (Fts3termCursor *)sqlite3_malloc(sizeof(Fts3termCursor));
- if( !pCsr ) return SQLITE_NOMEM;
- memset(pCsr, 0, sizeof(Fts3termCursor));
-
- *ppCsr = (sqlite3_vtab_cursor *)pCsr;
- return SQLITE_OK;
-}
-
-/*
-** xClose - Close a cursor.
-*/
-static int fts3termCloseMethod(sqlite3_vtab_cursor *pCursor){
- Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
- Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
-
- sqlite3Fts3SegmentsClose(pFts3);
- sqlite3Fts3SegReaderFinish(&pCsr->csr);
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-/*
-** xNext - Advance the cursor to the next row, if any.
-*/
-static int fts3termNextMethod(sqlite3_vtab_cursor *pCursor){
- Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
- Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
- int rc;
- sqlite3_int64 v;
-
- /* Increment our pretend rowid value. */
- pCsr->iRowid++;
-
- /* Advance to the next term in the full-text index. */
- if( pCsr->csr.aDoclist==0
- || pCsr->pNext>=&pCsr->csr.aDoclist[pCsr->csr.nDoclist-1]
- ){
- rc = sqlite3Fts3SegReaderStep(pFts3, &pCsr->csr);
- if( rc!=SQLITE_ROW ){
- pCsr->isEof = 1;
- return rc;
- }
-
- pCsr->iCol = 0;
- pCsr->iPos = 0;
- pCsr->iDocid = 0;
- pCsr->pNext = pCsr->csr.aDoclist;
-
- /* Read docid */
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &pCsr->iDocid);
- }
-
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
- if( v==0 ){
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
- pCsr->iDocid += v;
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
- pCsr->iCol = 0;
- pCsr->iPos = 0;
- }
-
- if( v==1 ){
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
- pCsr->iCol += (int)v;
- pCsr->iPos = 0;
- pCsr->pNext += sqlite3Fts3GetVarint(pCsr->pNext, &v);
- }
-
- pCsr->iPos += (int)(v - 2);
-
- return SQLITE_OK;
-}
-
-/*
-** xFilter - Initialize a cursor to point at the start of its data.
-*/
-static int fts3termFilterMethod(
- sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
- int idxNum, /* Strategy index */
- const char *idxStr, /* Unused */
- int nVal, /* Number of elements in apVal */
- sqlite3_value **apVal /* Arguments for the indexing scheme */
-){
- Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
- Fts3termTable *p = (Fts3termTable *)pCursor->pVtab;
- Fts3Table *pFts3 = p->pFts3Tab;
- int rc;
-
- UNUSED_PARAMETER(nVal);
- UNUSED_PARAMETER(idxNum);
- UNUSED_PARAMETER(idxStr);
- UNUSED_PARAMETER(apVal);
-
- assert( idxStr==0 && idxNum==0 );
-
- /* In case this cursor is being reused, close and zero it. */
- testcase(pCsr->filter.zTerm);
- sqlite3Fts3SegReaderFinish(&pCsr->csr);
- memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);
-
- pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
- pCsr->filter.flags |= FTS3_SEGMENT_SCAN;
-
- rc = sqlite3Fts3SegReaderCursor(pFts3, 0, p->iIndex, FTS3_SEGCURSOR_ALL,
- pCsr->filter.zTerm, pCsr->filter.nTerm, 0, 1, &pCsr->csr
- );
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
- }
- if( rc==SQLITE_OK ){
- rc = fts3termNextMethod(pCursor);
- }
- return rc;
-}
-
-/*
-** xEof - Return true if the cursor is at EOF, or false otherwise.
-*/
-static int fts3termEofMethod(sqlite3_vtab_cursor *pCursor){
- Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
- return pCsr->isEof;
-}
-
-/*
-** xColumn - Return a column value.
-*/
-static int fts3termColumnMethod(
- sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
- sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
- int iCol /* Index of column to read value from */
-){
- Fts3termCursor *p = (Fts3termCursor *)pCursor;
-
- assert( iCol>=0 && iCol<=3 );
- switch( iCol ){
- case 0:
- sqlite3_result_text(pCtx, p->csr.zTerm, p->csr.nTerm, SQLITE_TRANSIENT);
- break;
- case 1:
- sqlite3_result_int64(pCtx, p->iDocid);
- break;
- case 2:
- sqlite3_result_int64(pCtx, p->iCol);
- break;
- default:
- sqlite3_result_int64(pCtx, p->iPos);
- break;
- }
-
- return SQLITE_OK;
-}
-
-/*
-** xRowid - Return the current rowid for the cursor.
-*/
-static int fts3termRowidMethod(
- sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
- sqlite_int64 *pRowid /* OUT: Rowid value */
-){
- Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
- *pRowid = pCsr->iRowid;
- return SQLITE_OK;
-}
-
-/*
-** Register the fts3term module with database connection db. Return SQLITE_OK
-** if successful or an error code if sqlite3_create_module() fails.
-*/
-int sqlite3Fts3InitTerm(sqlite3 *db){
- static const sqlite3_module fts3term_module = {
- 0, /* iVersion */
- fts3termConnectMethod, /* xCreate */
- fts3termConnectMethod, /* xConnect */
- fts3termBestIndexMethod, /* xBestIndex */
- fts3termDisconnectMethod, /* xDisconnect */
- fts3termDisconnectMethod, /* xDestroy */
- fts3termOpenMethod, /* xOpen */
- fts3termCloseMethod, /* xClose */
- fts3termFilterMethod, /* xFilter */
- fts3termNextMethod, /* xNext */
- fts3termEofMethod, /* xEof */
- fts3termColumnMethod, /* xColumn */
- fts3termRowidMethod, /* xRowid */
- 0, /* xUpdate */
- 0, /* xBegin */
- 0, /* xSync */
- 0, /* xCommit */
- 0, /* xRollback */
- 0, /* xFindFunction */
- 0, /* xRename */
- 0, /* xSavepoint */
- 0, /* xRelease */
- 0 /* xRollbackTo */
- };
- int rc; /* Return code */
-
- rc = sqlite3_create_module(db, "fts4term", &fts3term_module, 0);
- return rc;
-}
-
-#endif
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_test.c b/src/libtracker-fts/fts3_test.c
deleted file mode 100644
index 4da0b8f13..000000000
--- a/src/libtracker-fts/fts3_test.c
+++ /dev/null
@@ -1,535 +0,0 @@
-/*
-** 2011 Jun 13
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file is not part of the production FTS code. It is only used for
-** testing. It contains a Tcl command that can be used to test if a document
-** matches an FTS NEAR expression.
-**
-** As of March 2012, it also contains a version 1 tokenizer used for testing
-** that the sqlite3_tokenizer_module.xLanguage() method is invoked correctly.
-*/
-
-#include <tcl.h>
-#include <string.h>
-#include <assert.h>
-
-#if defined(SQLITE_TEST)
-#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
-
-/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
-#include "fts3Int.h"
-
-#define NM_MAX_TOKEN 12
-
-typedef struct NearPhrase NearPhrase;
-typedef struct NearDocument NearDocument;
-typedef struct NearToken NearToken;
-
-struct NearDocument {
- int nToken; /* Length of token in bytes */
- NearToken *aToken; /* Token array */
-};
-
-struct NearToken {
- int n; /* Length of token in bytes */
- const char *z; /* Pointer to token string */
-};
-
-struct NearPhrase {
- int nNear; /* Preceding NEAR value */
- int nToken; /* Number of tokens in this phrase */
- NearToken aToken[NM_MAX_TOKEN]; /* Array of tokens in this phrase */
-};
-
-static int nm_phrase_match(
- NearPhrase *p,
- NearToken *aToken
-){
- int ii;
-
- for(ii=0; ii<p->nToken; ii++){
- NearToken *pToken = &p->aToken[ii];
- if( pToken->n>0 && pToken->z[pToken->n-1]=='*' ){
- if( aToken[ii].n<(pToken->n-1) ) return 0;
- if( memcmp(aToken[ii].z, pToken->z, pToken->n-1) ) return 0;
- }else{
- if( aToken[ii].n!=pToken->n ) return 0;
- if( memcmp(aToken[ii].z, pToken->z, pToken->n) ) return 0;
- }
- }
-
- return 1;
-}
-
-static int nm_near_chain(
- int iDir, /* Direction to iterate through aPhrase[] */
- NearDocument *pDoc, /* Document to match against */
- int iPos, /* Position at which iPhrase was found */
- int nPhrase, /* Size of phrase array */
- NearPhrase *aPhrase, /* Phrase array */
- int iPhrase /* Index of phrase found */
-){
- int iStart;
- int iStop;
- int ii;
- int nNear;
- int iPhrase2;
- NearPhrase *p;
- NearPhrase *pPrev;
-
- assert( iDir==1 || iDir==-1 );
-
- if( iDir==1 ){
- if( (iPhrase+1)==nPhrase ) return 1;
- nNear = aPhrase[iPhrase+1].nNear;
- }else{
- if( iPhrase==0 ) return 1;
- nNear = aPhrase[iPhrase].nNear;
- }
- pPrev = &aPhrase[iPhrase];
- iPhrase2 = iPhrase+iDir;
- p = &aPhrase[iPhrase2];
-
- iStart = iPos - nNear - p->nToken;
- iStop = iPos + nNear + pPrev->nToken;
-
- if( iStart<0 ) iStart = 0;
- if( iStop > pDoc->nToken - p->nToken ) iStop = pDoc->nToken - p->nToken;
-
- for(ii=iStart; ii<=iStop; ii++){
- if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
- if( nm_near_chain(iDir, pDoc, ii, nPhrase, aPhrase, iPhrase2) ) return 1;
- }
- }
-
- return 0;
-}
-
-static int nm_match_count(
- NearDocument *pDoc, /* Document to match against */
- int nPhrase, /* Size of phrase array */
- NearPhrase *aPhrase, /* Phrase array */
- int iPhrase /* Index of phrase to count matches for */
-){
- int nOcc = 0;
- int ii;
- NearPhrase *p = &aPhrase[iPhrase];
-
- for(ii=0; ii<(pDoc->nToken + 1 - p->nToken); ii++){
- if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
- /* Test forward NEAR chain (i>iPhrase) */
- if( 0==nm_near_chain(1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;
-
- /* Test reverse NEAR chain (i<iPhrase) */
- if( 0==nm_near_chain(-1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;
-
- /* This is a real match. Increment the counter. */
- nOcc++;
- }
- }
-
- return nOcc;
-}
-
-/*
-** Tclcmd: fts3_near_match DOCUMENT EXPR ?OPTIONS?
-*/
-static int fts3_near_match_cmd(
- ClientData clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
- int nTotal = 0;
- int rc;
- int ii;
- int nPhrase;
- NearPhrase *aPhrase = 0;
- NearDocument doc = {0, 0};
- Tcl_Obj **apDocToken;
- Tcl_Obj *pRet;
- Tcl_Obj *pPhrasecount = 0;
-
- Tcl_Obj **apExprToken;
- int nExprToken;
-
- UNUSED_PARAMETER(clientData);
-
- /* Must have 3 or more arguments. */
- if( objc<3 || (objc%2)==0 ){
- Tcl_WrongNumArgs(interp, 1, objv, "DOCUMENT EXPR ?OPTION VALUE?...");
- rc = TCL_ERROR;
- goto near_match_out;
- }
-
- for(ii=3; ii<objc; ii+=2){
- enum NM_enum { NM_PHRASECOUNTS };
- struct TestnmSubcmd {
- char *zName;
- enum NM_enum eOpt;
- } aOpt[] = {
- { "-phrasecountvar", NM_PHRASECOUNTS },
- { 0, 0 }
- };
- int iOpt;
- if( Tcl_GetIndexFromObjStruct(
- interp, objv[ii], aOpt, sizeof(aOpt[0]), "option", 0, &iOpt)
- ){
- return TCL_ERROR;
- }
-
- switch( aOpt[iOpt].eOpt ){
- case NM_PHRASECOUNTS:
- pPhrasecount = objv[ii+1];
- break;
- }
- }
-
- rc = Tcl_ListObjGetElements(interp, objv[1], &doc.nToken, &apDocToken);
- if( rc!=TCL_OK ) goto near_match_out;
- doc.aToken = (NearToken *)ckalloc(doc.nToken*sizeof(NearToken));
- for(ii=0; ii<doc.nToken; ii++){
- doc.aToken[ii].z = Tcl_GetStringFromObj(apDocToken[ii], &doc.aToken[ii].n);
- }
-
- rc = Tcl_ListObjGetElements(interp, objv[2], &nExprToken, &apExprToken);
- if( rc!=TCL_OK ) goto near_match_out;
-
- nPhrase = (nExprToken + 1) / 2;
- aPhrase = (NearPhrase *)ckalloc(nPhrase * sizeof(NearPhrase));
- memset(aPhrase, 0, nPhrase * sizeof(NearPhrase));
- for(ii=0; ii<nPhrase; ii++){
- Tcl_Obj *pPhrase = apExprToken[ii*2];
- Tcl_Obj **apToken;
- int nToken;
- int jj;
-
- rc = Tcl_ListObjGetElements(interp, pPhrase, &nToken, &apToken);
- if( rc!=TCL_OK ) goto near_match_out;
- if( nToken>NM_MAX_TOKEN ){
- Tcl_AppendResult(interp, "Too many tokens in phrase", 0);
- rc = TCL_ERROR;
- goto near_match_out;
- }
- for(jj=0; jj<nToken; jj++){
- NearToken *pT = &aPhrase[ii].aToken[jj];
- pT->z = Tcl_GetStringFromObj(apToken[jj], &pT->n);
- }
- aPhrase[ii].nToken = nToken;
- }
- for(ii=1; ii<nPhrase; ii++){
- Tcl_Obj *pNear = apExprToken[2*ii-1];
- int nNear;
- rc = Tcl_GetIntFromObj(interp, pNear, &nNear);
- if( rc!=TCL_OK ) goto near_match_out;
- aPhrase[ii].nNear = nNear;
- }
-
- pRet = Tcl_NewObj();
- Tcl_IncrRefCount(pRet);
- for(ii=0; ii<nPhrase; ii++){
- int nOcc = nm_match_count(&doc, nPhrase, aPhrase, ii);
- Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nOcc));
- nTotal += nOcc;
- }
- if( pPhrasecount ){
- Tcl_ObjSetVar2(interp, pPhrasecount, 0, pRet, 0);
- }
- Tcl_DecrRefCount(pRet);
- Tcl_SetObjResult(interp, Tcl_NewBooleanObj(nTotal>0));
-
- near_match_out:
- ckfree((char *)aPhrase);
- ckfree((char *)doc.aToken);
- return rc;
-}
-
-/*
-** Tclcmd: fts3_configure_incr_load ?CHUNKSIZE THRESHOLD?
-**
-** Normally, FTS uses hard-coded values to determine the minimum doclist
-** size eligible for incremental loading, and the size of the chunks loaded
-** when a doclist is incrementally loaded. This command allows the built-in
-** values to be overridden for testing purposes.
-**
-** If present, the first argument is the chunksize in bytes to load doclists
-** in. The second argument is the minimum doclist size in bytes to use
-** incremental loading with.
-**
-** Whether or not the arguments are present, this command returns a list of
-** two integers - the initial chunksize and threshold when the command is
-** invoked. This can be used to restore the default behaviour after running
-** tests. For example:
-**
-** # Override incr-load settings for testing:
-** set cfg [fts3_configure_incr_load $new_chunksize $new_threshold]
-**
-** .... run tests ....
-**
-** # Restore initial incr-load settings:
-** eval fts3_configure_incr_load $cfg
-*/
-static int fts3_configure_incr_load_cmd(
- ClientData clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
-#ifdef SQLITE_ENABLE_FTS3
- extern int test_fts3_node_chunksize;
- extern int test_fts3_node_chunk_threshold;
- Tcl_Obj *pRet;
-
- if( objc!=1 && objc!=3 ){
- Tcl_WrongNumArgs(interp, 1, objv, "?CHUNKSIZE THRESHOLD?");
- return TCL_ERROR;
- }
-
- pRet = Tcl_NewObj();
- Tcl_IncrRefCount(pRet);
- Tcl_ListObjAppendElement(
- interp, pRet, Tcl_NewIntObj(test_fts3_node_chunksize));
- Tcl_ListObjAppendElement(
- interp, pRet, Tcl_NewIntObj(test_fts3_node_chunk_threshold));
-
- if( objc==3 ){
- int iArg1;
- int iArg2;
- if( Tcl_GetIntFromObj(interp, objv[1], &iArg1)
- || Tcl_GetIntFromObj(interp, objv[2], &iArg2)
- ){
- Tcl_DecrRefCount(pRet);
- return TCL_ERROR;
- }
- test_fts3_node_chunksize = iArg1;
- test_fts3_node_chunk_threshold = iArg2;
- }
-
- Tcl_SetObjResult(interp, pRet);
- Tcl_DecrRefCount(pRet);
-#endif
- UNUSED_PARAMETER(clientData);
- return TCL_OK;
-}
-
-#ifdef SQLITE_ENABLE_FTS3
-/**************************************************************************
-** Beginning of test tokenizer code.
-**
-** For language 0, this tokenizer is similar to the default 'simple'
-** tokenizer. For other languages L, the following:
-**
-** * Odd numbered languages are case-sensitive. Even numbered
-** languages are not.
-**
-** * Language ids 100 or greater are considered an error.
-**
-** The implementation assumes that the input contains only ASCII characters
-** (i.e. those that may be encoded in UTF-8 using a single byte).
-*/
-typedef struct test_tokenizer {
- sqlite3_tokenizer base;
-} test_tokenizer;
-
-typedef struct test_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *aInput; /* Input being tokenized */
- int nInput; /* Size of the input in bytes */
- int iInput; /* Current offset in aInput */
- int iToken; /* Index of next token to be returned */
- char *aBuffer; /* Buffer containing current token */
- int nBuffer; /* Number of bytes allocated at pToken */
- int iLangid; /* Configured language id */
-} test_tokenizer_cursor;
-
-static int testTokenizerCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
-){
- test_tokenizer *pNew;
- UNUSED_PARAMETER(argc);
- UNUSED_PARAMETER(argv);
-
- pNew = sqlite3_malloc(sizeof(test_tokenizer));
- if( !pNew ) return SQLITE_NOMEM;
- memset(pNew, 0, sizeof(test_tokenizer));
-
- *ppTokenizer = (sqlite3_tokenizer *)pNew;
- return SQLITE_OK;
-}
-
-static int testTokenizerDestroy(sqlite3_tokenizer *pTokenizer){
- test_tokenizer *p = (test_tokenizer *)pTokenizer;
- sqlite3_free(p);
- return SQLITE_OK;
-}
-
-static int testTokenizerOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *pInput, int nBytes, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- int rc = SQLITE_OK; /* Return code */
- test_tokenizer_cursor *pCsr; /* New cursor object */
-
- UNUSED_PARAMETER(pTokenizer);
-
- pCsr = (test_tokenizer_cursor *)sqlite3_malloc(sizeof(test_tokenizer_cursor));
- if( pCsr==0 ){
- rc = SQLITE_NOMEM;
- }else{
- memset(pCsr, 0, sizeof(test_tokenizer_cursor));
- pCsr->aInput = pInput;
- if( nBytes<0 ){
- pCsr->nInput = (int)strlen(pInput);
- }else{
- pCsr->nInput = nBytes;
- }
- }
-
- *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
- return rc;
-}
-
-static int testTokenizerClose(sqlite3_tokenizer_cursor *pCursor){
- test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
- sqlite3_free(pCsr->aBuffer);
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-static int testIsTokenChar(char c){
- return (c>='a' && c<='z') || (c>='A' && c<='Z');
-}
-static int testTolower(char c){
- char ret = c;
- if( ret>='A' && ret<='Z') ret = ret - ('A'-'a');
- return ret;
-}
-
-static int testTokenizerNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by testTokenizerOpen */
- const char **ppToken, /* OUT: *ppToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
- int rc = SQLITE_OK;
- const char *p;
- const char *pEnd;
-
- p = &pCsr->aInput[pCsr->iInput];
- pEnd = &pCsr->aInput[pCsr->nInput];
-
- /* Skip past any white-space */
- assert( p<=pEnd );
- while( p<pEnd && testIsTokenChar(*p)==0 ) p++;
-
- if( p==pEnd ){
- rc = SQLITE_DONE;
- }else{
- /* Advance to the end of the token */
- const char *pToken = p;
- int nToken;
- while( p<pEnd && testIsTokenChar(*p) ) p++;
- nToken = (int)(p-pToken);
-
- /* Copy the token into the buffer */
- if( nToken>pCsr->nBuffer ){
- sqlite3_free(pCsr->aBuffer);
- pCsr->aBuffer = sqlite3_malloc(nToken);
- }
- if( pCsr->aBuffer==0 ){
- rc = SQLITE_NOMEM;
- }else{
- int i;
-
- if( pCsr->iLangid & 0x00000001 ){
- for(i=0; i<nToken; i++) pCsr->aBuffer[i] = pToken[i];
- }else{
- for(i=0; i<nToken; i++) pCsr->aBuffer[i] = testTolower(pToken[i]);
- }
- pCsr->iToken++;
- pCsr->iInput = (int)(p - pCsr->aInput);
-
- *ppToken = pCsr->aBuffer;
- *pnBytes = nToken;
- *piStartOffset = (int)(pToken - pCsr->aInput);
- *piEndOffset = (int)(p - pCsr->aInput);
- *piPosition = pCsr->iToken;
- }
- }
-
- return rc;
-}
-
-static int testTokenizerLanguage(
- sqlite3_tokenizer_cursor *pCursor,
- int iLangid
-){
- int rc = SQLITE_OK;
- test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
- pCsr->iLangid = iLangid;
- if( pCsr->iLangid>=100 ){
- rc = SQLITE_ERROR;
- }
- return rc;
-}
-#endif
-
-static int fts3_test_tokenizer_cmd(
- ClientData clientData,
- Tcl_Interp *interp,
- int objc,
- Tcl_Obj *CONST objv[]
-){
-#ifdef SQLITE_ENABLE_FTS3
- static const sqlite3_tokenizer_module testTokenizerModule = {
- 1,
- testTokenizerCreate,
- testTokenizerDestroy,
- testTokenizerOpen,
- testTokenizerClose,
- testTokenizerNext,
- testTokenizerLanguage
- };
- const sqlite3_tokenizer_module *pPtr = &testTokenizerModule;
- if( objc!=1 ){
- Tcl_WrongNumArgs(interp, 1, objv, "");
- return TCL_ERROR;
- }
- Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(
- (const unsigned char *)&pPtr, sizeof(sqlite3_tokenizer_module *)
- ));
-#endif
- UNUSED_PARAMETER(clientData);
- return TCL_OK;
-}
-
-/*
-** End of tokenizer code.
-**************************************************************************/
-
-int Sqlitetestfts3_Init(Tcl_Interp *interp){
- Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
- Tcl_CreateObjCommand(interp,
- "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
- );
- Tcl_CreateObjCommand(
- interp, "fts3_test_tokenizer", fts3_test_tokenizer_cmd, 0, 0
- );
- return TCL_OK;
-}
-#endif /* SQLITE_ENABLE_FTS3 || SQLITE_ENABLE_FTS4 */
-#endif /* ifdef SQLITE_TEST */
diff --git a/src/libtracker-fts/fts3_tokenizer.c b/src/libtracker-fts/fts3_tokenizer.c
deleted file mode 100644
index 8241be81f..000000000
--- a/src/libtracker-fts/fts3_tokenizer.c
+++ /dev/null
@@ -1,488 +0,0 @@
-/*
-** 2007 June 22
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This is part of an SQLite module implementing full-text search.
-** This particular file implements the generic tokenizer interface.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <assert.h>
-#include <string.h>
-
-/*
-** Implementation of the SQL scalar function for accessing the underlying
-** hash table. This function may be called as follows:
-**
-** SELECT <function-name>(<key-name>);
-** SELECT <function-name>(<key-name>, <pointer>);
-**
-** where <function-name> is the name passed as the second argument
-** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
-**
-** If the <pointer> argument is specified, it must be a blob value
-** containing a pointer to be stored as the hash data corresponding
-** to the string <key-name>. If <pointer> is not specified, then
-** the string <key-name> must already exist in the has table. Otherwise,
-** an error is returned.
-**
-** Whether or not the <pointer> argument is specified, the value returned
-** is a blob containing the pointer stored as the hash data corresponding
-** to string <key-name> (after the hash-table is updated, if applicable).
-*/
-static void scalarFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- Fts3Hash *pHash;
- void *pPtr = 0;
- const unsigned char *zName;
- int nName;
-
- assert( argc==1 || argc==2 );
-
- pHash = (Fts3Hash *)sqlite3_user_data(context);
-
- zName = sqlite3_value_text(argv[0]);
- nName = sqlite3_value_bytes(argv[0])+1;
-
- if( argc==2 ){
- void *pOld;
- int n = sqlite3_value_bytes(argv[1]);
- if( n!=sizeof(pPtr) ){
- sqlite3_result_error(context, "argument type mismatch", -1);
- return;
- }
- pPtr = *(void **)sqlite3_value_blob(argv[1]);
- pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
- if( pOld==pPtr ){
- sqlite3_result_error(context, "out of memory", -1);
- return;
- }
- }else{
- pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
- if( !pPtr ){
- char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
- sqlite3_result_error(context, zErr, -1);
- sqlite3_free(zErr);
- return;
- }
- }
-
- sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
-}
-
-int sqlite3Fts3IsIdChar(char c){
- static const char isFtsIdChar[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
- 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
- };
- return (c&0x80 || isFtsIdChar[(int)(c)]);
-}
-
-const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
- const char *z1;
- const char *z2 = 0;
-
- /* Find the start of the next token. */
- z1 = zStr;
- while( z2==0 ){
- char c = *z1;
- switch( c ){
- case '\0': return 0; /* No more tokens here */
- case '\'':
- case '"':
- case '`': {
- z2 = z1;
- while( *++z2 && (*z2!=c || *++z2==c) );
- break;
- }
- case '[':
- z2 = &z1[1];
- while( *z2 && z2[0]!=']' ) z2++;
- if( *z2 ) z2++;
- break;
-
- default:
- if( sqlite3Fts3IsIdChar(*z1) ){
- z2 = &z1[1];
- while( sqlite3Fts3IsIdChar(*z2) ) z2++;
- }else{
- z1++;
- }
- }
- }
-
- *pn = (int)(z2-z1);
- return z1;
-}
-
-int sqlite3Fts3InitTokenizer(
- Fts3Hash *pHash, /* Tokenizer hash table */
- const char *zArg, /* Tokenizer name */
- sqlite3_tokenizer **ppTok, /* OUT: Tokenizer (if applicable) */
- char **pzErr /* OUT: Set to malloced error message */
-){
- int rc;
- char *z = (char *)zArg;
- int n = 0;
- char *zCopy;
- char *zEnd; /* Pointer to nul-term of zCopy */
- sqlite3_tokenizer_module *m;
-
- zCopy = sqlite3_mprintf("%s", zArg);
- if( !zCopy ) return SQLITE_NOMEM;
- zEnd = &zCopy[strlen(zCopy)];
-
- z = (char *)sqlite3Fts3NextToken(zCopy, &n);
- z[n] = '\0';
- sqlite3Fts3Dequote(z);
-
- m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
- if( !m ){
- *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z);
- rc = SQLITE_ERROR;
- }else{
- char const **aArg = 0;
- int iArg = 0;
- z = &z[n+1];
- while( z<zEnd && (NULL!=(z = (char *)sqlite3Fts3NextToken(z, &n))) ){
- int nNew = sizeof(char *)*(iArg+1);
- char const **aNew = (const char **)sqlite3_realloc((void *)aArg, nNew);
- if( !aNew ){
- sqlite3_free(zCopy);
- sqlite3_free((void *)aArg);
- return SQLITE_NOMEM;
- }
- aArg = aNew;
- aArg[iArg++] = z;
- z[n] = '\0';
- sqlite3Fts3Dequote(z);
- z = &z[n+1];
- }
- rc = m->xCreate(iArg, aArg, ppTok);
- assert( rc!=SQLITE_OK || *ppTok );
- if( rc!=SQLITE_OK ){
- *pzErr = sqlite3_mprintf("unknown tokenizer");
- }else{
- (*ppTok)->pModule = m;
- }
- sqlite3_free((void *)aArg);
- }
-
- sqlite3_free(zCopy);
- return rc;
-}
-
-
-#ifdef SQLITE_TEST
-
-#include <tcl.h>
-#include <string.h>
-
-/*
-** Implementation of a special SQL scalar function for testing tokenizers
-** designed to be used in concert with the Tcl testing framework. This
-** function must be called with two or more arguments:
-**
-** SELECT <function-name>(<key-name>, ..., <input-string>);
-**
-** where <function-name> is the name passed as the second argument
-** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
-** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
-**
-** The return value is a string that may be interpreted as a Tcl
-** list. For each token in the <input-string>, three elements are
-** added to the returned list. The first is the token position, the
-** second is the token text (folded, stemmed, etc.) and the third is the
-** substring of <input-string> associated with the token. For example,
-** using the built-in "simple" tokenizer:
-**
-** SELECT fts_tokenizer_test('simple', 'I don't see how');
-**
-** will return the string:
-**
-** "{0 i I 1 dont don't 2 see see 3 how how}"
-**
-*/
-static void testFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- Fts3Hash *pHash;
- sqlite3_tokenizer_module *p;
- sqlite3_tokenizer *pTokenizer = 0;
- sqlite3_tokenizer_cursor *pCsr = 0;
-
- const char *zErr = 0;
-
- const char *zName;
- int nName;
- const char *zInput;
- int nInput;
-
- const char *azArg[64];
-
- const char *zToken;
- int nToken = 0;
- int iStart = 0;
- int iEnd = 0;
- int iPos = 0;
- int i;
-
- Tcl_Obj *pRet;
-
- if( argc<2 ){
- sqlite3_result_error(context, "insufficient arguments", -1);
- return;
- }
-
- nName = sqlite3_value_bytes(argv[0]);
- zName = (const char *)sqlite3_value_text(argv[0]);
- nInput = sqlite3_value_bytes(argv[argc-1]);
- zInput = (const char *)sqlite3_value_text(argv[argc-1]);
-
- pHash = (Fts3Hash *)sqlite3_user_data(context);
- p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
-
- if( !p ){
- char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
- sqlite3_result_error(context, zErr, -1);
- sqlite3_free(zErr);
- return;
- }
-
- pRet = Tcl_NewObj();
- Tcl_IncrRefCount(pRet);
-
- for(i=1; i<argc-1; i++){
- azArg[i-1] = (const char *)sqlite3_value_text(argv[i]);
- }
-
- if( SQLITE_OK!=p->xCreate(argc-2, azArg, &pTokenizer) ){
- zErr = "error in xCreate()";
- goto finish;
- }
- pTokenizer->pModule = p;
- if( sqlite3Fts3OpenTokenizer(pTokenizer, 0, zInput, nInput, &pCsr) ){
- zErr = "error in xOpen()";
- goto finish;
- }
-
- while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
- zToken = &zInput[iStart];
- nToken = iEnd-iStart;
- Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
- }
-
- if( SQLITE_OK!=p->xClose(pCsr) ){
- zErr = "error in xClose()";
- goto finish;
- }
- if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
- zErr = "error in xDestroy()";
- goto finish;
- }
-
-finish:
- if( zErr ){
- sqlite3_result_error(context, zErr, -1);
- }else{
- sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
- }
- Tcl_DecrRefCount(pRet);
-}
-
-static
-int registerTokenizer(
- sqlite3 *db,
- char *zName,
- const sqlite3_tokenizer_module *p
-){
- int rc;
- sqlite3_stmt *pStmt;
- const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
-
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
- sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
- sqlite3_step(pStmt);
-
- return sqlite3_finalize(pStmt);
-}
-
-static
-int queryTokenizer(
- sqlite3 *db,
- char *zName,
- const sqlite3_tokenizer_module **pp
-){
- int rc;
- sqlite3_stmt *pStmt;
- const char zSql[] = "SELECT fts3_tokenizer(?)";
-
- *pp = 0;
- rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
- memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
- }
- }
-
- return sqlite3_finalize(pStmt);
-}
-
-void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
-
-/*
-** Implementation of the scalar function fts3_tokenizer_internal_test().
-** This function is used for testing only, it is not included in the
-** build unless SQLITE_TEST is defined.
-**
-** The purpose of this is to test that the fts3_tokenizer() function
-** can be used as designed by the C-code in the queryTokenizer and
-** registerTokenizer() functions above. These two functions are repeated
-** in the README.tokenizer file as an example, so it is important to
-** test them.
-**
-** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
-** function with no arguments. An assert() will fail if a problem is
-** detected. i.e.:
-**
-** SELECT fts3_tokenizer_internal_test();
-**
-*/
-static void intTestFunc(
- sqlite3_context *context,
- int argc,
- sqlite3_value **argv
-){
- int rc;
- const sqlite3_tokenizer_module *p1;
- const sqlite3_tokenizer_module *p2;
- sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
-
- UNUSED_PARAMETER(argc);
- UNUSED_PARAMETER(argv);
-
- /* Test the query function */
- sqlite3Fts3SimpleTokenizerModule(&p1);
- rc = queryTokenizer(db, "simple", &p2);
- assert( rc==SQLITE_OK );
- assert( p1==p2 );
- rc = queryTokenizer(db, "nosuchtokenizer", &p2);
- assert( rc==SQLITE_ERROR );
- assert( p2==0 );
- assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
-
- /* Test the storage function */
- rc = registerTokenizer(db, "nosuchtokenizer", p1);
- assert( rc==SQLITE_OK );
- rc = queryTokenizer(db, "nosuchtokenizer", &p2);
- assert( rc==SQLITE_OK );
- assert( p2==p1 );
-
- sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
-}
-
-#endif
-
-/*
-** Set up SQL objects in database db used to access the contents of
-** the hash table pointed to by argument pHash. The hash table must
-** been initialised to use string keys, and to take a private copy
-** of the key when a value is inserted. i.e. by a call similar to:
-**
-** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
-**
-** This function adds a scalar function (see header comment above
-** scalarFunc() in this file for details) and, if ENABLE_TABLE is
-** defined at compilation time, a temporary virtual table (see header
-** comment above struct HashTableVtab) to the database schema. Both
-** provide read/write access to the contents of *pHash.
-**
-** The third argument to this function, zName, is used as the name
-** of both the scalar and, if created, the virtual table.
-*/
-int sqlite3Fts3InitHashTable(
- sqlite3 *db,
- Fts3Hash *pHash,
- const char *zName
-){
- int rc = SQLITE_OK;
- void *p = (void *)pHash;
- const int any = SQLITE_ANY;
-
-#ifdef SQLITE_TEST
- char *zTest = 0;
- char *zTest2 = 0;
- void *pdb = (void *)db;
- zTest = sqlite3_mprintf("%s_test", zName);
- zTest2 = sqlite3_mprintf("%s_internal_test", zName);
- if( !zTest || !zTest2 ){
- rc = SQLITE_NOMEM;
- }
-#endif
-
- if( SQLITE_OK==rc ){
- rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0);
- }
- if( SQLITE_OK==rc ){
- rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0);
- }
-#ifdef SQLITE_TEST
- if( SQLITE_OK==rc ){
- rc = sqlite3_create_function(db, zTest, -1, any, p, testFunc, 0, 0);
- }
- if( SQLITE_OK==rc ){
- rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0);
- }
-#endif
-
-#ifdef SQLITE_TEST
- sqlite3_free(zTest);
- sqlite3_free(zTest2);
-#endif
-
- return rc;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_tokenizer.h b/src/libtracker-fts/fts3_tokenizer.h
deleted file mode 100644
index c91c7ed79..000000000
--- a/src/libtracker-fts/fts3_tokenizer.h
+++ /dev/null
@@ -1,161 +0,0 @@
-/*
-** 2006 July 10
-**
-** The author disclaims copyright to this source code.
-**
-*************************************************************************
-** Defines the interface to tokenizers used by fulltext-search. There
-** are three basic components:
-**
-** sqlite3_tokenizer_module is a singleton defining the tokenizer
-** interface functions. This is essentially the class structure for
-** tokenizers.
-**
-** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
-** including customization information defined at creation time.
-**
-** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
-** tokens from a particular input.
-*/
-#ifndef _FTS3_TOKENIZER_H_
-#define _FTS3_TOKENIZER_H_
-
-/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
-** If tokenizers are to be allowed to call sqlite3_*() functions, then
-** we will need a way to register the API consistently.
-*/
-#include "sqlite3.h"
-
-/*
-** Structures used by the tokenizer interface. When a new tokenizer
-** implementation is registered, the caller provides a pointer to
-** an sqlite3_tokenizer_module containing pointers to the callback
-** functions that make up an implementation.
-**
-** When an fts3 table is created, it passes any arguments passed to
-** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
-** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
-** implementation. The xCreate() function in turn returns an
-** sqlite3_tokenizer structure representing the specific tokenizer to
-** be used for the fts3 table (customized by the tokenizer clause arguments).
-**
-** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
-** method is called. It returns an sqlite3_tokenizer_cursor object
-** that may be used to tokenize a specific input buffer based on
-** the tokenization rules supplied by a specific sqlite3_tokenizer
-** object.
-*/
-typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
-typedef struct sqlite3_tokenizer sqlite3_tokenizer;
-typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
-
-struct sqlite3_tokenizer_module {
-
- /*
- ** Structure version. Should always be set to 0 or 1.
- */
- int iVersion;
-
- /*
- ** Create a new tokenizer. The values in the argv[] array are the
- ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
- ** TABLE statement that created the fts3 table. For example, if
- ** the following SQL is executed:
- **
- ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
- **
- ** then argc is set to 2, and the argv[] array contains pointers
- ** to the strings "arg1" and "arg2".
- **
- ** This method should return either SQLITE_OK (0), or an SQLite error
- ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
- ** to point at the newly created tokenizer structure. The generic
- ** sqlite3_tokenizer.pModule variable should not be initialised by
- ** this callback. The caller will do so.
- */
- int (*xCreate)(
- int argc, /* Size of argv array */
- const char *const*argv, /* Tokenizer argument strings */
- sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
- );
-
- /*
- ** Destroy an existing tokenizer. The fts3 module calls this method
- ** exactly once for each successful call to xCreate().
- */
- int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
-
- /*
- ** Create a tokenizer cursor to tokenize an input buffer. The caller
- ** is responsible for ensuring that the input buffer remains valid
- ** until the cursor is closed (using the xClose() method).
- */
- int (*xOpen)(
- sqlite3_tokenizer *pTokenizer, /* Tokenizer object */
- const char *pInput, int nBytes, /* Input buffer */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */
- );
-
- /*
- ** Destroy an existing tokenizer cursor. The fts3 module calls this
- ** method exactly once for each successful call to xOpen().
- */
- int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
-
- /*
- ** Retrieve the next token from the tokenizer cursor pCursor. This
- ** method should either return SQLITE_OK and set the values of the
- ** "OUT" variables identified below, or SQLITE_DONE to indicate that
- ** the end of the buffer has been reached, or an SQLite error code.
- **
- ** *ppToken should be set to point at a buffer containing the
- ** normalized version of the token (i.e. after any case-folding and/or
- ** stemming has been performed). *pnBytes should be set to the length
- ** of this buffer in bytes. The input text that generated the token is
- ** identified by the byte offsets returned in *piStartOffset and
- ** *piEndOffset. *piStartOffset should be set to the index of the first
- ** byte of the token in the input buffer. *piEndOffset should be set
- ** to the index of the first byte just past the end of the token in
- ** the input buffer.
- **
- ** The buffer *ppToken is set to point at is managed by the tokenizer
- ** implementation. It is only required to be valid until the next call
- ** to xNext() or xClose().
- */
- /* TODO(shess) current implementation requires pInput to be
- ** nul-terminated. This should either be fixed, or pInput/nBytes
- ** should be converted to zInput.
- */
- int (*xNext)(
- sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */
- const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */
- int *piStartOffset, /* OUT: Byte offset of token in input buffer */
- int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */
- int *piPosition /* OUT: Number of tokens returned before this one */
- );
-
- /***********************************************************************
- ** Methods below this point are only available if iVersion>=1.
- */
-
- /*
- ** Configure the language id of a tokenizer cursor.
- */
- int (*xLanguageid)(sqlite3_tokenizer_cursor *pCsr, int iLangid);
-};
-
-struct sqlite3_tokenizer {
- const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */
- /* Tokenizer implementations will typically add additional fields */
-};
-
-struct sqlite3_tokenizer_cursor {
- sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */
- /* Tokenizer implementations will typically add additional fields */
-};
-
-int fts3_global_term_cnt(int iTerm, int iCol);
-int fts3_term_cnt(int iTerm, int iCol);
-
-
-#endif /* _FTS3_TOKENIZER_H_ */
diff --git a/src/libtracker-fts/fts3_tokenizer1.c b/src/libtracker-fts/fts3_tokenizer1.c
deleted file mode 100644
index deea06d92..000000000
--- a/src/libtracker-fts/fts3_tokenizer1.c
+++ /dev/null
@@ -1,234 +0,0 @@
-/*
-** 2006 Oct 10
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** Implementation of the "simple" full-text-search tokenizer.
-*/
-
-/*
-** The code in this file is only compiled if:
-**
-** * The FTS3 module is being built as an extension
-** (in which case SQLITE_CORE is not defined), or
-**
-** * The FTS3 module is being built into the core of
-** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
-*/
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <assert.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-
-#include "fts3_tokenizer.h"
-
-typedef struct simple_tokenizer {
- sqlite3_tokenizer base;
- char delim[128]; /* flag ASCII delimiters */
-} simple_tokenizer;
-
-typedef struct simple_tokenizer_cursor {
- sqlite3_tokenizer_cursor base;
- const char *pInput; /* input we are tokenizing */
- int nBytes; /* size of the input */
- int iOffset; /* current position in pInput */
- int iToken; /* index of next token to be returned */
- char *pToken; /* storage for current token */
- int nTokenAllocated; /* space allocated to zToken buffer */
-} simple_tokenizer_cursor;
-
-
-static int simpleDelim(simple_tokenizer *t, unsigned char c){
- return c<0x80 && t->delim[c];
-}
-static int fts3_isalnum(int x){
- return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
-}
-
-/*
-** Create a new tokenizer instance.
-*/
-static int simpleCreate(
- int argc, const char * const *argv,
- sqlite3_tokenizer **ppTokenizer
-){
- simple_tokenizer *t;
-
- t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
- if( t==NULL ) return SQLITE_NOMEM;
- memset(t, 0, sizeof(*t));
-
- /* TODO(shess) Delimiters need to remain the same from run to run,
- ** else we need to reindex. One solution would be a meta-table to
- ** track such information in the database, then we'd only want this
- ** information on the initial create.
- */
- if( argc>1 ){
- int i, n = (int)strlen(argv[1]);
- for(i=0; i<n; i++){
- unsigned char ch = argv[1][i];
- /* We explicitly don't support UTF-8 delimiters for now. */
- if( ch>=0x80 ){
- sqlite3_free(t);
- return SQLITE_ERROR;
- }
- t->delim[ch] = 1;
- }
- } else {
- /* Mark non-alphanumeric ASCII characters as delimiters */
- int i;
- for(i=1; i<0x80; i++){
- t->delim[i] = !fts3_isalnum(i) ? -1 : 0;
- }
- }
-
- *ppTokenizer = &t->base;
- return SQLITE_OK;
-}
-
-/*
-** Destroy a tokenizer
-*/
-static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
- sqlite3_free(pTokenizer);
- return SQLITE_OK;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is pInput[0..nBytes-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int simpleOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *pInput, int nBytes, /* String to be tokenized */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- simple_tokenizer_cursor *c;
-
- UNUSED_PARAMETER(pTokenizer);
-
- c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
- if( c==NULL ) return SQLITE_NOMEM;
-
- c->pInput = pInput;
- if( pInput==0 ){
- c->nBytes = 0;
- }else if( nBytes<0 ){
- c->nBytes = (int)strlen(pInput);
- }else{
- c->nBytes = nBytes;
- }
- c->iOffset = 0; /* start tokenizing at the beginning */
- c->iToken = 0;
- c->pToken = NULL; /* no space allocated, yet. */
- c->nTokenAllocated = 0;
-
- *ppCursor = &c->base;
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to
-** simpleOpen() above.
-*/
-static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
- simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
- sqlite3_free(c->pToken);
- sqlite3_free(c);
- return SQLITE_OK;
-}
-
-/*
-** Extract the next token from a tokenization cursor. The cursor must
-** have been opened by a prior call to simpleOpen().
-*/
-static int simpleNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
- const char **ppToken, /* OUT: *ppToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
- simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
- unsigned char *p = (unsigned char *)c->pInput;
-
- while( c->iOffset<c->nBytes ){
- int iStartOffset;
-
- /* Scan past delimiter characters */
- while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
- c->iOffset++;
- }
-
- /* Count non-delimiter characters. */
- iStartOffset = c->iOffset;
- while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
- c->iOffset++;
- }
-
- if( c->iOffset>iStartOffset ){
- int i, n = c->iOffset-iStartOffset;
- if( n>c->nTokenAllocated ){
- char *pNew;
- c->nTokenAllocated = n+20;
- pNew = sqlite3_realloc(c->pToken, c->nTokenAllocated);
- if( !pNew ) return SQLITE_NOMEM;
- c->pToken = pNew;
- }
- for(i=0; i<n; i++){
- /* TODO(shess) This needs expansion to handle UTF-8
- ** case-insensitivity.
- */
- unsigned char ch = p[iStartOffset+i];
- c->pToken[i] = (char)((ch>='A' && ch<='Z') ? ch-'A'+'a' : ch);
- }
- *ppToken = c->pToken;
- *pnBytes = n;
- *piStartOffset = iStartOffset;
- *piEndOffset = c->iOffset;
- *piPosition = c->iToken++;
-
- return SQLITE_OK;
- }
- }
- return SQLITE_DONE;
-}
-
-/*
-** The set of routines that implement the simple tokenizer
-*/
-static const sqlite3_tokenizer_module simpleTokenizerModule = {
- 0,
- simpleCreate,
- simpleDestroy,
- simpleOpen,
- simpleClose,
- simpleNext,
- 0,
-};
-
-/*
-** Allocate a new simple tokenizer. Return a pointer to the new
-** tokenizer in *ppModule
-*/
-void sqlite3Fts3SimpleTokenizerModule(
- sqlite3_tokenizer_module const**ppModule
-){
- *ppModule = &simpleTokenizerModule;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
diff --git a/src/libtracker-fts/fts3_unicode.c b/src/libtracker-fts/fts3_unicode.c
deleted file mode 100644
index 79941edbb..000000000
--- a/src/libtracker-fts/fts3_unicode.c
+++ /dev/null
@@ -1,393 +0,0 @@
-/*
-** 2012 May 24
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** Implementation of the "unicode" full-text-search tokenizer.
-*/
-
-#ifdef SQLITE_ENABLE_FTS4_UNICODE61
-
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <assert.h>
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-
-#include "fts3_tokenizer.h"
-
-/*
-** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
-** from the sqlite3 source file utf.c. If this file is compiled as part
-** of the amalgamation, they are not required.
-*/
-#ifndef SQLITE_AMALGAMATION
-
-static const unsigned char sqlite3Utf8Trans1[] = {
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
- 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
-};
-
-#define READ_UTF8(zIn, zTerm, c) \
- c = *(zIn++); \
- if( c>=0xc0 ){ \
- c = sqlite3Utf8Trans1[c-0xc0]; \
- while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
- c = (c<<6) + (0x3f & *(zIn++)); \
- } \
- if( c<0x80 \
- || (c&0xFFFFF800)==0xD800 \
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
- }
-
-#define WRITE_UTF8(zOut, c) { \
- if( c<0x00080 ){ \
- *zOut++ = (u8)(c&0xFF); \
- } \
- else if( c<0x00800 ){ \
- *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
- *zOut++ = 0x80 + (u8)(c & 0x3F); \
- } \
- else if( c<0x10000 ){ \
- *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
- *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (u8)(c & 0x3F); \
- }else{ \
- *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
- *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
- *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
- *zOut++ = 0x80 + (u8)(c & 0x3F); \
- } \
-}
-
-#endif /* ifndef SQLITE_AMALGAMATION */
-
-typedef struct unicode_tokenizer unicode_tokenizer;
-typedef struct unicode_cursor unicode_cursor;
-
-struct unicode_tokenizer {
- sqlite3_tokenizer base;
- int bRemoveDiacritic;
- int nException;
- int *aiException;
-};
-
-struct unicode_cursor {
- sqlite3_tokenizer_cursor base;
- const unsigned char *aInput; /* Input text being tokenized */
- int nInput; /* Size of aInput[] in bytes */
- int iOff; /* Current offset within aInput[] */
- int iToken; /* Index of next token to be returned */
- char *zToken; /* storage for current token */
- int nAlloc; /* space allocated at zToken */
-};
-
-
-/*
-** Destroy a tokenizer allocated by unicodeCreate().
-*/
-static int unicodeDestroy(sqlite3_tokenizer *pTokenizer){
- if( pTokenizer ){
- unicode_tokenizer *p = (unicode_tokenizer *)pTokenizer;
- sqlite3_free(p->aiException);
- sqlite3_free(p);
- }
- return SQLITE_OK;
-}
-
-/*
-** As part of a tokenchars= or separators= option, the CREATE VIRTUAL TABLE
-** statement has specified that the tokenizer for this table shall consider
-** all characters in string zIn/nIn to be separators (if bAlnum==0) or
-** token characters (if bAlnum==1).
-**
-** For each codepoint in the zIn/nIn string, this function checks if the
-** sqlite3FtsUnicodeIsalnum() function already returns the desired result.
-** If so, no action is taken. Otherwise, the codepoint is added to the
-** unicode_tokenizer.aiException[] array. For the purposes of tokenization,
-** the return value of sqlite3FtsUnicodeIsalnum() is inverted for all
-** codepoints in the aiException[] array.
-**
-** If a standalone diacritic mark (one that sqlite3FtsUnicodeIsdiacritic()
-** identifies as a diacritic) occurs in the zIn/nIn string it is ignored.
-** It is not possible to change the behaviour of the tokenizer with respect
-** to these codepoints.
-*/
-static int unicodeAddExceptions(
- unicode_tokenizer *p, /* Tokenizer to add exceptions to */
- int bAlnum, /* Replace Isalnum() return value with this */
- const char *zIn, /* Array of characters to make exceptions */
- int nIn /* Length of z in bytes */
-){
- const unsigned char *z = (const unsigned char *)zIn;
- const unsigned char *zTerm = &z[nIn];
- int iCode;
- int nEntry = 0;
-
- assert( bAlnum==0 || bAlnum==1 );
-
- while( z<zTerm ){
- READ_UTF8(z, zTerm, iCode);
- assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
- if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum
- && sqlite3FtsUnicodeIsdiacritic(iCode)==0
- ){
- nEntry++;
- }
- }
-
- if( nEntry ){
- int *aNew; /* New aiException[] array */
- int nNew; /* Number of valid entries in array aNew[] */
-
- aNew = sqlite3_realloc(p->aiException, (p->nException+nEntry)*sizeof(int));
- if( aNew==0 ) return SQLITE_NOMEM;
- nNew = p->nException;
-
- z = (const unsigned char *)zIn;
- while( z<zTerm ){
- READ_UTF8(z, zTerm, iCode);
- if( sqlite3FtsUnicodeIsalnum(iCode)!=bAlnum
- && sqlite3FtsUnicodeIsdiacritic(iCode)==0
- ){
- int i, j;
- for(i=0; i<nNew && aNew[i]<iCode; i++);
- for(j=nNew; j>i; j--) aNew[j] = aNew[j-1];
- aNew[i] = iCode;
- nNew++;
- }
- }
- p->aiException = aNew;
- p->nException = nNew;
- }
-
- return SQLITE_OK;
-}
-
-/*
-** Return true if the p->aiException[] array contains the value iCode.
-*/
-static int unicodeIsException(unicode_tokenizer *p, int iCode){
- if( p->nException>0 ){
- int *a = p->aiException;
- int iLo = 0;
- int iHi = p->nException-1;
-
- while( iHi>=iLo ){
- int iTest = (iHi + iLo) / 2;
- if( iCode==a[iTest] ){
- return 1;
- }else if( iCode>a[iTest] ){
- iLo = iTest+1;
- }else{
- iHi = iTest-1;
- }
- }
- }
-
- return 0;
-}
-
-/*
-** Return true if, for the purposes of tokenization, codepoint iCode is
-** considered a token character (not a separator).
-*/
-static int unicodeIsAlnum(unicode_tokenizer *p, int iCode){
- assert( (sqlite3FtsUnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
- return sqlite3FtsUnicodeIsalnum(iCode) ^ unicodeIsException(p, iCode);
-}
-
-/*
-** Create a new tokenizer instance.
-*/
-static int unicodeCreate(
- int nArg, /* Size of array argv[] */
- const char * const *azArg, /* Tokenizer creation arguments */
- sqlite3_tokenizer **pp /* OUT: New tokenizer handle */
-){
- unicode_tokenizer *pNew; /* New tokenizer object */
- int i;
- int rc = SQLITE_OK;
-
- pNew = (unicode_tokenizer *) sqlite3_malloc(sizeof(unicode_tokenizer));
- if( pNew==NULL ) return SQLITE_NOMEM;
- memset(pNew, 0, sizeof(unicode_tokenizer));
- pNew->bRemoveDiacritic = 1;
-
- for(i=0; rc==SQLITE_OK && i<nArg; i++){
- const char *z = azArg[i];
- int n = strlen(z);
-
- if( n==19 && memcmp("remove_diacritics=1", z, 19)==0 ){
- pNew->bRemoveDiacritic = 1;
- }
- else if( n==19 && memcmp("remove_diacritics=0", z, 19)==0 ){
- pNew->bRemoveDiacritic = 0;
- }
- else if( n>=11 && memcmp("tokenchars=", z, 11)==0 ){
- rc = unicodeAddExceptions(pNew, 1, &z[11], n-11);
- }
- else if( n>=11 && memcmp("separators=", z, 11)==0 ){
- rc = unicodeAddExceptions(pNew, 0, &z[11], n-11);
- }
- else{
- /* Unrecognized argument */
- rc = SQLITE_ERROR;
- }
- }
-
- if( rc!=SQLITE_OK ){
- unicodeDestroy((sqlite3_tokenizer *)pNew);
- pNew = 0;
- }
- *pp = (sqlite3_tokenizer *)pNew;
- return rc;
-}
-
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is pInput[0..nBytes-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int unicodeOpen(
- sqlite3_tokenizer *p, /* The tokenizer */
- const char *aInput, /* Input string */
- int nInput, /* Size of string aInput in bytes */
- sqlite3_tokenizer_cursor **pp /* OUT: New cursor object */
-){
- unicode_cursor *pCsr;
-
- pCsr = (unicode_cursor *)sqlite3_malloc(sizeof(unicode_cursor));
- if( pCsr==0 ){
- return SQLITE_NOMEM;
- }
- memset(pCsr, 0, sizeof(unicode_cursor));
-
- pCsr->aInput = (const unsigned char *)aInput;
- if( aInput==0 ){
- pCsr->nInput = 0;
- }else if( nInput<0 ){
- pCsr->nInput = (int)strlen(aInput);
- }else{
- pCsr->nInput = nInput;
- }
-
- *pp = &pCsr->base;
- UNUSED_PARAMETER(p);
- return SQLITE_OK;
-}
-
-/*
-** Close a tokenization cursor previously opened by a call to
-** simpleOpen() above.
-*/
-static int unicodeClose(sqlite3_tokenizer_cursor *pCursor){
- unicode_cursor *pCsr = (unicode_cursor *) pCursor;
- sqlite3_free(pCsr->zToken);
- sqlite3_free(pCsr);
- return SQLITE_OK;
-}
-
-/*
-** Extract the next token from a tokenization cursor. The cursor must
-** have been opened by a prior call to simpleOpen().
-*/
-static int unicodeNext(
- sqlite3_tokenizer_cursor *pC, /* Cursor returned by simpleOpen */
- const char **paToken, /* OUT: Token text */
- int *pnToken, /* OUT: Number of bytes at *paToken */
- int *piStart, /* OUT: Starting offset of token */
- int *piEnd, /* OUT: Ending offset of token */
- int *piPos /* OUT: Position integer of token */
-){
- unicode_cursor *pCsr = (unicode_cursor *)pC;
- unicode_tokenizer *p = ((unicode_tokenizer *)pCsr->base.pTokenizer);
- int iCode;
- char *zOut;
- const unsigned char *z = &pCsr->aInput[pCsr->iOff];
- const unsigned char *zStart = z;
- const unsigned char *zEnd;
- const unsigned char *zTerm = &pCsr->aInput[pCsr->nInput];
-
- /* Scan past any delimiter characters before the start of the next token.
- ** Return SQLITE_DONE early if this takes us all the way to the end of
- ** the input. */
- while( z<zTerm ){
- READ_UTF8(z, zTerm, iCode);
- if( unicodeIsAlnum(p, iCode) ) break;
- zStart = z;
- }
- if( zStart>=zTerm ) return SQLITE_DONE;
-
- zOut = pCsr->zToken;
- do {
- int iOut;
-
- /* Grow the output buffer if required. */
- if( (zOut-pCsr->zToken)>=(pCsr->nAlloc-4) ){
- char *zNew = sqlite3_realloc(pCsr->zToken, pCsr->nAlloc+64);
- if( !zNew ) return SQLITE_NOMEM;
- zOut = &zNew[zOut - pCsr->zToken];
- pCsr->zToken = zNew;
- pCsr->nAlloc += 64;
- }
-
- /* Write the folded case of the last character read to the output */
- zEnd = z;
- iOut = sqlite3FtsUnicodeFold(iCode, p->bRemoveDiacritic);
- if( iOut ){
- WRITE_UTF8(zOut, iOut);
- }
-
- /* If the cursor is not at EOF, read the next character */
- if( z>=zTerm ) break;
- READ_UTF8(z, zTerm, iCode);
- }while( unicodeIsAlnum(p, iCode)
- || sqlite3FtsUnicodeIsdiacritic(iCode)
- );
-
- /* Set the output variables and return. */
- pCsr->iOff = (z - pCsr->aInput);
- *paToken = pCsr->zToken;
- *pnToken = zOut - pCsr->zToken;
- *piStart = (zStart - pCsr->aInput);
- *piEnd = (zEnd - pCsr->aInput);
- *piPos = pCsr->iToken++;
- return SQLITE_OK;
-}
-
-/*
-** Set *ppModule to a pointer to the sqlite3_tokenizer_module
-** structure for the unicode tokenizer.
-*/
-void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const **ppModule){
- static const sqlite3_tokenizer_module module = {
- 0,
- unicodeCreate,
- unicodeDestroy,
- unicodeOpen,
- unicodeClose,
- unicodeNext,
- 0,
- };
- *ppModule = &module;
-}
-
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
-#endif /* ifndef SQLITE_ENABLE_FTS4_UNICODE61 */
diff --git a/src/libtracker-fts/fts3_unicode2.c b/src/libtracker-fts/fts3_unicode2.c
deleted file mode 100644
index 3c2456902..000000000
--- a/src/libtracker-fts/fts3_unicode2.c
+++ /dev/null
@@ -1,366 +0,0 @@
-/*
-** 2012 May 25
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-*/
-
-/*
-** DO NOT EDIT THIS MACHINE GENERATED FILE.
-*/
-
-#if defined(SQLITE_ENABLE_FTS4_UNICODE61)
-#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
-
-#include <assert.h>
-
-/*
-** Return true if the argument corresponds to a unicode codepoint
-** classified as either a letter or a number. Otherwise false.
-**
-** The results are undefined if the value passed to this function
-** is less than zero.
-*/
-int sqlite3FtsUnicodeIsalnum(int c){
- /* Each unsigned integer in the following array corresponds to a contiguous
- ** range of unicode codepoints that are not either letters or numbers (i.e.
- ** codepoints for which this function should return 0).
- **
- ** The most significant 22 bits in each 32-bit value contain the first
- ** codepoint in the range. The least significant 10 bits are used to store
- ** the size of the range (always at least 1). In other words, the value
- ** ((C<<22) + N) represents a range of N codepoints starting with codepoint
- ** C. It is not possible to represent a range larger than 1023 codepoints
- ** using this format.
- */
- const static unsigned int aEntry[] = {
- 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07,
- 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01,
- 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401,
- 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01,
- 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01,
- 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802,
- 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F,
- 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401,
- 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804,
- 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403,
- 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812,
- 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001,
- 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802,
- 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805,
- 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401,
- 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03,
- 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807,
- 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001,
- 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01,
- 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804,
- 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001,
- 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802,
- 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01,
- 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06,
- 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007,
- 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006,
- 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417,
- 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14,
- 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07,
- 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01,
- 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001,
- 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802,
- 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F,
- 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002,
- 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802,
- 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006,
- 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D,
- 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802,
- 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027,
- 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403,
- 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805,
- 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04,
- 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401,
- 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005,
- 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B,
- 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A,
- 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001,
- 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59,
- 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807,
- 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01,
- 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E,
- 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100,
- 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10,
- 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402,
- 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804,
- 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012,
- 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004,
- 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002,
- 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803,
- 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07,
- 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02,
- 0x037FFC02, 0x03E3FC01, 0x03EC7801, 0x03ECA401, 0x03EEC810,
- 0x03F4F802, 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023,
- 0x03F95013, 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807,
- 0x03FCEC06, 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405,
- 0x04040003, 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E,
- 0x040E7C01, 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01,
- 0x04280403, 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01,
- 0x04294009, 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016,
- 0x04420003, 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004,
- 0x04460003, 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004,
- 0x05BD442E, 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5,
- 0x07480046, 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01,
- 0x075C5401, 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401,
- 0x075EA401, 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064,
- 0x07C2800F, 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F,
- 0x07C4C03C, 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009,
- 0x07C94002, 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014,
- 0x07CE8025, 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001,
- 0x07D108B6, 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018,
- 0x07D7EC46, 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401,
- 0x38008060, 0x380400F0, 0x3C000001, 0x3FFFF401, 0x40000001,
- 0x43FFF401,
- };
- static const unsigned int aAscii[4] = {
- 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
- };
-
- if( c<128 ){
- return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
- }else if( c<(1<<22) ){
- unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
- int iRes;
- int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
- int iLo = 0;
- while( iHi>=iLo ){
- int iTest = (iHi + iLo) / 2;
- if( key >= aEntry[iTest] ){
- iRes = iTest;
- iLo = iTest+1;
- }else{
- iHi = iTest-1;
- }
- }
- assert( aEntry[0]<key );
- assert( key>=aEntry[iRes] );
- return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
- }
- return 1;
-}
-
-
-/*
-** If the argument is a codepoint corresponding to a lowercase letter
-** in the ASCII range with a diacritic added, return the codepoint
-** of the ASCII letter only. For example, if passed 235 - "LATIN
-** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
-** E"). The resuls of passing a codepoint that corresponds to an
-** uppercase letter are undefined.
-*/
-static int remove_diacritic(int c){
- unsigned short aDia[] = {
- 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
- 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
- 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
- 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
- 3456, 3696, 3712, 3728, 3744, 3896, 3912, 3928,
- 3968, 4008, 4040, 4106, 4138, 4170, 4202, 4234,
- 4266, 4296, 4312, 4344, 4408, 4424, 4472, 4504,
- 6148, 6198, 6264, 6280, 6360, 6429, 6505, 6529,
- 61448, 61468, 61534, 61592, 61642, 61688, 61704, 61726,
- 61784, 61800, 61836, 61880, 61914, 61948, 61998, 62122,
- 62154, 62200, 62218, 62302, 62364, 62442, 62478, 62536,
- 62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730,
- 62924, 63050, 63082, 63274, 63390,
- };
- char aChar[] = {
- '\0', 'a', 'c', 'e', 'i', 'n', 'o', 'u', 'y', 'y', 'a', 'c',
- 'd', 'e', 'e', 'g', 'h', 'i', 'j', 'k', 'l', 'n', 'o', 'r',
- 's', 't', 'u', 'u', 'w', 'y', 'z', 'o', 'u', 'a', 'i', 'o',
- 'u', 'g', 'k', 'o', 'j', 'g', 'n', 'a', 'e', 'i', 'o', 'r',
- 'u', 's', 't', 'h', 'a', 'e', 'o', 'y', '\0', '\0', '\0', '\0',
- '\0', '\0', '\0', '\0', 'a', 'b', 'd', 'd', 'e', 'f', 'g', 'h',
- 'h', 'i', 'k', 'l', 'l', 'm', 'n', 'p', 'r', 'r', 's', 't',
- 'u', 'v', 'w', 'w', 'x', 'y', 'z', 'h', 't', 'w', 'y', 'a',
- 'e', 'i', 'o', 'u', 'y',
- };
-
- unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
- int iRes = 0;
- int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
- int iLo = 0;
- while( iHi>=iLo ){
- int iTest = (iHi + iLo) / 2;
- if( key >= aDia[iTest] ){
- iRes = iTest;
- iLo = iTest+1;
- }else{
- iHi = iTest-1;
- }
- }
- assert( key>=aDia[iRes] );
- return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]);
-};
-
-
-/*
-** Return true if the argument interpreted as a unicode codepoint
-** is a diacritical modifier character.
-*/
-int sqlite3FtsUnicodeIsdiacritic(int c){
- unsigned int mask0 = 0x08029FDF;
- unsigned int mask1 = 0x000361F8;
- if( c<768 || c>817 ) return 0;
- return (c < 768+32) ?
- (mask0 & (1 << (c-768))) :
- (mask1 & (1 << (c-768-32)));
-}
-
-
-/*
-** Interpret the argument as a unicode codepoint. If the codepoint
-** is an upper case character that has a lower case equivalent,
-** return the codepoint corresponding to the lower case version.
-** Otherwise, return a copy of the argument.
-**
-** The results are undefined if the value passed to this function
-** is less than zero.
-*/
-int sqlite3FtsUnicodeFold(int c, int bRemoveDiacritic){
- /* Each entry in the following array defines a rule for folding a range
- ** of codepoints to lower case. The rule applies to a range of nRange
- ** codepoints starting at codepoint iCode.
- **
- ** If the least significant bit in flags is clear, then the rule applies
- ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
- ** need to be folded). Or, if it is set, then the rule only applies to
- ** every second codepoint in the range, starting with codepoint C.
- **
- ** The 7 most significant bits in flags are an index into the aiOff[]
- ** array. If a specific codepoint C does require folding, then its lower
- ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
- **
- ** The contents of this array are generated by parsing the CaseFolding.txt
- ** file distributed as part of the "Unicode Character Database". See
- ** http://www.unicode.org for details.
- */
- static const struct TableEntry {
- unsigned short iCode;
- unsigned char flags;
- unsigned char nRange;
- } aEntry[] = {
- {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
- {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
- {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
- {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
- {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
- {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
- {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
- {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
- {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
- {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
- {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
- {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
- {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
- {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
- {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
- {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
- {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
- {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
- {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
- {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
- {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
- {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
- {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
- {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
- {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
- {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
- {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
- {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
- {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
- {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
- {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
- {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
- {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
- {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
- {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
- {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
- {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
- {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
- {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
- {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
- {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
- {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
- {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
- {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
- {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
- {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
- {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
- {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
- {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
- {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
- {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
- {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
- {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
- {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
- {65313, 14, 26},
- };
- static const unsigned short aiOff[] = {
- 1, 2, 8, 15, 16, 26, 28, 32,
- 37, 38, 40, 48, 63, 64, 69, 71,
- 79, 80, 116, 202, 203, 205, 206, 207,
- 209, 210, 211, 213, 214, 217, 218, 219,
- 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
- 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
- 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
- 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
- 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
- 65514, 65521, 65527, 65528, 65529,
- };
-
- int ret = c;
-
- assert( c>=0 );
- assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
-
- if( c<128 ){
- if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
- }else if( c<65536 ){
- int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
- int iLo = 0;
- int iRes = -1;
-
- while( iHi>=iLo ){
- int iTest = (iHi + iLo) / 2;
- int cmp = (c - aEntry[iTest].iCode);
- if( cmp>=0 ){
- iRes = iTest;
- iLo = iTest+1;
- }else{
- iHi = iTest-1;
- }
- }
- assert( iRes<0 || c>=aEntry[iRes].iCode );
-
- if( iRes>=0 ){
- const struct TableEntry *p = &aEntry[iRes];
- if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
- ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
- assert( ret>0 );
- }
- }
-
- if( bRemoveDiacritic ) ret = remove_diacritic(ret);
- }
-
- else if( c>=66560 && c<66600 ){
- ret = c + 40;
- }
-
- return ret;
-}
-#endif /* defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) */
-#endif /* !defined(SQLITE_ENABLE_FTS4_UNICODE61) */
diff --git a/src/libtracker-fts/fts3_write.c b/src/libtracker-fts/fts3_write.c
deleted file mode 100644
index bda7fbbe1..000000000
--- a/src/libtracker-fts/fts3_write.c
+++ /dev/null
@@ -1,5402 +0,0 @@
-/*
-** 2009 Oct 23
-**
-** The author disclaims copyright to this source code. In place of
-** a legal notice, here is a blessing:
-**
-** May you do good and not evil.
-** May you find forgiveness for yourself and forgive others.
-** May you share freely, never taking more than you give.
-**
-******************************************************************************
-**
-** This file is part of the SQLite FTS3 extension module. Specifically,
-** this file contains code to insert, update and delete rows from FTS3
-** tables. It also contains code to merge FTS3 b-tree segments. Some
-** of the sub-routines used to merge segments are also used by the query
-** code in fts3.c.
-*/
-
-#include "fts3Int.h"
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
-
-#include <string.h>
-#include <assert.h>
-#include <stdlib.h>
-
-
-#define FTS_MAX_APPENDABLE_HEIGHT 16
-
-/*
-** When full-text index nodes are loaded from disk, the buffer that they
-** are loaded into has the following number of bytes of padding at the end
-** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
-** of 920 bytes is allocated for it.
-**
-** This means that if we have a pointer into a buffer containing node data,
-** it is always safe to read up to two varints from it without risking an
-** overread, even if the node data is corrupted.
-*/
-#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
-
-/*
-** Under certain circumstances, b-tree nodes (doclists) can be loaded into
-** memory incrementally instead of all at once. This can be a big performance
-** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
-** method before retrieving all query results (as may happen, for example,
-** if a query has a LIMIT clause).
-**
-** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
-** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
-** The code is written so that the hard lower-limit for each of these values
-** is 1. Clearly such small values would be inefficient, but can be useful
-** for testing purposes.
-**
-** If this module is built with SQLITE_TEST defined, these constants may
-** be overridden at runtime for testing purposes. File fts3_test.c contains
-** a Tcl interface to read and write the values.
-*/
-#ifdef SQLITE_TEST
-int test_fts3_node_chunksize = (4*1024);
-int test_fts3_node_chunk_threshold = (4*1024)*4;
-# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
-# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
-#else
-# define FTS3_NODE_CHUNKSIZE (4*1024)
-# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
-#endif
-
-/*
-** The two values that may be meaningfully bound to the :1 parameter in
-** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
-*/
-#define FTS_STAT_DOCTOTAL 0
-#define FTS_STAT_INCRMERGEHINT 1
-#define FTS_STAT_AUTOINCRMERGE 2
-
-/*
-** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
-** and incremental merge operation that takes place. This is used for
-** debugging FTS only, it should not usually be turned on in production
-** systems.
-*/
-#ifdef FTS3_LOG_MERGES
-static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
- sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
-}
-#else
-#define fts3LogMerge(x, y)
-#endif
-
-
-typedef struct PendingList PendingList;
-typedef struct SegmentNode SegmentNode;
-typedef struct SegmentWriter SegmentWriter;
-
-/*
-** An instance of the following data structure is used to build doclists
-** incrementally. See function fts3PendingListAppend() for details.
-*/
-struct PendingList {
- int nData;
- char *aData;
- int nSpace;
- sqlite3_int64 iLastDocid;
- sqlite3_int64 iLastCol;
- sqlite3_int64 iLastPos;
-};
-
-
-/*
-** Each cursor has a (possibly empty) linked list of the following objects.
-*/
-struct Fts3DeferredToken {
- Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
- int iCol; /* Column token must occur in */
- Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
- PendingList *pList; /* Doclist is assembled here */
-};
-
-/*
-** An instance of this structure is used to iterate through the terms on
-** a contiguous set of segment b-tree leaf nodes. Although the details of
-** this structure are only manipulated by code in this file, opaque handles
-** of type Fts3SegReader* are also used by code in fts3.c to iterate through
-** terms when querying the full-text index. See functions:
-**
-** sqlite3Fts3SegReaderNew()
-** sqlite3Fts3SegReaderFree()
-** sqlite3Fts3SegReaderIterate()
-**
-** Methods used to manipulate Fts3SegReader structures:
-**
-** fts3SegReaderNext()
-** fts3SegReaderFirstDocid()
-** fts3SegReaderNextDocid()
-*/
-struct Fts3SegReader {
- int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
- u8 bLookup; /* True for a lookup only */
- u8 rootOnly; /* True for a root-only reader */
-
- sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
- sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
- sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
- sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
-
- char *aNode; /* Pointer to node data (or NULL) */
- int nNode; /* Size of buffer at aNode (or 0) */
- int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
- sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
-
- Fts3HashElem **ppNextElem;
-
- /* Variables set by fts3SegReaderNext(). These may be read directly
- ** by the caller. They are valid from the time SegmentReaderNew() returns
- ** until SegmentReaderNext() returns something other than SQLITE_OK
- ** (i.e. SQLITE_DONE).
- */
- int nTerm; /* Number of bytes in current term */
- char *zTerm; /* Pointer to current term */
- int nTermAlloc; /* Allocated size of zTerm buffer */
- char *aDoclist; /* Pointer to doclist of current entry */
- int nDoclist; /* Size of doclist in current entry */
-
- /* The following variables are used by fts3SegReaderNextDocid() to iterate
- ** through the current doclist (aDoclist/nDoclist).
- */
- char *pOffsetList;
- int nOffsetList; /* For descending pending seg-readers only */
- sqlite3_int64 iDocid;
-};
-
-#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
-#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
-
-/*
-** An instance of this structure is used to create a segment b-tree in the
-** database. The internal details of this type are only accessed by the
-** following functions:
-**
-** fts3SegWriterAdd()
-** fts3SegWriterFlush()
-** fts3SegWriterFree()
-*/
-struct SegmentWriter {
- SegmentNode *pTree; /* Pointer to interior tree structure */
- sqlite3_int64 iFirst; /* First slot in %_segments written */
- sqlite3_int64 iFree; /* Next free slot in %_segments */
- char *zTerm; /* Pointer to previous term buffer */
- int nTerm; /* Number of bytes in zTerm */
- int nMalloc; /* Size of malloc'd buffer at zMalloc */
- char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
- int nSize; /* Size of allocation at aData */
- int nData; /* Bytes of data in aData */
- char *aData; /* Pointer to block from malloc() */
-};
-
-/*
-** Type SegmentNode is used by the following three functions to create
-** the interior part of the segment b+-tree structures (everything except
-** the leaf nodes). These functions and type are only ever used by code
-** within the fts3SegWriterXXX() family of functions described above.
-**
-** fts3NodeAddTerm()
-** fts3NodeWrite()
-** fts3NodeFree()
-**
-** When a b+tree is written to the database (either as a result of a merge
-** or the pending-terms table being flushed), leaves are written into the
-** database file as soon as they are completely populated. The interior of
-** the tree is assembled in memory and written out only once all leaves have
-** been populated and stored. This is Ok, as the b+-tree fanout is usually
-** very large, meaning that the interior of the tree consumes relatively
-** little memory.
-*/
-struct SegmentNode {
- SegmentNode *pParent; /* Parent node (or NULL for root node) */
- SegmentNode *pRight; /* Pointer to right-sibling */
- SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
- int nEntry; /* Number of terms written to node so far */
- char *zTerm; /* Pointer to previous term buffer */
- int nTerm; /* Number of bytes in zTerm */
- int nMalloc; /* Size of malloc'd buffer at zMalloc */
- char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
- int nData; /* Bytes of valid data so far */
- char *aData; /* Node data */
-};
-
-/*
-** Valid values for the second argument to fts3SqlStmt().
-*/
-#define SQL_DELETE_CONTENT 0
-#define SQL_IS_EMPTY 1
-#define SQL_DELETE_ALL_CONTENT 2
-#define SQL_DELETE_ALL_SEGMENTS 3
-#define SQL_DELETE_ALL_SEGDIR 4
-#define SQL_DELETE_ALL_DOCSIZE 5
-#define SQL_DELETE_ALL_STAT 6
-#define SQL_SELECT_CONTENT_BY_ROWID 7
-#define SQL_NEXT_SEGMENT_INDEX 8
-#define SQL_INSERT_SEGMENTS 9
-#define SQL_NEXT_SEGMENTS_ID 10
-#define SQL_INSERT_SEGDIR 11
-#define SQL_SELECT_LEVEL 12
-#define SQL_SELECT_LEVEL_RANGE 13
-#define SQL_SELECT_LEVEL_COUNT 14
-#define SQL_SELECT_SEGDIR_MAX_LEVEL 15
-#define SQL_DELETE_SEGDIR_LEVEL 16
-#define SQL_DELETE_SEGMENTS_RANGE 17
-#define SQL_CONTENT_INSERT 18
-#define SQL_DELETE_DOCSIZE 19
-#define SQL_REPLACE_DOCSIZE 20
-#define SQL_SELECT_DOCSIZE 21
-#define SQL_SELECT_STAT 22
-#define SQL_REPLACE_STAT 23
-
-#define SQL_SELECT_ALL_PREFIX_LEVEL 24
-#define SQL_DELETE_ALL_TERMS_SEGDIR 25
-#define SQL_DELETE_SEGDIR_RANGE 26
-#define SQL_SELECT_ALL_LANGID 27
-#define SQL_FIND_MERGE_LEVEL 28
-#define SQL_MAX_LEAF_NODE_ESTIMATE 29
-#define SQL_DELETE_SEGDIR_ENTRY 30
-#define SQL_SHIFT_SEGDIR_ENTRY 31
-#define SQL_SELECT_SEGDIR 32
-#define SQL_CHOMP_SEGDIR 33
-#define SQL_SEGMENT_IS_APPENDABLE 34
-#define SQL_SELECT_INDEXES 35
-#define SQL_SELECT_MXLEVEL 36
-
-/*
-** This function is used to obtain an SQLite prepared statement handle
-** for the statement identified by the second argument. If successful,
-** *pp is set to the requested statement handle and SQLITE_OK returned.
-** Otherwise, an SQLite error code is returned and *pp is set to 0.
-**
-** If argument apVal is not NULL, then it must point to an array with
-** at least as many entries as the requested statement has bound
-** parameters. The values are bound to the statements parameters before
-** returning.
-*/
-static int fts3SqlStmt(
- Fts3Table *p, /* Virtual table handle */
- int eStmt, /* One of the SQL_XXX constants above */
- sqlite3_stmt **pp, /* OUT: Statement handle */
- sqlite3_value **apVal /* Values to bind to statement */
-){
- const char *azSql[] = {
-/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
-/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
-/* 2 */ "DELETE FROM %Q.'%q_content'",
-/* 3 */ "DELETE FROM %Q.'%q_segments'",
-/* 4 */ "DELETE FROM %Q.'%q_segdir'",
-/* 5 */ "DELETE FROM %Q.'%q_docsize'",
-/* 6 */ "DELETE FROM %Q.'%q_stat'",
-/* 7 */ "SELECT %s WHERE rowid=?",
-/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
-/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
-/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
-/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
-
- /* Return segments in order from oldest to newest.*/
-/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
- "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
-/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
- "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
- "ORDER BY level DESC, idx ASC",
-
-/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
-/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
-
-/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
-/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
-/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
-/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
-/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
-/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
-/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
-/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
-/* 24 */ "",
-/* 25 */ "",
-
-/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
-/* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'",
-
-/* This statement is used to determine which level to read the input from
-** when performing an incremental merge. It returns the absolute level number
-** of the oldest level in the db that contains at least ? segments. Or,
-** if no level in the FTS index contains more than ? segments, the statement
-** returns zero rows. */
-/* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?"
- " ORDER BY (level %% 1024) ASC LIMIT 1",
-
-/* Estimate the upper limit on the number of leaf nodes in a new segment
-** created by merging the oldest :2 segments from absolute level :1. See
-** function sqlite3Fts3Incrmerge() for details. */
-/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
- " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
-
-/* SQL_DELETE_SEGDIR_ENTRY
-** Delete the %_segdir entry on absolute level :1 with index :2. */
-/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
-
-/* SQL_SHIFT_SEGDIR_ENTRY
-** Modify the idx value for the segment with idx=:3 on absolute level :2
-** to :1. */
-/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
-
-/* SQL_SELECT_SEGDIR
-** Read a single entry from the %_segdir table. The entry from absolute
-** level :1 with index value :2. */
-/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
- "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
-
-/* SQL_CHOMP_SEGDIR
-** Update the start_block (:1) and root (:2) fields of the %_segdir
-** entry located on absolute level :3 with index :4. */
-/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
- "WHERE level = ? AND idx = ?",
-
-/* SQL_SEGMENT_IS_APPENDABLE
-** Return a single row if the segment with end_block=? is appendable. Or
-** no rows otherwise. */
-/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
-
-/* SQL_SELECT_INDEXES
-** Return the list of valid segment indexes for absolute level ? */
-/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
-
-/* SQL_SELECT_MXLEVEL
-** Return the largest relative level in the FTS index or indexes. */
-/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'"
- };
- int rc = SQLITE_OK;
- sqlite3_stmt *pStmt;
-
- assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
- assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
-
- pStmt = p->aStmt[eStmt];
- if( !pStmt ){
- char *zSql;
- if( eStmt==SQL_CONTENT_INSERT ){
- zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
- }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
- zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
- }else{
- zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
- }
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
- sqlite3_free(zSql);
- assert( rc==SQLITE_OK || pStmt==0 );
- p->aStmt[eStmt] = pStmt;
- }
- }
- if( apVal ){
- int i;
- int nParam = sqlite3_bind_parameter_count(pStmt);
- for(i=0; rc==SQLITE_OK && i<nParam; i++){
- rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
- }
- }
- *pp = pStmt;
- return rc;
-}
-
-
-static int fts3SelectDocsize(
- Fts3Table *pTab, /* FTS3 table handle */
- sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
- sqlite3_stmt **ppStmt /* OUT: Statement handle */
-){
- sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
- int rc; /* Return code */
-
- rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pStmt, 1, iDocid);
- rc = sqlite3_step(pStmt);
- if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
- rc = sqlite3_reset(pStmt);
- if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
- pStmt = 0;
- }else{
- rc = SQLITE_OK;
- }
- }
-
- *ppStmt = pStmt;
- return rc;
-}
-
-int sqlite3Fts3SelectDoctotal(
- Fts3Table *pTab, /* Fts3 table handle */
- sqlite3_stmt **ppStmt /* OUT: Statement handle */
-){
- sqlite3_stmt *pStmt = 0;
- int rc;
- rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
- if( sqlite3_step(pStmt)!=SQLITE_ROW
- || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
- ){
- rc = sqlite3_reset(pStmt);
- if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
- pStmt = 0;
- }
- }
- *ppStmt = pStmt;
- return rc;
-}
-
-int sqlite3Fts3SelectDocsize(
- Fts3Table *pTab, /* Fts3 table handle */
- sqlite3_int64 iDocid, /* Docid to read size data for */
- sqlite3_stmt **ppStmt /* OUT: Statement handle */
-){
- return fts3SelectDocsize(pTab, iDocid, ppStmt);
-}
-
-/*
-** Similar to fts3SqlStmt(). Except, after binding the parameters in
-** array apVal[] to the SQL statement identified by eStmt, the statement
-** is executed.
-**
-** Returns SQLITE_OK if the statement is successfully executed, or an
-** SQLite error code otherwise.
-*/
-static void fts3SqlExec(
- int *pRC, /* Result code */
- Fts3Table *p, /* The FTS3 table */
- int eStmt, /* Index of statement to evaluate */
- sqlite3_value **apVal /* Parameters to bind */
-){
- sqlite3_stmt *pStmt;
- int rc;
- if( *pRC ) return;
- rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
- if( rc==SQLITE_OK ){
- sqlite3_step(pStmt);
- rc = sqlite3_reset(pStmt);
- }
- *pRC = rc;
-}
-
-
-/*
-** This function ensures that the caller has obtained a shared-cache
-** table-lock on the %_content table. This is required before reading
-** data from the fts3 table. If this lock is not acquired first, then
-** the caller may end up holding read-locks on the %_segments and %_segdir
-** tables, but no read-lock on the %_content table. If this happens
-** a second connection will be able to write to the fts3 table, but
-** attempting to commit those writes might return SQLITE_LOCKED or
-** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain
-** write-locks on the %_segments and %_segdir ** tables).
-**
-** We try to avoid this because if FTS3 returns any error when committing
-** a transaction, the whole transaction will be rolled back. And this is
-** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
-** still happen if the user reads data directly from the %_segments or
-** %_segdir tables instead of going through FTS3 though.
-**
-** This reasoning does not apply to a content=xxx table.
-*/
-int sqlite3Fts3ReadLock(Fts3Table *p){
- int rc; /* Return code */
- sqlite3_stmt *pStmt; /* Statement used to obtain lock */
-
- if( p->zContentTbl==0 ){
- rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_null(pStmt, 1);
- sqlite3_step(pStmt);
- rc = sqlite3_reset(pStmt);
- }
- }else{
- rc = SQLITE_OK;
- }
-
- return rc;
-}
-
-/*
-** FTS maintains a separate indexes for each language-id (a 32-bit integer).
-** Within each language id, a separate index is maintained to store the
-** document terms, and each configured prefix size (configured the FTS
-** "prefix=" option). And each index consists of multiple levels ("relative
-** levels").
-**
-** All three of these values (the language id, the specific index and the
-** level within the index) are encoded in 64-bit integer values stored
-** in the %_segdir table on disk. This function is used to convert three
-** separate component values into the single 64-bit integer value that
-** can be used to query the %_segdir table.
-**
-** Specifically, each language-id/index combination is allocated 1024
-** 64-bit integer level values ("absolute levels"). The main terms index
-** for language-id 0 is allocate values 0-1023. The first prefix index
-** (if any) for language-id 0 is allocated values 1024-2047. And so on.
-** Language 1 indexes are allocated immediately following language 0.
-**
-** So, for a system with nPrefix prefix indexes configured, the block of
-** absolute levels that corresponds to language-id iLangid and index
-** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
-*/
-static sqlite3_int64 getAbsoluteLevel(
- Fts3Table *p, /* FTS3 table handle */
- int iLangid, /* Language id */
- int iIndex, /* Index in p->aIndex[] */
- int iLevel /* Level of segments */
-){
- sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
- assert( iLangid>=0 );
- assert( p->nIndex>0 );
- assert( iIndex>=0 && iIndex<p->nIndex );
-
- iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
- return iBase + iLevel;
-}
-
-/*
-** Set *ppStmt to a statement handle that may be used to iterate through
-** all rows in the %_segdir table, from oldest to newest. If successful,
-** return SQLITE_OK. If an error occurs while preparing the statement,
-** return an SQLite error code.
-**
-** There is only ever one instance of this SQL statement compiled for
-** each FTS3 table.
-**
-** The statement returns the following columns from the %_segdir table:
-**
-** 0: idx
-** 1: start_block
-** 2: leaves_end_block
-** 3: end_block
-** 4: root
-*/
-int sqlite3Fts3AllSegdirs(
- Fts3Table *p, /* FTS3 table */
- int iLangid, /* Language being queried */
- int iIndex, /* Index for p->aIndex[] */
- int iLevel, /* Level to select (relative level) */
- sqlite3_stmt **ppStmt /* OUT: Compiled statement */
-){
- int rc;
- sqlite3_stmt *pStmt = 0;
-
- assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
- assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
- assert( iIndex>=0 && iIndex<p->nIndex );
-
- if( iLevel<0 ){
- /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
- rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
- sqlite3_bind_int64(pStmt, 2,
- getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
- );
- }
- }else{
- /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
- rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
- }
- }
- *ppStmt = pStmt;
- return rc;
-}
-
-
-/*
-** Append a single varint to a PendingList buffer. SQLITE_OK is returned
-** if successful, or an SQLite error code otherwise.
-**
-** This function also serves to allocate the PendingList structure itself.
-** For example, to create a new PendingList structure containing two
-** varints:
-**
-** PendingList *p = 0;
-** fts3PendingListAppendVarint(&p, 1);
-** fts3PendingListAppendVarint(&p, 2);
-*/
-static int fts3PendingListAppendVarint(
- PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
- sqlite3_int64 i /* Value to append to data */
-){
- PendingList *p = *pp;
-
- /* Allocate or grow the PendingList as required. */
- if( !p ){
- p = sqlite3_malloc(sizeof(*p) + 100);
- if( !p ){
- return SQLITE_NOMEM;
- }
- p->nSpace = 100;
- p->aData = (char *)&p[1];
- p->nData = 0;
- }
- else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
- int nNew = p->nSpace * 2;
- p = sqlite3_realloc(p, sizeof(*p) + nNew);
- if( !p ){
- sqlite3_free(*pp);
- *pp = 0;
- return SQLITE_NOMEM;
- }
- p->nSpace = nNew;
- p->aData = (char *)&p[1];
- }
-
- /* Append the new serialized varint to the end of the list. */
- p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
- p->aData[p->nData] = '\0';
- *pp = p;
- return SQLITE_OK;
-}
-
-/*
-** Add a docid/column/position entry to a PendingList structure. Non-zero
-** is returned if the structure is sqlite3_realloced as part of adding
-** the entry. Otherwise, zero.
-**
-** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
-** Zero is always returned in this case. Otherwise, if no OOM error occurs,
-** it is set to SQLITE_OK.
-*/
-static int fts3PendingListAppend(
- PendingList **pp, /* IN/OUT: PendingList structure */
- sqlite3_int64 iDocid, /* Docid for entry to add */
- sqlite3_int64 iCol, /* Column for entry to add */
- sqlite3_int64 iPos, /* Position of term for entry to add */
- int *pRc /* OUT: Return code */
-){
- PendingList *p = *pp;
- int rc = SQLITE_OK;
-
- assert( !p || p->iLastDocid<=iDocid );
-
- if( !p || p->iLastDocid!=iDocid ){
- sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
- if( p ){
- assert( p->nData<p->nSpace );
- assert( p->aData[p->nData]==0 );
- p->nData++;
- }
- if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
- goto pendinglistappend_out;
- }
- p->iLastCol = -1;
- p->iLastPos = 0;
- p->iLastDocid = iDocid;
- }
- if( iCol>0 && p->iLastCol!=iCol ){
- if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
- || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
- ){
- goto pendinglistappend_out;
- }
- p->iLastCol = iCol;
- p->iLastPos = 0;
- }
- if( iCol>=0 ){
- assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
- rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
- if( rc==SQLITE_OK ){
- p->iLastPos = iPos;
- }
- }
-
- pendinglistappend_out:
- *pRc = rc;
- if( p!=*pp ){
- *pp = p;
- return 1;
- }
- return 0;
-}
-
-/*
-** Free a PendingList object allocated by fts3PendingListAppend().
-*/
-static void fts3PendingListDelete(PendingList *pList){
- sqlite3_free(pList);
-}
-
-/*
-** Add an entry to one of the pending-terms hash tables.
-*/
-static int fts3PendingTermsAddOne(
- Fts3Table *p,
- int iCol,
- int iPos,
- Fts3Hash *pHash, /* Pending terms hash table to add entry to */
- const char *zToken,
- int nToken
-){
- PendingList *pList;
- int rc = SQLITE_OK;
-
- pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
- if( pList ){
- p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
- }
- if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
- if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
- /* Malloc failed while inserting the new entry. This can only
- ** happen if there was no previous entry for this token.
- */
- assert( 0==fts3HashFind(pHash, zToken, nToken) );
- sqlite3_free(pList);
- rc = SQLITE_NOMEM;
- }
- }
- if( rc==SQLITE_OK ){
- p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
- }
- return rc;
-}
-
-/*
-** Tokenize the nul-terminated string zText and add all tokens to the
-** pending-terms hash-table. The docid used is that currently stored in
-** p->iPrevDocid, and the column is specified by argument iCol.
-**
-** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
-*/
-static int fts3PendingTermsAdd(
- Fts3Table *p, /* Table into which text will be inserted */
- int iLangid, /* Language id to use */
- const char *zText, /* Text of document to be inserted */
- int iCol, /* Column into which text is being inserted */
- u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
-){
- int rc;
- int iStart = 0;
- int iEnd = 0;
- int iPos = 0;
- int nWord = 0;
-
- char const *zToken;
- int nToken = 0;
-
- sqlite3_tokenizer *pTokenizer = p->pTokenizer;
- sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
- sqlite3_tokenizer_cursor *pCsr;
- int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
- const char**,int*,int*,int*,int*);
-
- assert( pTokenizer && pModule );
-
- /* If the user has inserted a NULL value, this function may be called with
- ** zText==0. In this case, add zero token entries to the hash table and
- ** return early. */
- if( zText==0 ){
- *pnWord = 0;
- return SQLITE_OK;
- }
-
- rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- xNext = pModule->xNext;
- while( SQLITE_OK==rc
- && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
- ){
- int i;
- if( iPos>=nWord ) nWord = iPos+1;
-
- /* Positions cannot be negative; we use -1 as a terminator internally.
- ** Tokens must have a non-zero length.
- */
- if( iPos<0 || !zToken || nToken<=0 ){
- rc = SQLITE_ERROR;
- break;
- }
-
- /* Add the term to the terms index */
- rc = fts3PendingTermsAddOne(
- p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
- );
-
- /* Add the term to each of the prefix indexes that it is not too
- ** short for. */
- for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
- struct Fts3Index *pIndex = &p->aIndex[i];
- if( nToken<pIndex->nPrefix ) continue;
- rc = fts3PendingTermsAddOne(
- p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
- );
- }
- }
-
- pModule->xClose(pCsr);
- *pnWord += nWord;
- return (rc==SQLITE_DONE ? SQLITE_OK : rc);
-}
-
-/*
-** Calling this function indicates that subsequent calls to
-** fts3PendingTermsAdd() are to add term/position-list pairs for the
-** contents of the document with docid iDocid.
-*/
-static int fts3PendingTermsDocid(
- Fts3Table *p, /* Full-text table handle */
- int iLangid, /* Language id of row being written */
- sqlite_int64 iDocid /* Docid of row being written */
-){
- assert( iLangid>=0 );
-
- /* TODO(shess) Explore whether partially flushing the buffer on
- ** forced-flush would provide better performance. I suspect that if
- ** we ordered the doclists by size and flushed the largest until the
- ** buffer was half empty, that would let the less frequent terms
- ** generate longer doclists.
- */
- if( iDocid<=p->iPrevDocid
- || p->iPrevLangid!=iLangid
- || p->nPendingData>p->nMaxPendingData
- ){
- int rc = sqlite3Fts3PendingTermsFlush(p);
- if( rc!=SQLITE_OK ) return rc;
- }
- p->iPrevDocid = iDocid;
- p->iPrevLangid = iLangid;
- return SQLITE_OK;
-}
-
-/*
-** Discard the contents of the pending-terms hash tables.
-*/
-void sqlite3Fts3PendingTermsClear(Fts3Table *p){
- int i;
- for(i=0; i<p->nIndex; i++){
- Fts3HashElem *pElem;
- Fts3Hash *pHash = &p->aIndex[i].hPending;
- for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
- PendingList *pList = (PendingList *)fts3HashData(pElem);
- fts3PendingListDelete(pList);
- }
- fts3HashClear(pHash);
- }
- p->nPendingData = 0;
-}
-
-/*
-** This function is called by the xUpdate() method as part of an INSERT
-** operation. It adds entries for each term in the new record to the
-** pendingTerms hash table.
-**
-** Argument apVal is the same as the similarly named argument passed to
-** fts3InsertData(). Parameter iDocid is the docid of the new row.
-*/
-static int fts3InsertTerms(
- Fts3Table *p,
- int iLangid,
- sqlite3_value **apVal,
- u32 *aSz
-){
- int i; /* Iterator variable */
- for(i=2; i<p->nColumn+2; i++){
- const char *zText = (const char *)sqlite3_value_text(apVal[i]);
- int rc = fts3PendingTermsAdd(p, iLangid, zText, i-2, &aSz[i-2]);
- if( rc!=SQLITE_OK ){
- return rc;
- }
- aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
- }
- return SQLITE_OK;
-}
-
-/*
-** This function is called by the xUpdate() method for an INSERT operation.
-** The apVal parameter is passed a copy of the apVal argument passed by
-** SQLite to the xUpdate() method. i.e:
-**
-** apVal[0] Not used for INSERT.
-** apVal[1] rowid
-** apVal[2] Left-most user-defined column
-** ...
-** apVal[p->nColumn+1] Right-most user-defined column
-** apVal[p->nColumn+2] Hidden column with same name as table
-** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
-** apVal[p->nColumn+4] Hidden languageid column
-*/
-static int fts3InsertData(
- Fts3Table *p, /* Full-text table */
- sqlite3_value **apVal, /* Array of values to insert */
- sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
-){
- int rc; /* Return code */
- sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
-
- if( p->zContentTbl ){
- sqlite3_value *pRowid = apVal[p->nColumn+3];
- if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
- pRowid = apVal[1];
- }
- if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
- return SQLITE_CONSTRAINT;
- }
- *piDocid = sqlite3_value_int64(pRowid);
- return SQLITE_OK;
- }
-
- /* Locate the statement handle used to insert data into the %_content
- ** table. The SQL for this statement is:
- **
- ** INSERT INTO %_content VALUES(?, ?, ?, ...)
- **
- ** The statement features N '?' variables, where N is the number of user
- ** defined columns in the FTS3 table, plus one for the docid field.
- */
- rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
- if( rc==SQLITE_OK && p->zLanguageid ){
- rc = sqlite3_bind_int(
- pContentInsert, p->nColumn+2,
- sqlite3_value_int(apVal[p->nColumn+4])
- );
- }
- if( rc!=SQLITE_OK ) return rc;
-
- /* There is a quirk here. The users INSERT statement may have specified
- ** a value for the "rowid" field, for the "docid" field, or for both.
- ** Which is a problem, since "rowid" and "docid" are aliases for the
- ** same value. For example:
- **
- ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
- **
- ** In FTS3, this is an error. It is an error to specify non-NULL values
- ** for both docid and some other rowid alias.
- */
- if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
- if( SQLITE_NULL==sqlite3_value_type(apVal[0])
- && SQLITE_NULL!=sqlite3_value_type(apVal[1])
- ){
- /* A rowid/docid conflict. */
- return SQLITE_ERROR;
- }
- rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
- if( rc!=SQLITE_OK ) return rc;
- }
-
- /* Execute the statement to insert the record. Set *piDocid to the
- ** new docid value.
- */
- sqlite3_step(pContentInsert);
- rc = sqlite3_reset(pContentInsert);
-
- *piDocid = sqlite3_last_insert_rowid(p->db);
- return rc;
-}
-
-
-
-/*
-** Remove all data from the FTS3 table. Clear the hash table containing
-** pending terms.
-*/
-static int fts3DeleteAll(Fts3Table *p, int bContent){
- int rc = SQLITE_OK; /* Return code */
-
- /* Discard the contents of the pending-terms hash table. */
- sqlite3Fts3PendingTermsClear(p);
-
- /* Delete everything from the shadow tables. Except, leave %_content as
- ** is if bContent is false. */
- assert( p->zContentTbl==0 || bContent==0 );
- if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
- if( p->bHasDocsize ){
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
- }
- if( p->bHasStat ){
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
- }
- return rc;
-}
-
-/*
-**
-*/
-static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
- int iLangid = 0;
- if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
- return iLangid;
-}
-
-/*
-** The first element in the apVal[] array is assumed to contain the docid
-** (an integer) of a row about to be deleted. Remove all terms from the
-** full-text index.
-*/
-static void fts3DeleteTerms(
- int *pRC, /* Result code */
- Fts3Table *p, /* The FTS table to delete from */
- sqlite3_value *pRowid, /* The docid to be deleted */
- u32 *aSz, /* Sizes of deleted document written here */
- int *pbFound /* OUT: Set to true if row really does exist */
-){
- int rc;
- sqlite3_stmt *pSelect;
-
- assert( *pbFound==0 );
- if( *pRC ) return;
- rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
- if( rc==SQLITE_OK ){
- if( SQLITE_ROW==sqlite3_step(pSelect) ){
- int i;
- int iLangid = langidFromSelect(p, pSelect);
- rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0));
- for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
- const char *zText = (const char *)sqlite3_column_text(pSelect, i);
- rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[i-1]);
- aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
- }
- if( rc!=SQLITE_OK ){
- sqlite3_reset(pSelect);
- *pRC = rc;
- return;
- }
- *pbFound = 1;
- }
- rc = sqlite3_reset(pSelect);
- }else{
- sqlite3_reset(pSelect);
- }
- *pRC = rc;
-}
-
-/*
-** Forward declaration to account for the circular dependency between
-** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
-*/
-static int fts3SegmentMerge(Fts3Table *, int, int, int);
-
-/*
-** This function allocates a new level iLevel index in the segdir table.
-** Usually, indexes are allocated within a level sequentially starting
-** with 0, so the allocated index is one greater than the value returned
-** by:
-**
-** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
-**
-** However, if there are already FTS3_MERGE_COUNT indexes at the requested
-** level, they are merged into a single level (iLevel+1) segment and the
-** allocated index is 0.
-**
-** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
-** returned. Otherwise, an SQLite error code is returned.
-*/
-static int fts3AllocateSegdirIdx(
- Fts3Table *p,
- int iLangid, /* Language id */
- int iIndex, /* Index for p->aIndex */
- int iLevel,
- int *piIdx
-){
- int rc; /* Return Code */
- sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
- int iNext = 0; /* Result of query pNextIdx */
-
- assert( iLangid>=0 );
- assert( p->nIndex>=1 );
-
- /* Set variable iNext to the next available segdir index at level iLevel. */
- rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(
- pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
- );
- if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
- iNext = sqlite3_column_int(pNextIdx, 0);
- }
- rc = sqlite3_reset(pNextIdx);
- }
-
- if( rc==SQLITE_OK ){
- /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
- ** full, merge all segments in level iLevel into a single iLevel+1
- ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
- ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
- */
- if( iNext>=FTS3_MERGE_COUNT ){
- fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
- rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
- *piIdx = 0;
- }else{
- *piIdx = iNext;
- }
- }
-
- return rc;
-}
-
-/*
-** The %_segments table is declared as follows:
-**
-** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
-**
-** This function reads data from a single row of the %_segments table. The
-** specific row is identified by the iBlockid parameter. If paBlob is not
-** NULL, then a buffer is allocated using sqlite3_malloc() and populated
-** with the contents of the blob stored in the "block" column of the
-** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
-** to the size of the blob in bytes before returning.
-**
-** If an error occurs, or the table does not contain the specified row,
-** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
-** paBlob is non-NULL, then it is the responsibility of the caller to
-** eventually free the returned buffer.
-**
-** This function may leave an open sqlite3_blob* handle in the
-** Fts3Table.pSegments variable. This handle is reused by subsequent calls
-** to this function. The handle may be closed by calling the
-** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
-** performance improvement, but the blob handle should always be closed
-** before control is returned to the user (to prevent a lock being held
-** on the database file for longer than necessary). Thus, any virtual table
-** method (xFilter etc.) that may directly or indirectly call this function
-** must call sqlite3Fts3SegmentsClose() before returning.
-*/
-int sqlite3Fts3ReadBlock(
- Fts3Table *p, /* FTS3 table handle */
- sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
- char **paBlob, /* OUT: Blob data in malloc'd buffer */
- int *pnBlob, /* OUT: Size of blob data */
- int *pnLoad /* OUT: Bytes actually loaded */
-){
- int rc; /* Return code */
-
- /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
- assert( pnBlob );
-
- if( p->pSegments ){
- rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
- }else{
- if( 0==p->zSegmentsTbl ){
- p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
- if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
- }
- rc = sqlite3_blob_open(
- p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
- );
- }
-
- if( rc==SQLITE_OK ){
- int nByte = sqlite3_blob_bytes(p->pSegments);
- *pnBlob = nByte;
- if( paBlob ){
- char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
- if( !aByte ){
- rc = SQLITE_NOMEM;
- }else{
- if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
- nByte = FTS3_NODE_CHUNKSIZE;
- *pnLoad = nByte;
- }
- rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
- memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
- if( rc!=SQLITE_OK ){
- sqlite3_free(aByte);
- aByte = 0;
- }
- }
- *paBlob = aByte;
- }
- }
-
- return rc;
-}
-
-/*
-** Close the blob handle at p->pSegments, if it is open. See comments above
-** the sqlite3Fts3ReadBlock() function for details.
-*/
-void sqlite3Fts3SegmentsClose(Fts3Table *p){
- sqlite3_blob_close(p->pSegments);
- p->pSegments = 0;
-}
-
-static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
- int nRead; /* Number of bytes to read */
- int rc; /* Return code */
-
- nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
- rc = sqlite3_blob_read(
- pReader->pBlob,
- &pReader->aNode[pReader->nPopulate],
- nRead,
- pReader->nPopulate
- );
-
- if( rc==SQLITE_OK ){
- pReader->nPopulate += nRead;
- memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
- if( pReader->nPopulate==pReader->nNode ){
- sqlite3_blob_close(pReader->pBlob);
- pReader->pBlob = 0;
- pReader->nPopulate = 0;
- }
- }
- return rc;
-}
-
-static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
- int rc = SQLITE_OK;
- assert( !pReader->pBlob
- || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
- );
- while( pReader->pBlob && rc==SQLITE_OK
- && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
- ){
- rc = fts3SegReaderIncrRead(pReader);
- }
- return rc;
-}
-
-/*
-** Set an Fts3SegReader cursor to point at EOF.
-*/
-static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
- if( !fts3SegReaderIsRootOnly(pSeg) ){
- sqlite3_free(pSeg->aNode);
- sqlite3_blob_close(pSeg->pBlob);
- pSeg->pBlob = 0;
- }
- pSeg->aNode = 0;
-}
-
-/*
-** Move the iterator passed as the first argument to the next term in the
-** segment. If successful, SQLITE_OK is returned. If there is no next term,
-** SQLITE_DONE. Otherwise, an SQLite error code.
-*/
-static int fts3SegReaderNext(
- Fts3Table *p,
- Fts3SegReader *pReader,
- int bIncr
-){
- int rc; /* Return code of various sub-routines */
- char *pNext; /* Cursor variable */
- int nPrefix; /* Number of bytes in term prefix */
- int nSuffix; /* Number of bytes in term suffix */
-
- if( !pReader->aDoclist ){
- pNext = pReader->aNode;
- }else{
- pNext = &pReader->aDoclist[pReader->nDoclist];
- }
-
- if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
-
- if( fts3SegReaderIsPending(pReader) ){
- Fts3HashElem *pElem = *(pReader->ppNextElem);
- if( pElem==0 ){
- pReader->aNode = 0;
- }else{
- PendingList *pList = (PendingList *)fts3HashData(pElem);
- pReader->zTerm = (char *)fts3HashKey(pElem);
- pReader->nTerm = fts3HashKeysize(pElem);
- pReader->nNode = pReader->nDoclist = pList->nData + 1;
- pReader->aNode = pReader->aDoclist = pList->aData;
- pReader->ppNextElem++;
- assert( pReader->aNode );
- }
- return SQLITE_OK;
- }
-
- fts3SegReaderSetEof(pReader);
-
- /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
- ** blocks have already been traversed. */
- assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
- if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
- return SQLITE_OK;
- }
-
- rc = sqlite3Fts3ReadBlock(
- p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
- (bIncr ? &pReader->nPopulate : 0)
- );
- if( rc!=SQLITE_OK ) return rc;
- assert( pReader->pBlob==0 );
- if( bIncr && pReader->nPopulate<pReader->nNode ){
- pReader->pBlob = p->pSegments;
- p->pSegments = 0;
- }
- pNext = pReader->aNode;
- }
-
- assert( !fts3SegReaderIsPending(pReader) );
-
- rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
- ** safe (no risk of overread) even if the node data is corrupted. */
- pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
- pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
- if( nPrefix<0 || nSuffix<=0
- || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
- ){
- return FTS_CORRUPT_VTAB;
- }
-
- if( nPrefix+nSuffix>pReader->nTermAlloc ){
- int nNew = (nPrefix+nSuffix)*2;
- char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
- if( !zNew ){
- return SQLITE_NOMEM;
- }
- pReader->zTerm = zNew;
- pReader->nTermAlloc = nNew;
- }
-
- rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
- if( rc!=SQLITE_OK ) return rc;
-
- memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
- pReader->nTerm = nPrefix+nSuffix;
- pNext += nSuffix;
- pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
- pReader->aDoclist = pNext;
- pReader->pOffsetList = 0;
-
- /* Check that the doclist does not appear to extend past the end of the
- ** b-tree node. And that the final byte of the doclist is 0x00. If either
- ** of these statements is untrue, then the data structure is corrupt.
- */
- if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
- || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
- ){
- return FTS_CORRUPT_VTAB;
- }
- return SQLITE_OK;
-}
-
-/*
-** Set the SegReader to point to the first docid in the doclist associated
-** with the current term.
-*/
-static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
- int rc = SQLITE_OK;
- assert( pReader->aDoclist );
- assert( !pReader->pOffsetList );
- if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
- u8 bEof = 0;
- pReader->iDocid = 0;
- pReader->nOffsetList = 0;
- sqlite3Fts3DoclistPrev(0,
- pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
- &pReader->iDocid, &pReader->nOffsetList, &bEof
- );
- }else{
- rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
- if( rc==SQLITE_OK ){
- int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
- pReader->pOffsetList = &pReader->aDoclist[n];
- }
- }
- return rc;
-}
-
-/*
-** Advance the SegReader to point to the next docid in the doclist
-** associated with the current term.
-**
-** If arguments ppOffsetList and pnOffsetList are not NULL, then
-** *ppOffsetList is set to point to the first column-offset list
-** in the doclist entry (i.e. immediately past the docid varint).
-** *pnOffsetList is set to the length of the set of column-offset
-** lists, not including the nul-terminator byte. For example:
-*/
-static int fts3SegReaderNextDocid(
- Fts3Table *pTab,
- Fts3SegReader *pReader, /* Reader to advance to next docid */
- char **ppOffsetList, /* OUT: Pointer to current position-list */
- int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
-){
- int rc = SQLITE_OK;
- char *p = pReader->pOffsetList;
- char c = 0;
-
- assert( p );
-
- if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
- /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
- ** Pending-terms doclists are always built up in ascending order, so
- ** we have to iterate through them backwards here. */
- u8 bEof = 0;
- if( ppOffsetList ){
- *ppOffsetList = pReader->pOffsetList;
- *pnOffsetList = pReader->nOffsetList - 1;
- }
- sqlite3Fts3DoclistPrev(0,
- pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
- &pReader->nOffsetList, &bEof
- );
- if( bEof ){
- pReader->pOffsetList = 0;
- }else{
- pReader->pOffsetList = p;
- }
- }else{
- char *pEnd = &pReader->aDoclist[pReader->nDoclist];
-
- /* Pointer p currently points at the first byte of an offset list. The
- ** following block advances it to point one byte past the end of
- ** the same offset list. */
- while( 1 ){
-
- /* The following line of code (and the "p++" below the while() loop) is
- ** normally all that is required to move pointer p to the desired
- ** position. The exception is if this node is being loaded from disk
- ** incrementally and pointer "p" now points to the first byte passed
- ** the populated part of pReader->aNode[].
- */
- while( *p | c ) c = *p++ & 0x80;
- assert( *p==0 );
-
- if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
- rc = fts3SegReaderIncrRead(pReader);
- if( rc!=SQLITE_OK ) return rc;
- }
- p++;
-
- /* If required, populate the output variables with a pointer to and the
- ** size of the previous offset-list.
- */
- if( ppOffsetList ){
- *ppOffsetList = pReader->pOffsetList;
- *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
- }
-
- while( p<pEnd && *p==0 ) p++;
-
- /* If there are no more entries in the doclist, set pOffsetList to
- ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
- ** Fts3SegReader.pOffsetList to point to the next offset list before
- ** returning.
- */
- if( p>=pEnd ){
- pReader->pOffsetList = 0;
- }else{
- rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
- if( rc==SQLITE_OK ){
- sqlite3_int64 iDelta;
- pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
- if( pTab->bDescIdx ){
- pReader->iDocid -= iDelta;
- }else{
- pReader->iDocid += iDelta;
- }
- }
- }
- }
-
- return SQLITE_OK;
-}
-
-
-int sqlite3Fts3MsrOvfl(
- Fts3Cursor *pCsr,
- Fts3MultiSegReader *pMsr,
- int *pnOvfl
-){
- Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
- int nOvfl = 0;
- int ii;
- int rc = SQLITE_OK;
- int pgsz = p->nPgsz;
-
- assert( p->bFts4 );
- assert( pgsz>0 );
-
- for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
- Fts3SegReader *pReader = pMsr->apSegment[ii];
- if( !fts3SegReaderIsPending(pReader)
- && !fts3SegReaderIsRootOnly(pReader)
- ){
- sqlite3_int64 jj;
- for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
- int nBlob;
- rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
- if( rc!=SQLITE_OK ) break;
- if( (nBlob+35)>pgsz ){
- nOvfl += (nBlob + 34)/pgsz;
- }
- }
- }
- }
- *pnOvfl = nOvfl;
- return rc;
-}
-
-/*
-** Free all allocations associated with the iterator passed as the
-** second argument.
-*/
-void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
- if( pReader && !fts3SegReaderIsPending(pReader) ){
- sqlite3_free(pReader->zTerm);
- if( !fts3SegReaderIsRootOnly(pReader) ){
- sqlite3_free(pReader->aNode);
- sqlite3_blob_close(pReader->pBlob);
- }
- }
- sqlite3_free(pReader);
-}
-
-/*
-** Allocate a new SegReader object.
-*/
-int sqlite3Fts3SegReaderNew(
- int iAge, /* Segment "age". */
- int bLookup, /* True for a lookup only */
- sqlite3_int64 iStartLeaf, /* First leaf to traverse */
- sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
- sqlite3_int64 iEndBlock, /* Final block of segment */
- const char *zRoot, /* Buffer containing root node */
- int nRoot, /* Size of buffer containing root node */
- Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
-){
- Fts3SegReader *pReader; /* Newly allocated SegReader object */
- int nExtra = 0; /* Bytes to allocate segment root node */
-
- assert( iStartLeaf<=iEndLeaf );
- if( iStartLeaf==0 ){
- nExtra = nRoot + FTS3_NODE_PADDING;
- }
-
- pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
- if( !pReader ){
- return SQLITE_NOMEM;
- }
- memset(pReader, 0, sizeof(Fts3SegReader));
- pReader->iIdx = iAge;
- pReader->bLookup = bLookup!=0;
- pReader->iStartBlock = iStartLeaf;
- pReader->iLeafEndBlock = iEndLeaf;
- pReader->iEndBlock = iEndBlock;
-
- if( nExtra ){
- /* The entire segment is stored in the root node. */
- pReader->aNode = (char *)&pReader[1];
- pReader->rootOnly = 1;
- pReader->nNode = nRoot;
- memcpy(pReader->aNode, zRoot, nRoot);
- memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
- }else{
- pReader->iCurrentBlock = iStartLeaf-1;
- }
- *ppReader = pReader;
- return SQLITE_OK;
-}
-
-/*
-** This is a comparison function used as a qsort() callback when sorting
-** an array of pending terms by term. This occurs as part of flushing
-** the contents of the pending-terms hash table to the database.
-*/
-static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
- char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
- char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
- int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
- int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
-
- int n = (n1<n2 ? n1 : n2);
- int c = memcmp(z1, z2, n);
- if( c==0 ){
- c = n1 - n2;
- }
- return c;
-}
-
-/*
-** This function is used to allocate an Fts3SegReader that iterates through
-** a subset of the terms stored in the Fts3Table.pendingTerms array.
-**
-** If the isPrefixIter parameter is zero, then the returned SegReader iterates
-** through each term in the pending-terms table. Or, if isPrefixIter is
-** non-zero, it iterates through each term and its prefixes. For example, if
-** the pending terms hash table contains the terms "sqlite", "mysql" and
-** "firebird", then the iterator visits the following 'terms' (in the order
-** shown):
-**
-** f fi fir fire fireb firebi firebir firebird
-** m my mys mysq mysql
-** s sq sql sqli sqlit sqlite
-**
-** Whereas if isPrefixIter is zero, the terms visited are:
-**
-** firebird mysql sqlite
-*/
-int sqlite3Fts3SegReaderPending(
- Fts3Table *p, /* Virtual table handle */
- int iIndex, /* Index for p->aIndex */
- const char *zTerm, /* Term to search for */
- int nTerm, /* Size of buffer zTerm */
- int bPrefix, /* True for a prefix iterator */
- Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
-){
- Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
- Fts3HashElem *pE; /* Iterator variable */
- Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
- int nElem = 0; /* Size of array at aElem */
- int rc = SQLITE_OK; /* Return Code */
- Fts3Hash *pHash;
-
- pHash = &p->aIndex[iIndex].hPending;
- if( bPrefix ){
- int nAlloc = 0; /* Size of allocated array at aElem */
-
- for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
- char *zKey = (char *)fts3HashKey(pE);
- int nKey = fts3HashKeysize(pE);
- if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
- if( nElem==nAlloc ){
- Fts3HashElem **aElem2;
- nAlloc += 16;
- aElem2 = (Fts3HashElem **)sqlite3_realloc(
- aElem, nAlloc*sizeof(Fts3HashElem *)
- );
- if( !aElem2 ){
- rc = SQLITE_NOMEM;
- nElem = 0;
- break;
- }
- aElem = aElem2;
- }
-
- aElem[nElem++] = pE;
- }
- }
-
- /* If more than one term matches the prefix, sort the Fts3HashElem
- ** objects in term order using qsort(). This uses the same comparison
- ** callback as is used when flushing terms to disk.
- */
- if( nElem>1 ){
- qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
- }
-
- }else{
- /* The query is a simple term lookup that matches at most one term in
- ** the index. All that is required is a straight hash-lookup.
- **
- ** Because the stack address of pE may be accessed via the aElem pointer
- ** below, the "Fts3HashElem *pE" must be declared so that it is valid
- ** within this entire function, not just this "else{...}" block.
- */
- pE = fts3HashFindElem(pHash, zTerm, nTerm);
- if( pE ){
- aElem = &pE;
- nElem = 1;
- }
- }
-
- if( nElem>0 ){
- int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
- pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
- if( !pReader ){
- rc = SQLITE_NOMEM;
- }else{
- memset(pReader, 0, nByte);
- pReader->iIdx = 0x7FFFFFFF;
- pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
- memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
- }
- }
-
- if( bPrefix ){
- sqlite3_free(aElem);
- }
- *ppReader = pReader;
- return rc;
-}
-
-/*
-** Compare the entries pointed to by two Fts3SegReader structures.
-** Comparison is as follows:
-**
-** 1) EOF is greater than not EOF.
-**
-** 2) The current terms (if any) are compared using memcmp(). If one
-** term is a prefix of another, the longer term is considered the
-** larger.
-**
-** 3) By segment age. An older segment is considered larger.
-*/
-static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
- int rc;
- if( pLhs->aNode && pRhs->aNode ){
- int rc2 = pLhs->nTerm - pRhs->nTerm;
- if( rc2<0 ){
- rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
- }else{
- rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
- }
- if( rc==0 ){
- rc = rc2;
- }
- }else{
- rc = (pLhs->aNode==0) - (pRhs->aNode==0);
- }
- if( rc==0 ){
- rc = pRhs->iIdx - pLhs->iIdx;
- }
- assert( rc!=0 );
- return rc;
-}
-
-/*
-** A different comparison function for SegReader structures. In this
-** version, it is assumed that each SegReader points to an entry in
-** a doclist for identical terms. Comparison is made as follows:
-**
-** 1) EOF (end of doclist in this case) is greater than not EOF.
-**
-** 2) By current docid.
-**
-** 3) By segment age. An older segment is considered larger.
-*/
-static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
- int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
- if( rc==0 ){
- if( pLhs->iDocid==pRhs->iDocid ){
- rc = pRhs->iIdx - pLhs->iIdx;
- }else{
- rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
- }
- }
- assert( pLhs->aNode && pRhs->aNode );
- return rc;
-}
-static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
- int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
- if( rc==0 ){
- if( pLhs->iDocid==pRhs->iDocid ){
- rc = pRhs->iIdx - pLhs->iIdx;
- }else{
- rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
- }
- }
- assert( pLhs->aNode && pRhs->aNode );
- return rc;
-}
-
-/*
-** Compare the term that the Fts3SegReader object passed as the first argument
-** points to with the term specified by arguments zTerm and nTerm.
-**
-** If the pSeg iterator is already at EOF, return 0. Otherwise, return
-** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
-** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
-*/
-static int fts3SegReaderTermCmp(
- Fts3SegReader *pSeg, /* Segment reader object */
- const char *zTerm, /* Term to compare to */
- int nTerm /* Size of term zTerm in bytes */
-){
- int res = 0;
- if( pSeg->aNode ){
- if( pSeg->nTerm>nTerm ){
- res = memcmp(pSeg->zTerm, zTerm, nTerm);
- }else{
- res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
- }
- if( res==0 ){
- res = pSeg->nTerm-nTerm;
- }
- }
- return res;
-}
-
-/*
-** Argument apSegment is an array of nSegment elements. It is known that
-** the final (nSegment-nSuspect) members are already in sorted order
-** (according to the comparison function provided). This function shuffles
-** the array around until all entries are in sorted order.
-*/
-static void fts3SegReaderSort(
- Fts3SegReader **apSegment, /* Array to sort entries of */
- int nSegment, /* Size of apSegment array */
- int nSuspect, /* Unsorted entry count */
- int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
-){
- int i; /* Iterator variable */
-
- assert( nSuspect<=nSegment );
-
- if( nSuspect==nSegment ) nSuspect--;
- for(i=nSuspect-1; i>=0; i--){
- int j;
- for(j=i; j<(nSegment-1); j++){
- Fts3SegReader *pTmp;
- if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
- pTmp = apSegment[j+1];
- apSegment[j+1] = apSegment[j];
- apSegment[j] = pTmp;
- }
- }
-
-#ifndef NDEBUG
- /* Check that the list really is sorted now. */
- for(i=0; i<(nSuspect-1); i++){
- assert( xCmp(apSegment[i], apSegment[i+1])<0 );
- }
-#endif
-}
-
-/*
-** Insert a record into the %_segments table.
-*/
-static int fts3WriteSegment(
- Fts3Table *p, /* Virtual table handle */
- sqlite3_int64 iBlock, /* Block id for new block */
- char *z, /* Pointer to buffer containing block data */
- int n /* Size of buffer z in bytes */
-){
- sqlite3_stmt *pStmt;
- int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pStmt, 1, iBlock);
- sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
- sqlite3_step(pStmt);
- rc = sqlite3_reset(pStmt);
- }
- return rc;
-}
-
-/*
-** Find the largest relative level number in the table. If successful, set
-** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
-** set *pnMax to zero and return an SQLite error code.
-*/
-int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
- int rc;
- int mxLevel = 0;
- sqlite3_stmt *pStmt = 0;
-
- rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
- if( rc==SQLITE_OK ){
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- mxLevel = sqlite3_column_int(pStmt, 0);
- }
- rc = sqlite3_reset(pStmt);
- }
- *pnMax = mxLevel;
- return rc;
-}
-
-/*
-** Insert a record into the %_segdir table.
-*/
-static int fts3WriteSegdir(
- Fts3Table *p, /* Virtual table handle */
- sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
- int iIdx, /* Value for "idx" field */
- sqlite3_int64 iStartBlock, /* Value for "start_block" field */
- sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
- sqlite3_int64 iEndBlock, /* Value for "end_block" field */
- char *zRoot, /* Blob value for "root" field */
- int nRoot /* Number of bytes in buffer zRoot */
-){
- sqlite3_stmt *pStmt;
- int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pStmt, 1, iLevel);
- sqlite3_bind_int(pStmt, 2, iIdx);
- sqlite3_bind_int64(pStmt, 3, iStartBlock);
- sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
- sqlite3_bind_int64(pStmt, 5, iEndBlock);
- sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
- sqlite3_step(pStmt);
- rc = sqlite3_reset(pStmt);
- }
- return rc;
-}
-
-/*
-** Return the size of the common prefix (if any) shared by zPrev and
-** zNext, in bytes. For example,
-**
-** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
-** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
-** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
-*/
-static int fts3PrefixCompress(
- const char *zPrev, /* Buffer containing previous term */
- int nPrev, /* Size of buffer zPrev in bytes */
- const char *zNext, /* Buffer containing next term */
- int nNext /* Size of buffer zNext in bytes */
-){
- int n;
- UNUSED_PARAMETER(nNext);
- for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
- return n;
-}
-
-/*
-** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
-** (according to memcmp) than the previous term.
-*/
-static int fts3NodeAddTerm(
- Fts3Table *p, /* Virtual table handle */
- SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
- int isCopyTerm, /* True if zTerm/nTerm is transient */
- const char *zTerm, /* Pointer to buffer containing term */
- int nTerm /* Size of term in bytes */
-){
- SegmentNode *pTree = *ppTree;
- int rc;
- SegmentNode *pNew;
-
- /* First try to append the term to the current node. Return early if
- ** this is possible.
- */
- if( pTree ){
- int nData = pTree->nData; /* Current size of node in bytes */
- int nReq = nData; /* Required space after adding zTerm */
- int nPrefix; /* Number of bytes of prefix compression */
- int nSuffix; /* Suffix length */
-
- nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
- nSuffix = nTerm-nPrefix;
-
- nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
- if( nReq<=p->nNodeSize || !pTree->zTerm ){
-
- if( nReq>p->nNodeSize ){
- /* An unusual case: this is the first term to be added to the node
- ** and the static node buffer (p->nNodeSize bytes) is not large
- ** enough. Use a separately malloced buffer instead This wastes
- ** p->nNodeSize bytes, but since this scenario only comes about when
- ** the database contain two terms that share a prefix of almost 2KB,
- ** this is not expected to be a serious problem.
- */
- assert( pTree->aData==(char *)&pTree[1] );
- pTree->aData = (char *)sqlite3_malloc(nReq);
- if( !pTree->aData ){
- return SQLITE_NOMEM;
- }
- }
-
- if( pTree->zTerm ){
- /* There is no prefix-length field for first term in a node */
- nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
- }
-
- nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
- memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
- pTree->nData = nData + nSuffix;
- pTree->nEntry++;
-
- if( isCopyTerm ){
- if( pTree->nMalloc<nTerm ){
- char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
- if( !zNew ){
- return SQLITE_NOMEM;
- }
- pTree->nMalloc = nTerm*2;
- pTree->zMalloc = zNew;
- }
- pTree->zTerm = pTree->zMalloc;
- memcpy(pTree->zTerm, zTerm, nTerm);
- pTree->nTerm = nTerm;
- }else{
- pTree->zTerm = (char *)zTerm;
- pTree->nTerm = nTerm;
- }
- return SQLITE_OK;
- }
- }
-
- /* If control flows to here, it was not possible to append zTerm to the
- ** current node. Create a new node (a right-sibling of the current node).
- ** If this is the first node in the tree, the term is added to it.
- **
- ** Otherwise, the term is not added to the new node, it is left empty for
- ** now. Instead, the term is inserted into the parent of pTree. If pTree
- ** has no parent, one is created here.
- */
- pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
- if( !pNew ){
- return SQLITE_NOMEM;
- }
- memset(pNew, 0, sizeof(SegmentNode));
- pNew->nData = 1 + FTS3_VARINT_MAX;
- pNew->aData = (char *)&pNew[1];
-
- if( pTree ){
- SegmentNode *pParent = pTree->pParent;
- rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
- if( pTree->pParent==0 ){
- pTree->pParent = pParent;
- }
- pTree->pRight = pNew;
- pNew->pLeftmost = pTree->pLeftmost;
- pNew->pParent = pParent;
- pNew->zMalloc = pTree->zMalloc;
- pNew->nMalloc = pTree->nMalloc;
- pTree->zMalloc = 0;
- }else{
- pNew->pLeftmost = pNew;
- rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
- }
-
- *ppTree = pNew;
- return rc;
-}
-
-/*
-** Helper function for fts3NodeWrite().
-*/
-static int fts3TreeFinishNode(
- SegmentNode *pTree,
- int iHeight,
- sqlite3_int64 iLeftChild
-){
- int nStart;
- assert( iHeight>=1 && iHeight<128 );
- nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
- pTree->aData[nStart] = (char)iHeight;
- sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
- return nStart;
-}
-
-/*
-** Write the buffer for the segment node pTree and all of its peers to the
-** database. Then call this function recursively to write the parent of
-** pTree and its peers to the database.
-**
-** Except, if pTree is a root node, do not write it to the database. Instead,
-** set output variables *paRoot and *pnRoot to contain the root node.
-**
-** If successful, SQLITE_OK is returned and output variable *piLast is
-** set to the largest blockid written to the database (or zero if no
-** blocks were written to the db). Otherwise, an SQLite error code is
-** returned.
-*/
-static int fts3NodeWrite(
- Fts3Table *p, /* Virtual table handle */
- SegmentNode *pTree, /* SegmentNode handle */
- int iHeight, /* Height of this node in tree */
- sqlite3_int64 iLeaf, /* Block id of first leaf node */
- sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
- sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
- char **paRoot, /* OUT: Data for root node */
- int *pnRoot /* OUT: Size of root node in bytes */
-){
- int rc = SQLITE_OK;
-
- if( !pTree->pParent ){
- /* Root node of the tree. */
- int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
- *piLast = iFree-1;
- *pnRoot = pTree->nData - nStart;
- *paRoot = &pTree->aData[nStart];
- }else{
- SegmentNode *pIter;
- sqlite3_int64 iNextFree = iFree;
- sqlite3_int64 iNextLeaf = iLeaf;
- for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
- int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
- int nWrite = pIter->nData - nStart;
-
- rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
- iNextFree++;
- iNextLeaf += (pIter->nEntry+1);
- }
- if( rc==SQLITE_OK ){
- assert( iNextLeaf==iFree );
- rc = fts3NodeWrite(
- p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
- );
- }
- }
-
- return rc;
-}
-
-/*
-** Free all memory allocations associated with the tree pTree.
-*/
-static void fts3NodeFree(SegmentNode *pTree){
- if( pTree ){
- SegmentNode *p = pTree->pLeftmost;
- fts3NodeFree(p->pParent);
- while( p ){
- SegmentNode *pRight = p->pRight;
- if( p->aData!=(char *)&p[1] ){
- sqlite3_free(p->aData);
- }
- assert( pRight==0 || p->zMalloc==0 );
- sqlite3_free(p->zMalloc);
- sqlite3_free(p);
- p = pRight;
- }
- }
-}
-
-/*
-** Add a term to the segment being constructed by the SegmentWriter object
-** *ppWriter. When adding the first term to a segment, *ppWriter should
-** be passed NULL. This function will allocate a new SegmentWriter object
-** and return it via the input/output variable *ppWriter in this case.
-**
-** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
-*/
-static int fts3SegWriterAdd(
- Fts3Table *p, /* Virtual table handle */
- SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
- int isCopyTerm, /* True if buffer zTerm must be copied */
- const char *zTerm, /* Pointer to buffer containing term */
- int nTerm, /* Size of term in bytes */
- const char *aDoclist, /* Pointer to buffer containing doclist */
- int nDoclist /* Size of doclist in bytes */
-){
- int nPrefix; /* Size of term prefix in bytes */
- int nSuffix; /* Size of term suffix in bytes */
- int nReq; /* Number of bytes required on leaf page */
- int nData;
- SegmentWriter *pWriter = *ppWriter;
-
- if( !pWriter ){
- int rc;
- sqlite3_stmt *pStmt;
-
- /* Allocate the SegmentWriter structure */
- pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
- if( !pWriter ) return SQLITE_NOMEM;
- memset(pWriter, 0, sizeof(SegmentWriter));
- *ppWriter = pWriter;
-
- /* Allocate a buffer in which to accumulate data */
- pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
- if( !pWriter->aData ) return SQLITE_NOMEM;
- pWriter->nSize = p->nNodeSize;
-
- /* Find the next free blockid in the %_segments table */
- rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
- if( rc!=SQLITE_OK ) return rc;
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- pWriter->iFree = sqlite3_column_int64(pStmt, 0);
- pWriter->iFirst = pWriter->iFree;
- }
- rc = sqlite3_reset(pStmt);
- if( rc!=SQLITE_OK ) return rc;
- }
- nData = pWriter->nData;
-
- nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
- nSuffix = nTerm-nPrefix;
-
- /* Figure out how many bytes are required by this new entry */
- nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
- sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
- nSuffix + /* Term suffix */
- sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
- nDoclist; /* Doclist data */
-
- if( nData>0 && nData+nReq>p->nNodeSize ){
- int rc;
-
- /* The current leaf node is full. Write it out to the database. */
- rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
- if( rc!=SQLITE_OK ) return rc;
- p->nLeafAdd++;
-
- /* Add the current term to the interior node tree. The term added to
- ** the interior tree must:
- **
- ** a) be greater than the largest term on the leaf node just written
- ** to the database (still available in pWriter->zTerm), and
- **
- ** b) be less than or equal to the term about to be added to the new
- ** leaf node (zTerm/nTerm).
- **
- ** In other words, it must be the prefix of zTerm 1 byte longer than
- ** the common prefix (if any) of zTerm and pWriter->zTerm.
- */
- assert( nPrefix<nTerm );
- rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
- if( rc!=SQLITE_OK ) return rc;
-
- nData = 0;
- pWriter->nTerm = 0;
-
- nPrefix = 0;
- nSuffix = nTerm;
- nReq = 1 + /* varint containing prefix size */
- sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
- nTerm + /* Term suffix */
- sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
- nDoclist; /* Doclist data */
- }
-
- /* If the buffer currently allocated is too small for this entry, realloc
- ** the buffer to make it large enough.
- */
- if( nReq>pWriter->nSize ){
- char *aNew = sqlite3_realloc(pWriter->aData, nReq);
- if( !aNew ) return SQLITE_NOMEM;
- pWriter->aData = aNew;
- pWriter->nSize = nReq;
- }
- assert( nData+nReq<=pWriter->nSize );
-
- /* Append the prefix-compressed term and doclist to the buffer. */
- nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
- nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
- memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
- nData += nSuffix;
- nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
- memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
- pWriter->nData = nData + nDoclist;
-
- /* Save the current term so that it can be used to prefix-compress the next.
- ** If the isCopyTerm parameter is true, then the buffer pointed to by
- ** zTerm is transient, so take a copy of the term data. Otherwise, just
- ** store a copy of the pointer.
- */
- if( isCopyTerm ){
- if( nTerm>pWriter->nMalloc ){
- char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
- if( !zNew ){
- return SQLITE_NOMEM;
- }
- pWriter->nMalloc = nTerm*2;
- pWriter->zMalloc = zNew;
- pWriter->zTerm = zNew;
- }
- assert( pWriter->zTerm==pWriter->zMalloc );
- memcpy(pWriter->zTerm, zTerm, nTerm);
- }else{
- pWriter->zTerm = (char *)zTerm;
- }
- pWriter->nTerm = nTerm;
-
- return SQLITE_OK;
-}
-
-/*
-** Flush all data associated with the SegmentWriter object pWriter to the
-** database. This function must be called after all terms have been added
-** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
-** returned. Otherwise, an SQLite error code.
-*/
-static int fts3SegWriterFlush(
- Fts3Table *p, /* Virtual table handle */
- SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
- sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
- int iIdx /* Value for 'idx' column of %_segdir */
-){
- int rc; /* Return code */
- if( pWriter->pTree ){
- sqlite3_int64 iLast = 0; /* Largest block id written to database */
- sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
- char *zRoot = NULL; /* Pointer to buffer containing root node */
- int nRoot = 0; /* Size of buffer zRoot */
-
- iLastLeaf = pWriter->iFree;
- rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
- if( rc==SQLITE_OK ){
- rc = fts3NodeWrite(p, pWriter->pTree, 1,
- pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
- }
- if( rc==SQLITE_OK ){
- rc = fts3WriteSegdir(
- p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
- }
- }else{
- /* The entire tree fits on the root node. Write it to the segdir table. */
- rc = fts3WriteSegdir(
- p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
- }
- p->nLeafAdd++;
- return rc;
-}
-
-/*
-** Release all memory held by the SegmentWriter object passed as the
-** first argument.
-*/
-static void fts3SegWriterFree(SegmentWriter *pWriter){
- if( pWriter ){
- sqlite3_free(pWriter->aData);
- sqlite3_free(pWriter->zMalloc);
- fts3NodeFree(pWriter->pTree);
- sqlite3_free(pWriter);
- }
-}
-
-/*
-** The first value in the apVal[] array is assumed to contain an integer.
-** This function tests if there exist any documents with docid values that
-** are different from that integer. i.e. if deleting the document with docid
-** pRowid would mean the FTS3 table were empty.
-**
-** If successful, *pisEmpty is set to true if the table is empty except for
-** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
-** error occurs, an SQLite error code is returned.
-*/
-static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
- sqlite3_stmt *pStmt;
- int rc;
- if( p->zContentTbl ){
- /* If using the content=xxx option, assume the table is never empty */
- *pisEmpty = 0;
- rc = SQLITE_OK;
- }else{
- rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
- if( rc==SQLITE_OK ){
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- *pisEmpty = sqlite3_column_int(pStmt, 0);
- }
- rc = sqlite3_reset(pStmt);
- }
- }
- return rc;
-}
-
-/*
-** Set *pnMax to the largest segment level in the database for the index
-** iIndex.
-**
-** Segment levels are stored in the 'level' column of the %_segdir table.
-**
-** Return SQLITE_OK if successful, or an SQLite error code if not.
-*/
-static int fts3SegmentMaxLevel(
- Fts3Table *p,
- int iLangid,
- int iIndex,
- sqlite3_int64 *pnMax
-){
- sqlite3_stmt *pStmt;
- int rc;
- assert( iIndex>=0 && iIndex<p->nIndex );
-
- /* Set pStmt to the compiled version of:
- **
- ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
- **
- ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
- */
- rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
- if( rc!=SQLITE_OK ) return rc;
- sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
- sqlite3_bind_int64(pStmt, 2,
- getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
- );
- if( SQLITE_ROW==sqlite3_step(pStmt) ){
- *pnMax = sqlite3_column_int64(pStmt, 0);
- }
- return sqlite3_reset(pStmt);
-}
-
-/*
-** Delete all entries in the %_segments table associated with the segment
-** opened with seg-reader pSeg. This function does not affect the contents
-** of the %_segdir table.
-*/
-static int fts3DeleteSegment(
- Fts3Table *p, /* FTS table handle */
- Fts3SegReader *pSeg /* Segment to delete */
-){
- int rc = SQLITE_OK; /* Return code */
- if( pSeg->iStartBlock ){
- sqlite3_stmt *pDelete; /* SQL statement to delete rows */
- rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
- sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
- sqlite3_step(pDelete);
- rc = sqlite3_reset(pDelete);
- }
- }
- return rc;
-}
-
-/*
-** This function is used after merging multiple segments into a single large
-** segment to delete the old, now redundant, segment b-trees. Specifically,
-** it:
-**
-** 1) Deletes all %_segments entries for the segments associated with
-** each of the SegReader objects in the array passed as the third
-** argument, and
-**
-** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
-** entries regardless of level if (iLevel<0).
-**
-** SQLITE_OK is returned if successful, otherwise an SQLite error code.
-*/
-static int fts3DeleteSegdir(
- Fts3Table *p, /* Virtual table handle */
- int iLangid, /* Language id */
- int iIndex, /* Index for p->aIndex */
- int iLevel, /* Level of %_segdir entries to delete */
- Fts3SegReader **apSegment, /* Array of SegReader objects */
- int nReader /* Size of array apSegment */
-){
- int rc = SQLITE_OK; /* Return Code */
- int i; /* Iterator variable */
- sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
-
- for(i=0; rc==SQLITE_OK && i<nReader; i++){
- rc = fts3DeleteSegment(p, apSegment[i]);
- }
- if( rc!=SQLITE_OK ){
- return rc;
- }
-
- assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
- if( iLevel==FTS3_SEGCURSOR_ALL ){
- rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
- sqlite3_bind_int64(pDelete, 2,
- getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
- );
- }
- }else{
- rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(
- pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
- );
- }
- }
-
- if( rc==SQLITE_OK ){
- sqlite3_step(pDelete);
- rc = sqlite3_reset(pDelete);
- }
-
- return rc;
-}
-
-/*
-** When this function is called, buffer *ppList (size *pnList bytes) contains
-** a position list that may (or may not) feature multiple columns. This
-** function adjusts the pointer *ppList and the length *pnList so that they
-** identify the subset of the position list that corresponds to column iCol.
-**
-** If there are no entries in the input position list for column iCol, then
-** *pnList is set to zero before returning.
-*/
-static void fts3ColumnFilter(
- int iCol, /* Column to filter on */
- char **ppList, /* IN/OUT: Pointer to position list */
- int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
-){
- char *pList = *ppList;
- int nList = *pnList;
- char *pEnd = &pList[nList];
- int iCurrent = 0;
- char *p = pList;
-
- assert( iCol>=0 );
- while( 1 ){
- char c = 0;
- while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
-
- if( iCol==iCurrent ){
- nList = (int)(p - pList);
- break;
- }
-
- nList -= (int)(p - pList);
- pList = p;
- if( nList==0 ){
- break;
- }
- p = &pList[1];
- p += sqlite3Fts3GetVarint32(p, &iCurrent);
- }
-
- *ppList = pList;
- *pnList = nList;
-}
-
-/*
-** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
-** existing data). Grow the buffer if required.
-**
-** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
-** trying to resize the buffer, return SQLITE_NOMEM.
-*/
-static int fts3MsrBufferData(
- Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
- char *pList,
- int nList
-){
- if( nList>pMsr->nBuffer ){
- char *pNew;
- pMsr->nBuffer = nList*2;
- pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
- if( !pNew ) return SQLITE_NOMEM;
- pMsr->aBuffer = pNew;
- }
-
- memcpy(pMsr->aBuffer, pList, nList);
- return SQLITE_OK;
-}
-
-int sqlite3Fts3MsrIncrNext(
- Fts3Table *p, /* Virtual table handle */
- Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
- sqlite3_int64 *piDocid, /* OUT: Docid value */
- char **paPoslist, /* OUT: Pointer to position list */
- int *pnPoslist /* OUT: Size of position list in bytes */
-){
- int nMerge = pMsr->nAdvance;
- Fts3SegReader **apSegment = pMsr->apSegment;
- int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
- p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
- );
-
- if( nMerge==0 ){
- *paPoslist = 0;
- return SQLITE_OK;
- }
-
- while( 1 ){
- Fts3SegReader *pSeg;
- pSeg = pMsr->apSegment[0];
-
- if( pSeg->pOffsetList==0 ){
- *paPoslist = 0;
- break;
- }else{
- int rc;
- char *pList;
- int nList;
- int j;
- sqlite3_int64 iDocid = apSegment[0]->iDocid;
-
- rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
- j = 1;
- while( rc==SQLITE_OK
- && j<nMerge
- && apSegment[j]->pOffsetList
- && apSegment[j]->iDocid==iDocid
- ){
- rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
- j++;
- }
- if( rc!=SQLITE_OK ) return rc;
- fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
-
- if( pMsr->iColFilter>=0 ){
- fts3ColumnFilter(pMsr->iColFilter, &pList, &nList);
- }
-
- if( nList>0 ){
- if( fts3SegReaderIsPending(apSegment[0]) ){
- rc = fts3MsrBufferData(pMsr, pList, nList+1);
- if( rc!=SQLITE_OK ) return rc;
- *paPoslist = pMsr->aBuffer;
- assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
- }else{
- *paPoslist = pList;
- }
- *piDocid = iDocid;
- *pnPoslist = nList;
- break;
- }
- }
- }
-
- return SQLITE_OK;
-}
-
-static int fts3SegReaderStart(
- Fts3Table *p, /* Virtual table handle */
- Fts3MultiSegReader *pCsr, /* Cursor object */
- const char *zTerm, /* Term searched for (or NULL) */
- int nTerm /* Length of zTerm in bytes */
-){
- int i;
- int nSeg = pCsr->nSegment;
-
- /* If the Fts3SegFilter defines a specific term (or term prefix) to search
- ** for, then advance each segment iterator until it points to a term of
- ** equal or greater value than the specified term. This prevents many
- ** unnecessary merge/sort operations for the case where single segment
- ** b-tree leaf nodes contain more than one term.
- */
- for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
- int res = 0;
- Fts3SegReader *pSeg = pCsr->apSegment[i];
- do {
- int rc = fts3SegReaderNext(p, pSeg, 0);
- if( rc!=SQLITE_OK ) return rc;
- }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
-
- if( pSeg->bLookup && res!=0 ){
- fts3SegReaderSetEof(pSeg);
- }
- }
- fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
-
- return SQLITE_OK;
-}
-
-int sqlite3Fts3SegReaderStart(
- Fts3Table *p, /* Virtual table handle */
- Fts3MultiSegReader *pCsr, /* Cursor object */
- Fts3SegFilter *pFilter /* Restrictions on range of iteration */
-){
- pCsr->pFilter = pFilter;
- return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
-}
-
-int sqlite3Fts3MsrIncrStart(
- Fts3Table *p, /* Virtual table handle */
- Fts3MultiSegReader *pCsr, /* Cursor object */
- int iCol, /* Column to match on. */
- const char *zTerm, /* Term to iterate through a doclist for */
- int nTerm /* Number of bytes in zTerm */
-){
- int i;
- int rc;
- int nSegment = pCsr->nSegment;
- int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
- p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
- );
-
- assert( pCsr->pFilter==0 );
- assert( zTerm && nTerm>0 );
-
- /* Advance each segment iterator until it points to the term zTerm/nTerm. */
- rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
- if( rc!=SQLITE_OK ) return rc;
-
- /* Determine how many of the segments actually point to zTerm/nTerm. */
- for(i=0; i<nSegment; i++){
- Fts3SegReader *pSeg = pCsr->apSegment[i];
- if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
- break;
- }
- }
- pCsr->nAdvance = i;
-
- /* Advance each of the segments to point to the first docid. */
- for(i=0; i<pCsr->nAdvance; i++){
- rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
- if( rc!=SQLITE_OK ) return rc;
- }
- fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
-
- assert( iCol<0 || iCol<p->nColumn );
- pCsr->iColFilter = iCol;
-
- return SQLITE_OK;
-}
-
-/*
-** This function is called on a MultiSegReader that has been started using
-** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
-** have been made. Calling this function puts the MultiSegReader in such
-** a state that if the next two calls are:
-**
-** sqlite3Fts3SegReaderStart()
-** sqlite3Fts3SegReaderStep()
-**
-** then the entire doclist for the term is available in
-** MultiSegReader.aDoclist/nDoclist.
-*/
-int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
- int i; /* Used to iterate through segment-readers */
-
- assert( pCsr->zTerm==0 );
- assert( pCsr->nTerm==0 );
- assert( pCsr->aDoclist==0 );
- assert( pCsr->nDoclist==0 );
-
- pCsr->nAdvance = 0;
- pCsr->bRestart = 1;
- for(i=0; i<pCsr->nSegment; i++){
- pCsr->apSegment[i]->pOffsetList = 0;
- pCsr->apSegment[i]->nOffsetList = 0;
- pCsr->apSegment[i]->iDocid = 0;
- }
-
- return SQLITE_OK;
-}
-
-
-int sqlite3Fts3SegReaderStep(
- Fts3Table *p, /* Virtual table handle */
- Fts3MultiSegReader *pCsr /* Cursor object */
-){
- int rc = SQLITE_OK;
-
- int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
- int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
- int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
- int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
- int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
- int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
-
- Fts3SegReader **apSegment = pCsr->apSegment;
- int nSegment = pCsr->nSegment;
- Fts3SegFilter *pFilter = pCsr->pFilter;
- int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
- p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
- );
-
- if( pCsr->nSegment==0 ) return SQLITE_OK;
-
- do {
- int nMerge;
- int i;
-
- /* Advance the first pCsr->nAdvance entries in the apSegment[] array
- ** forward. Then sort the list in order of current term again.
- */
- for(i=0; i<pCsr->nAdvance; i++){
- Fts3SegReader *pSeg = apSegment[i];
- if( pSeg->bLookup ){
- fts3SegReaderSetEof(pSeg);
- }else{
- rc = fts3SegReaderNext(p, pSeg, 0);
- }
- if( rc!=SQLITE_OK ) return rc;
- }
- fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
- pCsr->nAdvance = 0;
-
- /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
- assert( rc==SQLITE_OK );
- if( apSegment[0]->aNode==0 ) break;
-
- pCsr->nTerm = apSegment[0]->nTerm;
- pCsr->zTerm = apSegment[0]->zTerm;
-
- /* If this is a prefix-search, and if the term that apSegment[0] points
- ** to does not share a suffix with pFilter->zTerm/nTerm, then all
- ** required callbacks have been made. In this case exit early.
- **
- ** Similarly, if this is a search for an exact match, and the first term
- ** of segment apSegment[0] is not a match, exit early.
- */
- if( pFilter->zTerm && !isScan ){
- if( pCsr->nTerm<pFilter->nTerm
- || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
- || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
- ){
- break;
- }
- }
-
- nMerge = 1;
- while( nMerge<nSegment
- && apSegment[nMerge]->aNode
- && apSegment[nMerge]->nTerm==pCsr->nTerm
- && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
- ){
- nMerge++;
- }
-
- assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
- if( nMerge==1
- && !isIgnoreEmpty
- && !isFirst
- && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
- ){
- pCsr->nDoclist = apSegment[0]->nDoclist;
- if( fts3SegReaderIsPending(apSegment[0]) ){
- rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
- pCsr->aDoclist = pCsr->aBuffer;
- }else{
- pCsr->aDoclist = apSegment[0]->aDoclist;
- }
- if( rc==SQLITE_OK ) rc = SQLITE_ROW;
- }else{
- int nDoclist = 0; /* Size of doclist */
- sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
-
- /* The current term of the first nMerge entries in the array
- ** of Fts3SegReader objects is the same. The doclists must be merged
- ** and a single term returned with the merged doclist.
- */
- for(i=0; i<nMerge; i++){
- fts3SegReaderFirstDocid(p, apSegment[i]);
- }
- fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
- while( apSegment[0]->pOffsetList ){
- int j; /* Number of segments that share a docid */
- char *pList;
- int nList;
- int nByte;
- sqlite3_int64 iDocid = apSegment[0]->iDocid;
- fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
- j = 1;
- while( j<nMerge
- && apSegment[j]->pOffsetList
- && apSegment[j]->iDocid==iDocid
- ){
- fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
- j++;
- }
-
- if( isColFilter ){
- fts3ColumnFilter(pFilter->iCol, &pList, &nList);
- }
-
- if( !isIgnoreEmpty || nList>0 ){
-
- /* Calculate the 'docid' delta value to write into the merged
- ** doclist. */
- sqlite3_int64 iDelta;
- if( p->bDescIdx && nDoclist>0 ){
- iDelta = iPrev - iDocid;
- }else{
- iDelta = iDocid - iPrev;
- }
- assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
- assert( nDoclist>0 || iDelta==iDocid );
-
- nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
- if( nDoclist+nByte>pCsr->nBuffer ){
- char *aNew;
- pCsr->nBuffer = (nDoclist+nByte)*2;
- aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
- if( !aNew ){
- return SQLITE_NOMEM;
- }
- pCsr->aBuffer = aNew;
- }
-
- if( isFirst ){
- char *a = &pCsr->aBuffer[nDoclist];
- int nWrite;
-
- nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
- if( nWrite ){
- iPrev = iDocid;
- nDoclist += nWrite;
- }
- }else{
- nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
- iPrev = iDocid;
- if( isRequirePos ){
- memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
- nDoclist += nList;
- pCsr->aBuffer[nDoclist++] = '\0';
- }
- }
- }
-
- fts3SegReaderSort(apSegment, nMerge, j, xCmp);
- }
- if( nDoclist>0 ){
- pCsr->aDoclist = pCsr->aBuffer;
- pCsr->nDoclist = nDoclist;
- rc = SQLITE_ROW;
- }
- }
- pCsr->nAdvance = nMerge;
- }while( rc==SQLITE_OK );
-
- return rc;
-}
-
-
-void sqlite3Fts3SegReaderFinish(
- Fts3MultiSegReader *pCsr /* Cursor object */
-){
- if( pCsr ){
- int i;
- for(i=0; i<pCsr->nSegment; i++){
- sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
- }
- sqlite3_free(pCsr->apSegment);
- sqlite3_free(pCsr->aBuffer);
-
- pCsr->nSegment = 0;
- pCsr->apSegment = 0;
- pCsr->aBuffer = 0;
- }
-}
-
-/*
-** Merge all level iLevel segments in the database into a single
-** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
-** single segment with a level equal to the numerically largest level
-** currently present in the database.
-**
-** If this function is called with iLevel<0, but there is only one
-** segment in the database, SQLITE_DONE is returned immediately.
-** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
-** an SQLite error code is returned.
-*/
-static int fts3SegmentMerge(
- Fts3Table *p,
- int iLangid, /* Language id to merge */
- int iIndex, /* Index in p->aIndex[] to merge */
- int iLevel /* Level to merge */
-){
- int rc; /* Return code */
- int iIdx = 0; /* Index of new segment */
- sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
- SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
- Fts3SegFilter filter; /* Segment term filter condition */
- Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
- int bIgnoreEmpty = 0; /* True to ignore empty segments */
-
- assert( iLevel==FTS3_SEGCURSOR_ALL
- || iLevel==FTS3_SEGCURSOR_PENDING
- || iLevel>=0
- );
- assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
- assert( iIndex>=0 && iIndex<p->nIndex );
-
- rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
- if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
-
- if( iLevel==FTS3_SEGCURSOR_ALL ){
- /* This call is to merge all segments in the database to a single
- ** segment. The level of the new segment is equal to the numerically
- ** greatest segment level currently present in the database for this
- ** index. The idx of the new segment is always 0. */
- if( csr.nSegment==1 ){
- rc = SQLITE_DONE;
- goto finished;
- }
- rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iNewLevel);
- bIgnoreEmpty = 1;
-
- }else if( iLevel==FTS3_SEGCURSOR_PENDING ){
- iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, 0);
- rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, 0, &iIdx);
- }else{
- /* This call is to merge all segments at level iLevel. find the next
- ** available segment index at level iLevel+1. The call to
- ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
- ** a single iLevel+2 segment if necessary. */
- rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
- iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
- }
- if( rc!=SQLITE_OK ) goto finished;
- assert( csr.nSegment>0 );
- assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
- assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) );
-
- memset(&filter, 0, sizeof(Fts3SegFilter));
- filter.flags = FTS3_SEGMENT_REQUIRE_POS;
- filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
-
- rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
- while( SQLITE_OK==rc ){
- rc = sqlite3Fts3SegReaderStep(p, &csr);
- if( rc!=SQLITE_ROW ) break;
- rc = fts3SegWriterAdd(p, &pWriter, 1,
- csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
- }
- if( rc!=SQLITE_OK ) goto finished;
- assert( pWriter );
-
- if( iLevel!=FTS3_SEGCURSOR_PENDING ){
- rc = fts3DeleteSegdir(
- p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
- );
- if( rc!=SQLITE_OK ) goto finished;
- }
- rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
-
- finished:
- fts3SegWriterFree(pWriter);
- sqlite3Fts3SegReaderFinish(&csr);
- return rc;
-}
-
-
-/*
-** Flush the contents of pendingTerms to level 0 segments.
-*/
-int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
- int rc = SQLITE_OK;
- int i;
-
- for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
- rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
- if( rc==SQLITE_DONE ) rc = SQLITE_OK;
- }
- sqlite3Fts3PendingTermsClear(p);
-
- /* Determine the auto-incr-merge setting if unknown. If enabled,
- ** estimate the number of leaf blocks of content to be written
- */
- if( rc==SQLITE_OK && p->bHasStat
- && p->bAutoincrmerge==0xff && p->nLeafAdd>0
- ){
- sqlite3_stmt *pStmt = 0;
- rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
- rc = sqlite3_step(pStmt);
- p->bAutoincrmerge = (rc==SQLITE_ROW && sqlite3_column_int(pStmt, 0));
- rc = sqlite3_reset(pStmt);
- }
- }
- return rc;
-}
-
-/*
-** Encode N integers as varints into a blob.
-*/
-static void fts3EncodeIntArray(
- int N, /* The number of integers to encode */
- u32 *a, /* The integer values */
- char *zBuf, /* Write the BLOB here */
- int *pNBuf /* Write number of bytes if zBuf[] used here */
-){
- int i, j;
- for(i=j=0; i<N; i++){
- j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
- }
- *pNBuf = j;
-}
-
-/*
-** Decode a blob of varints into N integers
-*/
-static void fts3DecodeIntArray(
- int N, /* The number of integers to decode */
- u32 *a, /* Write the integer values */
- const char *zBuf, /* The BLOB containing the varints */
- int nBuf /* size of the BLOB */
-){
- int i, j;
- UNUSED_PARAMETER(nBuf);
- for(i=j=0; i<N; i++){
- sqlite3_int64 x;
- j += sqlite3Fts3GetVarint(&zBuf[j], &x);
- assert(j<=nBuf);
- a[i] = (u32)(x & 0xffffffff);
- }
-}
-
-/*
-** Insert the sizes (in tokens) for each column of the document
-** with docid equal to p->iPrevDocid. The sizes are encoded as
-** a blob of varints.
-*/
-static void fts3InsertDocsize(
- int *pRC, /* Result code */
- Fts3Table *p, /* Table into which to insert */
- u32 *aSz /* Sizes of each column, in tokens */
-){
- char *pBlob; /* The BLOB encoding of the document size */
- int nBlob; /* Number of bytes in the BLOB */
- sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
- int rc; /* Result code from subfunctions */
-
- if( *pRC ) return;
- pBlob = sqlite3_malloc( 10*p->nColumn );
- if( pBlob==0 ){
- *pRC = SQLITE_NOMEM;
- return;
- }
- fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
- rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
- if( rc ){
- sqlite3_free(pBlob);
- *pRC = rc;
- return;
- }
- sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
- sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
- sqlite3_step(pStmt);
- *pRC = sqlite3_reset(pStmt);
-}
-
-/*
-** Record 0 of the %_stat table contains a blob consisting of N varints,
-** where N is the number of user defined columns in the fts3 table plus
-** two. If nCol is the number of user defined columns, then values of the
-** varints are set as follows:
-**
-** Varint 0: Total number of rows in the table.
-**
-** Varint 1..nCol: For each column, the total number of tokens stored in
-** the column for all rows of the table.
-**
-** Varint 1+nCol: The total size, in bytes, of all text values in all
-** columns of all rows of the table.
-**
-*/
-static void fts3UpdateDocTotals(
- int *pRC, /* The result code */
- Fts3Table *p, /* Table being updated */
- u32 *aSzIns, /* Size increases */
- u32 *aSzDel, /* Size decreases */
- int nChng /* Change in the number of documents */
-){
- char *pBlob; /* Storage for BLOB written into %_stat */
- int nBlob; /* Size of BLOB written into %_stat */
- u32 *a; /* Array of integers that becomes the BLOB */
- sqlite3_stmt *pStmt; /* Statement for reading and writing */
- int i; /* Loop counter */
- int rc; /* Result code from subfunctions */
-
- const int nStat = p->nColumn+2;
-
- if( *pRC ) return;
- a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
- if( a==0 ){
- *pRC = SQLITE_NOMEM;
- return;
- }
- pBlob = (char*)&a[nStat];
- rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
- if( rc ){
- sqlite3_free(a);
- *pRC = rc;
- return;
- }
- sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
- if( sqlite3_step(pStmt)==SQLITE_ROW ){
- fts3DecodeIntArray(nStat, a,
- sqlite3_column_blob(pStmt, 0),
- sqlite3_column_bytes(pStmt, 0));
- }else{
- memset(a, 0, sizeof(u32)*(nStat) );
- }
- rc = sqlite3_reset(pStmt);
- if( rc!=SQLITE_OK ){
- sqlite3_free(a);
- *pRC = rc;
- return;
- }
- if( nChng<0 && a[0]<(u32)(-nChng) ){
- a[0] = 0;
- }else{
- a[0] += nChng;
- }
- for(i=0; i<p->nColumn+1; i++){
- u32 x = a[i+1];
- if( x+aSzIns[i] < aSzDel[i] ){
- x = 0;
- }else{
- x = x + aSzIns[i] - aSzDel[i];
- }
- a[i+1] = x;
- }
- fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
- rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
- if( rc ){
- sqlite3_free(a);
- *pRC = rc;
- return;
- }
- sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
- sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
- sqlite3_step(pStmt);
- *pRC = sqlite3_reset(pStmt);
- sqlite3_free(a);
-}
-
-/*
-** Merge the entire database so that there is one segment for each
-** iIndex/iLangid combination.
-*/
-static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
- int bSeenDone = 0;
- int rc;
- sqlite3_stmt *pAllLangid = 0;
-
- rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
- if( rc==SQLITE_OK ){
- int rc2;
- sqlite3_bind_int(pAllLangid, 1, p->nIndex);
- while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
- int i;
- int iLangid = sqlite3_column_int(pAllLangid, 0);
- for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
- rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
- if( rc==SQLITE_DONE ){
- bSeenDone = 1;
- rc = SQLITE_OK;
- }
- }
- }
- rc2 = sqlite3_reset(pAllLangid);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- sqlite3Fts3SegmentsClose(p);
- sqlite3Fts3PendingTermsClear(p);
-
- return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
-}
-
-/*
-** This function is called when the user executes the following statement:
-**
-** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
-**
-** The entire FTS index is discarded and rebuilt. If the table is one
-** created using the content=xxx option, then the new index is based on
-** the current contents of the xxx table. Otherwise, it is rebuilt based
-** on the contents of the %_content table.
-*/
-static int fts3DoRebuild(Fts3Table *p){
- int rc; /* Return Code */
-
- rc = fts3DeleteAll(p, 0);
- if( rc==SQLITE_OK ){
- u32 *aSz = 0;
- u32 *aSzIns = 0;
- u32 *aSzDel = 0;
- sqlite3_stmt *pStmt = 0;
- int nEntry = 0;
-
- /* Compose and prepare an SQL statement to loop through the content table */
- char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
- sqlite3_free(zSql);
- }
-
- if( rc==SQLITE_OK ){
- int nByte = sizeof(u32) * (p->nColumn+1)*3;
- aSz = (u32 *)sqlite3_malloc(nByte);
- if( aSz==0 ){
- rc = SQLITE_NOMEM;
- }else{
- memset(aSz, 0, nByte);
- aSzIns = &aSz[p->nColumn+1];
- aSzDel = &aSzIns[p->nColumn+1];
- }
- }
-
- while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
- int iCol;
- int iLangid = langidFromSelect(p, pStmt);
- rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0));
- memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
- for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
- const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
- rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
- aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
- }
- if( p->bHasDocsize ){
- fts3InsertDocsize(&rc, p, aSz);
- }
- if( rc!=SQLITE_OK ){
- sqlite3_finalize(pStmt);
- pStmt = 0;
- }else{
- nEntry++;
- for(iCol=0; iCol<=p->nColumn; iCol++){
- aSzIns[iCol] += aSz[iCol];
- }
- }
- }
- if( p->bFts4 ){
- fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
- }
- sqlite3_free(aSz);
-
- if( pStmt ){
- int rc2 = sqlite3_finalize(pStmt);
- if( rc==SQLITE_OK ){
- rc = rc2;
- }
- }
- }
-
- return rc;
-}
-
-
-/*
-** This function opens a cursor used to read the input data for an
-** incremental merge operation. Specifically, it opens a cursor to scan
-** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
-** level iAbsLevel.
-*/
-static int fts3IncrmergeCsr(
- Fts3Table *p, /* FTS3 table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level to open */
- int nSeg, /* Number of segments to merge */
- Fts3MultiSegReader *pCsr /* Cursor object to populate */
-){
- int rc; /* Return Code */
- sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
- int nByte; /* Bytes allocated at pCsr->apSegment[] */
-
- /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
- memset(pCsr, 0, sizeof(*pCsr));
- nByte = sizeof(Fts3SegReader *) * nSeg;
- pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
-
- if( pCsr->apSegment==0 ){
- rc = SQLITE_NOMEM;
- }else{
- memset(pCsr->apSegment, 0, nByte);
- rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
- }
- if( rc==SQLITE_OK ){
- int i;
- int rc2;
- sqlite3_bind_int64(pStmt, 1, iAbsLevel);
- assert( pCsr->nSegment==0 );
- for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
- rc = sqlite3Fts3SegReaderNew(i, 0,
- sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
- sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
- sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
- sqlite3_column_blob(pStmt, 4), /* segdir.root */
- sqlite3_column_bytes(pStmt, 4), /* segdir.root */
- &pCsr->apSegment[i]
- );
- pCsr->nSegment++;
- }
- rc2 = sqlite3_reset(pStmt);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- return rc;
-}
-
-typedef struct IncrmergeWriter IncrmergeWriter;
-typedef struct NodeWriter NodeWriter;
-typedef struct Blob Blob;
-typedef struct NodeReader NodeReader;
-
-/*
-** An instance of the following structure is used as a dynamic buffer
-** to build up nodes or other blobs of data in.
-**
-** The function blobGrowBuffer() is used to extend the allocation.
-*/
-struct Blob {
- char *a; /* Pointer to allocation */
- int n; /* Number of valid bytes of data in a[] */
- int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
-};
-
-/*
-** This structure is used to build up buffers containing segment b-tree
-** nodes (blocks).
-*/
-struct NodeWriter {
- sqlite3_int64 iBlock; /* Current block id */
- Blob key; /* Last key written to the current block */
- Blob block; /* Current block image */
-};
-
-/*
-** An object of this type contains the state required to create or append
-** to an appendable b-tree segment.
-*/
-struct IncrmergeWriter {
- int nLeafEst; /* Space allocated for leaf blocks */
- int nWork; /* Number of leaf pages flushed */
- sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
- int iIdx; /* Index of *output* segment in iAbsLevel+1 */
- sqlite3_int64 iStart; /* Block number of first allocated block */
- sqlite3_int64 iEnd; /* Block number of last allocated block */
- NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
-};
-
-/*
-** An object of the following type is used to read data from a single
-** FTS segment node. See the following functions:
-**
-** nodeReaderInit()
-** nodeReaderNext()
-** nodeReaderRelease()
-*/
-struct NodeReader {
- const char *aNode;
- int nNode;
- int iOff; /* Current offset within aNode[] */
-
- /* Output variables. Containing the current node entry. */
- sqlite3_int64 iChild; /* Pointer to child node */
- Blob term; /* Current term */
- const char *aDoclist; /* Pointer to doclist */
- int nDoclist; /* Size of doclist in bytes */
-};
-
-/*
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
-** Otherwise, if the allocation at pBlob->a is not already at least nMin
-** bytes in size, extend (realloc) it to be so.
-**
-** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
-** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
-** to reflect the new size of the pBlob->a[] buffer.
-*/
-static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
- if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
- int nAlloc = nMin;
- char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc);
- if( a ){
- pBlob->nAlloc = nAlloc;
- pBlob->a = a;
- }else{
- *pRc = SQLITE_NOMEM;
- }
- }
-}
-
-/*
-** Attempt to advance the node-reader object passed as the first argument to
-** the next entry on the node.
-**
-** Return an error code if an error occurs (SQLITE_NOMEM is possible).
-** Otherwise return SQLITE_OK. If there is no next entry on the node
-** (e.g. because the current entry is the last) set NodeReader->aNode to
-** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
-** variables for the new entry.
-*/
-static int nodeReaderNext(NodeReader *p){
- int bFirst = (p->term.n==0); /* True for first term on the node */
- int nPrefix = 0; /* Bytes to copy from previous term */
- int nSuffix = 0; /* Bytes to append to the prefix */
- int rc = SQLITE_OK; /* Return code */
-
- assert( p->aNode );
- if( p->iChild && bFirst==0 ) p->iChild++;
- if( p->iOff>=p->nNode ){
- /* EOF */
- p->aNode = 0;
- }else{
- if( bFirst==0 ){
- p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
- }
- p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
-
- blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
- if( rc==SQLITE_OK ){
- memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
- p->term.n = nPrefix+nSuffix;
- p->iOff += nSuffix;
- if( p->iChild==0 ){
- p->iOff += sqlite3Fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
- p->aDoclist = &p->aNode[p->iOff];
- p->iOff += p->nDoclist;
- }
- }
- }
-
- assert( p->iOff<=p->nNode );
-
- return rc;
-}
-
-/*
-** Release all dynamic resources held by node-reader object *p.
-*/
-static void nodeReaderRelease(NodeReader *p){
- sqlite3_free(p->term.a);
-}
-
-/*
-** Initialize a node-reader object to read the node in buffer aNode/nNode.
-**
-** If successful, SQLITE_OK is returned and the NodeReader object set to
-** point to the first entry on the node (if any). Otherwise, an SQLite
-** error code is returned.
-*/
-static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
- memset(p, 0, sizeof(NodeReader));
- p->aNode = aNode;
- p->nNode = nNode;
-
- /* Figure out if this is a leaf or an internal node. */
- if( p->aNode[0] ){
- /* An internal node. */
- p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
- }else{
- p->iOff = 1;
- }
-
- return nodeReaderNext(p);
-}
-
-/*
-** This function is called while writing an FTS segment each time a leaf o
-** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
-** to be greater than the largest key on the node just written, but smaller
-** than or equal to the first key that will be written to the next leaf
-** node.
-**
-** The block id of the leaf node just written to disk may be found in
-** (pWriter->aNodeWriter[0].iBlock) when this function is called.
-*/
-static int fts3IncrmergePush(
- Fts3Table *p, /* Fts3 table handle */
- IncrmergeWriter *pWriter, /* Writer object */
- const char *zTerm, /* Term to write to internal node */
- int nTerm /* Bytes at zTerm */
-){
- sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
- int iLayer;
-
- assert( nTerm>0 );
- for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
- sqlite3_int64 iNextPtr = 0;
- NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
- int rc = SQLITE_OK;
- int nPrefix;
- int nSuffix;
- int nSpace;
-
- /* Figure out how much space the key will consume if it is written to
- ** the current node of layer iLayer. Due to the prefix compression,
- ** the space required changes depending on which node the key is to
- ** be added to. */
- nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
- nSuffix = nTerm - nPrefix;
- nSpace = sqlite3Fts3VarintLen(nPrefix);
- nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
-
- if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
- /* If the current node of layer iLayer contains zero keys, or if adding
- ** the key to it will not cause it to grow to larger than nNodeSize
- ** bytes in size, write the key here. */
-
- Blob *pBlk = &pNode->block;
- if( pBlk->n==0 ){
- blobGrowBuffer(pBlk, p->nNodeSize, &rc);
- if( rc==SQLITE_OK ){
- pBlk->a[0] = (char)iLayer;
- pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
- }
- }
- blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
- blobGrowBuffer(&pNode->key, nTerm, &rc);
-
- if( rc==SQLITE_OK ){
- if( pNode->key.n ){
- pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
- }
- pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
- memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
- pBlk->n += nSuffix;
-
- memcpy(pNode->key.a, zTerm, nTerm);
- pNode->key.n = nTerm;
- }
- }else{
- /* Otherwise, flush the current node of layer iLayer to disk.
- ** Then allocate a new, empty sibling node. The key will be written
- ** into the parent of this node. */
- rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
-
- assert( pNode->block.nAlloc>=p->nNodeSize );
- pNode->block.a[0] = (char)iLayer;
- pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
-
- iNextPtr = pNode->iBlock;
- pNode->iBlock++;
- pNode->key.n = 0;
- }
-
- if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
- iPtr = iNextPtr;
- }
-
- assert( 0 );
- return 0;
-}
-
-/*
-** Append a term and (optionally) doclist to the FTS segment node currently
-** stored in blob *pNode. The node need not contain any terms, but the
-** header must be written before this function is called.
-**
-** A node header is a single 0x00 byte for a leaf node, or a height varint
-** followed by the left-hand-child varint for an internal node.
-**
-** The term to be appended is passed via arguments zTerm/nTerm. For a
-** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
-** node, both aDoclist and nDoclist must be passed 0.
-**
-** If the size of the value in blob pPrev is zero, then this is the first
-** term written to the node. Otherwise, pPrev contains a copy of the
-** previous term. Before this function returns, it is updated to contain a
-** copy of zTerm/nTerm.
-**
-** It is assumed that the buffer associated with pNode is already large
-** enough to accommodate the new entry. The buffer associated with pPrev
-** is extended by this function if requrired.
-**
-** If an error (i.e. OOM condition) occurs, an SQLite error code is
-** returned. Otherwise, SQLITE_OK.
-*/
-static int fts3AppendToNode(
- Blob *pNode, /* Current node image to append to */
- Blob *pPrev, /* Buffer containing previous term written */
- const char *zTerm, /* New term to write */
- int nTerm, /* Size of zTerm in bytes */
- const char *aDoclist, /* Doclist (or NULL) to write */
- int nDoclist /* Size of aDoclist in bytes */
-){
- int rc = SQLITE_OK; /* Return code */
- int bFirst = (pPrev->n==0); /* True if this is the first term written */
- int nPrefix; /* Size of term prefix in bytes */
- int nSuffix; /* Size of term suffix in bytes */
-
- /* Node must have already been started. There must be a doclist for a
- ** leaf node, and there must not be a doclist for an internal node. */
- assert( pNode->n>0 );
- assert( (pNode->a[0]=='\0')==(aDoclist!=0) );
-
- blobGrowBuffer(pPrev, nTerm, &rc);
- if( rc!=SQLITE_OK ) return rc;
-
- nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
- nSuffix = nTerm - nPrefix;
- memcpy(pPrev->a, zTerm, nTerm);
- pPrev->n = nTerm;
-
- if( bFirst==0 ){
- pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
- }
- pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
- memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
- pNode->n += nSuffix;
-
- if( aDoclist ){
- pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
- memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
- pNode->n += nDoclist;
- }
-
- assert( pNode->n<=pNode->nAlloc );
-
- return SQLITE_OK;
-}
-
-/*
-** Append the current term and doclist pointed to by cursor pCsr to the
-** appendable b-tree segment opened for writing by pWriter.
-**
-** Return SQLITE_OK if successful, or an SQLite error code otherwise.
-*/
-static int fts3IncrmergeAppend(
- Fts3Table *p, /* Fts3 table handle */
- IncrmergeWriter *pWriter, /* Writer object */
- Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
-){
- const char *zTerm = pCsr->zTerm;
- int nTerm = pCsr->nTerm;
- const char *aDoclist = pCsr->aDoclist;
- int nDoclist = pCsr->nDoclist;
- int rc = SQLITE_OK; /* Return code */
- int nSpace; /* Total space in bytes required on leaf */
- int nPrefix; /* Size of prefix shared with previous term */
- int nSuffix; /* Size of suffix (nTerm - nPrefix) */
- NodeWriter *pLeaf; /* Object used to write leaf nodes */
-
- pLeaf = &pWriter->aNodeWriter[0];
- nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
- nSuffix = nTerm - nPrefix;
-
- nSpace = sqlite3Fts3VarintLen(nPrefix);
- nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
- nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
-
- /* If the current block is not empty, and if adding this term/doclist
- ** to the current block would make it larger than Fts3Table.nNodeSize
- ** bytes, write this block out to the database. */
- if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
- rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
- pWriter->nWork++;
-
- /* Add the current term to the parent node. The term added to the
- ** parent must:
- **
- ** a) be greater than the largest term on the leaf node just written
- ** to the database (still available in pLeaf->key), and
- **
- ** b) be less than or equal to the term about to be added to the new
- ** leaf node (zTerm/nTerm).
- **
- ** In other words, it must be the prefix of zTerm 1 byte longer than
- ** the common prefix (if any) of zTerm and pWriter->zTerm.
- */
- if( rc==SQLITE_OK ){
- rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
- }
-
- /* Advance to the next output block */
- pLeaf->iBlock++;
- pLeaf->key.n = 0;
- pLeaf->block.n = 0;
-
- nSuffix = nTerm;
- nSpace = 1;
- nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
- nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
- }
-
- blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
-
- if( rc==SQLITE_OK ){
- if( pLeaf->block.n==0 ){
- pLeaf->block.n = 1;
- pLeaf->block.a[0] = '\0';
- }
- rc = fts3AppendToNode(
- &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
- );
- }
-
- return rc;
-}
-
-/*
-** This function is called to release all dynamic resources held by the
-** merge-writer object pWriter, and if no error has occurred, to flush
-** all outstanding node buffers held by pWriter to disk.
-**
-** If *pRc is not SQLITE_OK when this function is called, then no attempt
-** is made to write any data to disk. Instead, this function serves only
-** to release outstanding resources.
-**
-** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
-** flushing buffers to disk, *pRc is set to an SQLite error code before
-** returning.
-*/
-static void fts3IncrmergeRelease(
- Fts3Table *p, /* FTS3 table handle */
- IncrmergeWriter *pWriter, /* Merge-writer object */
- int *pRc /* IN/OUT: Error code */
-){
- int i; /* Used to iterate through non-root layers */
- int iRoot; /* Index of root in pWriter->aNodeWriter */
- NodeWriter *pRoot; /* NodeWriter for root node */
- int rc = *pRc; /* Error code */
-
- /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
- ** root node. If the segment fits entirely on a single leaf node, iRoot
- ** will be set to 0. If the root node is the parent of the leaves, iRoot
- ** will be 1. And so on. */
- for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
- NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
- if( pNode->block.n>0 ) break;
- assert( *pRc || pNode->block.nAlloc==0 );
- assert( *pRc || pNode->key.nAlloc==0 );
- sqlite3_free(pNode->block.a);
- sqlite3_free(pNode->key.a);
- }
-
- /* Empty output segment. This is a no-op. */
- if( iRoot<0 ) return;
-
- /* The entire output segment fits on a single node. Normally, this means
- ** the node would be stored as a blob in the "root" column of the %_segdir
- ** table. However, this is not permitted in this case. The problem is that
- ** space has already been reserved in the %_segments table, and so the
- ** start_block and end_block fields of the %_segdir table must be populated.
- ** And, by design or by accident, released versions of FTS cannot handle
- ** segments that fit entirely on the root node with start_block!=0.
- **
- ** Instead, create a synthetic root node that contains nothing but a
- ** pointer to the single content node. So that the segment consists of a
- ** single leaf and a single interior (root) node.
- **
- ** Todo: Better might be to defer allocating space in the %_segments
- ** table until we are sure it is needed.
- */
- if( iRoot==0 ){
- Blob *pBlock = &pWriter->aNodeWriter[1].block;
- blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
- if( rc==SQLITE_OK ){
- pBlock->a[0] = 0x01;
- pBlock->n = 1 + sqlite3Fts3PutVarint(
- &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
- );
- }
- iRoot = 1;
- }
- pRoot = &pWriter->aNodeWriter[iRoot];
-
- /* Flush all currently outstanding nodes to disk. */
- for(i=0; i<iRoot; i++){
- NodeWriter *pNode = &pWriter->aNodeWriter[i];
- if( pNode->block.n>0 && rc==SQLITE_OK ){
- rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
- }
- sqlite3_free(pNode->block.a);
- sqlite3_free(pNode->key.a);
- }
-
- /* Write the %_segdir record. */
- if( rc==SQLITE_OK ){
- rc = fts3WriteSegdir(p,
- pWriter->iAbsLevel+1, /* level */
- pWriter->iIdx, /* idx */
- pWriter->iStart, /* start_block */
- pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
- pWriter->iEnd, /* end_block */
- pRoot->block.a, pRoot->block.n /* root */
- );
- }
- sqlite3_free(pRoot->block.a);
- sqlite3_free(pRoot->key.a);
-
- *pRc = rc;
-}
-
-/*
-** Compare the term in buffer zLhs (size in bytes nLhs) with that in
-** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
-** the other, it is considered to be smaller than the other.
-**
-** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
-** if it is greater.
-*/
-static int fts3TermCmp(
- const char *zLhs, int nLhs, /* LHS of comparison */
- const char *zRhs, int nRhs /* RHS of comparison */
-){
- int nCmp = MIN(nLhs, nRhs);
- int res;
-
- res = memcmp(zLhs, zRhs, nCmp);
- if( res==0 ) res = nLhs - nRhs;
-
- return res;
-}
-
-
-/*
-** Query to see if the entry in the %_segments table with blockid iEnd is
-** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
-** returning. Otherwise, set *pbRes to 0.
-**
-** Or, if an error occurs while querying the database, return an SQLite
-** error code. The final value of *pbRes is undefined in this case.
-**
-** This is used to test if a segment is an "appendable" segment. If it
-** is, then a NULL entry has been inserted into the %_segments table
-** with blockid %_segdir.end_block.
-*/
-static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
- int bRes = 0; /* Result to set *pbRes to */
- sqlite3_stmt *pCheck = 0; /* Statement to query database with */
- int rc; /* Return code */
-
- rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pCheck, 1, iEnd);
- if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
- rc = sqlite3_reset(pCheck);
- }
-
- *pbRes = bRes;
- return rc;
-}
-
-/*
-** This function is called when initializing an incremental-merge operation.
-** It checks if the existing segment with index value iIdx at absolute level
-** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
-** merge-writer object *pWriter is initialized to write to it.
-**
-** An existing segment can be appended to by an incremental merge if:
-**
-** * It was initially created as an appendable segment (with all required
-** space pre-allocated), and
-**
-** * The first key read from the input (arguments zKey and nKey) is
-** greater than the largest key currently stored in the potential
-** output segment.
-*/
-static int fts3IncrmergeLoad(
- Fts3Table *p, /* Fts3 table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
- int iIdx, /* Index of candidate output segment */
- const char *zKey, /* First key to write */
- int nKey, /* Number of bytes in nKey */
- IncrmergeWriter *pWriter /* Populate this object */
-){
- int rc; /* Return code */
- sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
-
- rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
- if( rc==SQLITE_OK ){
- sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
- sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
- sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
- const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
- int nRoot = 0; /* Size of aRoot[] in bytes */
- int rc2; /* Return code from sqlite3_reset() */
- int bAppendable = 0; /* Set to true if segment is appendable */
-
- /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
- sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
- sqlite3_bind_int(pSelect, 2, iIdx);
- if( sqlite3_step(pSelect)==SQLITE_ROW ){
- iStart = sqlite3_column_int64(pSelect, 1);
- iLeafEnd = sqlite3_column_int64(pSelect, 2);
- iEnd = sqlite3_column_int64(pSelect, 3);
- nRoot = sqlite3_column_bytes(pSelect, 4);
- aRoot = sqlite3_column_blob(pSelect, 4);
- }else{
- return sqlite3_reset(pSelect);
- }
-
- /* Check for the zero-length marker in the %_segments table */
- rc = fts3IsAppendable(p, iEnd, &bAppendable);
-
- /* Check that zKey/nKey is larger than the largest key the candidate */
- if( rc==SQLITE_OK && bAppendable ){
- char *aLeaf = 0;
- int nLeaf = 0;
-
- rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
- if( rc==SQLITE_OK ){
- NodeReader reader;
- for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
- rc==SQLITE_OK && reader.aNode;
- rc = nodeReaderNext(&reader)
- ){
- assert( reader.aNode );
- }
- if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
- bAppendable = 0;
- }
- nodeReaderRelease(&reader);
- }
- sqlite3_free(aLeaf);
- }
-
- if( rc==SQLITE_OK && bAppendable ){
- /* It is possible to append to this segment. Set up the IncrmergeWriter
- ** object to do so. */
- int i;
- int nHeight = (int)aRoot[0];
- NodeWriter *pNode;
-
- pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
- pWriter->iStart = iStart;
- pWriter->iEnd = iEnd;
- pWriter->iAbsLevel = iAbsLevel;
- pWriter->iIdx = iIdx;
-
- for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
- pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
- }
-
- pNode = &pWriter->aNodeWriter[nHeight];
- pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
- blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc);
- if( rc==SQLITE_OK ){
- memcpy(pNode->block.a, aRoot, nRoot);
- pNode->block.n = nRoot;
- }
-
- for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
- NodeReader reader;
- pNode = &pWriter->aNodeWriter[i];
-
- rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
- while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
- blobGrowBuffer(&pNode->key, reader.term.n, &rc);
- if( rc==SQLITE_OK ){
- memcpy(pNode->key.a, reader.term.a, reader.term.n);
- pNode->key.n = reader.term.n;
- if( i>0 ){
- char *aBlock = 0;
- int nBlock = 0;
- pNode = &pWriter->aNodeWriter[i-1];
- pNode->iBlock = reader.iChild;
- rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
- blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc);
- if( rc==SQLITE_OK ){
- memcpy(pNode->block.a, aBlock, nBlock);
- pNode->block.n = nBlock;
- }
- sqlite3_free(aBlock);
- }
- }
- nodeReaderRelease(&reader);
- }
- }
-
- rc2 = sqlite3_reset(pSelect);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- return rc;
-}
-
-/*
-** Determine the largest segment index value that exists within absolute
-** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
-** one before returning SQLITE_OK. Or, if there are no segments at all
-** within level iAbsLevel, set *piIdx to zero.
-**
-** If an error occurs, return an SQLite error code. The final value of
-** *piIdx is undefined in this case.
-*/
-static int fts3IncrmergeOutputIdx(
- Fts3Table *p, /* FTS Table handle */
- sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
- int *piIdx /* OUT: Next free index at iAbsLevel+1 */
-){
- int rc;
- sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
-
- rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
- sqlite3_step(pOutputIdx);
- *piIdx = sqlite3_column_int(pOutputIdx, 0);
- rc = sqlite3_reset(pOutputIdx);
- }
-
- return rc;
-}
-
-/*
-** Allocate an appendable output segment on absolute level iAbsLevel+1
-** with idx value iIdx.
-**
-** In the %_segdir table, a segment is defined by the values in three
-** columns:
-**
-** start_block
-** leaves_end_block
-** end_block
-**
-** When an appendable segment is allocated, it is estimated that the
-** maximum number of leaf blocks that may be required is the sum of the
-** number of leaf blocks consumed by the input segments, plus the number
-** of input segments, multiplied by two. This value is stored in stack
-** variable nLeafEst.
-**
-** A total of 16*nLeafEst blocks are allocated when an appendable segment
-** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
-** array of leaf nodes starts at the first block allocated. The array
-** of interior nodes that are parents of the leaf nodes start at block
-** (start_block + (1 + end_block - start_block) / 16). And so on.
-**
-** In the actual code below, the value "16" is replaced with the
-** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
-*/
-static int fts3IncrmergeWriter(
- Fts3Table *p, /* Fts3 table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
- int iIdx, /* Index of new output segment */
- Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
- IncrmergeWriter *pWriter /* Populate this object */
-){
- int rc; /* Return Code */
- int i; /* Iterator variable */
- int nLeafEst = 0; /* Blocks allocated for leaf nodes */
- sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
- sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
-
- /* Calculate nLeafEst. */
- rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
- sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
- if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
- nLeafEst = sqlite3_column_int(pLeafEst, 0);
- }
- rc = sqlite3_reset(pLeafEst);
- }
- if( rc!=SQLITE_OK ) return rc;
-
- /* Calculate the first block to use in the output segment */
- rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
- if( rc==SQLITE_OK ){
- if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
- pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
- pWriter->iEnd = pWriter->iStart - 1;
- pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
- }
- rc = sqlite3_reset(pFirstBlock);
- }
- if( rc!=SQLITE_OK ) return rc;
-
- /* Insert the marker in the %_segments table to make sure nobody tries
- ** to steal the space just allocated. This is also used to identify
- ** appendable segments. */
- rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
- if( rc!=SQLITE_OK ) return rc;
-
- pWriter->iAbsLevel = iAbsLevel;
- pWriter->nLeafEst = nLeafEst;
- pWriter->iIdx = iIdx;
-
- /* Set up the array of NodeWriter objects */
- for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
- pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
- }
- return SQLITE_OK;
-}
-
-/*
-** Remove an entry from the %_segdir table. This involves running the
-** following two statements:
-**
-** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
-** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
-**
-** The DELETE statement removes the specific %_segdir level. The UPDATE
-** statement ensures that the remaining segments have contiguously allocated
-** idx values.
-*/
-static int fts3RemoveSegdirEntry(
- Fts3Table *p, /* FTS3 table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
- int iIdx /* Index of %_segdir entry to delete */
-){
- int rc; /* Return code */
- sqlite3_stmt *pDelete = 0; /* DELETE statement */
-
- rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pDelete, 1, iAbsLevel);
- sqlite3_bind_int(pDelete, 2, iIdx);
- sqlite3_step(pDelete);
- rc = sqlite3_reset(pDelete);
- }
-
- return rc;
-}
-
-/*
-** One or more segments have just been removed from absolute level iAbsLevel.
-** Update the 'idx' values of the remaining segments in the level so that
-** the idx values are a contiguous sequence starting from 0.
-*/
-static int fts3RepackSegdirLevel(
- Fts3Table *p, /* FTS3 table handle */
- sqlite3_int64 iAbsLevel /* Absolute level to repack */
-){
- int rc; /* Return code */
- int *aIdx = 0; /* Array of remaining idx values */
- int nIdx = 0; /* Valid entries in aIdx[] */
- int nAlloc = 0; /* Allocated size of aIdx[] */
- int i; /* Iterator variable */
- sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
- sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
-
- rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
- if( rc==SQLITE_OK ){
- int rc2;
- sqlite3_bind_int64(pSelect, 1, iAbsLevel);
- while( SQLITE_ROW==sqlite3_step(pSelect) ){
- if( nIdx>=nAlloc ){
- int *aNew;
- nAlloc += 16;
- aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int));
- if( !aNew ){
- rc = SQLITE_NOMEM;
- break;
- }
- aIdx = aNew;
- }
- aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
- }
- rc2 = sqlite3_reset(pSelect);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- if( rc==SQLITE_OK ){
- rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
- }
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
- }
-
- assert( p->bIgnoreSavepoint==0 );
- p->bIgnoreSavepoint = 1;
- for(i=0; rc==SQLITE_OK && i<nIdx; i++){
- if( aIdx[i]!=i ){
- sqlite3_bind_int(pUpdate, 3, aIdx[i]);
- sqlite3_bind_int(pUpdate, 1, i);
- sqlite3_step(pUpdate);
- rc = sqlite3_reset(pUpdate);
- }
- }
- p->bIgnoreSavepoint = 0;
-
- sqlite3_free(aIdx);
- return rc;
-}
-
-static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
- pNode->a[0] = (char)iHeight;
- if( iChild ){
- assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
- pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
- }else{
- assert( pNode->nAlloc>=1 );
- pNode->n = 1;
- }
-}
-
-/*
-** The first two arguments are a pointer to and the size of a segment b-tree
-** node. The node may be a leaf or an internal node.
-**
-** This function creates a new node image in blob object *pNew by copying
-** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
-** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
-*/
-static int fts3TruncateNode(
- const char *aNode, /* Current node image */
- int nNode, /* Size of aNode in bytes */
- Blob *pNew, /* OUT: Write new node image here */
- const char *zTerm, /* Omit all terms smaller than this */
- int nTerm, /* Size of zTerm in bytes */
- sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
-){
- NodeReader reader; /* Reader object */
- Blob prev = {0, 0, 0}; /* Previous term written to new node */
- int rc = SQLITE_OK; /* Return code */
- int bLeaf = aNode[0]=='\0'; /* True for a leaf node */
-
- /* Allocate required output space */
- blobGrowBuffer(pNew, nNode, &rc);
- if( rc!=SQLITE_OK ) return rc;
- pNew->n = 0;
-
- /* Populate new node buffer */
- for(rc = nodeReaderInit(&reader, aNode, nNode);
- rc==SQLITE_OK && reader.aNode;
- rc = nodeReaderNext(&reader)
- ){
- if( pNew->n==0 ){
- int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
- if( res<0 || (bLeaf==0 && res==0) ) continue;
- fts3StartNode(pNew, (int)aNode[0], reader.iChild);
- *piBlock = reader.iChild;
- }
- rc = fts3AppendToNode(
- pNew, &prev, reader.term.a, reader.term.n,
- reader.aDoclist, reader.nDoclist
- );
- if( rc!=SQLITE_OK ) break;
- }
- if( pNew->n==0 ){
- fts3StartNode(pNew, (int)aNode[0], reader.iChild);
- *piBlock = reader.iChild;
- }
- assert( pNew->n<=pNew->nAlloc );
-
- nodeReaderRelease(&reader);
- sqlite3_free(prev.a);
- return rc;
-}
-
-/*
-** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
-** level iAbsLevel. This may involve deleting entries from the %_segments
-** table, and modifying existing entries in both the %_segments and %_segdir
-** tables.
-**
-** SQLITE_OK is returned if the segment is updated successfully. Or an
-** SQLite error code otherwise.
-*/
-static int fts3TruncateSegment(
- Fts3Table *p, /* FTS3 table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
- int iIdx, /* Index within level of segment to modify */
- const char *zTerm, /* Remove terms smaller than this */
- int nTerm /* Number of bytes in buffer zTerm */
-){
- int rc = SQLITE_OK; /* Return code */
- Blob root = {0,0,0}; /* New root page image */
- Blob block = {0,0,0}; /* Buffer used for any other block */
- sqlite3_int64 iBlock = 0; /* Block id */
- sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
- sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
- sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
-
- rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
- if( rc==SQLITE_OK ){
- int rc2; /* sqlite3_reset() return code */
- sqlite3_bind_int64(pFetch, 1, iAbsLevel);
- sqlite3_bind_int(pFetch, 2, iIdx);
- if( SQLITE_ROW==sqlite3_step(pFetch) ){
- const char *aRoot = sqlite3_column_blob(pFetch, 4);
- int nRoot = sqlite3_column_bytes(pFetch, 4);
- iOldStart = sqlite3_column_int64(pFetch, 1);
- rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
- }
- rc2 = sqlite3_reset(pFetch);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- while( rc==SQLITE_OK && iBlock ){
- char *aBlock = 0;
- int nBlock = 0;
- iNewStart = iBlock;
-
- rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
- if( rc==SQLITE_OK ){
- rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
- }
- if( rc==SQLITE_OK ){
- rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
- }
- sqlite3_free(aBlock);
- }
-
- /* Variable iNewStart now contains the first valid leaf node. */
- if( rc==SQLITE_OK && iNewStart ){
- sqlite3_stmt *pDel = 0;
- rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pDel, 1, iOldStart);
- sqlite3_bind_int64(pDel, 2, iNewStart-1);
- sqlite3_step(pDel);
- rc = sqlite3_reset(pDel);
- }
- }
-
- if( rc==SQLITE_OK ){
- sqlite3_stmt *pChomp = 0;
- rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int64(pChomp, 1, iNewStart);
- sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
- sqlite3_bind_int64(pChomp, 3, iAbsLevel);
- sqlite3_bind_int(pChomp, 4, iIdx);
- sqlite3_step(pChomp);
- rc = sqlite3_reset(pChomp);
- }
- }
-
- sqlite3_free(root.a);
- sqlite3_free(block.a);
- return rc;
-}
-
-/*
-** This function is called after an incrmental-merge operation has run to
-** merge (or partially merge) two or more segments from absolute level
-** iAbsLevel.
-**
-** Each input segment is either removed from the db completely (if all of
-** its data was copied to the output segment by the incrmerge operation)
-** or modified in place so that it no longer contains those entries that
-** have been duplicated in the output segment.
-*/
-static int fts3IncrmergeChomp(
- Fts3Table *p, /* FTS table handle */
- sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
- Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
- int *pnRem /* Number of segments not deleted */
-){
- int i;
- int nRem = 0;
- int rc = SQLITE_OK;
-
- for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
- Fts3SegReader *pSeg = 0;
- int j;
-
- /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
- ** somewhere in the pCsr->apSegment[] array. */
- for(j=0; ALWAYS(j<pCsr->nSegment); j++){
- pSeg = pCsr->apSegment[j];
- if( pSeg->iIdx==i ) break;
- }
- assert( j<pCsr->nSegment && pSeg->iIdx==i );
-
- if( pSeg->aNode==0 ){
- /* Seg-reader is at EOF. Remove the entire input segment. */
- rc = fts3DeleteSegment(p, pSeg);
- if( rc==SQLITE_OK ){
- rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
- }
- *pnRem = 0;
- }else{
- /* The incremental merge did not copy all the data from this
- ** segment to the upper level. The segment is modified in place
- ** so that it contains no keys smaller than zTerm/nTerm. */
- const char *zTerm = pSeg->zTerm;
- int nTerm = pSeg->nTerm;
- rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
- nRem++;
- }
- }
-
- if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
- rc = fts3RepackSegdirLevel(p, iAbsLevel);
- }
-
- *pnRem = nRem;
- return rc;
-}
-
-/*
-** Store an incr-merge hint in the database.
-*/
-static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
- sqlite3_stmt *pReplace = 0;
- int rc; /* Return code */
-
- rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
- if( rc==SQLITE_OK ){
- sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
- sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
- sqlite3_step(pReplace);
- rc = sqlite3_reset(pReplace);
- }
-
- return rc;
-}
-
-/*
-** Load an incr-merge hint from the database. The incr-merge hint, if one
-** exists, is stored in the rowid==1 row of the %_stat table.
-**
-** If successful, populate blob *pHint with the value read from the %_stat
-** table and return SQLITE_OK. Otherwise, if an error occurs, return an
-** SQLite error code.
-*/
-static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
- sqlite3_stmt *pSelect = 0;
- int rc;
-
- pHint->n = 0;
- rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
- if( rc==SQLITE_OK ){
- int rc2;
- sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
- if( SQLITE_ROW==sqlite3_step(pSelect) ){
- const char *aHint = sqlite3_column_blob(pSelect, 0);
- int nHint = sqlite3_column_bytes(pSelect, 0);
- if( aHint ){
- blobGrowBuffer(pHint, nHint, &rc);
- if( rc==SQLITE_OK ){
- memcpy(pHint->a, aHint, nHint);
- pHint->n = nHint;
- }
- }
- }
- rc2 = sqlite3_reset(pSelect);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- return rc;
-}
-
-/*
-** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
-** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
-** consists of two varints, the absolute level number of the input segments
-** and the number of input segments.
-**
-** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
-** set *pRc to an SQLite error code before returning.
-*/
-static void fts3IncrmergeHintPush(
- Blob *pHint, /* Hint blob to append to */
- i64 iAbsLevel, /* First varint to store in hint */
- int nInput, /* Second varint to store in hint */
- int *pRc /* IN/OUT: Error code */
-){
- blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
- if( *pRc==SQLITE_OK ){
- pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
- pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
- }
-}
-
-/*
-** Read the last entry (most recently pushed) from the hint blob *pHint
-** and then remove the entry. Write the two values read to *piAbsLevel and
-** *pnInput before returning.
-**
-** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
-** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
-*/
-static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
- const int nHint = pHint->n;
- int i;
-
- i = pHint->n-2;
- while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
- while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
-
- pHint->n = i;
- i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
- i += sqlite3Fts3GetVarint32(&pHint->a[i], pnInput);
- if( i!=nHint ) return SQLITE_CORRUPT_VTAB;
-
- return SQLITE_OK;
-}
-
-
-/*
-** Attempt an incremental merge that writes nMerge leaf blocks.
-**
-** Incremental merges happen nMin segments at a time. The two
-** segments to be merged are the nMin oldest segments (the ones with
-** the smallest indexes) in the highest level that contains at least
-** nMin segments. Multiple merges might occur in an attempt to write the
-** quota of nMerge leaf blocks.
-*/
-int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
- int rc; /* Return code */
- int nRem = nMerge; /* Number of leaf pages yet to be written */
- Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
- Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
- IncrmergeWriter *pWriter; /* Writer object */
- int nSeg = 0; /* Number of input segments */
- sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
- Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
- int bDirtyHint = 0; /* True if blob 'hint' has been modified */
-
- /* Allocate space for the cursor, filter and writer objects */
- const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
- pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc);
- if( !pWriter ) return SQLITE_NOMEM;
- pFilter = (Fts3SegFilter *)&pWriter[1];
- pCsr = (Fts3MultiSegReader *)&pFilter[1];
-
- rc = fts3IncrmergeHintLoad(p, &hint);
- while( rc==SQLITE_OK && nRem>0 ){
- const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
- sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
- int bUseHint = 0; /* True if attempting to append */
-
- /* Search the %_segdir table for the absolute level with the smallest
- ** relative level number that contains at least nMin segments, if any.
- ** If one is found, set iAbsLevel to the absolute level number and
- ** nSeg to nMin. If no level with at least nMin segments can be found,
- ** set nSeg to -1.
- */
- rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
- sqlite3_bind_int(pFindLevel, 1, nMin);
- if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
- iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
- nSeg = nMin;
- }else{
- nSeg = -1;
- }
- rc = sqlite3_reset(pFindLevel);
-
- /* If the hint read from the %_stat table is not empty, check if the
- ** last entry in it specifies a relative level smaller than or equal
- ** to the level identified by the block above (if any). If so, this
- ** iteration of the loop will work on merging at the hinted level.
- */
- if( rc==SQLITE_OK && hint.n ){
- int nHint = hint.n;
- sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
- int nHintSeg = 0; /* Hint number of segments */
-
- rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
- if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
- iAbsLevel = iHintAbsLevel;
- nSeg = nHintSeg;
- bUseHint = 1;
- bDirtyHint = 1;
- }else{
- /* This undoes the effect of the HintPop() above - so that no entry
- ** is removed from the hint blob. */
- hint.n = nHint;
- }
- }
-
- /* If nSeg is less that zero, then there is no level with at least
- ** nMin segments and no hint in the %_stat table. No work to do.
- ** Exit early in this case. */
- if( nSeg<0 ) break;
-
- /* Open a cursor to iterate through the contents of the oldest nSeg
- ** indexes of absolute level iAbsLevel. If this cursor is opened using
- ** the 'hint' parameters, it is possible that there are less than nSeg
- ** segments available in level iAbsLevel. In this case, no work is
- ** done on iAbsLevel - fall through to the next iteration of the loop
- ** to start work on some other level. */
- memset(pWriter, 0, nAlloc);
- pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
- if( rc==SQLITE_OK ){
- rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
- }
- if( SQLITE_OK==rc && pCsr->nSegment==nSeg
- && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
- && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr))
- ){
- int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
- rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
- if( rc==SQLITE_OK ){
- if( bUseHint && iIdx>0 ){
- const char *zKey = pCsr->zTerm;
- int nKey = pCsr->nTerm;
- rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
- }else{
- rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
- }
- }
-
- if( rc==SQLITE_OK && pWriter->nLeafEst ){
- fts3LogMerge(nSeg, iAbsLevel);
- do {
- rc = fts3IncrmergeAppend(p, pWriter, pCsr);
- if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
- if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
- }while( rc==SQLITE_ROW );
-
- /* Update or delete the input segments */
- if( rc==SQLITE_OK ){
- nRem -= (1 + pWriter->nWork);
- rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
- if( nSeg!=0 ){
- bDirtyHint = 1;
- fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
- }
- }
- }
-
- fts3IncrmergeRelease(p, pWriter, &rc);
- }
-
- sqlite3Fts3SegReaderFinish(pCsr);
- }
-
- /* Write the hint values into the %_stat table for the next incr-merger */
- if( bDirtyHint && rc==SQLITE_OK ){
- rc = fts3IncrmergeHintStore(p, &hint);
- }
-
- sqlite3_free(pWriter);
- sqlite3_free(hint.a);
- return rc;
-}
-
-/*
-** Convert the text beginning at *pz into an integer and return
-** its value. Advance *pz to point to the first character past
-** the integer.
-*/
-static int fts3Getint(const char **pz){
- const char *z = *pz;
- int i = 0;
- while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0';
- *pz = z;
- return i;
-}
-
-/*
-** Process statements of the form:
-**
-** INSERT INTO table(table) VALUES('merge=A,B');
-**
-** A and B are integers that decode to be the number of leaf pages
-** written for the merge, and the minimum number of segments on a level
-** before it will be selected for a merge, respectively.
-*/
-static int fts3DoIncrmerge(
- Fts3Table *p, /* FTS3 table handle */
- const char *zParam /* Nul-terminated string containing "A,B" */
-){
- int rc;
- int nMin = (FTS3_MERGE_COUNT / 2);
- int nMerge = 0;
- const char *z = zParam;
-
- /* Read the first integer value */
- nMerge = fts3Getint(&z);
-
- /* If the first integer value is followed by a ',', read the second
- ** integer value. */
- if( z[0]==',' && z[1]!='\0' ){
- z++;
- nMin = fts3Getint(&z);
- }
-
- if( z[0]!='\0' || nMin<2 ){
- rc = SQLITE_ERROR;
- }else{
- rc = SQLITE_OK;
- if( !p->bHasStat ){
- assert( p->bFts4==0 );
- sqlite3Fts3CreateStatTable(&rc, p);
- }
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
- }
- sqlite3Fts3SegmentsClose(p);
- }
- return rc;
-}
-
-/*
-** Process statements of the form:
-**
-** INSERT INTO table(table) VALUES('automerge=X');
-**
-** where X is an integer. X==0 means to turn automerge off. X!=0 means
-** turn it on. The setting is persistent.
-*/
-static int fts3DoAutoincrmerge(
- Fts3Table *p, /* FTS3 table handle */
- const char *zParam /* Nul-terminated string containing boolean */
-){
- int rc = SQLITE_OK;
- sqlite3_stmt *pStmt = 0;
- p->bAutoincrmerge = fts3Getint(&zParam)!=0;
- if( !p->bHasStat ){
- assert( p->bFts4==0 );
- sqlite3Fts3CreateStatTable(&rc, p);
- if( rc ) return rc;
- }
- rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
- if( rc ) return rc;;
- sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
- sqlite3_bind_int(pStmt, 2, p->bAutoincrmerge);
- sqlite3_step(pStmt);
- rc = sqlite3_reset(pStmt);
- return rc;
-}
-
-/*
-** Return a 64-bit checksum for the FTS index entry specified by the
-** arguments to this function.
-*/
-static u64 fts3ChecksumEntry(
- const char *zTerm, /* Pointer to buffer containing term */
- int nTerm, /* Size of zTerm in bytes */
- int iLangid, /* Language id for current row */
- int iIndex, /* Index (0..Fts3Table.nIndex-1) */
- i64 iDocid, /* Docid for current row. */
- int iCol, /* Column number */
- int iPos /* Position */
-){
- int i;
- u64 ret = (u64)iDocid;
-
- ret += (ret<<3) + iLangid;
- ret += (ret<<3) + iIndex;
- ret += (ret<<3) + iCol;
- ret += (ret<<3) + iPos;
- for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
-
- return ret;
-}
-
-/*
-** Return a checksum of all entries in the FTS index that correspond to
-** language id iLangid. The checksum is calculated by XORing the checksums
-** of each individual entry (see fts3ChecksumEntry()) together.
-**
-** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
-** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
-** return value is undefined in this case.
-*/
-static u64 fts3ChecksumIndex(
- Fts3Table *p, /* FTS3 table handle */
- int iLangid, /* Language id to return cksum for */
- int iIndex, /* Index to cksum (0..p->nIndex-1) */
- int *pRc /* OUT: Return code */
-){
- Fts3SegFilter filter;
- Fts3MultiSegReader csr;
- int rc;
- u64 cksum = 0;
-
- assert( *pRc==SQLITE_OK );
-
- memset(&filter, 0, sizeof(filter));
- memset(&csr, 0, sizeof(csr));
- filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
- filter.flags |= FTS3_SEGMENT_SCAN;
-
- rc = sqlite3Fts3SegReaderCursor(
- p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
- );
- if( rc==SQLITE_OK ){
- rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
- }
-
- if( rc==SQLITE_OK ){
- while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
- char *pCsr = csr.aDoclist;
- char *pEnd = &pCsr[csr.nDoclist];
-
- i64 iDocid = 0;
- i64 iCol = 0;
- i64 iPos = 0;
-
- pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
- while( pCsr<pEnd ){
- i64 iVal = 0;
- pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
- if( pCsr<pEnd ){
- if( iVal==0 || iVal==1 ){
- iCol = 0;
- iPos = 0;
- if( iVal ){
- pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
- }else{
- pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
- iDocid += iVal;
- }
- }else{
- iPos += (iVal - 2);
- cksum = cksum ^ fts3ChecksumEntry(
- csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
- (int)iCol, (int)iPos
- );
- }
- }
- }
- }
- }
- sqlite3Fts3SegReaderFinish(&csr);
-
- *pRc = rc;
- return cksum;
-}
-
-/*
-** Check if the contents of the FTS index match the current contents of the
-** content table. If no error occurs and the contents do match, set *pbOk
-** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
-** to false before returning.
-**
-** If an error occurs (e.g. an OOM or IO error), return an SQLite error
-** code. The final value of *pbOk is undefined in this case.
-*/
-static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
- int rc = SQLITE_OK; /* Return code */
- u64 cksum1 = 0; /* Checksum based on FTS index contents */
- u64 cksum2 = 0; /* Checksum based on %_content contents */
- sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
-
- /* This block calculates the checksum according to the FTS index. */
- rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
- if( rc==SQLITE_OK ){
- int rc2;
- sqlite3_bind_int(pAllLangid, 1, p->nIndex);
- while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
- int iLangid = sqlite3_column_int(pAllLangid, 0);
- int i;
- for(i=0; i<p->nIndex; i++){
- cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
- }
- }
- rc2 = sqlite3_reset(pAllLangid);
- if( rc==SQLITE_OK ) rc = rc2;
- }
-
- /* This block calculates the checksum according to the %_content table */
- rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
- if( rc==SQLITE_OK ){
- sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
- sqlite3_stmt *pStmt = 0;
- char *zSql;
-
- zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
- sqlite3_free(zSql);
- }
-
- while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
- i64 iDocid = sqlite3_column_int64(pStmt, 0);
- int iLang = langidFromSelect(p, pStmt);
- int iCol;
-
- for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
- const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
- int nText = sqlite3_column_bytes(pStmt, iCol+1);
- sqlite3_tokenizer_cursor *pT = 0;
-
- rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText, &pT);
- while( rc==SQLITE_OK ){
- char const *zToken; /* Buffer containing token */
- int nToken = 0; /* Number of bytes in token */
- int iDum1 = 0, iDum2 = 0; /* Dummy variables */
- int iPos = 0; /* Position of token in zText */
-
- rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
- if( rc==SQLITE_OK ){
- int i;
- cksum2 = cksum2 ^ fts3ChecksumEntry(
- zToken, nToken, iLang, 0, iDocid, iCol, iPos
- );
- for(i=1; i<p->nIndex; i++){
- if( p->aIndex[i].nPrefix<=nToken ){
- cksum2 = cksum2 ^ fts3ChecksumEntry(
- zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
- );
- }
- }
- }
- }
- if( pT ) pModule->xClose(pT);
- if( rc==SQLITE_DONE ) rc = SQLITE_OK;
- }
- }
-
- sqlite3_finalize(pStmt);
- }
-
- *pbOk = (cksum1==cksum2);
- return rc;
-}
-
-/*
-** Run the integrity-check. If no error occurs and the current contents of
-** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
-** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
-**
-** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
-** error code.
-**
-** The integrity-check works as follows. For each token and indexed token
-** prefix in the document set, a 64-bit checksum is calculated (by code
-** in fts3ChecksumEntry()) based on the following:
-**
-** + The index number (0 for the main index, 1 for the first prefix
-** index etc.),
-** + The token (or token prefix) text itself,
-** + The language-id of the row it appears in,
-** + The docid of the row it appears in,
-** + The column it appears in, and
-** + The tokens position within that column.
-**
-** The checksums for all entries in the index are XORed together to create
-** a single checksum for the entire index.
-**
-** The integrity-check code calculates the same checksum in two ways:
-**
-** 1. By scanning the contents of the FTS index, and
-** 2. By scanning and tokenizing the content table.
-**
-** If the two checksums are identical, the integrity-check is deemed to have
-** passed.
-*/
-static int fts3DoIntegrityCheck(
- Fts3Table *p /* FTS3 table handle */
-){
- int rc;
- int bOk = 0;
- rc = fts3IntegrityCheck(p, &bOk);
- if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB;
- return rc;
-}
-
-/*
-** Handle a 'special' INSERT of the form:
-**
-** "INSERT INTO tbl(tbl) VALUES(<expr>)"
-**
-** Argument pVal contains the result of <expr>. Currently the only
-** meaningful value to insert is the text 'optimize'.
-*/
-static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
- int rc; /* Return Code */
- const char *zVal = (const char *)sqlite3_value_text(pVal);
- int nVal = sqlite3_value_bytes(pVal);
-
- if( !zVal ){
- return SQLITE_NOMEM;
- }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
- rc = fts3DoOptimize(p, 0);
- }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
- rc = fts3DoRebuild(p);
- }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
- rc = fts3DoIntegrityCheck(p);
- }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
- rc = fts3DoIncrmerge(p, &zVal[6]);
- }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
- rc = fts3DoAutoincrmerge(p, &zVal[10]);
-#ifdef SQLITE_TEST
- }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
- p->nNodeSize = atoi(&zVal[9]);
- rc = SQLITE_OK;
- }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
- p->nMaxPendingData = atoi(&zVal[11]);
- rc = SQLITE_OK;
-#endif
- }else{
- rc = SQLITE_ERROR;
- }
-
- return rc;
-}
-
-#ifndef SQLITE_DISABLE_FTS4_DEFERRED
-/*
-** Delete all cached deferred doclists. Deferred doclists are cached
-** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
-*/
-void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
- Fts3DeferredToken *pDef;
- for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
- fts3PendingListDelete(pDef->pList);
- pDef->pList = 0;
- }
-}
-
-/*
-** Free all entries in the pCsr->pDeffered list. Entries are added to
-** this list using sqlite3Fts3DeferToken().
-*/
-void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
- Fts3DeferredToken *pDef;
- Fts3DeferredToken *pNext;
- for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
- pNext = pDef->pNext;
- fts3PendingListDelete(pDef->pList);
- sqlite3_free(pDef);
- }
- pCsr->pDeferred = 0;
-}
-
-/*
-** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
-** based on the row that pCsr currently points to.
-**
-** A deferred-doclist is like any other doclist with position information
-** included, except that it only contains entries for a single row of the
-** table, not for all rows.
-*/
-int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
- int rc = SQLITE_OK; /* Return code */
- if( pCsr->pDeferred ){
- int i; /* Used to iterate through table columns */
- sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
- Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
-
- Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
- sqlite3_tokenizer *pT = p->pTokenizer;
- sqlite3_tokenizer_module const *pModule = pT->pModule;
-
- assert( pCsr->isRequireSeek==0 );
- iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
-
- for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
- const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
- sqlite3_tokenizer_cursor *pTC = 0;
-
- rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
- while( rc==SQLITE_OK ){
- char const *zToken; /* Buffer containing token */
- int nToken = 0; /* Number of bytes in token */
- int iDum1 = 0, iDum2 = 0; /* Dummy variables */
- int iPos = 0; /* Position of token in zText */
-
- rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
- for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
- Fts3PhraseToken *pPT = pDef->pToken;
- if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
- && (pPT->bFirst==0 || iPos==0)
- && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
- && (0==memcmp(zToken, pPT->z, pPT->n))
- ){
- fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
- }
- }
- }
- if( pTC ) pModule->xClose(pTC);
- if( rc==SQLITE_DONE ) rc = SQLITE_OK;
- }
-
- for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
- if( pDef->pList ){
- rc = fts3PendingListAppendVarint(&pDef->pList, 0);
- }
- }
- }
-
- return rc;
-}
-
-int sqlite3Fts3DeferredTokenList(
- Fts3DeferredToken *p,
- char **ppData,
- int *pnData
-){
- char *pRet;
- int nSkip;
- sqlite3_int64 dummy;
-
- *ppData = 0;
- *pnData = 0;
-
- if( p->pList==0 ){
- return SQLITE_OK;
- }
-
- pRet = (char *)sqlite3_malloc(p->pList->nData);
- if( !pRet ) return SQLITE_NOMEM;
-
- nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
- *pnData = p->pList->nData - nSkip;
- *ppData = pRet;
-
- memcpy(pRet, &p->pList->aData[nSkip], *pnData);
- return SQLITE_OK;
-}
-
-/*
-** Add an entry for token pToken to the pCsr->pDeferred list.
-*/
-int sqlite3Fts3DeferToken(
- Fts3Cursor *pCsr, /* Fts3 table cursor */
- Fts3PhraseToken *pToken, /* Token to defer */
- int iCol /* Column that token must appear in (or -1) */
-){
- Fts3DeferredToken *pDeferred;
- pDeferred = sqlite3_malloc(sizeof(*pDeferred));
- if( !pDeferred ){
- return SQLITE_NOMEM;
- }
- memset(pDeferred, 0, sizeof(*pDeferred));
- pDeferred->pToken = pToken;
- pDeferred->pNext = pCsr->pDeferred;
- pDeferred->iCol = iCol;
- pCsr->pDeferred = pDeferred;
-
- assert( pToken->pDeferred==0 );
- pToken->pDeferred = pDeferred;
-
- return SQLITE_OK;
-}
-#endif
-
-/*
-** SQLite value pRowid contains the rowid of a row that may or may not be
-** present in the FTS3 table. If it is, delete it and adjust the contents
-** of subsiduary data structures accordingly.
-*/
-static int fts3DeleteByRowid(
- Fts3Table *p,
- sqlite3_value *pRowid,
- int *pnChng, /* IN/OUT: Decrement if row is deleted */
- u32 *aSzDel
-){
- int rc = SQLITE_OK; /* Return code */
- int bFound = 0; /* True if *pRowid really is in the table */
-
- fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
- if( bFound && rc==SQLITE_OK ){
- int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
- rc = fts3IsEmpty(p, pRowid, &isEmpty);
- if( rc==SQLITE_OK ){
- if( isEmpty ){
- /* Deleting this row means the whole table is empty. In this case
- ** delete the contents of all three tables and throw away any
- ** data in the pendingTerms hash table. */
- rc = fts3DeleteAll(p, 1);
- *pnChng = 0;
- memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
- }else{
- *pnChng = *pnChng - 1;
- if( p->zContentTbl==0 ){
- fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
- }
- if( p->bHasDocsize ){
- fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
- }
- }
- }
- }
-
- return rc;
-}
-
-/*
-** This function does the work for the xUpdate method of FTS3 virtual
-** tables. The schema of the virtual table being:
-**
-** CREATE TABLE <table name>(
-** <user columns>,
-** <table name> HIDDEN,
-** docid HIDDEN,
-** <langid> HIDDEN
-** );
-**
-**
-*/
-int sqlite3Fts3UpdateMethod(
- sqlite3_vtab *pVtab, /* FTS3 vtab object */
- int nArg, /* Size of argument array */
- sqlite3_value **apVal, /* Array of arguments */
- sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
-){
- Fts3Table *p = (Fts3Table *)pVtab;
- int rc = SQLITE_OK; /* Return Code */
- int isRemove = 0; /* True for an UPDATE or DELETE */
- u32 *aSzIns = 0; /* Sizes of inserted documents */
- u32 *aSzDel = 0; /* Sizes of deleted documents */
- int nChng = 0; /* Net change in number of documents */
- int bInsertDone = 0;
-
- assert( p->pSegments==0 );
- assert(
- nArg==1 /* DELETE operations */
- || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
- );
-
- /* Check for a "special" INSERT operation. One of the form:
- **
- ** INSERT INTO xyz(xyz) VALUES('command');
- */
- if( nArg>1
- && sqlite3_value_type(apVal[0])==SQLITE_NULL
- && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
- ){
- rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
- goto update_out;
- }
-
- if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
- rc = SQLITE_CONSTRAINT;
- goto update_out;
- }
-
- /* Allocate space to hold the change in document sizes */
- aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 );
- if( aSzDel==0 ){
- rc = SQLITE_NOMEM;
- goto update_out;
- }
- aSzIns = &aSzDel[p->nColumn+1];
- memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
-
- /* If this is an INSERT operation, or an UPDATE that modifies the rowid
- ** value, then this operation requires constraint handling.
- **
- ** If the on-conflict mode is REPLACE, this means that the existing row
- ** should be deleted from the database before inserting the new row. Or,
- ** if the on-conflict mode is other than REPLACE, then this method must
- ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
- ** modify the database file.
- */
- if( nArg>1 && p->zContentTbl==0 ){
- /* Find the value object that holds the new rowid value. */
- sqlite3_value *pNewRowid = apVal[3+p->nColumn];
- if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
- pNewRowid = apVal[1];
- }
-
- if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
- sqlite3_value_type(apVal[0])==SQLITE_NULL
- || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
- )){
- /* The new rowid is not NULL (in this case the rowid will be
- ** automatically assigned and there is no chance of a conflict), and
- ** the statement is either an INSERT or an UPDATE that modifies the
- ** rowid column. So if the conflict mode is REPLACE, then delete any
- ** existing row with rowid=pNewRowid.
- **
- ** Or, if the conflict mode is not REPLACE, insert the new record into
- ** the %_content table. If we hit the duplicate rowid constraint (or any
- ** other error) while doing so, return immediately.
- **
- ** This branch may also run if pNewRowid contains a value that cannot
- ** be losslessly converted to an integer. In this case, the eventual
- ** call to fts3InsertData() (either just below or further on in this
- ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
- ** invoked, it will delete zero rows (since no row will have
- ** docid=$pNewRowid if $pNewRowid is not an integer value).
- */
- if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
- rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
- }else{
- rc = fts3InsertData(p, apVal, pRowid);
- bInsertDone = 1;
- }
- }
- }
- if( rc!=SQLITE_OK ){
- goto update_out;
- }
-
- /* If this is a DELETE or UPDATE operation, remove the old record. */
- if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
- assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
- rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
- isRemove = 1;
- }
-
- /* If this is an INSERT or UPDATE operation, insert the new record. */
- if( nArg>1 && rc==SQLITE_OK ){
- int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
- if( bInsertDone==0 ){
- rc = fts3InsertData(p, apVal, pRowid);
- if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
- rc = FTS_CORRUPT_VTAB;
- }
- }
- if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
- rc = fts3PendingTermsDocid(p, iLangid, *pRowid);
- }
- if( rc==SQLITE_OK ){
- assert( p->iPrevDocid==*pRowid );
- rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
- }
- if( p->bHasDocsize ){
- fts3InsertDocsize(&rc, p, aSzIns);
- }
- nChng++;
- }
-
- if( p->bFts4 ){
- fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
- }
-
- update_out:
- sqlite3_free(aSzDel);
- sqlite3Fts3SegmentsClose(p);
- return rc;
-}
-
-/*
-** Flush any data in the pending-terms hash table to disk. If successful,
-** merge all segments in the database (including the new segment, if
-** there was any data to flush) into a single segment.
-*/
-int sqlite3Fts3Optimize(Fts3Table *p){
- int rc;
- rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
- if( rc==SQLITE_OK ){
- rc = fts3DoOptimize(p, 1);
- if( rc==SQLITE_OK || rc==SQLITE_DONE ){
- int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
- if( rc2!=SQLITE_OK ) rc = rc2;
- }else{
- sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
- sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
- }
- }
- sqlite3Fts3SegmentsClose(p);
- return rc;
-}
-
-#endif
diff --git a/src/libtracker-fts/fts5.c b/src/libtracker-fts/fts5.c
new file mode 100644
index 000000000..5e2fb1471
--- /dev/null
+++ b/src/libtracker-fts/fts5.c
@@ -0,0 +1,20402 @@
+
+
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5)
+
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
+# define NDEBUG 1
+#endif
+#if defined(NDEBUG) && defined(SQLITE_DEBUG)
+# undef NDEBUG
+#endif
+
+#line 1 "fts5.h"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+#include "sqlite3.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. The exception is if the table was created
+** with the offsets=0 option specified. In this case *piOff is always
+** set to -1.
+**
+** Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM)
+** if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. For each row visited, the callback function
+** passed as the fourth argument is invoked. The context and API objects
+** passed to the callback function may be used to access the properties of
+** each matched row. Invoking Api.xUserData() returns a copy of the pointer
+** passed as the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension functions
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** of the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function, an
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 3 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and inititalize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, the
+** In the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** In this case, when tokenizing query text, the tokenizer may
+** provide multiple synonyms for a single term within the document.
+** FTS5 then queries the index for each synonym individually. For
+** example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entires in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is subsituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (2)) or query
+** text (method (3)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppContext,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
+
+#line 1 "fts5Int.h"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+#ifndef _FTS5INT_H
+#define _FTS5INT_H
+
+/* #include "fts5.h" */
+#include "sqlite3ext.h"
+SQLITE_EXTENSION_INIT1
+
+#include <string.h>
+#include <assert.h>
+
+#ifndef SQLITE_AMALGAMATION
+
+typedef unsigned char u8;
+typedef unsigned int u32;
+typedef unsigned short u16;
+typedef short i16;
+typedef sqlite3_int64 i64;
+typedef sqlite3_uint64 u64;
+
+#define ArraySize(x) ((int)(sizeof(x) / sizeof(x[0])))
+
+#define testcase(x)
+#define ALWAYS(x) 1
+#define NEVER(x) 0
+
+#define MIN(x,y) (((x) < (y)) ? (x) : (y))
+#define MAX(x,y) (((x) > (y)) ? (x) : (y))
+
+/*
+** Constants for the largest and smallest possible 64-bit signed integers.
+*/
+# define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+# define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
+
+#endif
+
+
+/*
+** Maximum number of prefix indexes on single FTS5 table. This must be
+** less than 32. If it is set to anything large than that, an #error
+** directive in fts5_index.c will cause the build to fail.
+*/
+#define FTS5_MAX_PREFIX_INDEXES 31
+
+#define FTS5_DEFAULT_NEARDIST 10
+#define FTS5_DEFAULT_RANK "bm25"
+
+/* Name of rank and rowid columns */
+#define FTS5_RANK_NAME "rank"
+#define FTS5_ROWID_NAME "rowid"
+
+#ifdef SQLITE_DEBUG
+# define FTS5_CORRUPT sqlite3Fts5Corrupt()
+static int sqlite3Fts5Corrupt(void);
+#else
+# define FTS5_CORRUPT SQLITE_CORRUPT_VTAB
+#endif
+
+/*
+** The assert_nc() macro is similar to the assert() macro, except that it
+** is used for assert() conditions that are true only if it can be
+** guranteed that the database is not corrupt.
+*/
+#ifdef SQLITE_DEBUG
+extern int sqlite3_fts5_may_be_corrupt;
+# define assert_nc(x) assert(sqlite3_fts5_may_be_corrupt || (x))
+#else
+# define assert_nc(x) assert(x)
+#endif
+
+/* Mark a function parameter as unused, to suppress nuisance compiler
+** warnings. */
+#ifndef UNUSED_PARAM
+# define UNUSED_PARAM(X) (void)(X)
+#endif
+
+#ifndef UNUSED_PARAM2
+# define UNUSED_PARAM2(X, Y) (void)(X), (void)(Y)
+#endif
+
+typedef struct Fts5Global Fts5Global;
+typedef struct Fts5Colset Fts5Colset;
+
+/* If a NEAR() clump or phrase may only match a specific set of columns,
+** then an object of the following type is used to record the set of columns.
+** Each entry in the aiCol[] array is a column that may be matched.
+**
+** This object is used by fts5_expr.c and fts5_index.c.
+*/
+struct Fts5Colset {
+ int nCol;
+ int aiCol[1];
+};
+
+
+
+/**************************************************************************
+** Interface to code in fts5_config.c. fts5_config.c contains contains code
+** to parse the arguments passed to the CREATE VIRTUAL TABLE statement.
+*/
+
+typedef struct Fts5Config Fts5Config;
+
+/*
+** An instance of the following structure encodes all information that can
+** be gleaned from the CREATE VIRTUAL TABLE statement.
+**
+** And all information loaded from the %_config table.
+**
+** nAutomerge:
+** The minimum number of segments that an auto-merge operation should
+** attempt to merge together. A value of 1 sets the object to use the
+** compile time default. Zero disables auto-merge altogether.
+**
+** zContent:
+**
+** zContentRowid:
+** The value of the content_rowid= option, if one was specified. Or
+** the string "rowid" otherwise. This text is not quoted - if it is
+** used as part of an SQL statement it needs to be quoted appropriately.
+**
+** zContentExprlist:
+**
+** pzErrmsg:
+** This exists in order to allow the fts5_index.c module to return a
+** decent error message if it encounters a file-format version it does
+** not understand.
+**
+** bColumnsize:
+** True if the %_docsize table is created.
+**
+** bPrefixIndex:
+** This is only used for debugging. If set to false, any prefix indexes
+** are ignored. This value is configured using:
+**
+** INSERT INTO tbl(tbl, rank) VALUES('prefix-index', $bPrefixIndex);
+**
+*/
+struct Fts5Config {
+ sqlite3 *db; /* Database handle */
+ char *zDb; /* Database holding FTS index (e.g. "main") */
+ char *zName; /* Name of FTS index */
+ int nCol; /* Number of columns */
+ char **azCol; /* Column names */
+ u8 *abUnindexed; /* True for unindexed columns */
+ int nPrefix; /* Number of prefix indexes */
+ int *aPrefix; /* Sizes in bytes of nPrefix prefix indexes */
+ int eContent; /* An FTS5_CONTENT value */
+ char *zContent; /* content table */
+ char *zContentRowid; /* "content_rowid=" option value */
+ int bColumnsize; /* "columnsize=" option value (dflt==1) */
+ int eDetail; /* FTS5_DETAIL_XXX value */
+ char *zContentExprlist;
+ Fts5Tokenizer *pTok;
+ fts5_tokenizer *pTokApi;
+
+ /* Values loaded from the %_config table */
+ int iCookie; /* Incremented when %_config is modified */
+ int pgsz; /* Approximate page size used in %_data */
+ int nAutomerge; /* 'automerge' setting */
+ int nCrisisMerge; /* Maximum allowed segments per level */
+ int nHashSize; /* Bytes of memory for in-memory hash */
+ char *zRank; /* Name of rank function */
+ char *zRankArgs; /* Arguments to rank function */
+
+ /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
+ char **pzErrmsg;
+
+#ifdef SQLITE_DEBUG
+ int bPrefixIndex; /* True to use prefix-indexes */
+#endif
+};
+
+/* Current expected value of %_config table 'version' field */
+#define FTS5_CURRENT_VERSION 4
+
+#define FTS5_CONTENT_NORMAL 0
+#define FTS5_CONTENT_NONE 1
+#define FTS5_CONTENT_EXTERNAL 2
+
+#define FTS5_DETAIL_FULL 0
+#define FTS5_DETAIL_NONE 1
+#define FTS5_DETAIL_COLUMNS 2
+
+
+
+static int sqlite3Fts5ConfigParse(
+ Fts5Global*, sqlite3*, int, const char **, Fts5Config**, char**
+);
+static void sqlite3Fts5ConfigFree(Fts5Config*);
+
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig);
+
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+);
+
+static void sqlite3Fts5Dequote(char *z);
+
+/* Load the contents of the %_config table */
+static int sqlite3Fts5ConfigLoad(Fts5Config*, int);
+
+/* Set the value of a single config attribute */
+static int sqlite3Fts5ConfigSetValue(Fts5Config*, const char*, sqlite3_value*, int*);
+
+static int sqlite3Fts5ConfigParseRank(const char*, char**, char**);
+
+/*
+** End of interface to code in fts5_config.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_buffer.c.
+*/
+
+/*
+** Buffer object for the incremental building of string data.
+*/
+typedef struct Fts5Buffer Fts5Buffer;
+struct Fts5Buffer {
+ u8 *p;
+ int n;
+ int nSpace;
+};
+
+static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, u32);
+static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
+static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, u32, const u8*);
+static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
+static void sqlite3Fts5BufferFree(Fts5Buffer*);
+static void sqlite3Fts5BufferZero(Fts5Buffer*);
+static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
+static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);
+
+#define fts5BufferZero(x) sqlite3Fts5BufferZero(x)
+#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
+#define fts5BufferFree(a) sqlite3Fts5BufferFree(a)
+#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
+#define fts5BufferSet(a,b,c,d) sqlite3Fts5BufferSet(a,b,c,d)
+
+#define fts5BufferGrow(pRc,pBuf,nn) ( \
+ (u32)((pBuf)->n) + (u32)(nn) <= (u32)((pBuf)->nSpace) ? 0 : \
+ sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
+)
+
+/* Write and decode big-endian 32-bit integer values */
+static void sqlite3Fts5Put32(u8*, int);
+static int sqlite3Fts5Get32(const u8*);
+
+#define FTS5_POS2COLUMN(iPos) (int)(iPos >> 32)
+#define FTS5_POS2OFFSET(iPos) (int)(iPos & 0xFFFFFFFF)
+
+typedef struct Fts5PoslistReader Fts5PoslistReader;
+struct Fts5PoslistReader {
+ /* Variables used only by sqlite3Fts5PoslistIterXXX() functions. */
+ const u8 *a; /* Position list to iterate through */
+ int n; /* Size of buffer at a[] in bytes */
+ int i; /* Current offset in a[] */
+
+ u8 bFlag; /* For client use (any custom purpose) */
+
+ /* Output variables */
+ u8 bEof; /* Set to true at EOF */
+ i64 iPos; /* (iCol<<32) + iPos */
+};
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+);
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);
+
+typedef struct Fts5PoslistWriter Fts5PoslistWriter;
+struct Fts5PoslistWriter {
+ i64 iPrev;
+};
+static int sqlite3Fts5PoslistWriterAppend(Fts5Buffer*, Fts5PoslistWriter*, i64);
+static void sqlite3Fts5PoslistSafeAppend(Fts5Buffer*, i64*, i64);
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+);
+
+/* Malloc utility */
+static void *sqlite3Fts5MallocZero(int *pRc, int nByte);
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn);
+
+/* Character set tests (like isspace(), isalpha() etc.) */
+static int sqlite3Fts5IsBareword(char t);
+
+
+/* Bucket of terms object used by the integrity-check in offsets=0 mode. */
+typedef struct Fts5Termset Fts5Termset;
+static int sqlite3Fts5TermsetNew(Fts5Termset**);
+static int sqlite3Fts5TermsetAdd(Fts5Termset*, int, const char*, int, int *pbPresent);
+static void sqlite3Fts5TermsetFree(Fts5Termset*);
+
+/*
+** End of interface to code in fts5_buffer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_index.c. fts5_index.c contains contains code
+** to access the data stored in the %_data table.
+*/
+
+typedef struct Fts5Index Fts5Index;
+typedef struct Fts5IndexIter Fts5IndexIter;
+
+struct Fts5IndexIter {
+ i64 iRowid;
+ const u8 *pData;
+ int nData;
+ u8 bEof;
+};
+
+#define sqlite3Fts5IterEof(x) ((x)->bEof)
+
+/*
+** Values used as part of the flags argument passed to IndexQuery().
+*/
+#define FTS5INDEX_QUERY_PREFIX 0x0001 /* Prefix query */
+#define FTS5INDEX_QUERY_DESC 0x0002 /* Docs in descending rowid order */
+#define FTS5INDEX_QUERY_TEST_NOIDX 0x0004 /* Do not use prefix index */
+#define FTS5INDEX_QUERY_SCAN 0x0008 /* Scan query (fts5vocab) */
+
+/* The following are used internally by the fts5_index.c module. They are
+** defined here only to make it easier to avoid clashes with the flags
+** above. */
+#define FTS5INDEX_QUERY_SKIPEMPTY 0x0010
+#define FTS5INDEX_QUERY_NOOUTPUT 0x0020
+
+/*
+** Create/destroy an Fts5Index object.
+*/
+static int sqlite3Fts5IndexOpen(Fts5Config *pConfig, int bCreate, Fts5Index**, char**);
+static int sqlite3Fts5IndexClose(Fts5Index *p);
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+);
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+);
+
+/*
+** Open a new iterator to iterate though all rowids that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+);
+
+/*
+** The various operations on open token or token prefix iterators opened
+** using sqlite3Fts5IndexQuery().
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter*);
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
+
+/*
+** Close an iterator opened by sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter*);
+
+/*
+** This interface is used by the fts5vocab module.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter*, int*);
+static int sqlite3Fts5IterNextScan(Fts5IndexIter*);
+
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Indicate that subsequent calls to sqlite3Fts5IndexWrite() pertain to
+** document iDocid.
+*/
+static int sqlite3Fts5IndexBeginWrite(
+ Fts5Index *p, /* Index to write to */
+ int bDelete, /* True if current operation is a delete */
+ i64 iDocid /* Docid to add or remove data from */
+);
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+** If the bCommit flag is true, also close any open blob handles.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit);
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p);
+
+/*
+** Get or set the "averages" values.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);
+
+/*
+** Functions called by the storage module as part of integrity-check.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index*, u64 cksum);
+
+/*
+** Called during virtual module initialization to register UDF
+** fts5_decode() with SQLite
+*/
+static int sqlite3Fts5IndexInit(sqlite3*);
+
+static int sqlite3Fts5IndexSetCookie(Fts5Index*, int);
+
+/*
+** Return the total number of entries read from the %_data table by
+** this connection since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p);
+
+static int sqlite3Fts5IndexReinit(Fts5Index *p);
+static int sqlite3Fts5IndexOptimize(Fts5Index *p);
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge);
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p);
+
+/*
+** End of interface to code in fts5_index.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_varint.c.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v);
+static int sqlite3Fts5GetVarintLen(u32 iVal);
+static u8 sqlite3Fts5GetVarint(const unsigned char*, u64*);
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v);
+
+#define fts5GetVarint32(a,b) sqlite3Fts5GetVarint32(a,(u32*)&b)
+#define fts5GetVarint sqlite3Fts5GetVarint
+
+#define fts5FastGetVarint32(a, iOff, nVal) { \
+ nVal = (a)[iOff++]; \
+ if( nVal & 0x80 ){ \
+ iOff--; \
+ iOff += fts5GetVarint32(&(a)[iOff], nVal); \
+ } \
+}
+
+
+/*
+** End of interface to code in fts5_varint.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5.c.
+*/
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global*,
+ const char **azArg,
+ int nArg,
+ Fts5Tokenizer**,
+ fts5_tokenizer**,
+ char **pzErr
+);
+
+static Fts5Index *sqlite3Fts5IndexFromCsrid(Fts5Global*, i64, Fts5Config **);
+
+/*
+** End of interface to code in fts5.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_hash.c.
+*/
+typedef struct Fts5Hash Fts5Hash;
+
+/*
+** Create a hash table, free a hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config*, Fts5Hash**, int *pnSize);
+static void sqlite3Fts5HashFree(Fts5Hash*);
+
+static int sqlite3Fts5HashWrite(
+ Fts5Hash*,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte,
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+);
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash*);
+
+static int sqlite3Fts5HashQuery(
+ Fts5Hash*, /* Hash table to query */
+ const char *pTerm, int nTerm, /* Query term */
+ const u8 **ppDoclist, /* OUT: Pointer to doclist for pTerm */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+);
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash*, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+);
+static void sqlite3Fts5HashScanNext(Fts5Hash*);
+static int sqlite3Fts5HashScanEof(Fts5Hash*);
+static void sqlite3Fts5HashScanEntry(Fts5Hash *,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+);
+
+
+/*
+** End of interface to code in fts5_hash.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_storage.c. fts5_storage.c contains contains
+** code to access the data stored in the %_content and %_docsize tables.
+*/
+
+#define FTS5_STMT_SCAN_ASC 0 /* SELECT rowid, * FROM ... ORDER BY 1 ASC */
+#define FTS5_STMT_SCAN_DESC 1 /* SELECT rowid, * FROM ... ORDER BY 1 DESC */
+#define FTS5_STMT_LOOKUP 2 /* SELECT rowid, * FROM ... WHERE rowid=? */
+
+typedef struct Fts5Storage Fts5Storage;
+
+static int sqlite3Fts5StorageOpen(Fts5Config*, Fts5Index*, int, Fts5Storage**, char**);
+static int sqlite3Fts5StorageClose(Fts5Storage *p);
+static int sqlite3Fts5StorageRename(Fts5Storage*, const char *zName);
+
+static int sqlite3Fts5DropAll(Fts5Config*);
+static int sqlite3Fts5CreateTable(Fts5Config*, const char*, const char*, int, char **);
+
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64, sqlite3_value**);
+static int sqlite3Fts5StorageContentInsert(Fts5Storage *p, sqlite3_value**, i64*);
+static int sqlite3Fts5StorageIndexInsert(Fts5Storage *p, sqlite3_value**, i64);
+
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p);
+
+static int sqlite3Fts5StorageStmt(Fts5Storage *p, int eStmt, sqlite3_stmt**, char**);
+static void sqlite3Fts5StorageStmtRelease(Fts5Storage *p, int eStmt, sqlite3_stmt*);
+
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol);
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnAvg);
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow);
+
+static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit);
+static int sqlite3Fts5StorageRollback(Fts5Storage *p);
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p, const char*, sqlite3_value*, int
+);
+
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p);
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p);
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p);
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge);
+
+/*
+** End of interface to code in fts5_storage.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to code in fts5_expr.c.
+*/
+typedef struct Fts5Expr Fts5Expr;
+typedef struct Fts5ExprNode Fts5ExprNode;
+typedef struct Fts5Parse Fts5Parse;
+typedef struct Fts5Token Fts5Token;
+typedef struct Fts5ExprPhrase Fts5ExprPhrase;
+typedef struct Fts5ExprNearset Fts5ExprNearset;
+
+struct Fts5Token {
+ const char *p; /* Token text (not NULL terminated) */
+ int n; /* Size of buffer p in bytes */
+};
+
+/* Parse a MATCH expression. */
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig,
+ const char *zExpr,
+ Fts5Expr **ppNew,
+ char **pzErr
+);
+
+/*
+** for(rc = sqlite3Fts5ExprFirst(pExpr, pIdx, bDesc);
+** rc==SQLITE_OK && 0==sqlite3Fts5ExprEof(pExpr);
+** rc = sqlite3Fts5ExprNext(pExpr)
+** ){
+** // The document with rowid iRowid matches the expression!
+** i64 iRowid = sqlite3Fts5ExprRowid(pExpr);
+** }
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr*, Fts5Index *pIdx, i64 iMin, int bDesc);
+static int sqlite3Fts5ExprNext(Fts5Expr*, i64 iMax);
+static int sqlite3Fts5ExprEof(Fts5Expr*);
+static i64 sqlite3Fts5ExprRowid(Fts5Expr*);
+
+static void sqlite3Fts5ExprFree(Fts5Expr*);
+
+/* Called during startup to register a UDF with SQLite */
+static int sqlite3Fts5ExprInit(Fts5Global*, sqlite3*);
+
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr*);
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr*, int iPhrase);
+static int sqlite3Fts5ExprPoslist(Fts5Expr*, int, const u8 **);
+
+typedef struct Fts5PoslistPopulator Fts5PoslistPopulator;
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr*, int);
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config*, Fts5Expr*, Fts5PoslistPopulator*, int, const char*, int
+);
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr*, i64);
+static void sqlite3Fts5ExprClearEof(Fts5Expr*);
+
+static int sqlite3Fts5ExprClonePhrase(Fts5Expr*, int, Fts5Expr**);
+
+static int sqlite3Fts5ExprPhraseCollist(Fts5Expr *, int, const u8 **, int *);
+
+/*******************************************
+** The fts5_expr.c API above this point is used by the other hand-written
+** C code in this module. The interfaces below this point are called by
+** the parser code in fts5parse.y. */
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...);
+
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse,
+ int eType,
+ Fts5ExprNode *pLeft,
+ Fts5ExprNode *pRight,
+ Fts5ExprNearset *pNear
+);
+
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse,
+ Fts5ExprPhrase *pPhrase,
+ Fts5Token *pToken,
+ int bPrefix
+);
+
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse*,
+ Fts5ExprNearset*,
+ Fts5ExprPhrase*
+);
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse*,
+ Fts5Colset*,
+ Fts5Token *
+);
+
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase*);
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset*);
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode*);
+
+static void sqlite3Fts5ParseSetDistance(Fts5Parse*, Fts5ExprNearset*, Fts5Token*);
+static void sqlite3Fts5ParseSetColset(Fts5Parse*, Fts5ExprNearset*, Fts5Colset*);
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p);
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token*);
+
+/*
+** End of interface to code in fts5_expr.c.
+**************************************************************************/
+
+
+
+/**************************************************************************
+** Interface to code in fts5_aux.c.
+*/
+
+static int sqlite3Fts5AuxInit(fts5_api*);
+/*
+** End of interface to code in fts5_aux.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_tokenizer.c.
+*/
+
+static int sqlite3Fts5TokenizerInit(fts5_api*);
+/*
+** End of interface to code in fts5_tokenizer.c.
+**************************************************************************/
+
+/**************************************************************************
+** Interface to code in fts5_vocab.c.
+*/
+
+static int sqlite3Fts5VocabInit(Fts5Global*, sqlite3*);
+
+/*
+** End of interface to code in fts5_vocab.c.
+**************************************************************************/
+
+
+/**************************************************************************
+** Interface to automatically generated code in fts5_unicode2.c.
+*/
+static int sqlite3Fts5UnicodeIsalnum(int c);
+static int sqlite3Fts5UnicodeIsdiacritic(int c);
+static int sqlite3Fts5UnicodeFold(int c, int bRemoveDiacritic);
+/*
+** End of interface to code in fts5_unicode2.c.
+**************************************************************************/
+
+#endif
+
+#line 1 "fts5parse.h"
+#define FTS5_OR 1
+#define FTS5_AND 2
+#define FTS5_NOT 3
+#define FTS5_TERM 4
+#define FTS5_COLON 5
+#define FTS5_LP 6
+#define FTS5_RP 7
+#define FTS5_LCP 8
+#define FTS5_RCP 9
+#define FTS5_STRING 10
+#define FTS5_COMMA 11
+#define FTS5_PLUS 12
+#define FTS5_STAR 13
+
+#line 1 "fts5parse.c"
+/*
+** 2000-05-29
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** Driver template for the LEMON parser generator.
+**
+** The "lemon" program processes an LALR(1) input grammar file, then uses
+** this template to construct a parser. The "lemon" program inserts text
+** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
+** interstitial "-" characters) contained in this template is changed into
+** the value of the %name directive from the grammar. Otherwise, the content
+** of this template is copied straight through into the generate parser
+** source file.
+**
+** The following is the concatenation of all %include directives from the
+** input grammar file:
+*/
+#include <stdio.h>
+/************ Begin %include sections from the grammar ************************/
+#line 47 "fts5parse.y"
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+/*
+** Disable all error recovery processing in the parser push-down
+** automaton.
+*/
+#define fts5YYNOERRORRECOVERY 1
+
+/*
+** Make fts5yytestcase() the same as testcase()
+*/
+#define fts5yytestcase(X) testcase(X)
+
+/*
+** Indicate that sqlite3ParserFree() will never be called with a null
+** pointer.
+*/
+#define fts5YYPARSEFREENOTNULL 1
+
+/*
+** Alternative datatype for the argument to the malloc() routine passed
+** into sqlite3ParserAlloc(). The default is size_t.
+*/
+#define fts5YYMALLOCARGTYPE u64
+
+#line 56 "fts5parse.c"
+/**************** End of %include directives **********************************/
+/* These constants specify the various numeric values for terminal symbols
+** in a format understandable to "makeheaders". This section is blank unless
+** "lemon" is run with the "-m" command-line option.
+***************** Begin makeheaders token definitions *************************/
+/**************** End makeheaders token definitions ***************************/
+
+/* The next sections is a series of control #defines.
+** various aspects of the generated parser.
+** fts5YYCODETYPE is the data type used to store the integer codes
+** that represent terminal and non-terminal symbols.
+** "unsigned char" is used if there are fewer than
+** 256 symbols. Larger types otherwise.
+** fts5YYNOCODE is a number of type fts5YYCODETYPE that is not used for
+** any terminal or nonterminal symbol.
+** fts5YYFALLBACK If defined, this indicates that one or more tokens
+** (also known as: "terminal symbols") have fall-back
+** values which should be used if the original symbol
+** would not parse. This permits keywords to sometimes
+** be used as identifiers, for example.
+** fts5YYACTIONTYPE is the data type used for "action codes" - numbers
+** that indicate what to do in response to the next
+** token.
+** sqlite3Fts5ParserFTS5TOKENTYPE is the data type used for minor type for terminal
+** symbols. Background: A "minor type" is a semantic
+** value associated with a terminal or non-terminal
+** symbols. For example, for an "ID" terminal symbol,
+** the minor type might be the name of the identifier.
+** Each non-terminal can have a different minor type.
+** Terminal symbols all have the same minor type, though.
+** This macros defines the minor type for terminal
+** symbols.
+** fts5YYMINORTYPE is the data type used for all minor types.
+** This is typically a union of many types, one of
+** which is sqlite3Fts5ParserFTS5TOKENTYPE. The entry in the union
+** for terminal symbols is called "fts5yy0".
+** fts5YYSTACKDEPTH is the maximum depth of the parser's stack. If
+** zero the stack is dynamically sized using realloc()
+** sqlite3Fts5ParserARG_SDECL A static variable declaration for the %extra_argument
+** sqlite3Fts5ParserARG_PDECL A parameter declaration for the %extra_argument
+** sqlite3Fts5ParserARG_STORE Code to store %extra_argument into fts5yypParser
+** sqlite3Fts5ParserARG_FETCH Code to extract %extra_argument from fts5yypParser
+** fts5YYERRORSYMBOL is the code number of the error symbol. If not
+** defined, then do no error processing.
+** fts5YYNSTATE the combined number of states.
+** fts5YYNRULE the number of rules in the grammar
+** fts5YY_MAX_SHIFT Maximum value for shift actions
+** fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
+** fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
+** fts5YY_MIN_REDUCE Maximum value for reduce actions
+** fts5YY_ERROR_ACTION The fts5yy_action[] code for syntax error
+** fts5YY_ACCEPT_ACTION The fts5yy_action[] code for accept
+** fts5YY_NO_ACTION The fts5yy_action[] code for no-op
+*/
+#ifndef INTERFACE
+# define INTERFACE 1
+#endif
+/************* Begin control #defines *****************************************/
+#define fts5YYCODETYPE unsigned char
+#define fts5YYNOCODE 27
+#define fts5YYACTIONTYPE unsigned char
+#define sqlite3Fts5ParserFTS5TOKENTYPE Fts5Token
+typedef union {
+ int fts5yyinit;
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yy0;
+ Fts5Colset* fts5yy3;
+ Fts5ExprPhrase* fts5yy11;
+ Fts5ExprNode* fts5yy18;
+ int fts5yy20;
+ Fts5ExprNearset* fts5yy26;
+} fts5YYMINORTYPE;
+#ifndef fts5YYSTACKDEPTH
+#define fts5YYSTACKDEPTH 100
+#endif
+#define sqlite3Fts5ParserARG_SDECL Fts5Parse *pParse;
+#define sqlite3Fts5ParserARG_PDECL ,Fts5Parse *pParse
+#define sqlite3Fts5ParserARG_FETCH Fts5Parse *pParse = fts5yypParser->pParse
+#define sqlite3Fts5ParserARG_STORE fts5yypParser->pParse = pParse
+#define fts5YYNSTATE 26
+#define fts5YYNRULE 24
+#define fts5YY_MAX_SHIFT 25
+#define fts5YY_MIN_SHIFTREDUCE 40
+#define fts5YY_MAX_SHIFTREDUCE 63
+#define fts5YY_MIN_REDUCE 64
+#define fts5YY_MAX_REDUCE 87
+#define fts5YY_ERROR_ACTION 88
+#define fts5YY_ACCEPT_ACTION 89
+#define fts5YY_NO_ACTION 90
+/************* End control #defines *******************************************/
+
+/* Define the fts5yytestcase() macro to be a no-op if is not already defined
+** otherwise.
+**
+** Applications can choose to define fts5yytestcase() in the %include section
+** to a macro that can assist in verifying code coverage. For production
+** code the fts5yytestcase() macro should be turned off. But it is useful
+** for testing.
+*/
+#ifndef fts5yytestcase
+# define fts5yytestcase(X)
+#endif
+
+
+/* Next are the tables used to determine what action to take based on the
+** current state and lookahead token. These tables are used to implement
+** functions that take a state number and lookahead value and return an
+** action integer.
+**
+** Suppose the action integer is N. Then the action is determined as
+** follows
+**
+** 0 <= N <= fts5YY_MAX_SHIFT Shift N. That is, push the lookahead
+** token onto the stack and goto state N.
+**
+** N between fts5YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
+** and fts5YY_MAX_SHIFTREDUCE reduce by rule N-fts5YY_MIN_SHIFTREDUCE.
+**
+** N between fts5YY_MIN_REDUCE Reduce by rule N-fts5YY_MIN_REDUCE
+** and fts5YY_MAX_REDUCE
+
+** N == fts5YY_ERROR_ACTION A syntax error has occurred.
+**
+** N == fts5YY_ACCEPT_ACTION The parser accepts its input.
+**
+** N == fts5YY_NO_ACTION No such action. Denotes unused
+** slots in the fts5yy_action[] table.
+**
+** The action table is constructed as a single large table named fts5yy_action[].
+** Given state S and lookahead X, the action is computed as
+**
+** fts5yy_action[ fts5yy_shift_ofst[S] + X ]
+**
+** If the index value fts5yy_shift_ofst[S]+X is out of range or if the value
+** fts5yy_lookahead[fts5yy_shift_ofst[S]+X] is not equal to X or if fts5yy_shift_ofst[S]
+** is equal to fts5YY_SHIFT_USE_DFLT, it means that the action is not in the table
+** and that fts5yy_default[S] should be used instead.
+**
+** The formula above is for computing the action when the lookahead is
+** a terminal symbol. If the lookahead is a non-terminal (as occurs after
+** a reduce action) then the fts5yy_reduce_ofst[] array is used in place of
+** the fts5yy_shift_ofst[] array and fts5YY_REDUCE_USE_DFLT is used in place of
+** fts5YY_SHIFT_USE_DFLT.
+**
+** The following are the tables generated in this section:
+**
+** fts5yy_action[] A single table containing all actions.
+** fts5yy_lookahead[] A table containing the lookahead for each entry in
+** fts5yy_action. Used to detect hash collisions.
+** fts5yy_shift_ofst[] For each state, the offset into fts5yy_action for
+** shifting terminals.
+** fts5yy_reduce_ofst[] For each state, the offset into fts5yy_action for
+** shifting non-terminals after a reduce.
+** fts5yy_default[] Default action for each state.
+**
+*********** Begin parsing tables **********************************************/
+#define fts5YY_ACTTAB_COUNT (78)
+static const fts5YYACTIONTYPE fts5yy_action[] = {
+ /* 0 */ 89, 15, 46, 5, 48, 24, 12, 19, 23, 14,
+ /* 10 */ 46, 5, 48, 24, 20, 21, 23, 43, 46, 5,
+ /* 20 */ 48, 24, 6, 18, 23, 17, 46, 5, 48, 24,
+ /* 30 */ 75, 7, 23, 25, 46, 5, 48, 24, 62, 47,
+ /* 40 */ 23, 48, 24, 7, 11, 23, 9, 3, 4, 2,
+ /* 50 */ 62, 50, 52, 44, 64, 3, 4, 2, 49, 4,
+ /* 60 */ 2, 1, 23, 11, 16, 9, 12, 2, 10, 61,
+ /* 70 */ 53, 59, 62, 60, 22, 13, 55, 8,
+};
+static const fts5YYCODETYPE fts5yy_lookahead[] = {
+ /* 0 */ 15, 16, 17, 18, 19, 20, 10, 11, 23, 16,
+ /* 10 */ 17, 18, 19, 20, 23, 24, 23, 16, 17, 18,
+ /* 20 */ 19, 20, 22, 23, 23, 16, 17, 18, 19, 20,
+ /* 30 */ 5, 6, 23, 16, 17, 18, 19, 20, 13, 17,
+ /* 40 */ 23, 19, 20, 6, 8, 23, 10, 1, 2, 3,
+ /* 50 */ 13, 9, 10, 7, 0, 1, 2, 3, 19, 2,
+ /* 60 */ 3, 6, 23, 8, 21, 10, 10, 3, 10, 25,
+ /* 70 */ 10, 10, 13, 25, 12, 10, 7, 5,
+};
+#define fts5YY_SHIFT_USE_DFLT (-5)
+#define fts5YY_SHIFT_COUNT (25)
+#define fts5YY_SHIFT_MIN (-4)
+#define fts5YY_SHIFT_MAX (72)
+static const signed char fts5yy_shift_ofst[] = {
+ /* 0 */ 55, 55, 55, 55, 55, 36, -4, 56, 58, 25,
+ /* 10 */ 37, 60, 59, 59, 46, 54, 42, 57, 62, 61,
+ /* 20 */ 62, 69, 65, 62, 72, 64,
+};
+#define fts5YY_REDUCE_USE_DFLT (-16)
+#define fts5YY_REDUCE_COUNT (13)
+#define fts5YY_REDUCE_MIN (-15)
+#define fts5YY_REDUCE_MAX (48)
+static const signed char fts5yy_reduce_ofst[] = {
+ /* 0 */ -15, -7, 1, 9, 17, 22, -9, 0, 39, 44,
+ /* 10 */ 44, 43, 44, 48,
+};
+static const fts5YYACTIONTYPE fts5yy_default[] = {
+ /* 0 */ 88, 88, 88, 88, 88, 69, 82, 88, 88, 87,
+ /* 10 */ 87, 88, 87, 87, 88, 88, 88, 66, 80, 88,
+ /* 20 */ 81, 88, 88, 78, 88, 65,
+};
+/********** End of lemon-generated parsing tables *****************************/
+
+/* The next table maps tokens (terminal symbols) into fallback tokens.
+** If a construct like the following:
+**
+** %fallback ID X Y Z.
+**
+** appears in the grammar, then ID becomes a fallback token for X, Y,
+** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
+** but it does not parse, the type of the token is changed to ID and
+** the parse is retried before an error is thrown.
+**
+** This feature can be used, for example, to cause some keywords in a language
+** to revert to identifiers if they keyword does not apply in the context where
+** it appears.
+*/
+#ifdef fts5YYFALLBACK
+static const fts5YYCODETYPE fts5yyFallback[] = {
+};
+#endif /* fts5YYFALLBACK */
+
+/* The following structure represents a single element of the
+** parser's stack. Information stored includes:
+**
+** + The state number for the parser at this level of the stack.
+**
+** + The value of the token stored at this level of the stack.
+** (In other words, the "major" token.)
+**
+** + The semantic value stored at this level of the stack. This is
+** the information used by the action routines in the grammar.
+** It is sometimes called the "minor" token.
+**
+** After the "shift" half of a SHIFTREDUCE action, the stateno field
+** actually contains the reduce action for the second half of the
+** SHIFTREDUCE.
+*/
+struct fts5yyStackEntry {
+ fts5YYACTIONTYPE stateno; /* The state-number, or reduce action in SHIFTREDUCE */
+ fts5YYCODETYPE major; /* The major token value. This is the code
+ ** number for the token at this stack level */
+ fts5YYMINORTYPE minor; /* The user-supplied minor token value. This
+ ** is the value of the token */
+};
+typedef struct fts5yyStackEntry fts5yyStackEntry;
+
+/* The state of the parser is completely contained in an instance of
+** the following structure */
+struct fts5yyParser {
+ int fts5yyidx; /* Index of top element in stack */
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ int fts5yyidxMax; /* Maximum value of fts5yyidx */
+#endif
+#ifndef fts5YYNOERRORRECOVERY
+ int fts5yyerrcnt; /* Shifts left before out of the error */
+#endif
+ sqlite3Fts5ParserARG_SDECL /* A place to hold %extra_argument */
+#if fts5YYSTACKDEPTH<=0
+ int fts5yystksz; /* Current side of the stack */
+ fts5yyStackEntry *fts5yystack; /* The parser's stack */
+#else
+ fts5yyStackEntry fts5yystack[fts5YYSTACKDEPTH]; /* The parser's stack */
+#endif
+};
+typedef struct fts5yyParser fts5yyParser;
+
+#ifndef NDEBUG
+#include <stdio.h>
+static FILE *fts5yyTraceFILE = 0;
+static char *fts5yyTracePrompt = 0;
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Turn parser tracing on by giving a stream to which to write the trace
+** and a prompt to preface each trace message. Tracing is turned off
+** by making either argument NULL
+**
+** Inputs:
+** <ul>
+** <li> A FILE* to which trace output should be written.
+** If NULL, then tracing is turned off.
+** <li> A prefix string written at the beginning of every
+** line of trace output. If NULL, then tracing is
+** turned off.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5ParserTrace(FILE *TraceFILE, char *zTracePrompt){
+ fts5yyTraceFILE = TraceFILE;
+ fts5yyTracePrompt = zTracePrompt;
+ if( fts5yyTraceFILE==0 ) fts5yyTracePrompt = 0;
+ else if( fts5yyTracePrompt==0 ) fts5yyTraceFILE = 0;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing shifts, the names of all terminals and nonterminals
+** are required. The following table supplies these names */
+static const char *const fts5yyTokenName[] = {
+ "$", "OR", "AND", "NOT",
+ "TERM", "COLON", "LP", "RP",
+ "LCP", "RCP", "STRING", "COMMA",
+ "PLUS", "STAR", "error", "input",
+ "expr", "cnearset", "exprlist", "nearset",
+ "colset", "colsetlist", "nearphrases", "phrase",
+ "neardist_opt", "star_opt",
+};
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/* For tracing reduce actions, the names of all rules are required.
+*/
+static const char *const fts5yyRuleName[] = {
+ /* 0 */ "input ::= expr",
+ /* 1 */ "expr ::= expr AND expr",
+ /* 2 */ "expr ::= expr OR expr",
+ /* 3 */ "expr ::= expr NOT expr",
+ /* 4 */ "expr ::= LP expr RP",
+ /* 5 */ "expr ::= exprlist",
+ /* 6 */ "exprlist ::= cnearset",
+ /* 7 */ "exprlist ::= exprlist cnearset",
+ /* 8 */ "cnearset ::= nearset",
+ /* 9 */ "cnearset ::= colset COLON nearset",
+ /* 10 */ "colset ::= LCP colsetlist RCP",
+ /* 11 */ "colset ::= STRING",
+ /* 12 */ "colsetlist ::= colsetlist STRING",
+ /* 13 */ "colsetlist ::= STRING",
+ /* 14 */ "nearset ::= phrase",
+ /* 15 */ "nearset ::= STRING LP nearphrases neardist_opt RP",
+ /* 16 */ "nearphrases ::= phrase",
+ /* 17 */ "nearphrases ::= nearphrases phrase",
+ /* 18 */ "neardist_opt ::=",
+ /* 19 */ "neardist_opt ::= COMMA STRING",
+ /* 20 */ "phrase ::= phrase PLUS STRING star_opt",
+ /* 21 */ "phrase ::= STRING star_opt",
+ /* 22 */ "star_opt ::= STAR",
+ /* 23 */ "star_opt ::=",
+};
+#endif /* NDEBUG */
+
+
+#if fts5YYSTACKDEPTH<=0
+/*
+** Try to increase the size of the parser stack.
+*/
+static void fts5yyGrowStack(fts5yyParser *p){
+ int newSize;
+ fts5yyStackEntry *pNew;
+
+ newSize = p->fts5yystksz*2 + 100;
+ pNew = realloc(p->fts5yystack, newSize*sizeof(pNew[0]));
+ if( pNew ){
+ p->fts5yystack = pNew;
+ p->fts5yystksz = newSize;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack grows to %d entries!\n",
+ fts5yyTracePrompt, p->fts5yystksz);
+ }
+#endif
+ }
+}
+#endif
+
+/* Datatype of the argument to the memory allocated passed as the
+** second argument to sqlite3Fts5ParserAlloc() below. This can be changed by
+** putting an appropriate #define in the %include section of the input
+** grammar.
+*/
+#ifndef fts5YYMALLOCARGTYPE
+# define fts5YYMALLOCARGTYPE size_t
+#endif
+
+/*
+** This function allocates a new parser.
+** The only argument is a pointer to a function which works like
+** malloc.
+**
+** Inputs:
+** A pointer to the function used to allocate memory.
+**
+** Outputs:
+** A pointer to a parser. This pointer is used in subsequent calls
+** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE)){
+ fts5yyParser *pParser;
+ pParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
+ if( pParser ){
+ pParser->fts5yyidx = -1;
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ pParser->fts5yyidxMax = 0;
+#endif
+#if fts5YYSTACKDEPTH<=0
+ pParser->fts5yystack = NULL;
+ pParser->fts5yystksz = 0;
+ fts5yyGrowStack(pParser);
+#endif
+ }
+ return pParser;
+}
+
+/* The following function deletes the "minor type" or semantic value
+** associated with a symbol. The symbol can be either a terminal
+** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
+** a pointer to the value to be deleted. The code used to do the
+** deletions is derived from the %destructor and/or %token_destructor
+** directives of the input grammar.
+*/
+static void fts5yy_destructor(
+ fts5yyParser *fts5yypParser, /* The parser */
+ fts5YYCODETYPE fts5yymajor, /* Type code for object to destroy */
+ fts5YYMINORTYPE *fts5yypminor /* The object to be destroyed */
+){
+ sqlite3Fts5ParserARG_FETCH;
+ switch( fts5yymajor ){
+ /* Here is inserted the actions which take place when a
+ ** terminal or non-terminal is destroyed. This can happen
+ ** when the symbol is popped from the stack during a
+ ** reduce or during error processing or when a parser is
+ ** being destroyed before it is finished parsing.
+ **
+ ** Note: during a reduce, the only symbols destroyed are those
+ ** which appear on the RHS of the rule, but which are *not* used
+ ** inside the C code.
+ */
+/********* Begin destructor definitions ***************************************/
+ case 15: /* input */
+{
+#line 83 "fts5parse.y"
+ (void)pParse;
+#line 489 "fts5parse.c"
+}
+ break;
+ case 16: /* expr */
+ case 17: /* cnearset */
+ case 18: /* exprlist */
+{
+#line 89 "fts5parse.y"
+ sqlite3Fts5ParseNodeFree((fts5yypminor->fts5yy18));
+#line 498 "fts5parse.c"
+}
+ break;
+ case 19: /* nearset */
+ case 22: /* nearphrases */
+{
+#line 137 "fts5parse.y"
+ sqlite3Fts5ParseNearsetFree((fts5yypminor->fts5yy26));
+#line 506 "fts5parse.c"
+}
+ break;
+ case 20: /* colset */
+ case 21: /* colsetlist */
+{
+#line 119 "fts5parse.y"
+ sqlite3_free((fts5yypminor->fts5yy3));
+#line 514 "fts5parse.c"
+}
+ break;
+ case 23: /* phrase */
+{
+#line 168 "fts5parse.y"
+ sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy11));
+#line 521 "fts5parse.c"
+}
+ break;
+/********* End destructor definitions *****************************************/
+ default: break; /* If no destructor action specified: do nothing */
+ }
+}
+
+/*
+** Pop the parser's stack once.
+**
+** If there is a destructor routine associated with the token which
+** is popped from the stack, then call it.
+*/
+static void fts5yy_pop_parser_stack(fts5yyParser *pParser){
+ fts5yyStackEntry *fts5yytos;
+ assert( pParser->fts5yyidx>=0 );
+ fts5yytos = &pParser->fts5yystack[pParser->fts5yyidx--];
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sPopping %s\n",
+ fts5yyTracePrompt,
+ fts5yyTokenName[fts5yytos->major]);
+ }
+#endif
+ fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);
+}
+
+/*
+** Deallocate and destroy a parser. Destructors are called for
+** all stack elements before shutting the parser down.
+**
+** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
+** is defined in a %include section of the input grammar) then it is
+** assumed that the input pointer is never NULL.
+*/
+static void sqlite3Fts5ParserFree(
+ void *p, /* The parser to be deleted */
+ void (*freeProc)(void*) /* Function used to reclaim memory */
+){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+#ifndef fts5YYPARSEFREENEVERNULL
+ if( pParser==0 ) return;
+#endif
+ while( pParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(pParser);
+#if fts5YYSTACKDEPTH<=0
+ free(pParser->fts5yystack);
+#endif
+ (*freeProc)((void*)pParser);
+}
+
+/*
+** Return the peak depth of the stack for a parser.
+*/
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+static int sqlite3Fts5ParserStackPeak(void *p){
+ fts5yyParser *pParser = (fts5yyParser*)p;
+ return pParser->fts5yyidxMax;
+}
+#endif
+
+/*
+** Find the appropriate action for a parser given the terminal
+** look-ahead token iLookAhead.
+*/
+static int fts5yy_find_shift_action(
+ fts5yyParser *pParser, /* The parser */
+ fts5YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+ int stateno = pParser->fts5yystack[pParser->fts5yyidx].stateno;
+
+ if( stateno>=fts5YY_MIN_REDUCE ) return stateno;
+ assert( stateno <= fts5YY_SHIFT_COUNT );
+ do{
+ i = fts5yy_shift_ofst[stateno];
+ if( i==fts5YY_SHIFT_USE_DFLT ) return fts5yy_default[stateno];
+ assert( iLookAhead!=fts5YYNOCODE );
+ i += iLookAhead;
+ if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
+ if( iLookAhead>0 ){
+#ifdef fts5YYFALLBACK
+ fts5YYCODETYPE iFallback; /* Fallback token */
+ if( iLookAhead<sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0])
+ && (iFallback = fts5yyFallback[iLookAhead])!=0 ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sFALLBACK %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[iFallback]);
+ }
+#endif
+ assert( fts5yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
+ iLookAhead = iFallback;
+ continue;
+ }
+#endif
+#ifdef fts5YYWILDCARD
+ {
+ int j = i - iLookAhead + fts5YYWILDCARD;
+ if(
+#if fts5YY_SHIFT_MIN+fts5YYWILDCARD<0
+ j>=0 &&
+#endif
+#if fts5YY_SHIFT_MAX+fts5YYWILDCARD>=fts5YY_ACTTAB_COUNT
+ j<fts5YY_ACTTAB_COUNT &&
+#endif
+ fts5yy_lookahead[j]==fts5YYWILDCARD
+ ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE, "%sWILDCARD %s => %s\n",
+ fts5yyTracePrompt, fts5yyTokenName[iLookAhead],
+ fts5yyTokenName[fts5YYWILDCARD]);
+ }
+#endif /* NDEBUG */
+ return fts5yy_action[j];
+ }
+ }
+#endif /* fts5YYWILDCARD */
+ }
+ return fts5yy_default[stateno];
+ }else{
+ return fts5yy_action[i];
+ }
+ }while(1);
+}
+
+/*
+** Find the appropriate action for a parser given the non-terminal
+** look-ahead token iLookAhead.
+*/
+static int fts5yy_find_reduce_action(
+ int stateno, /* Current state number */
+ fts5YYCODETYPE iLookAhead /* The look-ahead token */
+){
+ int i;
+#ifdef fts5YYERRORSYMBOL
+ if( stateno>fts5YY_REDUCE_COUNT ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( stateno<=fts5YY_REDUCE_COUNT );
+#endif
+ i = fts5yy_reduce_ofst[stateno];
+ assert( i!=fts5YY_REDUCE_USE_DFLT );
+ assert( iLookAhead!=fts5YYNOCODE );
+ i += iLookAhead;
+#ifdef fts5YYERRORSYMBOL
+ if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
+ return fts5yy_default[stateno];
+ }
+#else
+ assert( i>=0 && i<fts5YY_ACTTAB_COUNT );
+ assert( fts5yy_lookahead[i]==iLookAhead );
+#endif
+ return fts5yy_action[i];
+}
+
+/*
+** The following routine is called if the stack overflows.
+*/
+static void fts5yyStackOverflow(fts5yyParser *fts5yypParser){
+ sqlite3Fts5ParserARG_FETCH;
+ fts5yypParser->fts5yyidx--;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will execute if the parser
+ ** stack every overflows */
+/******** Begin %stack_overflow code ******************************************/
+#line 36 "fts5parse.y"
+
+ sqlite3Fts5ParseError(pParse, "fts5: parser stack overflow");
+#line 697 "fts5parse.c"
+/******** End %stack_overflow code ********************************************/
+ sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
+}
+
+/*
+** Print tracing information for a SHIFT action
+*/
+#ifndef NDEBUG
+static void fts5yyTraceShift(fts5yyParser *fts5yypParser, int fts5yyNewState){
+ if( fts5yyTraceFILE ){
+ if( fts5yyNewState<fts5YYNSTATE ){
+ fprintf(fts5yyTraceFILE,"%sShift '%s', go to state %d\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].major],
+ fts5yyNewState);
+ }else{
+ fprintf(fts5yyTraceFILE,"%sShift '%s'\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].major]);
+ }
+ }
+}
+#else
+# define fts5yyTraceShift(X,Y)
+#endif
+
+/*
+** Perform a shift action.
+*/
+static void fts5yy_shift(
+ fts5yyParser *fts5yypParser, /* The parser to be shifted */
+ int fts5yyNewState, /* The new state to shift in */
+ int fts5yyMajor, /* The major token to shift in */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyMinor /* The minor token to shift in */
+){
+ fts5yyStackEntry *fts5yytos;
+ fts5yypParser->fts5yyidx++;
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( fts5yypParser->fts5yyidx>fts5yypParser->fts5yyidxMax ){
+ fts5yypParser->fts5yyidxMax = fts5yypParser->fts5yyidx;
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yyidx>=fts5YYSTACKDEPTH ){
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+#else
+ if( fts5yypParser->fts5yyidx>=fts5yypParser->fts5yystksz ){
+ fts5yyGrowStack(fts5yypParser);
+ if( fts5yypParser->fts5yyidx>=fts5yypParser->fts5yystksz ){
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+ }
+#endif
+ fts5yytos = &fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx];
+ fts5yytos->stateno = (fts5YYACTIONTYPE)fts5yyNewState;
+ fts5yytos->major = (fts5YYCODETYPE)fts5yyMajor;
+ fts5yytos->minor.fts5yy0 = fts5yyMinor;
+ fts5yyTraceShift(fts5yypParser, fts5yyNewState);
+}
+
+/* The following table contains information about every rule that
+** is used during the reduce.
+*/
+static const struct {
+ fts5YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
+ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
+} fts5yyRuleInfo[] = {
+ { 15, 1 },
+ { 16, 3 },
+ { 16, 3 },
+ { 16, 3 },
+ { 16, 3 },
+ { 16, 1 },
+ { 18, 1 },
+ { 18, 2 },
+ { 17, 1 },
+ { 17, 3 },
+ { 20, 3 },
+ { 20, 1 },
+ { 21, 2 },
+ { 21, 1 },
+ { 19, 1 },
+ { 19, 5 },
+ { 22, 1 },
+ { 22, 2 },
+ { 24, 0 },
+ { 24, 2 },
+ { 23, 4 },
+ { 23, 2 },
+ { 25, 1 },
+ { 25, 0 },
+};
+
+static void fts5yy_accept(fts5yyParser*); /* Forward Declaration */
+
+/*
+** Perform a reduce action and the shift that must immediately
+** follow the reduce.
+*/
+static void fts5yy_reduce(
+ fts5yyParser *fts5yypParser, /* The parser */
+ int fts5yyruleno /* Number of the rule by which to reduce */
+){
+ int fts5yygoto; /* The next state */
+ int fts5yyact; /* The next action */
+ fts5yyStackEntry *fts5yymsp; /* The top of the parser's stack */
+ int fts5yysize; /* Amount to pop the stack */
+ sqlite3Fts5ParserARG_FETCH;
+ fts5yymsp = &fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx];
+#ifndef NDEBUG
+ if( fts5yyTraceFILE && fts5yyruleno>=0
+ && fts5yyruleno<(int)(sizeof(fts5yyRuleName)/sizeof(fts5yyRuleName[0])) ){
+ fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
+ fprintf(fts5yyTraceFILE, "%sReduce [%s], go to state %d.\n", fts5yyTracePrompt,
+ fts5yyRuleName[fts5yyruleno], fts5yymsp[-fts5yysize].stateno);
+ }
+#endif /* NDEBUG */
+
+ /* Check that the stack is large enough to grow by a single entry
+ ** if the RHS of the rule is empty. This ensures that there is room
+ ** enough on the stack to push the LHS value */
+ if( fts5yyRuleInfo[fts5yyruleno].nrhs==0 ){
+#ifdef fts5YYTRACKMAXSTACKDEPTH
+ if( fts5yypParser->fts5yyidx>fts5yypParser->fts5yyidxMax ){
+ fts5yypParser->fts5yyidxMax = fts5yypParser->fts5yyidx;
+ }
+#endif
+#if fts5YYSTACKDEPTH>0
+ if( fts5yypParser->fts5yyidx>=fts5YYSTACKDEPTH-1 ){
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+#else
+ if( fts5yypParser->fts5yyidx>=fts5yypParser->fts5yystksz-1 ){
+ fts5yyGrowStack(fts5yypParser);
+ if( fts5yypParser->fts5yyidx>=fts5yypParser->fts5yystksz-1 ){
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+ }
+#endif
+ }
+
+ switch( fts5yyruleno ){
+ /* Beginning here are the reduction cases. A typical example
+ ** follows:
+ ** case 0:
+ ** #line <lineno> <grammarfile>
+ ** { ... } // User supplied code
+ ** #line <lineno> <thisfile>
+ ** break;
+ */
+/********** Begin reduce actions **********************************************/
+ fts5YYMINORTYPE fts5yylhsminor;
+ case 0: /* input ::= expr */
+#line 82 "fts5parse.y"
+{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy18); }
+#line 856 "fts5parse.c"
+ break;
+ case 1: /* expr ::= expr AND expr */
+#line 92 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
+}
+#line 863 "fts5parse.c"
+ fts5yymsp[-2].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 2: /* expr ::= expr OR expr */
+#line 95 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_OR, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
+}
+#line 871 "fts5parse.c"
+ fts5yymsp[-2].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 3: /* expr ::= expr NOT expr */
+#line 98 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_NOT, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
+}
+#line 879 "fts5parse.c"
+ fts5yymsp[-2].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 4: /* expr ::= LP expr RP */
+#line 102 "fts5parse.y"
+{fts5yymsp[-2].minor.fts5yy18 = fts5yymsp[-1].minor.fts5yy18;}
+#line 885 "fts5parse.c"
+ break;
+ case 5: /* expr ::= exprlist */
+ case 6: /* exprlist ::= cnearset */ fts5yytestcase(fts5yyruleno==6);
+#line 103 "fts5parse.y"
+{fts5yylhsminor.fts5yy18 = fts5yymsp[0].minor.fts5yy18;}
+#line 891 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 7: /* exprlist ::= exprlist cnearset */
+#line 106 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-1].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
+}
+#line 899 "fts5parse.c"
+ fts5yymsp[-1].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 8: /* cnearset ::= nearset */
+#line 110 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26);
+}
+#line 907 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 9: /* cnearset ::= colset COLON nearset */
+#line 113 "fts5parse.y"
+{
+ sqlite3Fts5ParseSetColset(pParse, fts5yymsp[0].minor.fts5yy26, fts5yymsp[-2].minor.fts5yy3);
+ fts5yylhsminor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_STRING, 0, 0, fts5yymsp[0].minor.fts5yy26);
+}
+#line 916 "fts5parse.c"
+ fts5yymsp[-2].minor.fts5yy18 = fts5yylhsminor.fts5yy18;
+ break;
+ case 10: /* colset ::= LCP colsetlist RCP */
+#line 123 "fts5parse.y"
+{ fts5yymsp[-2].minor.fts5yy3 = fts5yymsp[-1].minor.fts5yy3; }
+#line 922 "fts5parse.c"
+ break;
+ case 11: /* colset ::= STRING */
+#line 124 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+#line 929 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy3 = fts5yylhsminor.fts5yy3;
+ break;
+ case 12: /* colsetlist ::= colsetlist STRING */
+#line 128 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy3 = sqlite3Fts5ParseColset(pParse, fts5yymsp[-1].minor.fts5yy3, &fts5yymsp[0].minor.fts5yy0); }
+#line 936 "fts5parse.c"
+ fts5yymsp[-1].minor.fts5yy3 = fts5yylhsminor.fts5yy3;
+ break;
+ case 13: /* colsetlist ::= STRING */
+#line 130 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy3 = sqlite3Fts5ParseColset(pParse, 0, &fts5yymsp[0].minor.fts5yy0);
+}
+#line 944 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy3 = fts5yylhsminor.fts5yy3;
+ break;
+ case 14: /* nearset ::= phrase */
+#line 140 "fts5parse.y"
+{ fts5yylhsminor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11); }
+#line 950 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy26 = fts5yylhsminor.fts5yy26;
+ break;
+ case 15: /* nearset ::= STRING LP nearphrases neardist_opt RP */
+#line 141 "fts5parse.y"
+{
+ sqlite3Fts5ParseNear(pParse, &fts5yymsp[-4].minor.fts5yy0);
+ sqlite3Fts5ParseSetDistance(pParse, fts5yymsp[-2].minor.fts5yy26, &fts5yymsp[-1].minor.fts5yy0);
+ fts5yylhsminor.fts5yy26 = fts5yymsp[-2].minor.fts5yy26;
+}
+#line 960 "fts5parse.c"
+ fts5yymsp[-4].minor.fts5yy26 = fts5yylhsminor.fts5yy26;
+ break;
+ case 16: /* nearphrases ::= phrase */
+#line 147 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, 0, fts5yymsp[0].minor.fts5yy11);
+}
+#line 968 "fts5parse.c"
+ fts5yymsp[0].minor.fts5yy26 = fts5yylhsminor.fts5yy26;
+ break;
+ case 17: /* nearphrases ::= nearphrases phrase */
+#line 150 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy26 = sqlite3Fts5ParseNearset(pParse, fts5yymsp[-1].minor.fts5yy26, fts5yymsp[0].minor.fts5yy11);
+}
+#line 976 "fts5parse.c"
+ fts5yymsp[-1].minor.fts5yy26 = fts5yylhsminor.fts5yy26;
+ break;
+ case 18: /* neardist_opt ::= */
+#line 157 "fts5parse.y"
+{ fts5yymsp[1].minor.fts5yy0.p = 0; fts5yymsp[1].minor.fts5yy0.n = 0; }
+#line 982 "fts5parse.c"
+ break;
+ case 19: /* neardist_opt ::= COMMA STRING */
+#line 158 "fts5parse.y"
+{ fts5yymsp[-1].minor.fts5yy0 = fts5yymsp[0].minor.fts5yy0; }
+#line 987 "fts5parse.c"
+ break;
+ case 20: /* phrase ::= phrase PLUS STRING star_opt */
+#line 170 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, fts5yymsp[-3].minor.fts5yy11, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
+}
+#line 994 "fts5parse.c"
+ fts5yymsp[-3].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 21: /* phrase ::= STRING star_opt */
+#line 173 "fts5parse.y"
+{
+ fts5yylhsminor.fts5yy11 = sqlite3Fts5ParseTerm(pParse, 0, &fts5yymsp[-1].minor.fts5yy0, fts5yymsp[0].minor.fts5yy20);
+}
+#line 1002 "fts5parse.c"
+ fts5yymsp[-1].minor.fts5yy11 = fts5yylhsminor.fts5yy11;
+ break;
+ case 22: /* star_opt ::= STAR */
+#line 182 "fts5parse.y"
+{ fts5yymsp[0].minor.fts5yy20 = 1; }
+#line 1008 "fts5parse.c"
+ break;
+ case 23: /* star_opt ::= */
+#line 183 "fts5parse.y"
+{ fts5yymsp[1].minor.fts5yy20 = 0; }
+#line 1013 "fts5parse.c"
+ break;
+ default:
+ break;
+/********** End reduce actions ************************************************/
+ };
+ assert( fts5yyruleno>=0 && fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
+ fts5yygoto = fts5yyRuleInfo[fts5yyruleno].lhs;
+ fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
+ fts5yyact = fts5yy_find_reduce_action(fts5yymsp[-fts5yysize].stateno,(fts5YYCODETYPE)fts5yygoto);
+ if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
+ if( fts5yyact>fts5YY_MAX_SHIFT ) fts5yyact += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
+ fts5yypParser->fts5yyidx -= fts5yysize - 1;
+ fts5yymsp -= fts5yysize-1;
+ fts5yymsp->stateno = (fts5YYACTIONTYPE)fts5yyact;
+ fts5yymsp->major = (fts5YYCODETYPE)fts5yygoto;
+ fts5yyTraceShift(fts5yypParser, fts5yyact);
+ }else{
+ assert( fts5yyact == fts5YY_ACCEPT_ACTION );
+ fts5yypParser->fts5yyidx -= fts5yysize;
+ fts5yy_accept(fts5yypParser);
+ }
+}
+
+/*
+** The following code executes when the parse fails
+*/
+#ifndef fts5YYNOERRORRECOVERY
+static void fts5yy_parse_failed(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sFail!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser fails */
+/************ Begin %parse_failure code ***************************************/
+/************ End %parse_failure code *****************************************/
+ sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+#endif /* fts5YYNOERRORRECOVERY */
+
+/*
+** The following code executes when a syntax error first occurs.
+*/
+static void fts5yy_syntax_error(
+ fts5yyParser *fts5yypParser, /* The parser */
+ int fts5yymajor, /* The major type of the error token */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The minor type of the error token */
+){
+ sqlite3Fts5ParserARG_FETCH;
+#define FTS5TOKEN fts5yyminor
+/************ Begin %syntax_error code ****************************************/
+#line 30 "fts5parse.y"
+
+ UNUSED_PARAM(fts5yymajor); /* Silence a compiler warning */
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
+ );
+#line 1076 "fts5parse.c"
+/************ End %syntax_error code ******************************************/
+ sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/*
+** The following is executed when the parser accepts
+*/
+static void fts5yy_accept(
+ fts5yyParser *fts5yypParser /* The parser */
+){
+ sqlite3Fts5ParserARG_FETCH;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sAccept!\n",fts5yyTracePrompt);
+ }
+#endif
+ while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
+ /* Here code is inserted which will be executed whenever the
+ ** parser accepts */
+/*********** Begin %parse_accept code *****************************************/
+/*********** End %parse_accept code *******************************************/
+ sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
+}
+
+/* The main parser program.
+** The first argument is a pointer to a structure obtained from
+** "sqlite3Fts5ParserAlloc" which describes the current state of the parser.
+** The second argument is the major token number. The third is
+** the minor token. The fourth optional argument is whatever the
+** user wants (and specified in the grammar) and is available for
+** use by the action routines.
+**
+** Inputs:
+** <ul>
+** <li> A pointer to the parser (an opaque structure.)
+** <li> The major token number.
+** <li> The minor token number.
+** <li> An option argument of a grammar-specified type.
+** </ul>
+**
+** Outputs:
+** None.
+*/
+static void sqlite3Fts5Parser(
+ void *fts5yyp, /* The parser */
+ int fts5yymajor, /* The major token code number */
+ sqlite3Fts5ParserFTS5TOKENTYPE fts5yyminor /* The value for the token */
+ sqlite3Fts5ParserARG_PDECL /* Optional %extra_argument parameter */
+){
+ fts5YYMINORTYPE fts5yyminorunion;
+ int fts5yyact; /* The parser action. */
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ int fts5yyendofinput; /* True if we are at the end of input */
+#endif
+#ifdef fts5YYERRORSYMBOL
+ int fts5yyerrorhit = 0; /* True if fts5yymajor has invoked an error */
+#endif
+ fts5yyParser *fts5yypParser; /* The parser */
+
+ /* (re)initialize the parser, if necessary */
+ fts5yypParser = (fts5yyParser*)fts5yyp;
+ if( fts5yypParser->fts5yyidx<0 ){
+#if fts5YYSTACKDEPTH<=0
+ if( fts5yypParser->fts5yystksz <=0 ){
+ fts5yyStackOverflow(fts5yypParser);
+ return;
+ }
+#endif
+ fts5yypParser->fts5yyidx = 0;
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt = -1;
+#endif
+ fts5yypParser->fts5yystack[0].stateno = 0;
+ fts5yypParser->fts5yystack[0].major = 0;
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sInitialize. Empty stack. State 0\n",
+ fts5yyTracePrompt);
+ }
+#endif
+ }
+#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
+ fts5yyendofinput = (fts5yymajor==0);
+#endif
+ sqlite3Fts5ParserARG_STORE;
+
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sInput '%s'\n",fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
+ }
+#endif
+
+ do{
+ fts5yyact = fts5yy_find_shift_action(fts5yypParser,(fts5YYCODETYPE)fts5yymajor);
+ if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
+ if( fts5yyact > fts5YY_MAX_SHIFT ) fts5yyact += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
+ fts5yy_shift(fts5yypParser,fts5yyact,fts5yymajor,fts5yyminor);
+#ifndef fts5YYNOERRORRECOVERY
+ fts5yypParser->fts5yyerrcnt--;
+#endif
+ fts5yymajor = fts5YYNOCODE;
+ }else if( fts5yyact <= fts5YY_MAX_REDUCE ){
+ fts5yy_reduce(fts5yypParser,fts5yyact-fts5YY_MIN_REDUCE);
+ }else{
+ assert( fts5yyact == fts5YY_ERROR_ACTION );
+ fts5yyminorunion.fts5yy0 = fts5yyminor;
+#ifdef fts5YYERRORSYMBOL
+ int fts5yymx;
+#endif
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sSyntax Error!\n",fts5yyTracePrompt);
+ }
+#endif
+#ifdef fts5YYERRORSYMBOL
+ /* A syntax error has occurred.
+ ** The response to an error depends upon whether or not the
+ ** grammar defines an error token "ERROR".
+ **
+ ** This is what we do if the grammar does define ERROR:
+ **
+ ** * Call the %syntax_error function.
+ **
+ ** * Begin popping the stack until we enter a state where
+ ** it is legal to shift the error symbol, then shift
+ ** the error symbol.
+ **
+ ** * Set the error count to three.
+ **
+ ** * Begin accepting and shifting new tokens. No new error
+ ** processing will occur until three tokens have been
+ ** shifted successfully.
+ **
+ */
+ if( fts5yypParser->fts5yyerrcnt<0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor,fts5yyminor);
+ }
+ fts5yymx = fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].major;
+ if( fts5yymx==fts5YYERRORSYMBOL || fts5yyerrorhit ){
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ fprintf(fts5yyTraceFILE,"%sDiscard input token %s\n",
+ fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
+ }
+#endif
+ fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion);
+ fts5yymajor = fts5YYNOCODE;
+ }else{
+ while(
+ fts5yypParser->fts5yyidx >= 0 &&
+ fts5yymx != fts5YYERRORSYMBOL &&
+ (fts5yyact = fts5yy_find_reduce_action(
+ fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].stateno,
+ fts5YYERRORSYMBOL)) >= fts5YY_MIN_REDUCE
+ ){
+ fts5yy_pop_parser_stack(fts5yypParser);
+ }
+ if( fts5yypParser->fts5yyidx < 0 || fts5yymajor==0 ){
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ fts5yy_parse_failed(fts5yypParser);
+ fts5yymajor = fts5YYNOCODE;
+ }else if( fts5yymx!=fts5YYERRORSYMBOL ){
+ fts5yy_shift(fts5yypParser,fts5yyact,fts5YYERRORSYMBOL,fts5yyminor);
+ }
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yyerrorhit = 1;
+#elif defined(fts5YYNOERRORRECOVERY)
+ /* If the fts5YYNOERRORRECOVERY macro is defined, then do not attempt to
+ ** do any kind of error recovery. Instead, simply invoke the syntax
+ ** error routine and continue going as if nothing had happened.
+ **
+ ** Applications can set this macro (for example inside %include) if
+ ** they intend to abandon the parse upon the first syntax error seen.
+ */
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ fts5yymajor = fts5YYNOCODE;
+
+#else /* fts5YYERRORSYMBOL is not defined */
+ /* This is what we do if the grammar does not define ERROR:
+ **
+ ** * Report an error message, and throw away the input token.
+ **
+ ** * If the input token is $, then fail the parse.
+ **
+ ** As before, subsequent error messages are suppressed until
+ ** three input tokens have been successfully shifted.
+ */
+ if( fts5yypParser->fts5yyerrcnt<=0 ){
+ fts5yy_syntax_error(fts5yypParser,fts5yymajor, fts5yyminor);
+ }
+ fts5yypParser->fts5yyerrcnt = 3;
+ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
+ if( fts5yyendofinput ){
+ fts5yy_parse_failed(fts5yypParser);
+ }
+ fts5yymajor = fts5YYNOCODE;
+#endif
+ }
+ }while( fts5yymajor!=fts5YYNOCODE && fts5yypParser->fts5yyidx>=0 );
+#ifndef NDEBUG
+ if( fts5yyTraceFILE ){
+ int i;
+ fprintf(fts5yyTraceFILE,"%sReturn. Stack=",fts5yyTracePrompt);
+ for(i=1; i<=fts5yypParser->fts5yyidx; i++)
+ fprintf(fts5yyTraceFILE,"%c%s", i==1 ? '[' : ' ',
+ fts5yyTokenName[fts5yypParser->fts5yystack[i].major]);
+ fprintf(fts5yyTraceFILE,"]\n");
+ }
+#endif
+ return;
+}
+
+#line 1 "fts5_aux.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+#include <math.h> /* amalgamator: keep */
+
+/*
+** Object used to iterate through all "coalesced phrase instances" in
+** a single column of the current row. If the phrase instances in the
+** column being considered do not overlap, this object simply iterates
+** through them. Or, if they do overlap (share one or more tokens in
+** common), each set of overlapping instances is treated as a single
+** match. See documentation for the highlight() auxiliary function for
+** details.
+**
+** Usage is:
+**
+** for(rc = fts5CInstIterNext(pApi, pFts, iCol, &iter);
+** (rc==SQLITE_OK && 0==fts5CInstIterEof(&iter);
+** rc = fts5CInstIterNext(&iter)
+** ){
+** printf("instance starts at %d, ends at %d\n", iter.iStart, iter.iEnd);
+** }
+**
+*/
+typedef struct CInstIter CInstIter;
+struct CInstIter {
+ const Fts5ExtensionApi *pApi; /* API offered by current FTS version */
+ Fts5Context *pFts; /* First arg to pass to pApi functions */
+ int iCol; /* Column to search */
+ int iInst; /* Next phrase instance index */
+ int nInst; /* Total number of phrase instances */
+
+ /* Output variables */
+ int iStart; /* First token in coalesced phrase instance */
+ int iEnd; /* Last token in coalesced phrase instance */
+};
+
+/*
+** Advance the iterator to the next coalesced phrase instance. Return
+** an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+*/
+static int fts5CInstIterNext(CInstIter *pIter){
+ int rc = SQLITE_OK;
+ pIter->iStart = -1;
+ pIter->iEnd = -1;
+
+ while( rc==SQLITE_OK && pIter->iInst<pIter->nInst ){
+ int ip; int ic; int io;
+ rc = pIter->pApi->xInst(pIter->pFts, pIter->iInst, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ if( ic==pIter->iCol ){
+ int iEnd = io - 1 + pIter->pApi->xPhraseSize(pIter->pFts, ip);
+ if( pIter->iStart<0 ){
+ pIter->iStart = io;
+ pIter->iEnd = iEnd;
+ }else if( io<=pIter->iEnd ){
+ if( iEnd>pIter->iEnd ) pIter->iEnd = iEnd;
+ }else{
+ break;
+ }
+ }
+ pIter->iInst++;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Initialize the iterator object indicated by the final parameter to
+** iterate through coalesced phrase instances in column iCol.
+*/
+static int fts5CInstIterInit(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ int iCol,
+ CInstIter *pIter
+){
+ int rc;
+
+ memset(pIter, 0, sizeof(CInstIter));
+ pIter->pApi = pApi;
+ pIter->pFts = pFts;
+ pIter->iCol = iCol;
+ rc = pApi->xInstCount(pFts, &pIter->nInst);
+
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(pIter);
+ }
+
+ return rc;
+}
+
+
+
+/*************************************************************************
+** Start of highlight() implementation.
+*/
+typedef struct HighlightContext HighlightContext;
+struct HighlightContext {
+ CInstIter iter; /* Coalesced Instance Iterator */
+ int iPos; /* Current token offset in zIn[] */
+ int iRangeStart; /* First token to include */
+ int iRangeEnd; /* If non-zero, last token to include */
+ const char *zOpen; /* Opening highlight */
+ const char *zClose; /* Closing highlight */
+ const char *zIn; /* Input text */
+ int nIn; /* Size of input text in bytes */
+ int iOff; /* Current offset within zIn[] */
+ char *zOut; /* Output value */
+};
+
+/*
+** Append text to the HighlightContext output string - p->zOut. Argument
+** z points to a buffer containing n bytes of text to append. If n is
+** negative, everything up until the first '\0' is appended to the output.
+**
+** If *pRc is set to any value other than SQLITE_OK when this function is
+** called, it is a no-op. If an error (i.e. an OOM condition) is encountered,
+** *pRc is set to an error code before returning.
+*/
+static void fts5HighlightAppend(
+ int *pRc,
+ HighlightContext *p,
+ const char *z, int n
+){
+ if( *pRc==SQLITE_OK ){
+ if( n<0 ) n = (int)strlen(z);
+ p->zOut = sqlite3_mprintf("%z%.*s", p->zOut, n, z);
+ if( p->zOut==0 ) *pRc = SQLITE_NOMEM;
+ }
+}
+
+/*
+** Tokenizer callback used by implementation of highlight() function.
+*/
+static int fts5HighlightCb(
+ void *pContext, /* Pointer to HighlightContext object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStartOff, /* Start offset of token */
+ int iEndOff /* End offset of token */
+){
+ HighlightContext *p = (HighlightContext*)pContext;
+ int rc = SQLITE_OK;
+ int iPos;
+
+ UNUSED_PARAM2(pToken, nToken);
+
+ if( tflags & FTS5_TOKEN_COLOCATED ) return SQLITE_OK;
+ iPos = p->iPos++;
+
+ if( p->iRangeEnd>0 ){
+ if( iPos<p->iRangeStart || iPos>p->iRangeEnd ) return SQLITE_OK;
+ if( p->iRangeStart && iPos==p->iRangeStart ) p->iOff = iStartOff;
+ }
+
+ if( iPos==p->iter.iStart ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iStartOff - p->iOff);
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ p->iOff = iStartOff;
+ }
+
+ if( iPos==p->iter.iEnd ){
+ if( p->iRangeEnd && p->iter.iStart<p->iRangeStart ){
+ fts5HighlightAppend(&rc, p, p->zOpen, -1);
+ }
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ fts5HighlightAppend(&rc, p, p->zClose, -1);
+ p->iOff = iEndOff;
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterNext(&p->iter);
+ }
+ }
+
+ if( p->iRangeEnd>0 && iPos==p->iRangeEnd ){
+ fts5HighlightAppend(&rc, p, &p->zIn[p->iOff], iEndOff - p->iOff);
+ p->iOff = iEndOff;
+ if( iPos<p->iter.iEnd ){
+ fts5HighlightAppend(&rc, p, p->zClose, -1);
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Implementation of highlight() function.
+*/
+static void fts5HighlightFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc;
+ int iCol;
+
+ if( nVal!=3 ){
+ const char *zErr = "wrong number of arguments to function highlight()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ iCol = sqlite3_value_int(apVal[0]);
+ memset(&ctx, 0, sizeof(HighlightContext));
+ ctx.zOpen = (const char*)sqlite3_value_text(apVal[1]);
+ ctx.zClose = (const char*)sqlite3_value_text(apVal[2]);
+ rc = pApi->xColumnText(pFts, iCol, &ctx.zIn, &ctx.nIn);
+
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iCol, &ctx.iter);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }
+ sqlite3_free(ctx.zOut);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+/*
+** End of highlight() implementation.
+**************************************************************************/
+
+/*
+** Implementation of snippet() function.
+*/
+static void fts5SnippetFunction(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ HighlightContext ctx;
+ int rc = SQLITE_OK; /* Return code */
+ int iCol; /* 1st argument to snippet() */
+ const char *zEllips; /* 4th argument to snippet() */
+ int nToken; /* 5th argument to snippet() */
+ int nInst = 0; /* Number of instance matches this row */
+ int i; /* Used to iterate through instances */
+ int nPhrase; /* Number of phrases in query */
+ unsigned char *aSeen; /* Array of "seen instance" flags */
+ int iBestCol; /* Column containing best snippet */
+ int iBestStart = 0; /* First token of best snippet */
+ int iBestLast; /* Last token of best snippet */
+ int nBestScore = 0; /* Score of best snippet */
+ int nColSize = 0; /* Total size of iBestCol in tokens */
+
+ if( nVal!=5 ){
+ const char *zErr = "wrong number of arguments to function snippet()";
+ sqlite3_result_error(pCtx, zErr, -1);
+ return;
+ }
+
+ memset(&ctx, 0, sizeof(HighlightContext));
+ iCol = sqlite3_value_int(apVal[0]);
+ ctx.zOpen = (const char*)sqlite3_value_text(apVal[1]);
+ ctx.zClose = (const char*)sqlite3_value_text(apVal[2]);
+ zEllips = (const char*)sqlite3_value_text(apVal[3]);
+ nToken = sqlite3_value_int(apVal[4]);
+ iBestLast = nToken-1;
+
+ iBestCol = (iCol>=0 ? iCol : 0);
+ nPhrase = pApi->xPhraseCount(pFts);
+ aSeen = sqlite3_malloc(nPhrase);
+ if( aSeen==0 ){
+ rc = SQLITE_NOMEM;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+ for(i=0; rc==SQLITE_OK && i<nInst; i++){
+ int ip, iSnippetCol, iStart;
+ memset(aSeen, 0, nPhrase);
+ rc = pApi->xInst(pFts, i, &ip, &iSnippetCol, &iStart);
+ if( rc==SQLITE_OK && (iCol<0 || iSnippetCol==iCol) ){
+ int nScore = 1000;
+ int iLast = iStart - 1 + pApi->xPhraseSize(pFts, ip);
+ int j;
+ aSeen[ip] = 1;
+
+ for(j=i+1; rc==SQLITE_OK && j<nInst; j++){
+ int ic; int io; int iFinal;
+ rc = pApi->xInst(pFts, j, &ip, &ic, &io);
+ iFinal = io + pApi->xPhraseSize(pFts, ip) - 1;
+ if( rc==SQLITE_OK && ic==iSnippetCol && iLast<iStart+nToken ){
+ nScore += aSeen[ip] ? 1000 : 1;
+ aSeen[ip] = 1;
+ if( iFinal>iLast ) iLast = iFinal;
+ }
+ }
+
+ if( rc==SQLITE_OK && nScore>nBestScore ){
+ iBestCol = iSnippetCol;
+ iBestStart = iStart;
+ iBestLast = iLast;
+ nBestScore = nScore;
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = pApi->xColumnSize(pFts, iBestCol, &nColSize);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pApi->xColumnText(pFts, iBestCol, &ctx.zIn, &ctx.nIn);
+ }
+ if( ctx.zIn ){
+ if( rc==SQLITE_OK ){
+ rc = fts5CInstIterInit(pApi, pFts, iBestCol, &ctx.iter);
+ }
+
+ if( (iBestStart+nToken-1)>iBestLast ){
+ iBestStart -= (iBestStart+nToken-1-iBestLast) / 2;
+ }
+ if( iBestStart+nToken>nColSize ){
+ iBestStart = nColSize - nToken;
+ }
+ if( iBestStart<0 ) iBestStart = 0;
+
+ ctx.iRangeStart = iBestStart;
+ ctx.iRangeEnd = iBestStart + nToken - 1;
+
+ if( iBestStart>0 ){
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pApi->xTokenize(pFts, ctx.zIn, ctx.nIn, (void*)&ctx,fts5HighlightCb);
+ }
+ if( ctx.iRangeEnd>=(nColSize-1) ){
+ fts5HighlightAppend(&rc, &ctx, &ctx.zIn[ctx.iOff], ctx.nIn - ctx.iOff);
+ }else{
+ fts5HighlightAppend(&rc, &ctx, zEllips, -1);
+ }
+
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)ctx.zOut, -1, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ sqlite3_free(ctx.zOut);
+ }
+ sqlite3_free(aSeen);
+}
+
+/************************************************************************/
+
+/*
+** The first time the bm25() function is called for a query, an instance
+** of the following structure is allocated and populated.
+*/
+typedef struct Fts5Bm25Data Fts5Bm25Data;
+struct Fts5Bm25Data {
+ int nPhrase; /* Number of phrases in query */
+ double avgdl; /* Average number of tokens in each row */
+ double *aIDF; /* IDF for each phrase */
+ double *aFreq; /* Array used to calculate phrase freq. */
+};
+
+/*
+** Callback used by fts5Bm25GetData() to count the number of rows in the
+** table matched by each individual phrase within the query.
+*/
+static int fts5CountCb(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ void *pUserData /* Pointer to sqlite3_int64 variable */
+){
+ sqlite3_int64 *pn = (sqlite3_int64*)pUserData;
+ UNUSED_PARAM2(pApi, pFts);
+ (*pn)++;
+ return SQLITE_OK;
+}
+
+/*
+** Set *ppData to point to the Fts5Bm25Data object for the current query.
+** If the object has not already been allocated, allocate and populate it
+** now.
+*/
+static int fts5Bm25GetData(
+ const Fts5ExtensionApi *pApi,
+ Fts5Context *pFts,
+ Fts5Bm25Data **ppData /* OUT: bm25-data object for this query */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Bm25Data *p; /* Object to return */
+
+ p = pApi->xGetAuxdata(pFts, 0);
+ if( p==0 ){
+ int nPhrase; /* Number of phrases in query */
+ sqlite3_int64 nRow = 0; /* Number of rows in table */
+ sqlite3_int64 nToken = 0; /* Number of tokens in table */
+ int nByte; /* Bytes of space to allocate */
+ int i;
+
+ /* Allocate the Fts5Bm25Data object */
+ nPhrase = pApi->xPhraseCount(pFts);
+ nByte = sizeof(Fts5Bm25Data) + nPhrase*2*sizeof(double);
+ p = (Fts5Bm25Data*)sqlite3_malloc(nByte);
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(p, 0, nByte);
+ p->nPhrase = nPhrase;
+ p->aIDF = (double*)&p[1];
+ p->aFreq = &p->aIDF[nPhrase];
+ }
+
+ /* Calculate the average document length for this FTS5 table */
+ if( rc==SQLITE_OK ) rc = pApi->xRowCount(pFts, &nRow);
+ if( rc==SQLITE_OK ) rc = pApi->xColumnTotalSize(pFts, -1, &nToken);
+ if( rc==SQLITE_OK ) p->avgdl = (double)nToken / (double)nRow;
+
+ /* Calculate an IDF for each phrase in the query */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ sqlite3_int64 nHit = 0;
+ rc = pApi->xQueryPhrase(pFts, i, (void*)&nHit, fts5CountCb);
+ if( rc==SQLITE_OK ){
+ /* Calculate the IDF (Inverse Document Frequency) for phrase i.
+ ** This is done using the standard BM25 formula as found on wikipedia:
+ **
+ ** IDF = log( (N - nHit + 0.5) / (nHit + 0.5) )
+ **
+ ** where "N" is the total number of documents in the set and nHit
+ ** is the number that contain at least one instance of the phrase
+ ** under consideration.
+ **
+ ** The problem with this is that if (N < 2*nHit), the IDF is
+ ** negative. Which is undesirable. So the mimimum allowable IDF is
+ ** (1e-6) - roughly the same as a term that appears in just over
+ ** half of set of 5,000,000 documents. */
+ double idf = log( (nRow - nHit + 0.5) / (nHit + 0.5) );
+ if( idf<=0.0 ) idf = 1e-6;
+ p->aIDF[i] = idf;
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(p);
+ }else{
+ rc = pApi->xSetAuxdata(pFts, p, sqlite3_free);
+ }
+ if( rc!=SQLITE_OK ) p = 0;
+ }
+ *ppData = p;
+ return rc;
+}
+
+/*
+** Implementation of bm25() function.
+*/
+static void fts5Bm25Function(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+){
+ const double k1 = 1.2; /* Constant "k1" from BM25 formula */
+ const double b = 0.75; /* Constant "b" from BM25 formula */
+ int rc = SQLITE_OK; /* Error code */
+ double score = 0.0; /* SQL function return value */
+ Fts5Bm25Data *pData; /* Values allocated/calculated once only */
+ int i; /* Iterator variable */
+ int nInst = 0; /* Value returned by xInstCount() */
+ double D = 0.0; /* Total number of tokens in row */
+ double *aFreq = 0; /* Array of phrase freq. for current row */
+
+ /* Calculate the phrase frequency (symbol "f(qi,D)" in the documentation)
+ ** for each phrase in the query for the current row. */
+ rc = fts5Bm25GetData(pApi, pFts, &pData);
+ if( rc==SQLITE_OK ){
+ aFreq = pData->aFreq;
+ memset(aFreq, 0, sizeof(double) * pData->nPhrase);
+ rc = pApi->xInstCount(pFts, &nInst);
+ }
+ for(i=0; rc==SQLITE_OK && i<nInst; i++){
+ int ip; int ic; int io;
+ rc = pApi->xInst(pFts, i, &ip, &ic, &io);
+ if( rc==SQLITE_OK ){
+ double w = (nVal > ic) ? sqlite3_value_double(apVal[ic]) : 1.0;
+ aFreq[ip] += w;
+ }
+ }
+
+ /* Figure out the total size of the current row in tokens. */
+ if( rc==SQLITE_OK ){
+ int nTok;
+ rc = pApi->xColumnSize(pFts, -1, &nTok);
+ D = (double)nTok;
+ }
+
+ /* Determine the BM25 score for the current row. */
+ for(i=0; rc==SQLITE_OK && i<pData->nPhrase; i++){
+ score += pData->aIDF[i] * (
+ ( aFreq[i] * (k1 + 1.0) ) /
+ ( aFreq[i] + k1 * (1 - b + b * D / pData->avgdl) )
+ );
+ }
+
+ /* If no error has occurred, return the calculated score. Otherwise,
+ ** throw an SQL exception. */
+ if( rc==SQLITE_OK ){
+ sqlite3_result_double(pCtx, -1.0 * score);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+}
+
+static int sqlite3Fts5AuxInit(fts5_api *pApi){
+ struct Builtin {
+ const char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc;/* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ } aBuiltin [] = {
+ { "snippet", 0, fts5SnippetFunction, 0 },
+ { "highlight", 0, fts5HighlightFunction, 0 },
+ { "bm25", 0, fts5Bm25Function, 0 },
+ };
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateFunction(pApi,
+ aBuiltin[i].zFunc,
+ aBuiltin[i].pUserData,
+ aBuiltin[i].xFunc,
+ aBuiltin[i].xDestroy
+ );
+ }
+
+ return rc;
+}
+
+
+
+#line 1 "fts5_buffer.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
+ if( (u32)pBuf->nSpace<nByte ){
+ u32 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
+ u8 *pNew;
+ while( nNew<nByte ){
+ nNew = nNew * 2;
+ }
+ pNew = sqlite3_realloc(pBuf->p, nNew);
+ if( pNew==0 ){
+ *pRc = SQLITE_NOMEM;
+ return 1;
+ }else{
+ pBuf->nSpace = nNew;
+ pBuf->p = pNew;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Encode value iVal as an SQLite varint and append it to the buffer object
+** pBuf. If an OOM error occurs, set the error code in p.
+*/
+static void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
+ if( fts5BufferGrow(pRc, pBuf, 9) ) return;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
+}
+
+static void sqlite3Fts5Put32(u8 *aBuf, int iVal){
+ aBuf[0] = (iVal>>24) & 0x00FF;
+ aBuf[1] = (iVal>>16) & 0x00FF;
+ aBuf[2] = (iVal>> 8) & 0x00FF;
+ aBuf[3] = (iVal>> 0) & 0x00FF;
+}
+
+static int sqlite3Fts5Get32(const u8 *aBuf){
+ return (aBuf[0] << 24) + (aBuf[1] << 16) + (aBuf[2] << 8) + aBuf[3];
+}
+
+/*
+** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferAppendBlob(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ u32 nData,
+ const u8 *pData
+){
+ assert_nc( *pRc || nData>=0 );
+ if( fts5BufferGrow(pRc, pBuf, nData) ) return;
+ memcpy(&pBuf->p[pBuf->n], pData, nData);
+ pBuf->n += nData;
+}
+
+/*
+** Append the nul-terminated string zStr to the buffer pBuf. This function
+** ensures that the byte following the buffer data is set to 0x00, even
+** though this byte is not included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendString(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ const char *zStr
+){
+ int nStr = (int)strlen(zStr);
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
+ pBuf->n--;
+}
+
+/*
+** Argument zFmt is a printf() style format string. This function performs
+** the printf() style processing, then appends the results to buffer pBuf.
+**
+** Like sqlite3Fts5BufferAppendString(), this function ensures that the byte
+** following the buffer data is set to 0x00, even though this byte is not
+** included in the pBuf->n count.
+*/
+static void sqlite3Fts5BufferAppendPrintf(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ char *zFmt, ...
+){
+ if( *pRc==SQLITE_OK ){
+ char *zTmp;
+ va_list ap;
+ va_start(ap, zFmt);
+ zTmp = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+
+ if( zTmp==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ sqlite3Fts5BufferAppendString(pRc, pBuf, zTmp);
+ sqlite3_free(zTmp);
+ }
+ }
+}
+
+static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ va_list ap;
+ va_start(ap, zFmt);
+ zRet = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zRet==0 ){
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Free any buffer allocated by pBuf. Zero the structure before returning.
+*/
+static void sqlite3Fts5BufferFree(Fts5Buffer *pBuf){
+ sqlite3_free(pBuf->p);
+ memset(pBuf, 0, sizeof(Fts5Buffer));
+}
+
+/*
+** Zero the contents of the buffer object. But do not free the associated
+** memory allocation.
+*/
+static void sqlite3Fts5BufferZero(Fts5Buffer *pBuf){
+ pBuf->n = 0;
+}
+
+/*
+** Set the buffer to contain nData/pData. If an OOM error occurs, leave an
+** the error code in p. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static void sqlite3Fts5BufferSet(
+ int *pRc,
+ Fts5Buffer *pBuf,
+ int nData,
+ const u8 *pData
+){
+ pBuf->n = 0;
+ sqlite3Fts5BufferAppendBlob(pRc, pBuf, nData, pData);
+}
+
+static int sqlite3Fts5PoslistNext64(
+ const u8 *a, int n, /* Buffer containing poslist */
+ int *pi, /* IN/OUT: Offset within a[] */
+ i64 *piOff /* IN/OUT: Current offset */
+){
+ int i = *pi;
+ if( i>=n ){
+ /* EOF */
+ *piOff = -1;
+ return 1;
+ }else{
+ i64 iOff = *piOff;
+ int iVal;
+ fts5FastGetVarint32(a, i, iVal);
+ if( iVal==1 ){
+ fts5FastGetVarint32(a, i, iVal);
+ iOff = ((i64)iVal) << 32;
+ fts5FastGetVarint32(a, i, iVal);
+ }
+ *piOff = iOff + (iVal-2);
+ *pi = i;
+ return 0;
+ }
+}
+
+
+/*
+** Advance the iterator object passed as the only argument. Return true
+** if the iterator reaches EOF, or false otherwise.
+*/
+static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
+ if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) ){
+ pIter->bEof = 1;
+ }
+ return pIter->bEof;
+}
+
+static int sqlite3Fts5PoslistReaderInit(
+ const u8 *a, int n, /* Poslist buffer to iterate through */
+ Fts5PoslistReader *pIter /* Iterator object to initialize */
+){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->a = a;
+ pIter->n = n;
+ sqlite3Fts5PoslistReaderNext(pIter);
+ return pIter->bEof;
+}
+
+/*
+** Append position iPos to the position list being accumulated in buffer
+** pBuf, which must be already be large enough to hold the new data.
+** The previous position written to this list is *piPrev. *piPrev is set
+** to iPos before returning.
+*/
+static void sqlite3Fts5PoslistSafeAppend(
+ Fts5Buffer *pBuf,
+ i64 *piPrev,
+ i64 iPos
+){
+ static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
+ if( (iPos & colmask) != (*piPrev & colmask) ){
+ pBuf->p[pBuf->n++] = 1;
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
+ *piPrev = (iPos & colmask);
+ }
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
+ *piPrev = iPos;
+}
+
+static int sqlite3Fts5PoslistWriterAppend(
+ Fts5Buffer *pBuf,
+ Fts5PoslistWriter *pWriter,
+ i64 iPos
+){
+ int rc = 0; /* Initialized only to suppress erroneous warning from Clang */
+ if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;
+ sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);
+ return SQLITE_OK;
+}
+
+static void *sqlite3Fts5MallocZero(int *pRc, int nByte){
+ void *pRet = 0;
+ if( *pRc==SQLITE_OK ){
+ pRet = sqlite3_malloc(nByte);
+ if( pRet==0 && nByte>0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ }
+ }
+ return pRet;
+}
+
+/*
+** Return a nul-terminated copy of the string indicated by pIn. If nIn
+** is non-negative, then it is the length of the string in bytes. Otherwise,
+** the length of the string is determined using strlen().
+**
+** It is the responsibility of the caller to eventually free the returned
+** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned.
+*/
+static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
+ char *zRet = 0;
+ if( *pRc==SQLITE_OK ){
+ if( nIn<0 ){
+ nIn = (int)strlen(pIn);
+ }
+ zRet = (char*)sqlite3_malloc(nIn+1);
+ if( zRet ){
+ memcpy(zRet, pIn, nIn);
+ zRet[nIn] = '\0';
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+ return zRet;
+}
+
+
+/*
+** Return true if character 't' may be part of an FTS5 bareword, or false
+** otherwise. Characters that may be part of barewords:
+**
+** * All non-ASCII characters,
+** * The 52 upper and lower case ASCII characters, and
+** * The 10 integer ASCII characters.
+** * The underscore character "_" (0x5F).
+** * The unicode "subsitute" character (0x1A).
+*/
+static int sqlite3Fts5IsBareword(char t){
+ u8 aBareword[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 .. 0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* 0x10 .. 0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 .. 0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30 .. 0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 .. 0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 0x50 .. 0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 .. 0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 /* 0x70 .. 0x7F */
+ };
+
+ return (t & 0x80) || aBareword[(int)t];
+}
+
+
+/*************************************************************************
+*/
+typedef struct Fts5TermsetEntry Fts5TermsetEntry;
+struct Fts5TermsetEntry {
+ char *pTerm;
+ int nTerm;
+ int iIdx; /* Index (main or aPrefix[] entry) */
+ Fts5TermsetEntry *pNext;
+};
+
+struct Fts5Termset {
+ Fts5TermsetEntry *apHash[512];
+};
+
+static int sqlite3Fts5TermsetNew(Fts5Termset **pp){
+ int rc = SQLITE_OK;
+ *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
+ return rc;
+}
+
+static int sqlite3Fts5TermsetAdd(
+ Fts5Termset *p,
+ int iIdx,
+ const char *pTerm, int nTerm,
+ int *pbPresent
+){
+ int rc = SQLITE_OK;
+ *pbPresent = 0;
+ if( p ){
+ int i;
+ u32 hash = 13;
+ Fts5TermsetEntry *pEntry;
+
+ /* Calculate a hash value for this term. This is the same hash checksum
+ ** used by the fts5_hash.c module. This is not important for correct
+ ** operation of the module, but is necessary to ensure that some tests
+ ** designed to produce hash table collisions really do work. */
+ for(i=nTerm-1; i>=0; i--){
+ hash = (hash << 3) ^ hash ^ pTerm[i];
+ }
+ hash = (hash << 3) ^ hash ^ iIdx;
+ hash = hash % ArraySize(p->apHash);
+
+ for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
+ if( pEntry->iIdx==iIdx
+ && pEntry->nTerm==nTerm
+ && memcmp(pEntry->pTerm, pTerm, nTerm)==0
+ ){
+ *pbPresent = 1;
+ break;
+ }
+ }
+
+ if( pEntry==0 ){
+ pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
+ if( pEntry ){
+ pEntry->pTerm = (char*)&pEntry[1];
+ pEntry->nTerm = nTerm;
+ pEntry->iIdx = iIdx;
+ memcpy(pEntry->pTerm, pTerm, nTerm);
+ pEntry->pNext = p->apHash[hash];
+ p->apHash[hash] = pEntry;
+ }
+ }
+ }
+
+ return rc;
+}
+
+static void sqlite3Fts5TermsetFree(Fts5Termset *p){
+ if( p ){
+ u32 i;
+ for(i=0; i<ArraySize(p->apHash); i++){
+ Fts5TermsetEntry *pEntry = p->apHash[i];
+ while( pEntry ){
+ Fts5TermsetEntry *pDel = pEntry;
+ pEntry = pEntry->pNext;
+ sqlite3_free(pDel);
+ }
+ }
+ sqlite3_free(p);
+ }
+}
+
+#line 1 "fts5_config.c"
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+#define FTS5_DEFAULT_PAGE_SIZE 4050
+#define FTS5_DEFAULT_AUTOMERGE 4
+#define FTS5_DEFAULT_CRISISMERGE 16
+#define FTS5_DEFAULT_HASHSIZE (1024*1024)
+
+/* Maximum allowed page size */
+#define FTS5_MAX_PAGE_SIZE (128*1024)
+
+static int fts5_iswhitespace(char x){
+ return (x==' ');
+}
+
+static int fts5_isopenquote(char x){
+ return (x=='"' || x=='\'' || x=='[' || x=='`');
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a white-space character.
+*/
+static const char *fts5ConfigSkipWhitespace(const char *pIn){
+ const char *p = pIn;
+ if( p ){
+ while( fts5_iswhitespace(*p) ){ p++; }
+ }
+ return p;
+}
+
+/*
+** Argument pIn points to a character that is part of a nul-terminated
+** string. Return a pointer to the first character following *pIn in
+** the string that is not a "bareword" character.
+*/
+static const char *fts5ConfigSkipBareword(const char *pIn){
+ const char *p = pIn;
+ while ( sqlite3Fts5IsBareword(*p) ) p++;
+ if( p==pIn ) p = 0;
+ return p;
+}
+
+static int fts5_isdigit(char a){
+ return (a>='0' && a<='9');
+}
+
+
+
+static const char *fts5ConfigSkipLiteral(const char *pIn){
+ const char *p = pIn;
+ switch( *p ){
+ case 'n': case 'N':
+ if( sqlite3_strnicmp("null", p, 4)==0 ){
+ p = &p[4];
+ }else{
+ p = 0;
+ }
+ break;
+
+ case 'x': case 'X':
+ p++;
+ if( *p=='\'' ){
+ p++;
+ while( (*p>='a' && *p<='f')
+ || (*p>='A' && *p<='F')
+ || (*p>='0' && *p<='9')
+ ){
+ p++;
+ }
+ if( *p=='\'' && 0==((p-pIn)%2) ){
+ p++;
+ }else{
+ p = 0;
+ }
+ }else{
+ p = 0;
+ }
+ break;
+
+ case '\'':
+ p++;
+ while( p ){
+ if( *p=='\'' ){
+ p++;
+ if( *p!='\'' ) break;
+ }
+ p++;
+ if( *p==0 ) p = 0;
+ }
+ break;
+
+ default:
+ /* maybe a number */
+ if( *p=='+' || *p=='-' ) p++;
+ while( fts5_isdigit(*p) ) p++;
+
+ /* At this point, if the literal was an integer, the parse is
+ ** finished. Or, if it is a floating point value, it may continue
+ ** with either a decimal point or an 'E' character. */
+ if( *p=='.' && fts5_isdigit(p[1]) ){
+ p += 2;
+ while( fts5_isdigit(*p) ) p++;
+ }
+ if( p==pIn ) p = 0;
+
+ break;
+ }
+
+ return p;
+}
+
+/*
+** The first character of the string pointed to by argument z is guaranteed
+** to be an open-quote character (see function fts5_isopenquote()).
+**
+** This function searches for the corresponding close-quote character within
+** the string and, if found, dequotes the string in place and adds a new
+** nul-terminator byte.
+**
+** If the close-quote is found, the value returned is the byte offset of
+** the character immediately following it. Or, if the close-quote is not
+** found, -1 is returned. If -1 is returned, the buffer is left in an
+** undefined state.
+*/
+static int fts5Dequote(char *z){
+ char q;
+ int iIn = 1;
+ int iOut = 0;
+ q = z[0];
+
+ /* Set stack variable q to the close-quote character */
+ assert( q=='[' || q=='\'' || q=='"' || q=='`' );
+ if( q=='[' ) q = ']';
+
+ while( ALWAYS(z[iIn]) ){
+ if( z[iIn]==q ){
+ if( z[iIn+1]!=q ){
+ /* Character iIn was the close quote. */
+ iIn++;
+ break;
+ }else{
+ /* Character iIn and iIn+1 form an escaped quote character. Skip
+ ** the input cursor past both and copy a single quote character
+ ** to the output buffer. */
+ iIn += 2;
+ z[iOut++] = q;
+ }
+ }else{
+ z[iOut++] = z[iIn++];
+ }
+ }
+
+ z[iOut] = '\0';
+ return iIn;
+}
+
+/*
+** Convert an SQL-style quoted string into a normal string by removing
+** the quote characters. The conversion is done in-place. If the
+** input does not begin with a quote character, then this routine
+** is a no-op.
+**
+** Examples:
+**
+** "abc" becomes abc
+** 'xyz' becomes xyz
+** [pqr] becomes pqr
+** `mno` becomes mno
+*/
+static void sqlite3Fts5Dequote(char *z){
+ char quote; /* Quote character (if any ) */
+
+ assert( 0==fts5_iswhitespace(z[0]) );
+ quote = z[0];
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
+ fts5Dequote(z);
+ }
+}
+
+
+struct Fts5Enum {
+ const char *zName;
+ int eVal;
+};
+typedef struct Fts5Enum Fts5Enum;
+
+static int fts5ConfigSetEnum(
+ const Fts5Enum *aEnum,
+ const char *zEnum,
+ int *peVal
+){
+ int nEnum = (int)strlen(zEnum);
+ int i;
+ int iVal = -1;
+
+ for(i=0; aEnum[i].zName; i++){
+ if( sqlite3_strnicmp(aEnum[i].zName, zEnum, nEnum)==0 ){
+ if( iVal>=0 ) return SQLITE_ERROR;
+ iVal = aEnum[i].eVal;
+ }
+ }
+
+ *peVal = iVal;
+ return iVal<0 ? SQLITE_ERROR : SQLITE_OK;
+}
+
+/*
+** Parse a "special" CREATE VIRTUAL TABLE directive and update
+** configuration object pConfig as appropriate.
+**
+** If successful, object pConfig is updated and SQLITE_OK returned. If
+** an error occurs, an SQLite error code is returned and an error message
+** may be left in *pzErr. It is the responsibility of the caller to
+** eventually free any such error message using sqlite3_free().
+*/
+static int fts5ConfigParseSpecial(
+ Fts5Global *pGlobal,
+ Fts5Config *pConfig, /* Configuration object to update */
+ const char *zCmd, /* Special command to parse */
+ const char *zArg, /* Argument to parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ int nCmd = (int)strlen(zCmd);
+ if( sqlite3_strnicmp("prefix", zCmd, nCmd)==0 ){
+ const int nByte = sizeof(int) * FTS5_MAX_PREFIX_INDEXES;
+ const char *p;
+ int bFirst = 1;
+ if( pConfig->aPrefix==0 ){
+ pConfig->aPrefix = sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc ) return rc;
+ }
+
+ p = zArg;
+ while( 1 ){
+ int nPre = 0;
+
+ while( p[0]==' ' ) p++;
+ if( bFirst==0 && p[0]==',' ){
+ p++;
+ while( p[0]==' ' ) p++;
+ }else if( p[0]=='\0' ){
+ break;
+ }
+ if( p[0]<'0' || p[0]>'9' ){
+ *pzErr = sqlite3_mprintf("malformed prefix=... directive");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ if( pConfig->nPrefix==FTS5_MAX_PREFIX_INDEXES ){
+ *pzErr = sqlite3_mprintf(
+ "too many prefix indexes (max %d)", FTS5_MAX_PREFIX_INDEXES
+ );
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
+ nPre = nPre*10 + (p[0] - '0');
+ p++;
+ }
+
+ if( nPre<=0 || nPre>=1000 ){
+ *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
+ rc = SQLITE_ERROR;
+ break;
+ }
+
+ pConfig->aPrefix[pConfig->nPrefix] = nPre;
+ pConfig->nPrefix++;
+ bFirst = 0;
+ }
+ assert( pConfig->nPrefix<=FTS5_MAX_PREFIX_INDEXES );
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("tokenize", zCmd, nCmd)==0 ){
+ const char *p = (const char*)zArg;
+ int nArg = (int)strlen(zArg) + 1;
+ char **azArg = sqlite3Fts5MallocZero(&rc, sizeof(char*) * nArg);
+ char *pDel = sqlite3Fts5MallocZero(&rc, nArg * 2);
+ char *pSpace = pDel;
+
+ if( azArg && pSpace ){
+ if( pConfig->pTok ){
+ *pzErr = sqlite3_mprintf("multiple tokenize=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ for(nArg=0; p && *p; nArg++){
+ const char *p2 = fts5ConfigSkipWhitespace(p);
+ if( *p2=='\'' ){
+ p = fts5ConfigSkipLiteral(p2);
+ }else{
+ p = fts5ConfigSkipBareword(p2);
+ }
+ if( p ){
+ memcpy(pSpace, p2, p-p2);
+ azArg[nArg] = pSpace;
+ sqlite3Fts5Dequote(pSpace);
+ pSpace += (p - p2) + 1;
+ p = fts5ConfigSkipWhitespace(p);
+ }
+ }
+ if( p==0 ){
+ *pzErr = sqlite3_mprintf("parse error in tokenize directive");
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5GetTokenizer(pGlobal,
+ (const char**)azArg, nArg, &pConfig->pTok, &pConfig->pTokApi,
+ pzErr
+ );
+ }
+ }
+ }
+
+ sqlite3_free(azArg);
+ sqlite3_free(pDel);
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content", zCmd, nCmd)==0 ){
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ *pzErr = sqlite3_mprintf("multiple content=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ if( zArg[0] ){
+ pConfig->eContent = FTS5_CONTENT_EXTERNAL;
+ pConfig->zContent = sqlite3Fts5Mprintf(&rc, "%Q.%Q", pConfig->zDb,zArg);
+ }else{
+ pConfig->eContent = FTS5_CONTENT_NONE;
+ }
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("content_rowid", zCmd, nCmd)==0 ){
+ if( pConfig->zContentRowid ){
+ *pzErr = sqlite3_mprintf("multiple content_rowid=... directives");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->zContentRowid = sqlite3Fts5Strndup(&rc, zArg, -1);
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("columnsize", zCmd, nCmd)==0 ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1]!='\0' ){
+ *pzErr = sqlite3_mprintf("malformed columnsize=... directive");
+ rc = SQLITE_ERROR;
+ }else{
+ pConfig->bColumnsize = (zArg[0]=='1');
+ }
+ return rc;
+ }
+
+ if( sqlite3_strnicmp("detail", zCmd, nCmd)==0 ){
+ const Fts5Enum aDetail[] = {
+ { "none", FTS5_DETAIL_NONE },
+ { "full", FTS5_DETAIL_FULL },
+ { "columns", FTS5_DETAIL_COLUMNS },
+ { 0, 0 }
+ };
+
+ if( (rc = fts5ConfigSetEnum(aDetail, zArg, &pConfig->eDetail)) ){
+ *pzErr = sqlite3_mprintf("malformed detail=... directive");
+ }
+ return rc;
+ }
+
+ *pzErr = sqlite3_mprintf("unrecognized option: \"%.*s\"", nCmd, zCmd);
+ return SQLITE_ERROR;
+}
+
+/*
+** Allocate an instance of the default tokenizer ("simple") at
+** Fts5Config.pTokenizer. Return SQLITE_OK if successful, or an SQLite error
+** code if an error occurs.
+*/
+static int fts5ConfigDefaultTokenizer(Fts5Global *pGlobal, Fts5Config *pConfig){
+ assert( pConfig->pTok==0 && pConfig->pTokApi==0 );
+ return sqlite3Fts5GetTokenizer(
+ pGlobal, 0, 0, &pConfig->pTok, &pConfig->pTokApi, 0
+ );
+}
+
+/*
+** Gobble up the first bareword or quoted word from the input buffer zIn.
+** Return a pointer to the character immediately following the last in
+** the gobbled word if successful, or a NULL pointer otherwise (failed
+** to find close-quote character).
+**
+** Before returning, set pzOut to point to a new buffer containing a
+** nul-terminated, dequoted copy of the gobbled word. If the word was
+** quoted, *pbQuoted is also set to 1 before returning.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is
+** a no-op (NULL is returned). Otherwise, if an OOM occurs within this
+** function, *pRc is set to SQLITE_NOMEM before returning. *pRc is *not*
+** set if a parse error (failed to find close quote) occurs.
+*/
+static const char *fts5ConfigGobbleWord(
+ int *pRc, /* IN/OUT: Error code */
+ const char *zIn, /* Buffer to gobble string/bareword from */
+ char **pzOut, /* OUT: malloc'd buffer containing str/bw */
+ int *pbQuoted /* OUT: Set to true if dequoting required */
+){
+ const char *zRet = 0;
+
+ int nIn = (int)strlen(zIn);
+ char *zOut = sqlite3_malloc(nIn+1);
+
+ assert( *pRc==SQLITE_OK );
+ *pbQuoted = 0;
+ *pzOut = 0;
+
+ if( zOut==0 ){
+ *pRc = SQLITE_NOMEM;
+ }else{
+ memcpy(zOut, zIn, nIn+1);
+ if( fts5_isopenquote(zOut[0]) ){
+ int ii = fts5Dequote(zOut);
+ zRet = &zIn[ii];
+ *pbQuoted = 1;
+ }else{
+ zRet = fts5ConfigSkipBareword(zIn);
+ zOut[zRet-zIn] = '\0';
+ }
+ }
+
+ if( zRet==0 ){
+ sqlite3_free(zOut);
+ }else{
+ *pzOut = zOut;
+ }
+
+ return zRet;
+}
+
+static int fts5ConfigParseColumn(
+ Fts5Config *p,
+ char *zCol,
+ char *zArg,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ if( 0==sqlite3_stricmp(zCol, FTS5_RANK_NAME)
+ || 0==sqlite3_stricmp(zCol, FTS5_ROWID_NAME)
+ ){
+ *pzErr = sqlite3_mprintf("reserved fts5 column name: %s", zCol);
+ rc = SQLITE_ERROR;
+ }else if( zArg ){
+ if( 0==sqlite3_stricmp(zArg, "unindexed") ){
+ p->abUnindexed[p->nCol] = 1;
+ }else{
+ *pzErr = sqlite3_mprintf("unrecognized column option: %s", zArg);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ p->azCol[p->nCol++] = zCol;
+ return rc;
+}
+
+/*
+** Populate the Fts5Config.zContentExprlist string.
+*/
+static int fts5ConfigMakeExprlist(Fts5Config *p){
+ int i;
+ int rc = SQLITE_OK;
+ Fts5Buffer buf = {0, 0, 0};
+
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, "T.%Q", p->zContentRowid);
+ if( p->eContent!=FTS5_CONTENT_NONE ){
+ for(i=0; i<p->nCol; i++){
+ if( p->eContent==FTS5_CONTENT_EXTERNAL ){
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.%Q", p->azCol[i]);
+ }else{
+ sqlite3Fts5BufferAppendPrintf(&rc, &buf, ", T.c%d", i);
+ }
+ }
+ }
+
+ assert( p->zContentExprlist==0 );
+ p->zContentExprlist = (char*)buf.p;
+ return rc;
+}
+
+/*
+** Arguments nArg/azArg contain the string arguments passed to the xCreate
+** or xConnect method of the virtual table. This function attempts to
+** allocate an instance of Fts5Config containing the results of parsing
+** those arguments.
+**
+** If successful, SQLITE_OK is returned and *ppOut is set to point to the
+** new Fts5Config object. If an error occurs, an SQLite error code is
+** returned, *ppOut is set to NULL and an error message may be left in
+** *pzErr. It is the responsibility of the caller to eventually free any
+** such error message using sqlite3_free().
+*/
+static int sqlite3Fts5ConfigParse(
+ Fts5Global *pGlobal,
+ sqlite3 *db,
+ int nArg, /* Number of arguments */
+ const char **azArg, /* Array of nArg CREATE VIRTUAL TABLE args */
+ Fts5Config **ppOut, /* OUT: Results of parse */
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pRet; /* New object to return */
+ int i;
+ int nByte;
+
+ *ppOut = pRet = (Fts5Config*)sqlite3_malloc(sizeof(Fts5Config));
+ if( pRet==0 ) return SQLITE_NOMEM;
+ memset(pRet, 0, sizeof(Fts5Config));
+ pRet->db = db;
+ pRet->iCookie = -1;
+
+ nByte = nArg * (sizeof(char*) + sizeof(u8));
+ pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
+ pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
+ pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
+ pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
+ pRet->bColumnsize = 1;
+ pRet->eDetail = FTS5_DETAIL_FULL;
+#ifdef SQLITE_DEBUG
+ pRet->bPrefixIndex = 1;
+#endif
+ if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
+ *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
+ rc = SQLITE_ERROR;
+ }
+
+ for(i=3; rc==SQLITE_OK && i<nArg; i++){
+ const char *zOrig = azArg[i];
+ const char *z;
+ char *zOne = 0;
+ char *zTwo = 0;
+ int bOption = 0;
+ int bMustBeCol = 0;
+
+ z = fts5ConfigGobbleWord(&rc, zOrig, &zOne, &bMustBeCol);
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && *z=='=' ){
+ bOption = 1;
+ z++;
+ if( bMustBeCol ) z = 0;
+ }
+ z = fts5ConfigSkipWhitespace(z);
+ if( z && z[0] ){
+ int bDummy;
+ z = fts5ConfigGobbleWord(&rc, z, &zTwo, &bDummy);
+ if( z && z[0] ) z = 0;
+ }
+
+ if( rc==SQLITE_OK ){
+ if( z==0 ){
+ *pzErr = sqlite3_mprintf("parse error in \"%s\"", zOrig);
+ rc = SQLITE_ERROR;
+ }else{
+ if( bOption ){
+ rc = fts5ConfigParseSpecial(pGlobal, pRet, zOne, zTwo?zTwo:"", pzErr);
+ }else{
+ rc = fts5ConfigParseColumn(pRet, zOne, zTwo, pzErr);
+ zOne = 0;
+ }
+ }
+ }
+
+ sqlite3_free(zOne);
+ sqlite3_free(zTwo);
+ }
+
+ /* If a tokenizer= option was successfully parsed, the tokenizer has
+ ** already been allocated. Otherwise, allocate an instance of the default
+ ** tokenizer (unicode61) now. */
+ if( rc==SQLITE_OK && pRet->pTok==0 ){
+ rc = fts5ConfigDefaultTokenizer(pGlobal, pRet);
+ }
+
+ /* If no zContent option was specified, fill in the default values. */
+ if( rc==SQLITE_OK && pRet->zContent==0 ){
+ const char *zTail = 0;
+ assert( pRet->eContent==FTS5_CONTENT_NORMAL
+ || pRet->eContent==FTS5_CONTENT_NONE
+ );
+ if( pRet->eContent==FTS5_CONTENT_NORMAL ){
+ zTail = "content";
+ }else if( pRet->bColumnsize ){
+ zTail = "docsize";
+ }
+
+ if( zTail ){
+ pRet->zContent = sqlite3Fts5Mprintf(
+ &rc, "%Q.'%q_%s'", pRet->zDb, pRet->zName, zTail
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK && pRet->zContentRowid==0 ){
+ pRet->zContentRowid = sqlite3Fts5Strndup(&rc, "rowid", -1);
+ }
+
+ /* Formulate the zContentExprlist text */
+ if( rc==SQLITE_OK ){
+ rc = fts5ConfigMakeExprlist(pRet);
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3Fts5ConfigFree(pRet);
+ *ppOut = 0;
+ }
+ return rc;
+}
+
+/*
+** Free the configuration object passed as the only argument.
+*/
+static void sqlite3Fts5ConfigFree(Fts5Config *pConfig){
+ if( pConfig ){
+ int i;
+ if( pConfig->pTok ){
+ pConfig->pTokApi->xDelete(pConfig->pTok);
+ }
+ sqlite3_free(pConfig->zDb);
+ sqlite3_free(pConfig->zName);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_free(pConfig->azCol[i]);
+ }
+ sqlite3_free(pConfig->azCol);
+ sqlite3_free(pConfig->aPrefix);
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ sqlite3_free(pConfig->zContent);
+ sqlite3_free(pConfig->zContentRowid);
+ sqlite3_free(pConfig->zContentExprlist);
+ sqlite3_free(pConfig);
+ }
+}
+
+/*
+** Call sqlite3_declare_vtab() based on the contents of the configuration
+** object passed as the only argument. Return SQLITE_OK if successful, or
+** an SQLite error code if an error occurs.
+*/
+static int sqlite3Fts5ConfigDeclareVtab(Fts5Config *pConfig){
+ int i;
+ int rc = SQLITE_OK;
+ char *zSql;
+
+ zSql = sqlite3Fts5Mprintf(&rc, "CREATE TABLE x(");
+ for(i=0; zSql && i<pConfig->nCol; i++){
+ const char *zSep = (i==0?"":", ");
+ zSql = sqlite3Fts5Mprintf(&rc, "%z%s%Q", zSql, zSep, pConfig->azCol[i]);
+ }
+ zSql = sqlite3Fts5Mprintf(&rc, "%z, %Q HIDDEN, %s HIDDEN)",
+ zSql, pConfig->zName, FTS5_RANK_NAME
+ );
+
+ assert( zSql || rc==SQLITE_NOMEM );
+ if( zSql ){
+ rc = sqlite3_declare_vtab(pConfig->db, zSql);
+ sqlite3_free(zSql);
+ }
+
+ return rc;
+}
+
+/*
+** Tokenize the text passed via the second and third arguments.
+**
+** The callback is invoked once for each token in the input text. The
+** arguments passed to it are, in order:
+**
+** void *pCtx // Copy of 4th argument to sqlite3Fts5Tokenize()
+** const char *pToken // Pointer to buffer containing token
+** int nToken // Size of token in bytes
+** int iStart // Byte offset of start of token within input text
+** int iEnd // Byte offset of end of token within input text
+** int iPos // Position of token in input (first token is 0)
+**
+** If the callback returns a non-zero value the tokenization is abandoned
+** and no further callbacks are issued.
+**
+** This function returns SQLITE_OK if successful or an SQLite error code
+** if an error occurs. If the tokenization was abandoned early because
+** the callback returned SQLITE_DONE, this is not an error and this function
+** still returns SQLITE_OK. Or, if the tokenization was abandoned early
+** because the callback returned another non-zero value, it is assumed
+** to be an SQLite error code and returned to the caller.
+*/
+static int sqlite3Fts5Tokenize(
+ Fts5Config *pConfig, /* FTS5 Configuration object */
+ int flags, /* FTS5_TOKENIZE_* flags */
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+){
+ if( pText==0 ) return SQLITE_OK;
+ return pConfig->pTokApi->xTokenize(
+ pConfig->pTok, pCtx, flags, pText, nText, xToken
+ );
+}
+
+/*
+** Argument pIn points to the first character in what is expected to be
+** a comma-separated list of SQL literals followed by a ')' character.
+** If it actually is this, return a pointer to the ')'. Otherwise, return
+** NULL to indicate a parse error.
+*/
+static const char *fts5ConfigSkipArgs(const char *pIn){
+ const char *p = pIn;
+
+ while( 1 ){
+ p = fts5ConfigSkipWhitespace(p);
+ p = fts5ConfigSkipLiteral(p);
+ p = fts5ConfigSkipWhitespace(p);
+ if( p==0 || *p==')' ) break;
+ if( *p!=',' ){
+ p = 0;
+ break;
+ }
+ p++;
+ }
+
+ return p;
+}
+
+/*
+** Parameter zIn contains a rank() function specification. The format of
+** this is:
+**
+** + Bareword (function name)
+** + Open parenthesis - "("
+** + Zero or more SQL literals in a comma separated list
+** + Close parenthesis - ")"
+*/
+static int sqlite3Fts5ConfigParseRank(
+ const char *zIn, /* Input string */
+ char **pzRank, /* OUT: Rank function name */
+ char **pzRankArgs /* OUT: Rank function arguments */
+){
+ const char *p = zIn;
+ const char *pRank;
+ char *zRank = 0;
+ char *zRankArgs = 0;
+ int rc = SQLITE_OK;
+
+ *pzRank = 0;
+ *pzRankArgs = 0;
+
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = fts5ConfigSkipWhitespace(p);
+ pRank = p;
+ p = fts5ConfigSkipBareword(p);
+
+ if( p ){
+ zRank = sqlite3Fts5MallocZero(&rc, 1 + p - pRank);
+ if( zRank ) memcpy(zRank, pRank, p-pRank);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+
+ if( rc==SQLITE_OK ){
+ p = fts5ConfigSkipWhitespace(p);
+ if( *p!='(' ) rc = SQLITE_ERROR;
+ p++;
+ }
+ if( rc==SQLITE_OK ){
+ const char *pArgs;
+ p = fts5ConfigSkipWhitespace(p);
+ pArgs = p;
+ if( *p!=')' ){
+ p = fts5ConfigSkipArgs(p);
+ if( p==0 ){
+ rc = SQLITE_ERROR;
+ }else{
+ zRankArgs = sqlite3Fts5MallocZero(&rc, 1 + p - pArgs);
+ if( zRankArgs ) memcpy(zRankArgs, pArgs, p-pArgs);
+ }
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(zRank);
+ assert( zRankArgs==0 );
+ }else{
+ *pzRank = zRank;
+ *pzRankArgs = zRankArgs;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ConfigSetValue(
+ Fts5Config *pConfig,
+ const char *zKey,
+ sqlite3_value *pVal,
+ int *pbBadkey
+){
+ int rc = SQLITE_OK;
+
+ if( 0==sqlite3_stricmp(zKey, "pgsz") ){
+ int pgsz = 0;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ pgsz = sqlite3_value_int(pVal);
+ }
+ if( pgsz<=0 || pgsz>FTS5_MAX_PAGE_SIZE ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->pgsz = pgsz;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "hashsize") ){
+ int nHashSize = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nHashSize = sqlite3_value_int(pVal);
+ }
+ if( nHashSize<=0 ){
+ *pbBadkey = 1;
+ }else{
+ pConfig->nHashSize = nHashSize;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "automerge") ){
+ int nAutomerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nAutomerge = sqlite3_value_int(pVal);
+ }
+ if( nAutomerge<0 || nAutomerge>64 ){
+ *pbBadkey = 1;
+ }else{
+ if( nAutomerge==1 ) nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nAutomerge = nAutomerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "crisismerge") ){
+ int nCrisisMerge = -1;
+ if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
+ nCrisisMerge = sqlite3_value_int(pVal);
+ }
+ if( nCrisisMerge<0 ){
+ *pbBadkey = 1;
+ }else{
+ if( nCrisisMerge<=1 ) nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ pConfig->nCrisisMerge = nCrisisMerge;
+ }
+ }
+
+ else if( 0==sqlite3_stricmp(zKey, "rank") ){
+ const char *zIn = (const char*)sqlite3_value_text(pVal);
+ char *zRank;
+ char *zRankArgs;
+ rc = sqlite3Fts5ConfigParseRank(zIn, &zRank, &zRankArgs);
+ if( rc==SQLITE_OK ){
+ sqlite3_free(pConfig->zRank);
+ sqlite3_free(pConfig->zRankArgs);
+ pConfig->zRank = zRank;
+ pConfig->zRankArgs = zRankArgs;
+ }else if( rc==SQLITE_ERROR ){
+ rc = SQLITE_OK;
+ *pbBadkey = 1;
+ }
+ }else{
+ *pbBadkey = 1;
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the %_config table into memory.
+*/
+static int sqlite3Fts5ConfigLoad(Fts5Config *pConfig, int iCookie){
+ const char *zSelect = "SELECT k, v FROM %Q.'%q_config'";
+ char *zSql;
+ sqlite3_stmt *p = 0;
+ int rc = SQLITE_OK;
+ int iVersion = 0;
+
+ /* Set default values */
+ pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
+ pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
+ pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
+ pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;
+
+ zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
+ sqlite3_free(zSql);
+ }
+
+ assert( rc==SQLITE_OK || p==0 );
+ if( rc==SQLITE_OK ){
+ while( SQLITE_ROW==sqlite3_step(p) ){
+ const char *zK = (const char*)sqlite3_column_text(p, 0);
+ sqlite3_value *pVal = sqlite3_column_value(p, 1);
+ if( 0==sqlite3_stricmp(zK, "version") ){
+ iVersion = sqlite3_value_int(pVal);
+ }else{
+ int bDummy = 0;
+ sqlite3Fts5ConfigSetValue(pConfig, zK, pVal, &bDummy);
+ }
+ }
+ rc = sqlite3_finalize(p);
+ }
+
+ if( rc==SQLITE_OK && iVersion!=FTS5_CURRENT_VERSION ){
+ rc = SQLITE_ERROR;
+ if( pConfig->pzErrmsg ){
+ assert( 0==*pConfig->pzErrmsg );
+ *pConfig->pzErrmsg = sqlite3_mprintf(
+ "invalid fts5 file format (found %d, expected %d) - run 'rebuild'",
+ iVersion, FTS5_CURRENT_VERSION
+ );
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pConfig->iCookie = iCookie;
+ }
+ return rc;
+}
+
+#line 1 "fts5_expr.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+/* #include "fts5parse.h" */
+
+/*
+** All token types in the generated fts5parse.h file are greater than 0.
+*/
+#define FTS5_EOF 0
+
+#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
+
+typedef struct Fts5ExprTerm Fts5ExprTerm;
+
+/*
+** Functions generated by lemon from fts5parse.y.
+*/
+static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
+static void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
+static void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
+#ifndef NDEBUG
+#include <stdio.h>
+static void sqlite3Fts5ParserTrace(FILE*, char*);
+#endif
+
+
+struct Fts5Expr {
+ Fts5Index *pIndex;
+ Fts5Config *pConfig;
+ Fts5ExprNode *pRoot;
+ int bDesc; /* Iterate in descending rowid order */
+ int nPhrase; /* Number of phrases in expression */
+ Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
+};
+
+/*
+** eType:
+** Expression node type. Always one of:
+**
+** FTS5_AND (nChild, apChild valid)
+** FTS5_OR (nChild, apChild valid)
+** FTS5_NOT (nChild, apChild valid)
+** FTS5_STRING (pNear valid)
+** FTS5_TERM (pNear valid)
+*/
+struct Fts5ExprNode {
+ int eType; /* Node type */
+ int bEof; /* True at EOF */
+ int bNomatch; /* True if entry is not a match */
+
+ /* Next method for this node. */
+ int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);
+
+ i64 iRowid; /* Current rowid */
+ Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
+
+ /* Child nodes. For a NOT node, this array always contains 2 entries. For
+ ** AND or OR nodes, it contains 2 or more entries. */
+ int nChild; /* Number of child nodes */
+ Fts5ExprNode *apChild[1]; /* Array of child nodes */
+};
+
+#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
+
+/*
+** Invoke the xNext method of an Fts5ExprNode object. This macro should be
+** used as if it has the same signature as the xNext() methods themselves.
+*/
+#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))
+
+/*
+** An instance of the following structure represents a single search term
+** or term prefix.
+*/
+struct Fts5ExprTerm {
+ int bPrefix; /* True for a prefix term */
+ char *zTerm; /* nul-terminated term */
+ Fts5IndexIter *pIter; /* Iterator for this term */
+ Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */
+};
+
+/*
+** A phrase. One or more terms that must appear in a contiguous sequence
+** within a document for it to match.
+*/
+struct Fts5ExprPhrase {
+ Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
+ Fts5Buffer poslist; /* Current position list */
+ int nTerm; /* Number of entries in aTerm[] */
+ Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
+};
+
+/*
+** One or more phrases that must appear within a certain token distance of
+** each other within each matching document.
+*/
+struct Fts5ExprNearset {
+ int nNear; /* NEAR parameter */
+ Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */
+ int nPhrase; /* Number of entries in aPhrase[] array */
+ Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
+};
+
+
+/*
+** Parse context.
+*/
+struct Fts5Parse {
+ Fts5Config *pConfig;
+ char *zErr;
+ int rc;
+ int nPhrase; /* Size of apPhrase array */
+ Fts5ExprPhrase **apPhrase; /* Array of all phrases */
+ Fts5ExprNode *pExpr; /* Result of a successful parse */
+};
+
+static void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
+ va_list ap;
+ va_start(ap, zFmt);
+ if( pParse->rc==SQLITE_OK ){
+ pParse->zErr = sqlite3_vmprintf(zFmt, ap);
+ pParse->rc = SQLITE_ERROR;
+ }
+ va_end(ap);
+}
+
+static int fts5ExprIsspace(char t){
+ return t==' ' || t=='\t' || t=='\n' || t=='\r';
+}
+
+/*
+** Read the first token from the nul-terminated string at *pz.
+*/
+static int fts5ExprGetToken(
+ Fts5Parse *pParse,
+ const char **pz, /* IN/OUT: Pointer into buffer */
+ Fts5Token *pToken
+){
+ const char *z = *pz;
+ int tok;
+
+ /* Skip past any whitespace */
+ while( fts5ExprIsspace(*z) ) z++;
+
+ pToken->p = z;
+ pToken->n = 1;
+ switch( *z ){
+ case '(': tok = FTS5_LP; break;
+ case ')': tok = FTS5_RP; break;
+ case '{': tok = FTS5_LCP; break;
+ case '}': tok = FTS5_RCP; break;
+ case ':': tok = FTS5_COLON; break;
+ case ',': tok = FTS5_COMMA; break;
+ case '+': tok = FTS5_PLUS; break;
+ case '*': tok = FTS5_STAR; break;
+ case '\0': tok = FTS5_EOF; break;
+
+ case '"': {
+ const char *z2;
+ tok = FTS5_STRING;
+
+ for(z2=&z[1]; 1; z2++){
+ if( z2[0]=='"' ){
+ z2++;
+ if( z2[0]!='"' ) break;
+ }
+ if( z2[0]=='\0' ){
+ sqlite3Fts5ParseError(pParse, "unterminated string");
+ return FTS5_EOF;
+ }
+ }
+ pToken->n = (z2 - z);
+ break;
+ }
+
+ default: {
+ const char *z2;
+ if( sqlite3Fts5IsBareword(z[0])==0 ){
+ sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z);
+ return FTS5_EOF;
+ }
+ tok = FTS5_STRING;
+ for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
+ pToken->n = (z2 - z);
+ if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
+ if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
+ if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
+ break;
+ }
+ }
+
+ *pz = &pToken->p[pToken->n];
+ return tok;
+}
+
+static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); }
+static void fts5ParseFree(void *p){ sqlite3_free(p); }
+
+static int sqlite3Fts5ExprNew(
+ Fts5Config *pConfig, /* FTS5 Configuration */
+ const char *zExpr, /* Expression text */
+ Fts5Expr **ppNew,
+ char **pzErr
+){
+ Fts5Parse sParse;
+ Fts5Token token;
+ const char *z = zExpr;
+ int t; /* Next token type */
+ void *pEngine;
+ Fts5Expr *pNew;
+
+ *ppNew = 0;
+ *pzErr = 0;
+ memset(&sParse, 0, sizeof(sParse));
+ pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
+ if( pEngine==0 ){ return SQLITE_NOMEM; }
+ sParse.pConfig = pConfig;
+
+ do {
+ t = fts5ExprGetToken(&sParse, &z, &token);
+ sqlite3Fts5Parser(pEngine, t, token, &sParse);
+ }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
+ sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
+
+ assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
+ if( sParse.rc==SQLITE_OK ){
+ *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
+ if( pNew==0 ){
+ sParse.rc = SQLITE_NOMEM;
+ sqlite3Fts5ParseNodeFree(sParse.pExpr);
+ }else{
+ if( !sParse.pExpr ){
+ const int nByte = sizeof(Fts5ExprNode);
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
+ if( pNew->pRoot ){
+ pNew->pRoot->bEof = 1;
+ }
+ }else{
+ pNew->pRoot = sParse.pExpr;
+ }
+ pNew->pIndex = 0;
+ pNew->pConfig = pConfig;
+ pNew->apExprPhrase = sParse.apPhrase;
+ pNew->nPhrase = sParse.nPhrase;
+ sParse.apPhrase = 0;
+ }
+ }
+
+ sqlite3_free(sParse.apPhrase);
+ *pzErr = sParse.zErr;
+ return sParse.rc;
+}
+
+/*
+** Free the expression node object passed as the only argument.
+*/
+static void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
+ if( p ){
+ int i;
+ for(i=0; i<p->nChild; i++){
+ sqlite3Fts5ParseNodeFree(p->apChild[i]);
+ }
+ sqlite3Fts5ParseNearsetFree(p->pNear);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Free the expression object passed as the only argument.
+*/
+static void sqlite3Fts5ExprFree(Fts5Expr *p){
+ if( p ){
+ sqlite3Fts5ParseNodeFree(p->pRoot);
+ sqlite3_free(p->apExprPhrase);
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Argument pTerm must be a synonym iterator. Return the current rowid
+** that it points to.
+*/
+static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
+ i64 iRet = 0;
+ int bRetValid = 0;
+ Fts5ExprTerm *p;
+
+ assert( pTerm->pSynonym );
+ assert( bDesc==0 || bDesc==1 );
+ for(p=pTerm; p; p=p->pSynonym){
+ if( 0==sqlite3Fts5IterEof(p->pIter) ){
+ i64 iRowid = p->pIter->iRowid;
+ if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
+ iRet = iRowid;
+ bRetValid = 1;
+ }
+ }
+ }
+
+ if( pbEof && bRetValid==0 ) *pbEof = 1;
+ return iRet;
+}
+
+/*
+** Argument pTerm must be a synonym iterator.
+*/
+static int fts5ExprSynonymList(
+ Fts5ExprTerm *pTerm,
+ i64 iRowid,
+ Fts5Buffer *pBuf, /* Use this buffer for space if required */
+ u8 **pa, int *pn
+){
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int nIter = 0;
+ int nAlloc = 4;
+ int rc = SQLITE_OK;
+ Fts5ExprTerm *p;
+
+ assert( pTerm->pSynonym );
+ for(p=pTerm; p; p=p->pSynonym){
+ Fts5IndexIter *pIter = p->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
+ if( pIter->nData==0 ) continue;
+ if( nIter==nAlloc ){
+ int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
+ Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
+ if( aNew==0 ){
+ rc = SQLITE_NOMEM;
+ goto synonym_poslist_out;
+ }
+ memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
+ nAlloc = nAlloc*2;
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ aIter = aNew;
+ }
+ sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
+ assert( aIter[nIter].bEof==0 );
+ nIter++;
+ }
+ }
+
+ if( nIter==1 ){
+ *pa = (u8*)aIter[0].a;
+ *pn = aIter[0].n;
+ }else{
+ Fts5PoslistWriter writer = {0};
+ i64 iPrev = -1;
+ fts5BufferZero(pBuf);
+ while( 1 ){
+ int i;
+ i64 iMin = FTS5_LARGEST_INT64;
+ for(i=0; i<nIter; i++){
+ if( aIter[i].bEof==0 ){
+ if( aIter[i].iPos==iPrev ){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
+ }
+ if( aIter[i].iPos<iMin ){
+ iMin = aIter[i].iPos;
+ }
+ }
+ }
+ if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
+ rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
+ iPrev = iMin;
+ }
+ if( rc==SQLITE_OK ){
+ *pa = pBuf->p;
+ *pn = pBuf->n;
+ }
+ }
+
+ synonym_poslist_out:
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+
+/*
+** All individual term iterators in pPhrase are guaranteed to be valid and
+** pointing to the same rowid when this function is called. This function
+** checks if the current rowid really is a match, and if so populates
+** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
+** is set to true if this is really a match, or false otherwise.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if the current rowid is
+** not a match.
+*/
+static int fts5ExprPhraseIsMatch(
+ Fts5ExprNode *pNode, /* Node pPhrase belongs to */
+ Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
+ int *pbMatch /* OUT: Set to true if really a match */
+){
+ Fts5PoslistWriter writer = {0};
+ Fts5PoslistReader aStatic[4];
+ Fts5PoslistReader *aIter = aStatic;
+ int i;
+ int rc = SQLITE_OK;
+
+ fts5BufferZero(&pPhrase->poslist);
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pPhrase->nTerm>ArraySize(aStatic) ){
+ int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
+ aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
+ if( !aIter ) return SQLITE_NOMEM;
+ }
+ memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);
+
+ /* Initialize a term iterator for each term in the phrase */
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ int n = 0;
+ int bFlag = 0;
+ u8 *a = 0;
+ if( pTerm->pSynonym ){
+ Fts5Buffer buf = {0, 0, 0};
+ rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
+ if( rc ){
+ sqlite3_free(a);
+ goto ismatch_out;
+ }
+ if( a==buf.p ) bFlag = 1;
+ }else{
+ a = (u8*)pTerm->pIter->pData;
+ n = pTerm->pIter->nData;
+ }
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ aIter[i].bFlag = (u8)bFlag;
+ if( aIter[i].bEof ) goto ismatch_out;
+ }
+
+ while( 1 ){
+ int bMatch;
+ i64 iPos = aIter[0].iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5PoslistReader *pPos = &aIter[i];
+ i64 iAdj = iPos + i;
+ if( pPos->iPos!=iAdj ){
+ bMatch = 0;
+ while( pPos->iPos<iAdj ){
+ if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Append position iPos to the output */
+ rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
+ if( rc!=SQLITE_OK ) goto ismatch_out;
+
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
+ }
+ }
+
+ ismatch_out:
+ *pbMatch = (pPhrase->poslist.n>0);
+ for(i=0; i<pPhrase->nTerm; i++){
+ if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a);
+ }
+ if( aIter!=aStatic ) sqlite3_free(aIter);
+ return rc;
+}
+
+typedef struct Fts5LookaheadReader Fts5LookaheadReader;
+struct Fts5LookaheadReader {
+ const u8 *a; /* Buffer containing position list */
+ int n; /* Size of buffer a[] in bytes */
+ int i; /* Current offset in position list */
+ i64 iPos; /* Current position */
+ i64 iLookahead; /* Next position */
+};
+
+#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
+
+static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
+ p->iPos = p->iLookahead;
+ if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
+ p->iLookahead = FTS5_LOOKAHEAD_EOF;
+ }
+ return (p->iPos==FTS5_LOOKAHEAD_EOF);
+}
+
+static int fts5LookaheadReaderInit(
+ const u8 *a, int n, /* Buffer to read position list from */
+ Fts5LookaheadReader *p /* Iterator object to initialize */
+){
+ memset(p, 0, sizeof(Fts5LookaheadReader));
+ p->a = a;
+ p->n = n;
+ fts5LookaheadReaderNext(p);
+ return fts5LookaheadReaderNext(p);
+}
+
+typedef struct Fts5NearTrimmer Fts5NearTrimmer;
+struct Fts5NearTrimmer {
+ Fts5LookaheadReader reader; /* Input iterator */
+ Fts5PoslistWriter writer; /* Writer context */
+ Fts5Buffer *pOut; /* Output poslist */
+};
+
+/*
+** The near-set object passed as the first argument contains more than
+** one phrase. All phrases currently point to the same row. The
+** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
+** tests if the current row contains instances of each phrase sufficiently
+** close together to meet the NEAR constraint. Non-zero is returned if it
+** does, or zero otherwise.
+**
+** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
+** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
+** occurs within this function (*pRc) is set accordingly before returning.
+** The return value is undefined in both these cases.
+**
+** If no error occurs and non-zero (a match) is returned, the position-list
+** of each phrase object is edited to contain only those entries that
+** meet the constraint before returning.
+*/
+static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
+ Fts5NearTrimmer aStatic[4];
+ Fts5NearTrimmer *a = aStatic;
+ Fts5ExprPhrase **apPhrase = pNear->apPhrase;
+
+ int i;
+ int rc = *pRc;
+ int bMatch;
+
+ assert( pNear->nPhrase>1 );
+
+ /* If the aStatic[] array is not large enough, allocate a large array
+ ** using sqlite3_malloc(). This approach could be improved upon. */
+ if( pNear->nPhrase>ArraySize(aStatic) ){
+ int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
+ a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
+ }else{
+ memset(aStatic, 0, sizeof(aStatic));
+ }
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return 0;
+ }
+
+ /* Initialize a lookahead iterator for each phrase. After passing the
+ ** buffer and buffer size to the lookaside-reader init function, zero
+ ** the phrase poslist buffer. The new poslist for the phrase (containing
+ ** the same entries as the original with some entries removed on account
+ ** of the NEAR constraint) is written over the original even as it is
+ ** being read. This is safe as the entries for the new poslist are a
+ ** subset of the old, so it is not possible for data yet to be read to
+ ** be overwritten. */
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
+ fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
+ pPoslist->n = 0;
+ a[i].pOut = pPoslist;
+ }
+
+ while( 1 ){
+ int iAdv;
+ i64 iMin;
+ i64 iMax;
+
+ /* This block advances the phrase iterators until they point to a set of
+ ** entries that together comprise a match. */
+ iMax = a[0].reader.iPos;
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5LookaheadReader *pPos = &a[i].reader;
+ iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
+ if( pPos->iPos<iMin || pPos->iPos>iMax ){
+ bMatch = 0;
+ while( pPos->iPos<iMin ){
+ if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
+ }
+ if( pPos->iPos>iMax ) iMax = pPos->iPos;
+ }
+ }
+ }while( bMatch==0 );
+
+ /* Add an entry to each output position list */
+ for(i=0; i<pNear->nPhrase; i++){
+ i64 iPos = a[i].reader.iPos;
+ Fts5PoslistWriter *pWriter = &a[i].writer;
+ if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
+ sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
+ }
+ }
+
+ iAdv = 0;
+ iMin = a[0].reader.iLookahead;
+ for(i=0; i<pNear->nPhrase; i++){
+ if( a[i].reader.iLookahead < iMin ){
+ iMin = a[i].reader.iLookahead;
+ iAdv = i;
+ }
+ }
+ if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
+ }
+
+ ismatch_out: {
+ int bRet = a[0].pOut->n>0;
+ *pRc = rc;
+ if( a!=aStatic ) sqlite3_free(a);
+ return bRet;
+ }
+}
+
+/*
+** Advance iterator pIter until it points to a value equal to or laster
+** than the initial value of *piLast. If this means the iterator points
+** to a value laster than *piLast, update *piLast to the new lastest value.
+**
+** If the iterator reaches EOF, set *pbEof to true before returning. If
+** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
+** are set, return a non-zero value. Otherwise, return zero.
+*/
+static int fts5ExprAdvanceto(
+ Fts5IndexIter *pIter, /* Iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc, /* OUT: Error code */
+ int *pbEof /* OUT: Set to true if EOF */
+){
+ i64 iLast = *piLast;
+ i64 iRowid;
+
+ iRowid = pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
+ if( rc || sqlite3Fts5IterEof(pIter) ){
+ *pRc = rc;
+ *pbEof = 1;
+ return 1;
+ }
+ iRowid = pIter->iRowid;
+ assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
+ }
+ *piLast = iRowid;
+
+ return 0;
+}
+
+static int fts5ExprSynonymAdvanceto(
+ Fts5ExprTerm *pTerm, /* Term iterator to advance */
+ int bDesc, /* True if iterator is "rowid DESC" */
+ i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
+ int *pRc /* OUT: Error code */
+){
+ int rc = SQLITE_OK;
+ i64 iLast = *piLast;
+ Fts5ExprTerm *p;
+ int bEof = 0;
+
+ for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 iRowid = p->pIter->iRowid;
+ if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
+ }
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ bEof = 1;
+ }else{
+ *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
+ }
+ return bEof;
+}
+
+
+static int fts5ExprNearTest(
+ int *pRc,
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int rc = *pRc;
+
+ if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5ExprTerm *pTerm;
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
+ pPhrase->poslist.n = 0;
+ for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ Fts5IndexIter *pIter = pTerm->pIter;
+ if( sqlite3Fts5IterEof(pIter)==0 ){
+ if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
+ pPhrase->poslist.n = 1;
+ }
+ }
+ }
+ return pPhrase->poslist.n;
+ }else{
+ int i;
+
+ /* Check that each phrase in the nearset matches the current row.
+ ** Populate the pPhrase->poslist buffers at the same time. If any
+ ** phrase is not a match, break out of the loop early. */
+ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){
+ int bMatch = 0;
+ rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
+ if( bMatch==0 ) break;
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+ fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
+ }
+ }
+
+ *pRc = rc;
+ if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
+ return 1;
+ }
+ return 0;
+ }
+}
+
+
+/*
+** Initialize all term iterators in the pNear object. If any term is found
+** to match no documents at all, return immediately without initializing any
+** further iterators.
+*/
+static int fts5ExprNearInitAll(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i, j;
+ int rc = SQLITE_OK;
+
+ assert( pNode->bNomatch==0 );
+ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ Fts5ExprTerm *p;
+ int bEof = 1;
+
+ for(p=pTerm; p && rc==SQLITE_OK; p=p->pSynonym){
+ if( p->pIter ){
+ sqlite3Fts5IterClose(p->pIter);
+ p->pIter = 0;
+ }
+ rc = sqlite3Fts5IndexQuery(
+ pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm),
+ (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
+ (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
+ pNear->pColset,
+ &p->pIter
+ );
+ assert( rc==SQLITE_OK || p->pIter==0 );
+ if( p->pIter && 0==sqlite3Fts5IterEof(p->pIter) ){
+ bEof = 0;
+ }
+ }
+
+ if( bEof ){
+ pNode->bEof = 1;
+ return rc;
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** If pExpr is an ASC iterator, this function returns a value with the
+** same sign as:
+**
+** (iLhs - iRhs)
+**
+** Otherwise, if this is a DESC iterator, the opposite is returned:
+**
+** (iRhs - iLhs)
+*/
+static int fts5RowidCmp(
+ Fts5Expr *pExpr,
+ i64 iLhs,
+ i64 iRhs
+){
+ assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
+ if( pExpr->bDesc==0 ){
+ if( iLhs<iRhs ) return -1;
+ return (iLhs > iRhs);
+ }else{
+ if( iLhs>iRhs ) return -1;
+ return (iLhs < iRhs);
+ }
+}
+
+static void fts5ExprSetEof(Fts5ExprNode *pNode){
+ int i;
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprSetEof(pNode->apChild[i]);
+ }
+}
+
+static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ pPhrase->poslist.n = 0;
+ }
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprNodeZeroPoslist(pNode->apChild[i]);
+ }
+ }
+}
+
+
+
+/*
+** Compare the values currently indicated by the two nodes as follows:
+**
+** res = (*p1) - (*p2)
+**
+** Nodes that point to values that come later in the iteration order are
+** considered to be larger. Nodes at EOF are the largest of all.
+**
+** This means that if the iteration order is ASC, then numerically larger
+** rowids are considered larger. Or if it is the default DESC, numerically
+** smaller rowids are larger.
+*/
+static int fts5NodeCompare(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *p1,
+ Fts5ExprNode *p2
+){
+ if( p2->bEof ) return -1;
+ if( p1->bEof ) return +1;
+ return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
+}
+
+/*
+** All individual term iterators in pNear are guaranteed to be valid when
+** this function is called. This function checks if all term iterators
+** point to the same rowid, and if not, advances them until they do.
+** If an EOF is reached before this happens, *pbEof is set to true before
+** returning.
+**
+** SQLITE_OK is returned if an error occurs, or an SQLite error code
+** otherwise. It is not considered an error code if an iterator reaches
+** EOF.
+*/
+static int fts5ExprNodeTest_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode
+){
+ Fts5ExprNearset *pNear = pNode->pNear;
+ Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
+ int rc = SQLITE_OK;
+ i64 iLast; /* Lastest rowid any iterator points to */
+ int i, j; /* Phrase and token index, respectively */
+ int bMatch; /* True if all terms are at the same rowid */
+ const int bDesc = pExpr->bDesc;
+
+ /* Check that this node should not be FTS5_TERM */
+ assert( pNear->nPhrase>1
+ || pNear->apPhrase[0]->nTerm>1
+ || pNear->apPhrase[0]->aTerm[0].pSynonym
+ );
+
+ /* Initialize iLast, the "lastest" rowid any iterator points to. If the
+ ** iterator skips through rowids in the default ascending order, this means
+ ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
+ ** means the minimum rowid. */
+ if( pLeft->aTerm[0].pSynonym ){
+ iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
+ }else{
+ iLast = pLeft->aTerm[0].pIter->iRowid;
+ }
+
+ do {
+ bMatch = 1;
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ for(j=0; j<pPhrase->nTerm; j++){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
+ if( pTerm->pSynonym ){
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
+ if( iRowid==iLast ) continue;
+ bMatch = 0;
+ if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
+ pNode->bNomatch = 0;
+ pNode->bEof = 1;
+ return rc;
+ }
+ }else{
+ Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
+ if( pIter->iRowid==iLast ) continue;
+ bMatch = 0;
+ if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
+ return rc;
+ }
+ }
+ }
+ }
+ }while( bMatch==0 );
+
+ pNode->iRowid = iLast;
+ pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
+ assert( pNode->bEof==0 || pNode->bNomatch==0 );
+
+ return rc;
+}
+
+/*
+** Advance the first term iterator in the first phrase of pNear. Set output
+** variable *pbEof to true if it reaches EOF or if an error occurs.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5ExprNodeNext_STRING(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
+ int bFromValid,
+ i64 iFrom
+){
+ Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
+ int rc = SQLITE_OK;
+
+ pNode->bNomatch = 0;
+ if( pTerm->pSynonym ){
+ int bEof = 1;
+ Fts5ExprTerm *p;
+
+ /* Find the firstest rowid any synonym points to. */
+ i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
+
+ /* Advance each iterator that currently points to iRowid. Or, if iFrom
+ ** is valid - each iterator that points to a rowid before iFrom. */
+ for(p=pTerm; p; p=p->pSynonym){
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ i64 ii = p->pIter->iRowid;
+ if( ii==iRowid
+ || (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc)
+ ){
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(p->pIter);
+ }
+ if( rc!=SQLITE_OK ) break;
+ if( sqlite3Fts5IterEof(p->pIter)==0 ){
+ bEof = 0;
+ }
+ }else{
+ bEof = 0;
+ }
+ }
+ }
+
+ /* Set the EOF flag if either all synonym iterators are at EOF or an
+ ** error has occurred. */
+ pNode->bEof = (rc || bEof);
+ }else{
+ Fts5IndexIter *pIter = pTerm->pIter;
+
+ assert( Fts5NodeIsString(pNode) );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+
+ pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
+ }
+
+ if( pNode->bEof==0 ){
+ assert( rc==SQLITE_OK );
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ }
+
+ return rc;
+}
+
+
+static int fts5ExprNodeTest_TERM(
+ Fts5Expr *pExpr, /* Expression that pNear is a part of */
+ Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
+){
+ /* As this "NEAR" object is actually a single phrase that consists
+ ** of a single term only, grab pointers into the poslist managed by the
+ ** fts5_index.c iterator object. This is much faster than synthesizing
+ ** a new poslist the way we have to for more complicated phrase or NEAR
+ ** expressions. */
+ Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
+ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
+
+ assert( pNode->eType==FTS5_TERM );
+ assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
+ assert( pPhrase->aTerm[0].pSynonym==0 );
+
+ pPhrase->poslist.n = pIter->nData;
+ if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pPhrase->poslist.p = (u8*)pIter->pData;
+ }
+ pNode->iRowid = pIter->iRowid;
+ pNode->bNomatch = (pPhrase->poslist.n==0);
+ return SQLITE_OK;
+}
+
+/*
+** xNext() method for a node of type FTS5_TERM.
+*/
+static int fts5ExprNodeNext_TERM(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc;
+ Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
+
+ assert( pNode->bEof==0 );
+ if( bFromValid ){
+ rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
+ }else{
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ }else{
+ pNode->bEof = 1;
+ pNode->bNomatch = 0;
+ }
+ return rc;
+}
+
+static void fts5ExprNodeTest_OR(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ Fts5ExprNode *pNext = pNode->apChild[0];
+ int i;
+
+ for(i=1; i<pNode->nChild; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ int cmp = fts5NodeCompare(pExpr, pNext, pChild);
+ if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
+ pNext = pChild;
+ }
+ }
+ pNode->iRowid = pNext->iRowid;
+ pNode->bEof = pNext->bEof;
+ pNode->bNomatch = pNext->bNomatch;
+}
+
+static int fts5ExprNodeNext_OR(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int i;
+ i64 iLast = pNode->iRowid;
+
+ for(i=0; i<pNode->nChild; i++){
+ Fts5ExprNode *p1 = pNode->apChild[i];
+ assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
+ if( p1->bEof==0 ){
+ if( (p1->iRowid==iLast)
+ || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
+ ){
+ int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }
+ }
+
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ return SQLITE_OK;
+}
+
+/*
+** Argument pNode is an FTS5_AND node.
+*/
+static int fts5ExprNodeTest_AND(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pAnd /* FTS5_AND node to advance */
+){
+ int iChild;
+ i64 iLast = pAnd->iRowid;
+ int rc = SQLITE_OK;
+ int bMatch;
+
+ assert( pAnd->bEof==0 );
+ do {
+ pAnd->bNomatch = 0;
+ bMatch = 1;
+ for(iChild=0; iChild<pAnd->nChild; iChild++){
+ Fts5ExprNode *pChild = pAnd->apChild[iChild];
+ int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
+ if( cmp>0 ){
+ /* Advance pChild until it points to iLast or laster */
+ rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ /* If the child node is now at EOF, so is the parent AND node. Otherwise,
+ ** the child node is guaranteed to have advanced at least as far as
+ ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
+ ** new lastest rowid seen so far. */
+ assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
+ if( pChild->bEof ){
+ fts5ExprSetEof(pAnd);
+ bMatch = 1;
+ break;
+ }else if( iLast!=pChild->iRowid ){
+ bMatch = 0;
+ iLast = pChild->iRowid;
+ }
+
+ if( pChild->bNomatch ){
+ pAnd->bNomatch = 1;
+ }
+ }
+ }while( bMatch==0 );
+
+ if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
+ fts5ExprNodeZeroPoslist(pAnd);
+ }
+ pAnd->iRowid = iLast;
+ return SQLITE_OK;
+}
+
+static int fts5ExprNodeNext_AND(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ }
+ return rc;
+}
+
+static int fts5ExprNodeTest_NOT(
+ Fts5Expr *pExpr, /* Expression pPhrase belongs to */
+ Fts5ExprNode *pNode /* FTS5_NOT node to advance */
+){
+ int rc = SQLITE_OK;
+ Fts5ExprNode *p1 = pNode->apChild[0];
+ Fts5ExprNode *p2 = pNode->apChild[1];
+ assert( pNode->nChild==2 );
+
+ while( rc==SQLITE_OK && p1->bEof==0 ){
+ int cmp = fts5NodeCompare(pExpr, p1, p2);
+ if( cmp>0 ){
+ rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
+ cmp = fts5NodeCompare(pExpr, p1, p2);
+ }
+ assert( rc!=SQLITE_OK || cmp<=0 );
+ if( cmp || p2->bNomatch ) break;
+ rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
+ }
+ pNode->bEof = p1->bEof;
+ pNode->bNomatch = p1->bNomatch;
+ pNode->iRowid = p1->iRowid;
+ if( p1->bEof ){
+ fts5ExprNodeZeroPoslist(p2);
+ }
+ return rc;
+}
+
+static int fts5ExprNodeNext_NOT(
+ Fts5Expr *pExpr,
+ Fts5ExprNode *pNode,
+ int bFromValid,
+ i64 iFrom
+){
+ int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ }
+ return rc;
+}
+
+/*
+** If pNode currently points to a match, this function returns SQLITE_OK
+** without modifying it. Otherwise, pNode is advanced until it does point
+** to a match or EOF is reached.
+*/
+static int fts5ExprNodeTest(
+ Fts5Expr *pExpr, /* Expression of which pNode is a part */
+ Fts5ExprNode *pNode /* Expression node to test */
+){
+ int rc = SQLITE_OK;
+ if( pNode->bEof==0 ){
+ switch( pNode->eType ){
+
+ case FTS5_STRING: {
+ rc = fts5ExprNodeTest_STRING(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_TERM: {
+ rc = fts5ExprNodeTest_TERM(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_AND: {
+ rc = fts5ExprNodeTest_AND(pExpr, pNode);
+ break;
+ }
+
+ case FTS5_OR: {
+ fts5ExprNodeTest_OR(pExpr, pNode);
+ break;
+ }
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ rc = fts5ExprNodeTest_NOT(pExpr, pNode);
+ break;
+ }
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Set node pNode, which is part of expression pExpr, to point to the first
+** match. If there are no matches, set the Node.bEof flag to indicate EOF.
+**
+** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
+** It is not an error if there are no matches.
+*/
+static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
+ int rc = SQLITE_OK;
+ pNode->bEof = 0;
+ pNode->bNomatch = 0;
+
+ if( Fts5NodeIsString(pNode) ){
+ /* Initialize all term iterators in the NEAR object. */
+ rc = fts5ExprNearInitAll(pExpr, pNode);
+ }else{
+ int i;
+ int nEof = 0;
+ for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
+ Fts5ExprNode *pChild = pNode->apChild[i];
+ rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
+ assert( pChild->bEof==0 || pChild->bEof==1 );
+ nEof += pChild->bEof;
+ }
+ pNode->iRowid = pNode->apChild[0]->iRowid;
+
+ switch( pNode->eType ){
+ case FTS5_AND:
+ if( nEof>0 ) fts5ExprSetEof(pNode);
+ break;
+
+ case FTS5_OR:
+ if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
+ break;
+
+ default:
+ assert( pNode->eType==FTS5_NOT );
+ pNode->bEof = pNode->apChild[0]->bEof;
+ break;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5ExprNodeTest(pExpr, pNode);
+ }
+ return rc;
+}
+
+
+/*
+** Begin iterating through the set of documents in index pIdx matched by
+** the MATCH expression passed as the first argument. If the "bDesc"
+** parameter is passed a non-zero value, iteration is in descending rowid
+** order. Or, if it is zero, in ascending order.
+**
+** If iterating in ascending rowid order (bDesc==0), the first document
+** visited is that with the smallest rowid that is larger than or equal
+** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
+** then the first document visited must have a rowid smaller than or
+** equal to iFirst.
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
+ Fts5ExprNode *pRoot = p->pRoot;
+ int rc = SQLITE_OK;
+ if( pRoot->xNext ){
+ p->pIndex = pIdx;
+ p->bDesc = bDesc;
+ rc = fts5ExprNodeFirst(p, pRoot);
+
+ /* If not at EOF but the current rowid occurs earlier than iFirst in
+ ** the iteration order, move to document iFirst or later. */
+ if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){
+ rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
+ }
+
+ /* If the iterator is not at a real match, skip forward until it is. */
+ while( pRoot->bNomatch ){
+ assert( pRoot->bEof==0 && rc==SQLITE_OK );
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ }
+ }
+ return rc;
+}
+
+/*
+** Move to the next document
+**
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
+** is not considered an error if the query does not match any documents.
+*/
+static int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
+ int rc;
+ Fts5ExprNode *pRoot = p->pRoot;
+ assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
+ do {
+ rc = fts5ExprNodeNext(p, pRoot, 0, 0);
+ assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
+ }while( pRoot->bNomatch );
+ if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
+ pRoot->bEof = 1;
+ }
+ return rc;
+}
+
+static int sqlite3Fts5ExprEof(Fts5Expr *p){
+ return p->pRoot->bEof;
+}
+
+static i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
+ return p->pRoot->iRowid;
+}
+
+static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
+ int rc = SQLITE_OK;
+ *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
+ return rc;
+}
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
+ if( pPhrase ){
+ int i;
+ for(i=0; i<pPhrase->nTerm; i++){
+ Fts5ExprTerm *pSyn;
+ Fts5ExprTerm *pNext;
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
+ sqlite3_free(pTerm->zTerm);
+ sqlite3Fts5IterClose(pTerm->pIter);
+ for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
+ pNext = pSyn->pSynonym;
+ sqlite3Fts5IterClose(pSyn->pIter);
+ fts5BufferFree((Fts5Buffer*)&pSyn[1]);
+ sqlite3_free(pSyn);
+ }
+ }
+ if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
+ sqlite3_free(pPhrase);
+ }
+}
+
+/*
+** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
+** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
+** appended to it and the results returned.
+**
+** If an OOM error occurs, both the pNear and pPhrase objects are freed and
+** NULL returned.
+*/
+static Fts5ExprNearset *sqlite3Fts5ParseNearset(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
+ Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
+){
+ const int SZALLOC = 8;
+ Fts5ExprNearset *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ if( pPhrase==0 ){
+ return pNear;
+ }
+ if( pNear==0 ){
+ int nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
+ pRet = sqlite3_malloc(nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ memset(pRet, 0, nByte);
+ }
+ }else if( (pNear->nPhrase % SZALLOC)==0 ){
+ int nNew = pNear->nPhrase + SZALLOC;
+ int nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
+
+ pRet = (Fts5ExprNearset*)sqlite3_realloc(pNear, nByte);
+ if( pRet==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }
+ }else{
+ pRet = pNear;
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNearsetFree(pNear);
+ sqlite3Fts5ParsePhraseFree(pPhrase);
+ }else{
+ pRet->apPhrase[pRet->nPhrase++] = pPhrase;
+ }
+ return pRet;
+}
+
+typedef struct TokenCtx TokenCtx;
+struct TokenCtx {
+ Fts5ExprPhrase *pPhrase;
+ int rc;
+};
+
+/*
+** Callback for tokenizing terms used by ParseTerm().
+*/
+static int fts5ParseTokenize(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int rc = SQLITE_OK;
+ const int SZALLOC = 8;
+ TokenCtx *pCtx = (TokenCtx*)pContext;
+ Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ /* If an error has already occurred, this is a no-op */
+ if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;
+
+ assert( pPhrase==0 || pPhrase->nTerm>0 );
+ if( pPhrase && (tflags & FTS5_TOKEN_COLOCATED) ){
+ Fts5ExprTerm *pSyn;
+ int nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
+ pSyn = (Fts5ExprTerm*)sqlite3_malloc(nByte);
+ if( pSyn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pSyn, 0, nByte);
+ pSyn->zTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
+ memcpy(pSyn->zTerm, pToken, nToken);
+ pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
+ pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
+ }
+ }else{
+ Fts5ExprTerm *pTerm;
+ if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
+ Fts5ExprPhrase *pNew;
+ int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
+
+ pNew = (Fts5ExprPhrase*)sqlite3_realloc(pPhrase,
+ sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
+ );
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
+ pCtx->pPhrase = pPhrase = pNew;
+ pNew->nTerm = nNew - SZALLOC;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
+ memset(pTerm, 0, sizeof(Fts5ExprTerm));
+ pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
+ }
+ }
+
+ pCtx->rc = rc;
+ return rc;
+}
+
+
+/*
+** Free the phrase object passed as the only argument.
+*/
+static void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
+ fts5ExprPhraseFree(pPhrase);
+}
+
+/*
+** Free the phrase object passed as the second argument.
+*/
+static void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
+ if( pNear ){
+ int i;
+ for(i=0; i<pNear->nPhrase; i++){
+ fts5ExprPhraseFree(pNear->apPhrase[i]);
+ }
+ sqlite3_free(pNear->pColset);
+ sqlite3_free(pNear);
+ }
+}
+
+static void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
+ assert( pParse->pExpr==0 );
+ pParse->pExpr = p;
+}
+
+/*
+** This function is called by the parser to process a string token. The
+** string may or may not be quoted. In any case it is tokenized and a
+** phrase object consisting of all tokens returned.
+*/
+static Fts5ExprPhrase *sqlite3Fts5ParseTerm(
+ Fts5Parse *pParse, /* Parse context */
+ Fts5ExprPhrase *pAppend, /* Phrase to append to */
+ Fts5Token *pToken, /* String to tokenize */
+ int bPrefix /* True if there is a trailing "*" */
+){
+ Fts5Config *pConfig = pParse->pConfig;
+ TokenCtx sCtx; /* Context object passed to callback */
+ int rc; /* Tokenize return code */
+ char *z = 0;
+
+ memset(&sCtx, 0, sizeof(TokenCtx));
+ sCtx.pPhrase = pAppend;
+
+ rc = fts5ParseStringFromToken(pToken, &z);
+ if( rc==SQLITE_OK ){
+ int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_QUERY : 0);
+ int n;
+ sqlite3Fts5Dequote(z);
+ n = (int)strlen(z);
+ rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
+ }
+ sqlite3_free(z);
+ if( rc || (rc = sCtx.rc) ){
+ pParse->rc = rc;
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ sCtx.pPhrase = 0;
+ }else if( sCtx.pPhrase ){
+
+ if( pAppend==0 ){
+ if( (pParse->nPhrase % 8)==0 ){
+ int nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
+ Fts5ExprPhrase **apNew;
+ apNew = (Fts5ExprPhrase**)sqlite3_realloc(pParse->apPhrase, nByte);
+ if( apNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ return 0;
+ }
+ pParse->apPhrase = apNew;
+ }
+ pParse->nPhrase++;
+ }
+
+ pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
+ assert( sCtx.pPhrase->nTerm>0 );
+ sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = bPrefix;
+ }
+
+ return sCtx.pPhrase;
+}
+
+/*
+** Create a new FTS5 expression by cloning phrase iPhrase of the
+** expression passed as the second argument.
+*/
+static int sqlite3Fts5ExprClonePhrase(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ Fts5Expr **ppNew
+){
+ int rc = SQLITE_OK; /* Return code */
+ Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */
+ int i; /* Used to iterate through phrase terms */
+ Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
+ TokenCtx sCtx = {0,0}; /* Context object for fts5ParseTokenize */
+
+ pOrig = pExpr->apExprPhrase[iPhrase];
+ pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
+ if( rc==SQLITE_OK ){
+ pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprPhrase*));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNode));
+ }
+ if( rc==SQLITE_OK ){
+ pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
+ sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*));
+ }
+
+ for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
+ int tflags = 0;
+ Fts5ExprTerm *p;
+ for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
+ const char *zTerm = p->zTerm;
+ rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
+ 0, 0);
+ tflags = FTS5_TOKEN_COLOCATED;
+ }
+ if( rc==SQLITE_OK ){
+ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ /* All the allocations succeeded. Put the expression object together. */
+ pNew->pIndex = pExpr->pIndex;
+ pNew->pConfig = pExpr->pConfig;
+ pNew->nPhrase = 1;
+ pNew->apExprPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
+ pNew->pRoot->pNear->nPhrase = 1;
+ sCtx.pPhrase->pNode = pNew->pRoot;
+
+ if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){
+ pNew->pRoot->eType = FTS5_TERM;
+ pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNew->pRoot->eType = FTS5_STRING;
+ pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
+ }
+ }else{
+ sqlite3Fts5ExprFree(pNew);
+ fts5ExprPhraseFree(sCtx.pPhrase);
+ pNew = 0;
+ }
+
+ *ppNew = pNew;
+ return rc;
+}
+
+
+/*
+** Token pTok has appeared in a MATCH expression where the NEAR operator
+** is expected. If token pTok does not contain "NEAR", store an error
+** in the pParse object.
+*/
+static void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
+ if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
+ sqlite3Fts5ParseError(
+ pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
+ );
+ }
+}
+
+static void sqlite3Fts5ParseSetDistance(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear,
+ Fts5Token *p
+){
+ int nNear = 0;
+ int i;
+ if( p->n ){
+ for(i=0; i<p->n; i++){
+ char c = (char)p->p[i];
+ if( c<'0' || c>'9' ){
+ sqlite3Fts5ParseError(
+ pParse, "expected integer, got \"%.*s\"", p->n, p->p
+ );
+ return;
+ }
+ nNear = nNear * 10 + (p->p[i] - '0');
+ }
+ }else{
+ nNear = FTS5_DEFAULT_NEARDIST;
+ }
+ pNear->nNear = nNear;
+}
+
+/*
+** The second argument passed to this function may be NULL, or it may be
+** an existing Fts5Colset object. This function returns a pointer to
+** a new colset object containing the contents of (p) with new value column
+** number iCol appended.
+**
+** If an OOM error occurs, store an error code in pParse and return NULL.
+** The old colset object (if any) is not freed in this case.
+*/
+static Fts5Colset *fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *p, /* Existing colset object */
+ int iCol /* New column to add to colset object */
+){
+ int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
+ Fts5Colset *pNew; /* New colset object to return */
+
+ assert( pParse->rc==SQLITE_OK );
+ assert( iCol>=0 && iCol<pParse->pConfig->nCol );
+
+ pNew = sqlite3_realloc(p, sizeof(Fts5Colset) + sizeof(int)*nCol);
+ if( pNew==0 ){
+ pParse->rc = SQLITE_NOMEM;
+ }else{
+ int *aiCol = pNew->aiCol;
+ int i, j;
+ for(i=0; i<nCol; i++){
+ if( aiCol[i]==iCol ) return pNew;
+ if( aiCol[i]>iCol ) break;
+ }
+ for(j=nCol; j>i; j--){
+ aiCol[j] = aiCol[j-1];
+ }
+ aiCol[i] = iCol;
+ pNew->nCol = nCol+1;
+
+#ifndef NDEBUG
+ /* Check that the array is in order and contains no duplicate entries. */
+ for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
+#endif
+ }
+
+ return pNew;
+}
+
+static Fts5Colset *sqlite3Fts5ParseColset(
+ Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
+ Fts5Colset *pColset, /* Existing colset object */
+ Fts5Token *p
+){
+ Fts5Colset *pRet = 0;
+ int iCol;
+ char *z; /* Dequoted copy of token p */
+
+ z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
+ if( pParse->rc==SQLITE_OK ){
+ Fts5Config *pConfig = pParse->pConfig;
+ sqlite3Fts5Dequote(z);
+ for(iCol=0; iCol<pConfig->nCol; iCol++){
+ if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
+ }
+ if( iCol==pConfig->nCol ){
+ sqlite3Fts5ParseError(pParse, "no such column: %s", z);
+ }else{
+ pRet = fts5ParseColset(pParse, pColset, iCol);
+ }
+ sqlite3_free(z);
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3_free(pColset);
+ }
+
+ return pRet;
+}
+
+static void sqlite3Fts5ParseSetColset(
+ Fts5Parse *pParse,
+ Fts5ExprNearset *pNear,
+ Fts5Colset *pColset
+){
+ if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pParse->rc = SQLITE_ERROR;
+ pParse->zErr = sqlite3_mprintf(
+ "fts5: column queries are not supported (detail=none)"
+ );
+ sqlite3_free(pColset);
+ return;
+ }
+
+ if( pNear ){
+ pNear->pColset = pColset;
+ }else{
+ sqlite3_free(pColset);
+ }
+}
+
+static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
+ switch( pNode->eType ){
+ case FTS5_STRING: {
+ Fts5ExprNearset *pNear = pNode->pNear;
+ if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1
+ && pNear->apPhrase[0]->aTerm[0].pSynonym==0
+ ){
+ pNode->eType = FTS5_TERM;
+ pNode->xNext = fts5ExprNodeNext_TERM;
+ }else{
+ pNode->xNext = fts5ExprNodeNext_STRING;
+ }
+ break;
+ };
+
+ case FTS5_OR: {
+ pNode->xNext = fts5ExprNodeNext_OR;
+ break;
+ };
+
+ case FTS5_AND: {
+ pNode->xNext = fts5ExprNodeNext_AND;
+ break;
+ };
+
+ default: assert( pNode->eType==FTS5_NOT ); {
+ pNode->xNext = fts5ExprNodeNext_NOT;
+ break;
+ };
+ }
+}
+
+static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
+ if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
+ int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
+ memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
+ p->nChild += pSub->nChild;
+ sqlite3_free(pSub);
+ }else{
+ p->apChild[p->nChild++] = pSub;
+ }
+}
+
+/*
+** Allocate and return a new expression object. If anything goes wrong (i.e.
+** OOM error), leave an error code in pParse and return NULL.
+*/
+static Fts5ExprNode *sqlite3Fts5ParseNode(
+ Fts5Parse *pParse, /* Parse context */
+ int eType, /* FTS5_STRING, AND, OR or NOT */
+ Fts5ExprNode *pLeft, /* Left hand child expression */
+ Fts5ExprNode *pRight, /* Right hand child expression */
+ Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
+){
+ Fts5ExprNode *pRet = 0;
+
+ if( pParse->rc==SQLITE_OK ){
+ int nChild = 0; /* Number of children of returned node */
+ int nByte; /* Bytes of space to allocate for this node */
+
+ assert( (eType!=FTS5_STRING && !pNear)
+ || (eType==FTS5_STRING && !pLeft && !pRight)
+ );
+ if( eType==FTS5_STRING && pNear==0 ) return 0;
+ if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
+ if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
+
+ if( eType==FTS5_NOT ){
+ nChild = 2;
+ }else if( eType==FTS5_AND || eType==FTS5_OR ){
+ nChild = 2;
+ if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
+ if( pRight->eType==eType ) nChild += pRight->nChild-1;
+ }
+
+ nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
+ pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
+
+ if( pRet ){
+ pRet->eType = eType;
+ pRet->pNear = pNear;
+ fts5ExprAssignXNext(pRet);
+ if( eType==FTS5_STRING ){
+ int iPhrase;
+ for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
+ pNear->apPhrase[iPhrase]->pNode = pRet;
+ }
+
+ if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL
+ && (pNear->nPhrase!=1 || pNear->apPhrase[0]->nTerm!=1)
+ ){
+ assert( pParse->rc==SQLITE_OK );
+ pParse->rc = SQLITE_ERROR;
+ assert( pParse->zErr==0 );
+ pParse->zErr = sqlite3_mprintf(
+ "fts5: %s queries are not supported (detail!=full)",
+ pNear->nPhrase==1 ? "phrase": "NEAR"
+ );
+ sqlite3_free(pRet);
+ pRet = 0;
+ }
+
+ }else{
+ fts5ExprAddChildren(pRet, pLeft);
+ fts5ExprAddChildren(pRet, pRight);
+ }
+ }
+ }
+
+ if( pRet==0 ){
+ assert( pParse->rc!=SQLITE_OK );
+ sqlite3Fts5ParseNodeFree(pLeft);
+ sqlite3Fts5ParseNodeFree(pRight);
+ sqlite3Fts5ParseNearsetFree(pNear);
+ }
+ return pRet;
+}
+
+static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
+ int nByte = 0;
+ Fts5ExprTerm *p;
+ char *zQuoted;
+
+ /* Determine the maximum amount of space required. */
+ for(p=pTerm; p; p=p->pSynonym){
+ nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2;
+ }
+ zQuoted = sqlite3_malloc(nByte);
+
+ if( zQuoted ){
+ int i = 0;
+ for(p=pTerm; p; p=p->pSynonym){
+ char *zIn = p->zTerm;
+ zQuoted[i++] = '"';
+ while( *zIn ){
+ if( *zIn=='"' ) zQuoted[i++] = '"';
+ zQuoted[i++] = *zIn++;
+ }
+ zQuoted[i++] = '"';
+ if( p->pSynonym ) zQuoted[i++] = '|';
+ }
+ if( pTerm->bPrefix ){
+ zQuoted[i++] = ' ';
+ zQuoted[i++] = '*';
+ }
+ zQuoted[i++] = '\0';
+ }
+ return zQuoted;
+}
+
+static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
+ char *zNew;
+ va_list ap;
+ va_start(ap, zFmt);
+ zNew = sqlite3_vmprintf(zFmt, ap);
+ va_end(ap);
+ if( zApp && zNew ){
+ char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
+ sqlite3_free(zNew);
+ zNew = zNew2;
+ }
+ sqlite3_free(zApp);
+ return zNew;
+}
+
+/*
+** Compose a tcl-readable representation of expression pExpr. Return a
+** pointer to a buffer containing that representation. It is the
+** responsibility of the caller to at some point free the buffer using
+** sqlite3_free().
+*/
+static char *fts5ExprPrintTcl(
+ Fts5Config *pConfig,
+ const char *zNearsetCmd,
+ Fts5ExprNode *pExpr
+){
+ char *zRet = 0;
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
+ if( zRet==0 ) return 0;
+ if( pNear->pColset ){
+ int *aiCol = pNear->pColset->aiCol;
+ int nCol = pNear->pColset->nCol;
+ if( nCol==1 ){
+ zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
+ }else{
+ zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
+ for(i=1; i<pNear->pColset->nCol; i++){
+ zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
+ }
+ zRet = fts5PrintfAppend(zRet, "} ");
+ }
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ zRet = fts5PrintfAppend(zRet, "--");
+ if( zRet==0 ) return 0;
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+
+ zRet = fts5PrintfAppend(zRet, " {");
+ for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = pPhrase->aTerm[iTerm].zTerm;
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm);
+ if( pPhrase->aTerm[iTerm].bPrefix ){
+ zRet = fts5PrintfAppend(zRet, "*");
+ }
+ }
+
+ if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = "AND"; break;
+ case FTS5_NOT: zOp = "NOT"; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = "OR";
+ break;
+ }
+
+ zRet = sqlite3_mprintf("%s", zOp);
+ for(i=0; zRet && i<pExpr->nChild; i++){
+ char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
+ if( !z ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ zRet = fts5PrintfAppend(zRet, " [%z]", z);
+ }
+ }
+ }
+
+ return zRet;
+}
+
+static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
+ char *zRet = 0;
+ if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
+ Fts5ExprNearset *pNear = pExpr->pNear;
+ int i;
+ int iTerm;
+
+ if( pNear->pColset ){
+ int iCol = pNear->pColset->aiCol[0];
+ zRet = fts5PrintfAppend(zRet, "%s : ", pConfig->azCol[iCol]);
+ if( zRet==0 ) return 0;
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, "NEAR(");
+ if( zRet==0 ) return 0;
+ }
+
+ for(i=0; i<pNear->nPhrase; i++){
+ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
+ if( i!=0 ){
+ zRet = fts5PrintfAppend(zRet, " ");
+ if( zRet==0 ) return 0;
+ }
+ for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
+ char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
+ if( zTerm ){
+ zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
+ sqlite3_free(zTerm);
+ }
+ if( zTerm==0 || zRet==0 ){
+ sqlite3_free(zRet);
+ return 0;
+ }
+ }
+ }
+
+ if( pNear->nPhrase>1 ){
+ zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
+ if( zRet==0 ) return 0;
+ }
+
+ }else{
+ char const *zOp = 0;
+ int i;
+
+ switch( pExpr->eType ){
+ case FTS5_AND: zOp = " AND "; break;
+ case FTS5_NOT: zOp = " NOT "; break;
+ default:
+ assert( pExpr->eType==FTS5_OR );
+ zOp = " OR ";
+ break;
+ }
+
+ for(i=0; i<pExpr->nChild; i++){
+ char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
+ if( z==0 ){
+ sqlite3_free(zRet);
+ zRet = 0;
+ }else{
+ int e = pExpr->apChild[i]->eType;
+ int b = (e!=FTS5_STRING && e!=FTS5_TERM);
+ zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
+ (i==0 ? "" : zOp),
+ (b?"(":""), z, (b?")":"")
+ );
+ }
+ if( zRet==0 ) break;
+ }
+ }
+
+ return zRet;
+}
+
+/*
+** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
+** and fts5_expr_tcl() (bTcl!=0).
+*/
+static void fts5ExprFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal, /* Function arguments */
+ int bTcl
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ sqlite3 *db = sqlite3_context_db_handle(pCtx);
+ const char *zExpr = 0;
+ char *zErr = 0;
+ Fts5Expr *pExpr = 0;
+ int rc;
+ int i;
+
+ const char **azConfig; /* Array of arguments for Fts5Config */
+ const char *zNearsetCmd = "nearset";
+ int nConfig; /* Size of azConfig[] */
+ Fts5Config *pConfig = 0;
+ int iArg = 1;
+
+ if( nArg<1 ){
+ zErr = sqlite3_mprintf("wrong number of arguments to function %s",
+ bTcl ? "fts5_expr_tcl" : "fts5_expr"
+ );
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ return;
+ }
+
+ if( bTcl && nArg>1 ){
+ zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
+ iArg = 2;
+ }
+
+ nConfig = 3 + (nArg-iArg);
+ azConfig = (const char**)sqlite3_malloc(sizeof(char*) * nConfig);
+ if( azConfig==0 ){
+ sqlite3_result_error_nomem(pCtx);
+ return;
+ }
+ azConfig[0] = 0;
+ azConfig[1] = "main";
+ azConfig[2] = "tbl";
+ for(i=3; iArg<nArg; iArg++){
+ azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]);
+ }
+
+ zExpr = (const char*)sqlite3_value_text(apVal[0]);
+
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr);
+ }
+ if( rc==SQLITE_OK ){
+ char *zText;
+ if( pExpr->pRoot->xNext==0 ){
+ zText = sqlite3_mprintf("");
+ }else if( bTcl ){
+ zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
+ }else{
+ zText = fts5ExprPrint(pConfig, pExpr->pRoot);
+ }
+ if( zText==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
+ sqlite3_free(zText);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ if( zErr ){
+ sqlite3_result_error(pCtx, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ }
+ sqlite3_free((void *)azConfig);
+ sqlite3Fts5ConfigFree(pConfig);
+ sqlite3Fts5ExprFree(pExpr);
+}
+
+static void fts5ExprFunctionHr(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 0);
+}
+static void fts5ExprFunctionTcl(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ fts5ExprFunction(pCtx, nArg, apVal, 1);
+}
+
+/*
+** The implementation of an SQLite user-defined-function that accepts a
+** single integer as an argument. If the integer is an alpha-numeric
+** unicode code point, 1 is returned. Otherwise 0.
+*/
+static void fts5ExprIsAlnum(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ int iCode;
+ if( nArg!=1 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_isalnum", -1
+ );
+ return;
+ }
+ iCode = sqlite3_value_int(apVal[0]);
+ sqlite3_result_int(pCtx, sqlite3Fts5UnicodeIsalnum(iCode));
+}
+
+static void fts5ExprFold(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apVal /* Function arguments */
+){
+ if( nArg!=1 && nArg!=2 ){
+ sqlite3_result_error(pCtx,
+ "wrong number of arguments to function fts5_fold", -1
+ );
+ }else{
+ int iCode;
+ int bRemoveDiacritics = 0;
+ iCode = sqlite3_value_int(apVal[0]);
+ if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
+ sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
+ }
+}
+
+/*
+** This is called during initialization to register the fts5_expr() scalar
+** UDF with the SQLite handle passed as the only argument.
+*/
+static int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
+ struct Fts5ExprFunc {
+ const char *z;
+ void (*x)(sqlite3_context*,int,sqlite3_value**);
+ } aFunc[] = {
+ { "fts5_expr", fts5ExprFunctionHr },
+ { "fts5_expr_tcl", fts5ExprFunctionTcl },
+ { "fts5_isalnum", fts5ExprIsAlnum },
+ { "fts5_fold", fts5ExprFold },
+ };
+ int i;
+ int rc = SQLITE_OK;
+ void *pCtx = (void*)pGlobal;
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
+ struct Fts5ExprFunc *p = &aFunc[i];
+ rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
+ }
+
+ /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
+#ifndef NDEBUG
+ (void)sqlite3Fts5ParserTrace;
+#endif
+
+ return rc;
+}
+
+/*
+** Return the number of phrases in expression pExpr.
+*/
+static int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
+ return (pExpr ? pExpr->nPhrase : 0);
+}
+
+/*
+** Return the number of terms in the iPhrase'th phrase in pExpr.
+*/
+static int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
+ if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
+ return pExpr->apExprPhrase[iPhrase]->nTerm;
+}
+
+/*
+** This function is used to access the current position list for phrase
+** iPhrase.
+*/
+static int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
+ int nRet;
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
+ *pa = pPhrase->poslist.p;
+ nRet = pPhrase->poslist.n;
+ }else{
+ *pa = 0;
+ nRet = 0;
+ }
+ return nRet;
+}
+
+struct Fts5PoslistPopulator {
+ Fts5PoslistWriter writer;
+ int bOk; /* True if ok to populate */
+ int bMiss;
+};
+
+static Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
+ Fts5PoslistPopulator *pRet;
+ pRet = sqlite3_malloc(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ if( pRet ){
+ int i;
+ memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ assert( pExpr->apExprPhrase[i]->nTerm==1 );
+ if( bLive &&
+ (pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
+ ){
+ pRet[i].bMiss = 1;
+ }else{
+ pBuf->n = 0;
+ }
+ }
+ }
+ return pRet;
+}
+
+struct Fts5ExprCtx {
+ Fts5Expr *pExpr;
+ Fts5PoslistPopulator *aPopulator;
+ i64 iOff;
+};
+typedef struct Fts5ExprCtx Fts5ExprCtx;
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static int fts5ExprPopulatePoslistsCb(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Byte offset of token within input text */
+ int iUnused2 /* Byte offset of end of token within input text */
+){
+ Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
+ Fts5Expr *pExpr = p->pExpr;
+ int i;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprTerm *pTerm;
+ if( p->aPopulator[i].bOk==0 ) continue;
+ for(pTerm=&pExpr->apExprPhrase[i]->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
+ int nTerm = strlen(pTerm->zTerm);
+ if( (nTerm==nToken || (nTerm<nToken && pTerm->bPrefix))
+ && memcmp(pTerm->zTerm, pToken, nTerm)==0
+ ){
+ int rc = sqlite3Fts5PoslistWriterAppend(
+ &pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
+ );
+ if( rc ) return rc;
+ break;
+ }
+ }
+ }
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5ExprPopulatePoslists(
+ Fts5Config *pConfig,
+ Fts5Expr *pExpr,
+ Fts5PoslistPopulator *aPopulator,
+ int iCol,
+ const char *z, int n
+){
+ int i;
+ Fts5ExprCtx sCtx;
+ sCtx.pExpr = pExpr;
+ sCtx.aPopulator = aPopulator;
+ sCtx.iOff = (((i64)iCol) << 32) - 1;
+
+ for(i=0; i<pExpr->nPhrase; i++){
+ Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
+ Fts5Colset *pColset = pNode->pNear->pColset;
+ if( (pColset && 0==fts5ExprColsetTest(pColset, iCol))
+ || aPopulator[i].bMiss
+ ){
+ aPopulator[i].bOk = 0;
+ }else{
+ aPopulator[i].bOk = 1;
+ }
+ }
+
+ return sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
+ );
+}
+
+static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
+ if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
+ pNode->pNear->apPhrase[0]->poslist.n = 0;
+ }else{
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprClearPoslists(pNode->apChild[i]);
+ }
+ }
+}
+
+static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
+ pNode->iRowid = iRowid;
+ pNode->bEof = 0;
+ switch( pNode->eType ){
+ case FTS5_TERM:
+ case FTS5_STRING:
+ return (pNode->pNear->apPhrase[0]->poslist.n>0);
+
+ case FTS5_AND: {
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ }
+ break;
+ }
+
+ case FTS5_OR: {
+ int i;
+ int bRet = 0;
+ for(i=0; i<pNode->nChild; i++){
+ if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
+ bRet = 1;
+ }
+ }
+ return bRet;
+ }
+
+ default: {
+ assert( pNode->eType==FTS5_NOT );
+ if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
+ || 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
+ ){
+ fts5ExprClearPoslists(pNode);
+ return 0;
+ }
+ break;
+ }
+ }
+ return 1;
+}
+
+static void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
+ fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
+}
+
+static void fts5ExprClearEof(Fts5ExprNode *pNode){
+ int i;
+ for(i=0; i<pNode->nChild; i++){
+ fts5ExprClearEof(pNode->apChild[i]);
+ }
+ pNode->bEof = 0;
+}
+static void sqlite3Fts5ExprClearEof(Fts5Expr *pExpr){
+ fts5ExprClearEof(pExpr->pRoot);
+}
+
+/*
+** This function is only called for detail=columns tables.
+*/
+static int sqlite3Fts5ExprPhraseCollist(
+ Fts5Expr *pExpr,
+ int iPhrase,
+ const u8 **ppCollist,
+ int *pnCollist
+){
+ Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
+ Fts5ExprNode *pNode = pPhrase->pNode;
+ int rc = SQLITE_OK;
+
+ assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
+ assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+
+ if( pNode->bEof==0
+ && pNode->iRowid==pExpr->pRoot->iRowid
+ && pPhrase->poslist.n>0
+ ){
+ Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
+ if( pTerm->pSynonym ){
+ Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
+ rc = fts5ExprSynonymList(
+ pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
+ );
+ }else{
+ *ppCollist = pPhrase->aTerm[0].pIter->pData;
+ *pnCollist = pPhrase->aTerm[0].pIter->nData;
+ }
+ }else{
+ *ppCollist = 0;
+ *pnCollist = 0;
+ }
+
+ return rc;
+}
+
+
+#line 1 "fts5_hash.c"
+/*
+** 2014 August 11
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+typedef struct Fts5HashEntry Fts5HashEntry;
+
+/*
+** This file contains the implementation of an in-memory hash table used
+** to accumuluate "term -> doclist" content before it is flused to a level-0
+** segment.
+*/
+
+
+struct Fts5Hash {
+ int eDetail; /* Copy of Fts5Config.eDetail */
+ int *pnByte; /* Pointer to bytes counter */
+ int nEntry; /* Number of entries currently in hash */
+ int nSlot; /* Size of aSlot[] array */
+ Fts5HashEntry *pScan; /* Current ordered scan item */
+ Fts5HashEntry **aSlot; /* Array of hash slots */
+};
+
+/*
+** Each entry in the hash table is represented by an object of the
+** following type. Each object, its key (zKey[]) and its current data
+** are stored in a single memory allocation. The position list data
+** immediately follows the key data in memory.
+**
+** The data that follows the key is in a similar, but not identical format
+** to the doclist data stored in the database. It is:
+**
+** * Rowid, as a varint
+** * Position list, without 0x00 terminator.
+** * Size of previous position list and rowid, as a 4 byte
+** big-endian integer.
+**
+** iRowidOff:
+** Offset of last rowid written to data area. Relative to first byte of
+** structure.
+**
+** nData:
+** Bytes of data written since iRowidOff.
+*/
+struct Fts5HashEntry {
+ Fts5HashEntry *pHashNext; /* Next hash entry with same hash-key */
+ Fts5HashEntry *pScanNext; /* Next entry in sorted order */
+
+ int nAlloc; /* Total size of allocation */
+ int iSzPoslist; /* Offset of space for 4-byte poslist size */
+ int nData; /* Total bytes of data (incl. structure) */
+ int nKey; /* Length of zKey[] in bytes */
+ u8 bDel; /* Set delete-flag @ iSzPoslist */
+ u8 bContent; /* Set content-flag (detail=none mode) */
+ i16 iCol; /* Column of last value written */
+ int iPos; /* Position of last value written */
+ i64 iRowid; /* Rowid of last value written */
+ char zKey[8]; /* Nul-terminated entry key */
+};
+
+/*
+** Size of Fts5HashEntry without the zKey[] array.
+*/
+#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)
+
+
+
+/*
+** Allocate a new hash table.
+*/
+static int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){
+ int rc = SQLITE_OK;
+ Fts5Hash *pNew;
+
+ *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash));
+ if( pNew==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int nByte;
+ memset(pNew, 0, sizeof(Fts5Hash));
+ pNew->pnByte = pnByte;
+ pNew->eDetail = pConfig->eDetail;
+
+ pNew->nSlot = 1024;
+ nByte = sizeof(Fts5HashEntry*) * pNew->nSlot;
+ pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc(nByte);
+ if( pNew->aSlot==0 ){
+ sqlite3_free(pNew);
+ *ppNew = 0;
+ rc = SQLITE_NOMEM;
+ }else{
+ memset(pNew->aSlot, 0, nByte);
+ }
+ }
+ return rc;
+}
+
+/*
+** Free a hash table object.
+*/
+static void sqlite3Fts5HashFree(Fts5Hash *pHash){
+ if( pHash ){
+ sqlite3Fts5HashClear(pHash);
+ sqlite3_free(pHash->aSlot);
+ sqlite3_free(pHash);
+ }
+}
+
+/*
+** Empty (but do not delete) a hash table.
+*/
+static void sqlite3Fts5HashClear(Fts5Hash *pHash){
+ int i;
+ for(i=0; i<pHash->nSlot; i++){
+ Fts5HashEntry *pNext;
+ Fts5HashEntry *pSlot;
+ for(pSlot=pHash->aSlot[i]; pSlot; pSlot=pNext){
+ pNext = pSlot->pHashNext;
+ sqlite3_free(pSlot);
+ }
+ }
+ memset(pHash->aSlot, 0, pHash->nSlot * sizeof(Fts5HashEntry*));
+ pHash->nEntry = 0;
+}
+
+static unsigned int fts5HashKey(int nSlot, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ return (h % nSlot);
+}
+
+static unsigned int fts5HashKey2(int nSlot, u8 b, const u8 *p, int n){
+ int i;
+ unsigned int h = 13;
+ for(i=n-1; i>=0; i--){
+ h = (h << 3) ^ h ^ p[i];
+ }
+ h = (h << 3) ^ h ^ b;
+ return (h % nSlot);
+}
+
+/*
+** Resize the hash table by doubling the number of slots.
+*/
+static int fts5HashResize(Fts5Hash *pHash){
+ int nNew = pHash->nSlot*2;
+ int i;
+ Fts5HashEntry **apNew;
+ Fts5HashEntry **apOld = pHash->aSlot;
+
+ apNew = (Fts5HashEntry**)sqlite3_malloc(nNew*sizeof(Fts5HashEntry*));
+ if( !apNew ) return SQLITE_NOMEM;
+ memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));
+
+ for(i=0; i<pHash->nSlot; i++){
+ while( apOld[i] ){
+ int iHash;
+ Fts5HashEntry *p = apOld[i];
+ apOld[i] = p->pHashNext;
+ iHash = fts5HashKey(nNew, (u8*)p->zKey, (int)strlen(p->zKey));
+ p->pHashNext = apNew[iHash];
+ apNew[iHash] = p;
+ }
+ }
+
+ sqlite3_free(apOld);
+ pHash->nSlot = nNew;
+ pHash->aSlot = apNew;
+ return SQLITE_OK;
+}
+
+static void fts5HashAddPoslistSize(Fts5Hash *pHash, Fts5HashEntry *p){
+ if( p->iSzPoslist ){
+ u8 *pPtr = (u8*)p;
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ assert( p->nData==p->iSzPoslist );
+ if( p->bDel ){
+ pPtr[p->nData++] = 0x00;
+ if( p->bContent ){
+ pPtr[p->nData++] = 0x00;
+ }
+ }
+ }else{
+ int nSz = (p->nData - p->iSzPoslist - 1); /* Size in bytes */
+ int nPos = nSz*2 + p->bDel; /* Value of nPos field */
+
+ assert( p->bDel==0 || p->bDel==1 );
+ if( nPos<=127 ){
+ pPtr[p->iSzPoslist] = (u8)nPos;
+ }else{
+ int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
+ memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
+ sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
+ p->nData += (nByte-1);
+ }
+ }
+
+ p->iSzPoslist = 0;
+ p->bDel = 0;
+ p->bContent = 0;
+ }
+}
+
+/*
+** Add an entry to the in-memory hash table. The key is the concatenation
+** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos).
+**
+** (bByte || pToken) -> (iRowid,iCol,iPos)
+**
+** Or, if iCol is negative, then the value is a delete marker.
+*/
+static int sqlite3Fts5HashWrite(
+ Fts5Hash *pHash,
+ i64 iRowid, /* Rowid for this entry */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ char bByte, /* First byte of token */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ unsigned int iHash;
+ Fts5HashEntry *p;
+ u8 *pPtr;
+ int nIncr = 0; /* Amount to increment (*pHash->pnByte) by */
+ int bNew; /* If non-delete entry should be written */
+
+ bNew = (pHash->eDetail==FTS5_DETAIL_FULL);
+
+ /* Attempt to locate an existing hash entry */
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ if( p->zKey[0]==bByte
+ && p->nKey==nToken
+ && memcmp(&p->zKey[1], pToken, nToken)==0
+ ){
+ break;
+ }
+ }
+
+ /* If an existing hash entry cannot be found, create a new one. */
+ if( p==0 ){
+ /* Figure out how much space to allocate */
+ int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
+ if( nByte<128 ) nByte = 128;
+
+ /* Grow the Fts5Hash.aSlot[] array if necessary. */
+ if( (pHash->nEntry*2)>=pHash->nSlot ){
+ int rc = fts5HashResize(pHash);
+ if( rc!=SQLITE_OK ) return rc;
+ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken);
+ }
+
+ /* Allocate new Fts5HashEntry and add it to the hash table. */
+ p = (Fts5HashEntry*)sqlite3_malloc(nByte);
+ if( !p ) return SQLITE_NOMEM;
+ memset(p, 0, FTS5_HASHENTRYSIZE);
+ p->nAlloc = nByte;
+ p->zKey[0] = bByte;
+ memcpy(&p->zKey[1], pToken, nToken);
+ assert( iHash==fts5HashKey(pHash->nSlot, (u8*)p->zKey, nToken+1) );
+ p->nKey = nToken;
+ p->zKey[nToken+1] = '\0';
+ p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
+ p->pHashNext = pHash->aSlot[iHash];
+ pHash->aSlot[iHash] = p;
+ pHash->nEntry++;
+
+ /* Add the first rowid field to the hash-entry */
+ p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
+ p->iRowid = iRowid;
+
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ }
+
+ nIncr += p->nData;
+ }else{
+
+ /* Appending to an existing hash-entry. Check that there is enough
+ ** space to append the largest possible new entry. Worst case scenario
+ ** is:
+ **
+ ** + 9 bytes for a new rowid,
+ ** + 4 byte reserved for the "poslist size" varint.
+ ** + 1 byte for a "new column" byte,
+ ** + 3 bytes for a new column number (16-bit max) as a varint,
+ ** + 5 bytes for the new position offset (32-bit max).
+ */
+ if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){
+ int nNew = p->nAlloc * 2;
+ Fts5HashEntry *pNew;
+ Fts5HashEntry **pp;
+ pNew = (Fts5HashEntry*)sqlite3_realloc(p, nNew);
+ if( pNew==0 ) return SQLITE_NOMEM;
+ pNew->nAlloc = nNew;
+ for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext);
+ *pp = pNew;
+ p = pNew;
+ }
+ nIncr -= p->nData;
+ }
+ assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) );
+
+ pPtr = (u8*)p;
+
+ /* If this is a new rowid, append the 4-byte size field for the previous
+ ** entry, and the new rowid for this entry. */
+ if( iRowid!=p->iRowid ){
+ fts5HashAddPoslistSize(pHash, p);
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iRowid - p->iRowid);
+ p->iRowid = iRowid;
+ bNew = 1;
+ p->iSzPoslist = p->nData;
+ if( pHash->eDetail!=FTS5_DETAIL_NONE ){
+ p->nData += 1;
+ p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1);
+ p->iPos = 0;
+ }
+ }
+
+ if( iCol>=0 ){
+ if( pHash->eDetail==FTS5_DETAIL_NONE ){
+ p->bContent = 1;
+ }else{
+ /* Append a new column value, if necessary */
+ assert( iCol>=p->iCol );
+ if( iCol!=p->iCol ){
+ if( pHash->eDetail==FTS5_DETAIL_FULL ){
+ pPtr[p->nData++] = 0x01;
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol);
+ p->iCol = iCol;
+ p->iPos = 0;
+ }else{
+ bNew = 1;
+ p->iCol = iPos = iCol;
+ }
+ }
+
+ /* Append the new position offset, if necessary */
+ if( bNew ){
+ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2);
+ p->iPos = iPos;
+ }
+ }
+ }else{
+ /* This is a delete. Set the delete flag. */
+ p->bDel = 1;
+ }
+
+ nIncr += p->nData;
+ *pHash->pnByte += nIncr;
+ return SQLITE_OK;
+}
+
+
+/*
+** Arguments pLeft and pRight point to linked-lists of hash-entry objects,
+** each sorted in key order. This function merges the two lists into a
+** single list and returns a pointer to its first element.
+*/
+static Fts5HashEntry *fts5HashEntryMerge(
+ Fts5HashEntry *pLeft,
+ Fts5HashEntry *pRight
+){
+ Fts5HashEntry *p1 = pLeft;
+ Fts5HashEntry *p2 = pRight;
+ Fts5HashEntry *pRet = 0;
+ Fts5HashEntry **ppOut = &pRet;
+
+ while( p1 || p2 ){
+ if( p1==0 ){
+ *ppOut = p2;
+ p2 = 0;
+ }else if( p2==0 ){
+ *ppOut = p1;
+ p1 = 0;
+ }else{
+ int i = 0;
+ while( p1->zKey[i]==p2->zKey[i] ) i++;
+
+ if( ((u8)p1->zKey[i])>((u8)p2->zKey[i]) ){
+ /* p2 is smaller */
+ *ppOut = p2;
+ ppOut = &p2->pScanNext;
+ p2 = p2->pScanNext;
+ }else{
+ /* p1 is smaller */
+ *ppOut = p1;
+ ppOut = &p1->pScanNext;
+ p1 = p1->pScanNext;
+ }
+ *ppOut = 0;
+ }
+ }
+
+ return pRet;
+}
+
+/*
+** Extract all tokens from hash table iHash and link them into a list
+** in sorted order. The hash table is cleared before returning. It is
+** the responsibility of the caller to free the elements of the returned
+** list.
+*/
+static int fts5HashEntrySort(
+ Fts5Hash *pHash,
+ const char *pTerm, int nTerm, /* Query prefix, if any */
+ Fts5HashEntry **ppSorted
+){
+ const int nMergeSlot = 32;
+ Fts5HashEntry **ap;
+ Fts5HashEntry *pList;
+ int iSlot;
+ int i;
+
+ *ppSorted = 0;
+ ap = sqlite3_malloc(sizeof(Fts5HashEntry*) * nMergeSlot);
+ if( !ap ) return SQLITE_NOMEM;
+ memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot);
+
+ for(iSlot=0; iSlot<pHash->nSlot; iSlot++){
+ Fts5HashEntry *pIter;
+ for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){
+ if( pTerm==0 || 0==memcmp(pIter->zKey, pTerm, nTerm) ){
+ Fts5HashEntry *pEntry = pIter;
+ pEntry->pScanNext = 0;
+ for(i=0; ap[i]; i++){
+ pEntry = fts5HashEntryMerge(pEntry, ap[i]);
+ ap[i] = 0;
+ }
+ ap[i] = pEntry;
+ }
+ }
+ }
+
+ pList = 0;
+ for(i=0; i<nMergeSlot; i++){
+ pList = fts5HashEntryMerge(pList, ap[i]);
+ }
+
+ pHash->nEntry = 0;
+ sqlite3_free(ap);
+ *ppSorted = pList;
+ return SQLITE_OK;
+}
+
+/*
+** Query the hash table for a doclist associated with term pTerm/nTerm.
+*/
+static int sqlite3Fts5HashQuery(
+ Fts5Hash *pHash, /* Hash table to query */
+ const char *pTerm, int nTerm, /* Query term */
+ const u8 **ppDoclist, /* OUT: Pointer to doclist for pTerm */
+ int *pnDoclist /* OUT: Size of doclist in bytes */
+){
+ unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm);
+ Fts5HashEntry *p;
+
+ for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
+ if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
+ }
+
+ if( p ){
+ fts5HashAddPoslistSize(pHash, p);
+ *ppDoclist = (const u8*)&p->zKey[nTerm+1];
+ *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
+ }else{
+ *ppDoclist = 0;
+ *pnDoclist = 0;
+ }
+
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5HashScanInit(
+ Fts5Hash *p, /* Hash table to query */
+ const char *pTerm, int nTerm /* Query prefix */
+){
+ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan);
+}
+
+static void sqlite3Fts5HashScanNext(Fts5Hash *p){
+ assert( !sqlite3Fts5HashScanEof(p) );
+ p->pScan = p->pScan->pScanNext;
+}
+
+static int sqlite3Fts5HashScanEof(Fts5Hash *p){
+ return (p->pScan==0);
+}
+
+static void sqlite3Fts5HashScanEntry(
+ Fts5Hash *pHash,
+ const char **pzTerm, /* OUT: term (nul-terminated) */
+ const u8 **ppDoclist, /* OUT: pointer to doclist */
+ int *pnDoclist /* OUT: size of doclist in bytes */
+){
+ Fts5HashEntry *p;
+ if( (p = pHash->pScan) ){
+ int nTerm = (int)strlen(p->zKey);
+ fts5HashAddPoslistSize(pHash, p);
+ *pzTerm = p->zKey;
+ *ppDoclist = (const u8*)&p->zKey[nTerm+1];
+ *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
+ }else{
+ *pzTerm = 0;
+ *ppDoclist = 0;
+ *pnDoclist = 0;
+ }
+}
+
+
+#line 1 "fts5_index.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Low level access to the FTS index stored in the database file. The
+** routines in this file file implement all read and write access to the
+** %_data table. Other parts of the system access this functionality via
+** the interface defined in fts5Int.h.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** Overview:
+**
+** The %_data table contains all the FTS indexes for an FTS5 virtual table.
+** As well as the main term index, there may be up to 31 prefix indexes.
+** The format is similar to FTS3/4, except that:
+**
+** * all segment b-tree leaf data is stored in fixed size page records
+** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
+** taken to ensure it is possible to iterate in either direction through
+** the entries in a doclist, or to seek to a specific entry within a
+** doclist, without loading it into memory.
+**
+** * large doclists that span many pages have associated "doclist index"
+** records that contain a copy of the first rowid on each page spanned by
+** the doclist. This is used to speed up seek operations, and merges of
+** large doclists with very small doclists.
+**
+** * extra fields in the "structure record" record the state of ongoing
+** incremental merge operations.
+**
+*/
+
+
+#define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
+#define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
+
+#define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
+
+#define FTS5_MAIN_PREFIX '0'
+
+#if FTS5_MAX_PREFIX_INDEXES > 31
+# error "FTS5_MAX_PREFIX_INDEXES is too large"
+#endif
+
+/*
+** Details:
+**
+** The %_data table managed by this module,
+**
+** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
+**
+** , contains the following 5 types of records. See the comments surrounding
+** the FTS5_*_ROWID macros below for a description of how %_data rowids are
+** assigned to each fo them.
+**
+** 1. Structure Records:
+**
+** The set of segments that make up an index - the index structure - are
+** recorded in a single record within the %_data table. The record consists
+** of a single 32-bit configuration cookie value followed by a list of
+** SQLite varints. If the FTS table features more than one index (because
+** there are one or more prefix indexes), it is guaranteed that all share
+** the same cookie value.
+**
+** Immediately following the configuration cookie, the record begins with
+** three varints:
+**
+** + number of levels,
+** + total number of segments on all levels,
+** + value of write counter.
+**
+** Then, for each level from 0 to nMax:
+**
+** + number of input segments in ongoing merge.
+** + total number of segments in level.
+** + for each segment from oldest to newest:
+** + segment id (always > 0)
+** + first leaf page number (often 1, always greater than 0)
+** + final leaf page number
+**
+** 2. The Averages Record:
+**
+** A single record within the %_data table. The data is a list of varints.
+** The first value is the number of rows in the index. Then, for each column
+** from left to right, the total number of tokens in the column for all
+** rows of the table.
+**
+** 3. Segment leaves:
+**
+** TERM/DOCLIST FORMAT:
+**
+** Most of each segment leaf is taken up by term/doclist data. The
+** general format of term/doclist, starting with the first term
+** on the leaf page, is:
+**
+** varint : size of first term
+** blob: first term data
+** doclist: first doclist
+** zero-or-more {
+** varint: number of bytes in common with previous term
+** varint: number of bytes of new term data (nNew)
+** blob: nNew bytes of new term data
+** doclist: next doclist
+** }
+**
+** doclist format:
+**
+** varint: first rowid
+** poslist: first poslist
+** zero-or-more {
+** varint: rowid delta (always > 0)
+** poslist: next poslist
+** }
+**
+** poslist format:
+**
+** varint: size of poslist in bytes multiplied by 2, not including
+** this field. Plus 1 if this entry carries the "delete" flag.
+** collist: collist for column 0
+** zero-or-more {
+** 0x01 byte
+** varint: column number (I)
+** collist: collist for column I
+** }
+**
+** collist format:
+**
+** varint: first offset + 2
+** zero-or-more {
+** varint: offset delta + 2
+** }
+**
+** PAGE FORMAT
+**
+** Each leaf page begins with a 4-byte header containing 2 16-bit
+** unsigned integer fields in big-endian format. They are:
+**
+** * The byte offset of the first rowid on the page, if it exists
+** and occurs before the first term (otherwise 0).
+**
+** * The byte offset of the start of the page footer. If the page
+** footer is 0 bytes in size, then this field is the same as the
+** size of the leaf page in bytes.
+**
+** The page footer consists of a single varint for each term located
+** on the page. Each varint is the byte offset of the current term
+** within the page, delta-compressed against the previous value. In
+** other words, the first varint in the footer is the byte offset of
+** the first term, the second is the byte offset of the second less that
+** of the first, and so on.
+**
+** The term/doclist format described above is accurate if the entire
+** term/doclist data fits on a single leaf page. If this is not the case,
+** the format is changed in two ways:
+**
+** + if the first rowid on a page occurs before the first term, it
+** is stored as a literal value:
+**
+** varint: first rowid
+**
+** + the first term on each page is stored in the same way as the
+** very first term of the segment:
+**
+** varint : size of first term
+** blob: first term data
+**
+** 5. Segment doclist indexes:
+**
+** Doclist indexes are themselves b-trees, however they usually consist of
+** a single leaf record only. The format of each doclist index leaf page
+** is:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear if leaf is also the root page, otherwise set.
+**
+** * Page number of fts index leaf page. As a varint.
+**
+** * First rowid on page indicated by previous field. As a varint.
+**
+** * A list of varints, one for each subsequent termless page. A
+** positive delta if the termless page contains at least one rowid,
+** or an 0x00 byte otherwise.
+**
+** Internal doclist index nodes are:
+**
+** * Flags byte. Bits are:
+** 0x01: Clear for root page, otherwise set.
+**
+** * Page number of first child page. As a varint.
+**
+** * Copy of first rowid on page indicated by previous field. As a varint.
+**
+** * A list of delta-encoded varints - the first rowid on each subsequent
+** child page.
+**
+*/
+
+/*
+** Rowids for the averages and structure records in the %_data table.
+*/
+#define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
+#define FTS5_STRUCTURE_ROWID 10 /* The structure record */
+
+/*
+** Macros determining the rowids used by segment leaves and dlidx leaves
+** and nodes. All nodes and leaves are stored in the %_data table with large
+** positive rowids.
+**
+** Each segment has a unique non-zero 16-bit id.
+**
+** The rowid for each segment leaf is found by passing the segment id and
+** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
+** sequentially starting from 1.
+*/
+#define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
+#define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
+#define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
+#define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
+
+#define fts5_dri(segid, dlidx, height, pgno) ( \
+ ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
+ ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
+ ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
+ ((i64)(pgno)) \
+)
+
+#define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
+#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
+
+/*
+** Maximum segments permitted in a single index
+*/
+#define FTS5_MAX_SEGMENT 2000
+
+#ifdef SQLITE_DEBUG
+static int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB; }
+#endif
+
+
+/*
+** Each time a blob is read from the %_data table, it is padded with this
+** many zero bytes. This makes it easier to decode the various record formats
+** without overreading if the records are corrupt.
+*/
+#define FTS5_DATA_ZERO_PADDING 8
+#define FTS5_DATA_PADDING 20
+
+typedef struct Fts5Data Fts5Data;
+typedef struct Fts5DlidxIter Fts5DlidxIter;
+typedef struct Fts5DlidxLvl Fts5DlidxLvl;
+typedef struct Fts5DlidxWriter Fts5DlidxWriter;
+typedef struct Fts5Iter Fts5Iter;
+typedef struct Fts5PageWriter Fts5PageWriter;
+typedef struct Fts5SegIter Fts5SegIter;
+typedef struct Fts5DoclistIter Fts5DoclistIter;
+typedef struct Fts5SegWriter Fts5SegWriter;
+typedef struct Fts5Structure Fts5Structure;
+typedef struct Fts5StructureLevel Fts5StructureLevel;
+typedef struct Fts5StructureSegment Fts5StructureSegment;
+
+struct Fts5Data {
+ u8 *p; /* Pointer to buffer containing record */
+ int nn; /* Size of record in bytes */
+ int szLeaf; /* Size of leaf without page-index */
+};
+
+/*
+** One object per %_data table.
+*/
+struct Fts5Index {
+ Fts5Config *pConfig; /* Virtual table configuration */
+ char *zDataTbl; /* Name of %_data table */
+ int nWorkUnit; /* Leaf pages in a "unit" of work */
+
+ /*
+ ** Variables related to the accumulation of tokens and doclists within the
+ ** in-memory hash tables before they are flushed to disk.
+ */
+ Fts5Hash *pHash; /* Hash table for in-memory data */
+ int nPendingData; /* Current bytes of pending data */
+ i64 iWriteRowid; /* Rowid for current doc being written */
+ int bDelete; /* Current write is a delete */
+
+ /* Error state. */
+ int rc; /* Current error code */
+
+ /* State used by the fts5DataXXX() functions. */
+ sqlite3_blob *pReader; /* RO incr-blob open on %_data table */
+ sqlite3_stmt *pWriter; /* "INSERT ... %_data VALUES(?,?)" */
+ sqlite3_stmt *pDeleter; /* "DELETE FROM %_data ... id>=? AND id<=?" */
+ sqlite3_stmt *pIdxWriter; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
+ sqlite3_stmt *pIdxDeleter; /* "DELETE FROM %_idx WHERE segid=? */
+ sqlite3_stmt *pIdxSelect;
+ int nRead; /* Total number of blocks read */
+};
+
+struct Fts5DoclistIter {
+ u8 *aEof; /* Pointer to 1 byte past end of doclist */
+
+ /* Output variables. aPoslist==0 at EOF */
+ i64 iRowid;
+ u8 *aPoslist;
+ int nPoslist;
+ int nSize;
+};
+
+/*
+** The contents of the "structure" record for each index are represented
+** using an Fts5Structure record in memory. Which uses instances of the
+** other Fts5StructureXXX types as components.
+*/
+struct Fts5StructureSegment {
+ int iSegid; /* Segment id */
+ int pgnoFirst; /* First leaf page number in segment */
+ int pgnoLast; /* Last leaf page number in segment */
+};
+struct Fts5StructureLevel {
+ int nMerge; /* Number of segments in incr-merge */
+ int nSeg; /* Total number of segments on level */
+ Fts5StructureSegment *aSeg; /* Array of segments. aSeg[0] is oldest. */
+};
+struct Fts5Structure {
+ int nRef; /* Object reference count */
+ u64 nWriteCounter; /* Total leaves written to level 0 */
+ int nSegment; /* Total segments in this structure */
+ int nLevel; /* Number of levels in this index */
+ Fts5StructureLevel aLevel[1]; /* Array of nLevel level objects */
+};
+
+/*
+** An object of type Fts5SegWriter is used to write to segments.
+*/
+struct Fts5PageWriter {
+ int pgno; /* Page number for this page */
+ int iPrevPgidx; /* Previous value written into pgidx */
+ Fts5Buffer buf; /* Buffer containing leaf data */
+ Fts5Buffer pgidx; /* Buffer containing page-index */
+ Fts5Buffer term; /* Buffer containing previous term on page */
+};
+struct Fts5DlidxWriter {
+ int pgno; /* Page number for this page */
+ int bPrevValid; /* True if iPrev is valid */
+ i64 iPrev; /* Previous rowid value written to page */
+ Fts5Buffer buf; /* Buffer containing page data */
+};
+struct Fts5SegWriter {
+ int iSegid; /* Segid to write to */
+ Fts5PageWriter writer; /* PageWriter object */
+ i64 iPrevRowid; /* Previous rowid written to current leaf */
+ u8 bFirstRowidInDoclist; /* True if next rowid is first in doclist */
+ u8 bFirstRowidInPage; /* True if next rowid is first in page */
+ /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
+ u8 bFirstTermInPage; /* True if next term will be first in leaf */
+ int nLeafWritten; /* Number of leaf pages written */
+ int nEmpty; /* Number of contiguous term-less nodes */
+
+ int nDlidx; /* Allocated size of aDlidx[] array */
+ Fts5DlidxWriter *aDlidx; /* Array of Fts5DlidxWriter objects */
+
+ /* Values to insert into the %_idx table */
+ Fts5Buffer btterm; /* Next term to insert into %_idx table */
+ int iBtPage; /* Page number corresponding to btterm */
+};
+
+typedef struct Fts5CResult Fts5CResult;
+struct Fts5CResult {
+ u16 iFirst; /* aSeg[] index of firstest iterator */
+ u8 bTermEq; /* True if the terms are equal */
+};
+
+/*
+** Object for iterating through a single segment, visiting each term/rowid
+** pair in the segment.
+**
+** pSeg:
+** The segment to iterate through.
+**
+** iLeafPgno:
+** Current leaf page number within segment.
+**
+** iLeafOffset:
+** Byte offset within the current leaf that is the first byte of the
+** position list data (one byte passed the position-list size field).
+** rowid field of the current entry. Usually this is the size field of the
+** position list data. The exception is if the rowid for the current entry
+** is the last thing on the leaf page.
+**
+** pLeaf:
+** Buffer containing current leaf page data. Set to NULL at EOF.
+**
+** iTermLeafPgno, iTermLeafOffset:
+** Leaf page number containing the last term read from the segment. And
+** the offset immediately following the term data.
+**
+** flags:
+** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
+**
+** FTS5_SEGITER_ONETERM:
+** If set, set the iterator to point to EOF after the current doclist
+** has been exhausted. Do not proceed to the next term in the segment.
+**
+** FTS5_SEGITER_REVERSE:
+** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
+** it is set, iterate through rowid in descending order instead of the
+** default ascending order.
+**
+** iRowidOffset/nRowidOffset/aRowidOffset:
+** These are used if the FTS5_SEGITER_REVERSE flag is set.
+**
+** For each rowid on the page corresponding to the current term, the
+** corresponding aRowidOffset[] entry is set to the byte offset of the
+** start of the "position-list-size" field within the page.
+**
+** iTermIdx:
+** Index of current term on iTermLeafPgno.
+*/
+struct Fts5SegIter {
+ Fts5StructureSegment *pSeg; /* Segment to iterate through */
+ int flags; /* Mask of configuration flags */
+ int iLeafPgno; /* Current leaf page number */
+ Fts5Data *pLeaf; /* Current leaf data */
+ Fts5Data *pNextLeaf; /* Leaf page (iLeafPgno+1) */
+ int iLeafOffset; /* Byte offset within current leaf */
+
+ /* Next method */
+ void (*xNext)(Fts5Index*, Fts5SegIter*, int*);
+
+ /* The page and offset from which the current term was read. The offset
+ ** is the offset of the first rowid in the current doclist. */
+ int iTermLeafPgno;
+ int iTermLeafOffset;
+
+ int iPgidxOff; /* Next offset in pgidx */
+ int iEndofDoclist;
+
+ /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
+ int iRowidOffset; /* Current entry in aRowidOffset[] */
+ int nRowidOffset; /* Allocated size of aRowidOffset[] array */
+ int *aRowidOffset; /* Array of offset to rowid fields */
+
+ Fts5DlidxIter *pDlidx; /* If there is a doclist-index */
+
+ /* Variables populated based on current entry. */
+ Fts5Buffer term; /* Current term */
+ i64 iRowid; /* Current rowid */
+ int nPos; /* Number of bytes in current position list */
+ u8 bDel; /* True if the delete flag is set */
+};
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a
+** leaf page.
+*/
+#define ASSERT_SZLEAF_OK(x) assert( \
+ (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
+)
+
+#define FTS5_SEGITER_ONETERM 0x01
+#define FTS5_SEGITER_REVERSE 0x02
+
+/*
+** Argument is a pointer to an Fts5Data structure that contains a leaf
+** page. This macro evaluates to true if the leaf contains no terms, or
+** false if it contains at least one term.
+*/
+#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
+
+#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
+
+#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
+
+/*
+** Object for iterating through the merged results of one or more segments,
+** visiting each term/rowid pair in the merged data.
+**
+** nSeg is always a power of two greater than or equal to the number of
+** segments that this object is merging data from. Both the aSeg[] and
+** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
+** with zeroed objects - these are handled as if they were iterators opened
+** on empty segments.
+**
+** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
+** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
+** comparison in this context is the index of the iterator that currently
+** points to the smaller term/rowid combination. Iterators at EOF are
+** considered to be greater than all other iterators.
+**
+** aFirst[1] contains the index in aSeg[] of the iterator that points to
+** the smallest key overall. aFirst[0] is unused.
+**
+** poslist:
+** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
+** There is no way to tell if this is populated or not.
+*/
+struct Fts5Iter {
+ Fts5IndexIter base; /* Base class containing output vars */
+
+ Fts5Index *pIndex; /* Index that owns this iterator */
+ Fts5Structure *pStruct; /* Database structure for this iterator */
+ Fts5Buffer poslist; /* Buffer containing current poslist */
+ Fts5Colset *pColset; /* Restrict matches to these columns */
+
+ /* Invoked to set output variables. */
+ void (*xSetOutputs)(Fts5Iter*, Fts5SegIter*);
+
+ int nSeg; /* Size of aSeg[] array */
+ int bRev; /* True to iterate in reverse order */
+ u8 bSkipEmpty; /* True to skip deleted entries */
+
+ i64 iSwitchRowid; /* Firstest rowid of other than aFirst[1] */
+ Fts5CResult *aFirst; /* Current merge state (see above) */
+ Fts5SegIter aSeg[1]; /* Array of segment iterators */
+};
+
+
+/*
+** An instance of the following type is used to iterate through the contents
+** of a doclist-index record.
+**
+** pData:
+** Record containing the doclist-index data.
+**
+** bEof:
+** Set to true once iterator has reached EOF.
+**
+** iOff:
+** Set to the current offset within record pData.
+*/
+struct Fts5DlidxLvl {
+ Fts5Data *pData; /* Data for current page of this level */
+ int iOff; /* Current offset into pData */
+ int bEof; /* At EOF already */
+ int iFirstOff; /* Used by reverse iterators */
+
+ /* Output variables */
+ int iLeafPgno; /* Page number of current leaf page */
+ i64 iRowid; /* First rowid on leaf iLeafPgno */
+};
+struct Fts5DlidxIter {
+ int nLvl;
+ int iSegid;
+ Fts5DlidxLvl aLvl[1];
+};
+
+static void fts5PutU16(u8 *aOut, u16 iVal){
+ aOut[0] = (iVal>>8);
+ aOut[1] = (iVal&0xFF);
+}
+
+static u16 fts5GetU16(const u8 *aIn){
+ return ((u16)aIn[0] << 8) + aIn[1];
+}
+
+/*
+** Allocate and return a buffer at least nByte bytes in size.
+**
+** If an OOM error is encountered, return NULL and set the error code in
+** the Fts5Index handle passed as the first argument.
+*/
+static void *fts5IdxMalloc(Fts5Index *p, int nByte){
+ return sqlite3Fts5MallocZero(&p->rc, nByte);
+}
+
+/*
+** Compare the contents of the pLeft buffer with the pRight/nRight blob.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+#ifdef SQLITE_DEBUG
+static int fts5BufferCompareBlob(
+ Fts5Buffer *pLeft, /* Left hand side of comparison */
+ const u8 *pRight, int nRight /* Right hand side of comparison */
+){
+ int nCmp = MIN(pLeft->n, nRight);
+ int res = memcmp(pLeft->p, pRight, nCmp);
+ return (res==0 ? (pLeft->n - nRight) : res);
+}
+#endif
+
+/*
+** Compare the contents of the two buffers using memcmp(). If one buffer
+** is a prefix of the other, it is considered the lesser.
+**
+** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
+** +ve if pRight is smaller than pLeft. In other words:
+**
+** res = *pLeft - *pRight
+*/
+static int fts5BufferCompare(Fts5Buffer *pLeft, Fts5Buffer *pRight){
+ int nCmp = MIN(pLeft->n, pRight->n);
+ int res = memcmp(pLeft->p, pRight->p, nCmp);
+ return (res==0 ? (pLeft->n - pRight->n) : res);
+}
+
+static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
+ int ret;
+ fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
+ return ret;
+}
+
+/*
+** Close the read-only blob handle, if it is open.
+*/
+static void fts5CloseReader(Fts5Index *p){
+ if( p->pReader ){
+ sqlite3_blob *pReader = p->pReader;
+ p->pReader = 0;
+ sqlite3_blob_close(pReader);
+ }
+}
+
+
+/*
+** Retrieve a record from the %_data table.
+**
+** If an error occurs, NULL is returned and an error left in the
+** Fts5Index object.
+*/
+static Fts5Data *fts5DataRead(Fts5Index *p, i64 iRowid){
+ Fts5Data *pRet = 0;
+ if( p->rc==SQLITE_OK ){
+ int rc = SQLITE_OK;
+
+ if( p->pReader ){
+ /* This call may return SQLITE_ABORT if there has been a savepoint
+ ** rollback since it was last used. In this case a new blob handle
+ ** is required. */
+ sqlite3_blob *pBlob = p->pReader;
+ p->pReader = 0;
+ rc = sqlite3_blob_reopen(pBlob, iRowid);
+ assert( p->pReader==0 );
+ p->pReader = pBlob;
+ if( rc!=SQLITE_OK ){
+ fts5CloseReader(p);
+ }
+ if( rc==SQLITE_ABORT ) rc = SQLITE_OK;
+ }
+
+ /* If the blob handle is not open at this point, open it and seek
+ ** to the requested entry. */
+ if( p->pReader==0 && rc==SQLITE_OK ){
+ Fts5Config *pConfig = p->pConfig;
+ rc = sqlite3_blob_open(pConfig->db,
+ pConfig->zDb, p->zDataTbl, "block", iRowid, 0, &p->pReader
+ );
+ }
+
+ /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
+ ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
+ ** All the reasons those functions might return SQLITE_ERROR - missing
+ ** table, missing row, non-blob/text in block column - indicate
+ ** backing store corruption. */
+ if( rc==SQLITE_ERROR ) rc = FTS5_CORRUPT;
+
+ if( rc==SQLITE_OK ){
+ u8 *aOut = 0; /* Read blob data into this buffer */
+ int nByte = sqlite3_blob_bytes(p->pReader);
+ int nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING;
+ pRet = (Fts5Data*)sqlite3_malloc(nAlloc);
+ if( pRet ){
+ pRet->nn = nByte;
+ aOut = pRet->p = (u8*)&pRet[1];
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3_free(pRet);
+ pRet = 0;
+ }else{
+ /* TODO1: Fix this */
+ pRet->szLeaf = fts5GetU16(&pRet->p[2]);
+ }
+ }
+ p->rc = rc;
+ p->nRead++;
+ }
+
+ assert( (pRet==0)==(p->rc!=SQLITE_OK) );
+ return pRet;
+}
+
+/*
+** Release a reference to data record returned by an earlier call to
+** fts5DataRead().
+*/
+static void fts5DataRelease(Fts5Data *pData){
+ sqlite3_free(pData);
+}
+
+static int fts5IndexPrepareStmt(
+ Fts5Index *p,
+ sqlite3_stmt **ppStmt,
+ char *zSql
+){
+ if( p->rc==SQLITE_OK ){
+ if( zSql ){
+ p->rc = sqlite3_prepare_v2(p->pConfig->db, zSql, -1, ppStmt, 0);
+ }else{
+ p->rc = SQLITE_NOMEM;
+ }
+ }
+ sqlite3_free(zSql);
+ return p->rc;
+}
+
+
+/*
+** INSERT OR REPLACE a record into the %_data table.
+*/
+static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf(
+ "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ if( p->rc ) return;
+ }
+
+ sqlite3_bind_int64(p->pWriter, 1, iRowid);
+ sqlite3_bind_blob(p->pWriter, 2, pData, nData, SQLITE_STATIC);
+ sqlite3_step(p->pWriter);
+ p->rc = sqlite3_reset(p->pWriter);
+}
+
+/*
+** Execute the following SQL:
+**
+** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
+*/
+static void fts5DataDelete(Fts5Index *p, i64 iFirst, i64 iLast){
+ if( p->rc!=SQLITE_OK ) return;
+
+ if( p->pDeleter==0 ){
+ int rc;
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql = sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
+ pConfig->zDb, pConfig->zName
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p->pDeleter, 0);
+ sqlite3_free(zSql);
+ }
+ if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ return;
+ }
+ }
+
+ sqlite3_bind_int64(p->pDeleter, 1, iFirst);
+ sqlite3_bind_int64(p->pDeleter, 2, iLast);
+ sqlite3_step(p->pDeleter);
+ p->rc = sqlite3_reset(p->pDeleter);
+}
+
+/*
+** Remove all records associated with segment iSegid.
+*/
+static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){
+ i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
+ i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
+ fts5DataDelete(p, iFirst, iLast);
+ if( p->pIdxDeleter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
+ "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ if( p->rc==SQLITE_OK ){
+ sqlite3_bind_int(p->pIdxDeleter, 1, iSegid);
+ sqlite3_step(p->pIdxDeleter);
+ p->rc = sqlite3_reset(p->pIdxDeleter);
+ }
+}
+
+/*
+** Release a reference to an Fts5Structure object returned by an earlier
+** call to fts5StructureRead() or fts5StructureDecode().
+*/
+static void fts5StructureRelease(Fts5Structure *pStruct){
+ if( pStruct && 0>=(--pStruct->nRef) ){
+ int i;
+ assert( pStruct->nRef==0 );
+ for(i=0; i<pStruct->nLevel; i++){
+ sqlite3_free(pStruct->aLevel[i].aSeg);
+ }
+ sqlite3_free(pStruct);
+ }
+}
+
+static void fts5StructureRef(Fts5Structure *pStruct){
+ pStruct->nRef++;
+}
+
+/*
+** Deserialize and return the structure record currently stored in serialized
+** form within buffer pData/nData.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated by one slot. This allows the structure contents
+** to be more easily edited.
+**
+** If an error occurs, *ppOut is set to NULL and an SQLite error code
+** returned. Otherwise, *ppOut is set to point to the new object and
+** SQLITE_OK returned.
+*/
+static int fts5StructureDecode(
+ const u8 *pData, /* Buffer containing serialized structure */
+ int nData, /* Size of buffer pData in bytes */
+ int *piCookie, /* Configuration cookie value */
+ Fts5Structure **ppOut /* OUT: Deserialized object */
+){
+ int rc = SQLITE_OK;
+ int i = 0;
+ int iLvl;
+ int nLevel = 0;
+ int nSegment = 0;
+ int nByte; /* Bytes of space to allocate at pRet */
+ Fts5Structure *pRet = 0; /* Structure object to return */
+
+ /* Grab the cookie value */
+ if( piCookie ) *piCookie = sqlite3Fts5Get32(pData);
+ i = 4;
+
+ /* Read the total number of levels and segments from the start of the
+ ** structure record. */
+ i += fts5GetVarint32(&pData[i], nLevel);
+ i += fts5GetVarint32(&pData[i], nSegment);
+ nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel-1) /* aLevel[] array */
+ );
+ pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);
+
+ if( pRet ){
+ pRet->nRef = 1;
+ pRet->nLevel = nLevel;
+ pRet->nSegment = nSegment;
+ i += sqlite3Fts5GetVarint(&pData[i], &pRet->nWriteCounter);
+
+ for(iLvl=0; rc==SQLITE_OK && iLvl<nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pRet->aLevel[iLvl];
+ int nTotal = 0;
+ int iSeg;
+
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ }else{
+ i += fts5GetVarint32(&pData[i], pLvl->nMerge);
+ i += fts5GetVarint32(&pData[i], nTotal);
+ assert( nTotal>=pLvl->nMerge );
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&rc,
+ nTotal * sizeof(Fts5StructureSegment)
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ pLvl->nSeg = nTotal;
+ for(iSeg=0; iSeg<nTotal; iSeg++){
+ if( i>=nData ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
+ i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
+ i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
+ }
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ }
+
+ *ppOut = pRet;
+ return rc;
+}
+
+/*
+**
+*/
+static void fts5StructureAddLevel(int *pRc, Fts5Structure **ppStruct){
+ if( *pRc==SQLITE_OK ){
+ Fts5Structure *pStruct = *ppStruct;
+ int nLevel = pStruct->nLevel;
+ int nByte = (
+ sizeof(Fts5Structure) + /* Main structure */
+ sizeof(Fts5StructureLevel) * (nLevel+1) /* aLevel[] array */
+ );
+
+ pStruct = sqlite3_realloc(pStruct, nByte);
+ if( pStruct ){
+ memset(&pStruct->aLevel[nLevel], 0, sizeof(Fts5StructureLevel));
+ pStruct->nLevel++;
+ *ppStruct = pStruct;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Extend level iLvl so that there is room for at least nExtra more
+** segments.
+*/
+static void fts5StructureExtendLevel(
+ int *pRc,
+ Fts5Structure *pStruct,
+ int iLvl,
+ int nExtra,
+ int bInsert
+){
+ if( *pRc==SQLITE_OK ){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureSegment *aNew;
+ int nByte;
+
+ nByte = (pLvl->nSeg + nExtra) * sizeof(Fts5StructureSegment);
+ aNew = sqlite3_realloc(pLvl->aSeg, nByte);
+ if( aNew ){
+ if( bInsert==0 ){
+ memset(&aNew[pLvl->nSeg], 0, sizeof(Fts5StructureSegment) * nExtra);
+ }else{
+ int nMove = pLvl->nSeg * sizeof(Fts5StructureSegment);
+ memmove(&aNew[nExtra], aNew, nMove);
+ memset(aNew, 0, sizeof(Fts5StructureSegment) * nExtra);
+ }
+ pLvl->aSeg = aNew;
+ }else{
+ *pRc = SQLITE_NOMEM;
+ }
+ }
+}
+
+/*
+** Read, deserialize and return the structure record.
+**
+** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
+** are over-allocated as described for function fts5StructureDecode()
+** above.
+**
+** If an error occurs, NULL is returned and an error code left in the
+** Fts5Index handle. If an error has already occurred when this function
+** is called, it is a no-op.
+*/
+static Fts5Structure *fts5StructureRead(Fts5Index *p){
+ Fts5Config *pConfig = p->pConfig;
+ Fts5Structure *pRet = 0; /* Object to return */
+ int iCookie; /* Configuration cookie */
+ Fts5Data *pData;
+
+ pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
+ if( p->rc ) return 0;
+ /* TODO: Do we need this if the leaf-index is appended? Probably... */
+ memset(&pData->p[pData->nn], 0, FTS5_DATA_PADDING);
+ p->rc = fts5StructureDecode(pData->p, pData->nn, &iCookie, &pRet);
+ if( p->rc==SQLITE_OK && pConfig->iCookie!=iCookie ){
+ p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
+ }
+
+ fts5DataRelease(pData);
+ if( p->rc!=SQLITE_OK ){
+ fts5StructureRelease(pRet);
+ pRet = 0;
+ }
+ return pRet;
+}
+
+/*
+** Return the total number of segments in index structure pStruct. This
+** function is only ever used as part of assert() conditions.
+*/
+#ifdef SQLITE_DEBUG
+static int fts5StructureCountSegments(Fts5Structure *pStruct){
+ int nSegment = 0; /* Total number of segments */
+ if( pStruct ){
+ int iLvl; /* Used to iterate through levels */
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ nSegment += pStruct->aLevel[iLvl].nSeg;
+ }
+ }
+
+ return nSegment;
+}
+#endif
+
+#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
+ assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
+ memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
+ (pBuf)->n += nBlob; \
+}
+
+#define fts5BufferSafeAppendVarint(pBuf, iVal) { \
+ (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
+ assert( (pBuf)->nSpace>=(pBuf)->n ); \
+}
+
+
+/*
+** Serialize and store the "structure" record.
+**
+** If an error occurs, leave an error code in the Fts5Index object. If an
+** error has already occurred, this function is a no-op.
+*/
+static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
+ if( p->rc==SQLITE_OK ){
+ Fts5Buffer buf; /* Buffer to serialize record into */
+ int iLvl; /* Used to iterate through levels */
+ int iCookie; /* Cookie value to store */
+
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ memset(&buf, 0, sizeof(Fts5Buffer));
+
+ /* Append the current configuration cookie */
+ iCookie = p->pConfig->iCookie;
+ if( iCookie<0 ) iCookie = 0;
+
+ if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, 4+9+9+9) ){
+ sqlite3Fts5Put32(buf.p, iCookie);
+ buf.n = 4;
+ fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
+ fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
+ fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
+ }
+
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
+ fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
+ }
+ }
+
+ fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
+ fts5BufferFree(&buf);
+ }
+}
+
+#if 0
+static void fts5DebugStructure(int*,Fts5Buffer*,Fts5Structure*);
+static void fts5PrintStructure(const char *zCaption, Fts5Structure *pStruct){
+ int rc = SQLITE_OK;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(buf));
+ fts5DebugStructure(&rc, &buf, pStruct);
+ fprintf(stdout, "%s: %s\n", zCaption, buf.p);
+ fflush(stdout);
+ fts5BufferFree(&buf);
+}
+#else
+# define fts5PrintStructure(x,y)
+#endif
+
+static int fts5SegmentSize(Fts5StructureSegment *pSeg){
+ return 1 + pSeg->pgnoLast - pSeg->pgnoFirst;
+}
+
+/*
+** Return a copy of index structure pStruct. Except, promote as many
+** segments as possible to level iPromote. If an OOM occurs, NULL is
+** returned.
+*/
+static void fts5StructurePromoteTo(
+ Fts5Index *p,
+ int iPromote,
+ int szPromote,
+ Fts5Structure *pStruct
+){
+ int il, is;
+ Fts5StructureLevel *pOut = &pStruct->aLevel[iPromote];
+
+ if( pOut->nMerge==0 ){
+ for(il=iPromote+1; il<pStruct->nLevel; il++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[il];
+ if( pLvl->nMerge ) return;
+ for(is=pLvl->nSeg-1; is>=0; is--){
+ int sz = fts5SegmentSize(&pLvl->aSeg[is]);
+ if( sz>szPromote ) return;
+ fts5StructureExtendLevel(&p->rc, pStruct, iPromote, 1, 1);
+ if( p->rc ) return;
+ memcpy(pOut->aSeg, &pLvl->aSeg[is], sizeof(Fts5StructureSegment));
+ pOut->nSeg++;
+ pLvl->nSeg--;
+ }
+ }
+ }
+}
+
+/*
+** A new segment has just been written to level iLvl of index structure
+** pStruct. This function determines if any segments should be promoted
+** as a result. Segments are promoted in two scenarios:
+**
+** a) If the segment just written is smaller than one or more segments
+** within the previous populated level, it is promoted to the previous
+** populated level.
+**
+** b) If the segment just written is larger than the newest segment on
+** the next populated level, then that segment, and any other adjacent
+** segments that are also smaller than the one just written, are
+** promoted.
+**
+** If one or more segments are promoted, the structure object is updated
+** to reflect this.
+*/
+static void fts5StructurePromote(
+ Fts5Index *p, /* FTS5 backend object */
+ int iLvl, /* Index level just updated */
+ Fts5Structure *pStruct /* Index structure */
+){
+ if( p->rc==SQLITE_OK ){
+ int iTst;
+ int iPromote = -1;
+ int szPromote = 0; /* Promote anything this size or smaller */
+ Fts5StructureSegment *pSeg; /* Segment just written */
+ int szSeg; /* Size of segment just written */
+ int nSeg = pStruct->aLevel[iLvl].nSeg;
+
+ if( nSeg==0 ) return;
+ pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
+ szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);
+
+ /* Check for condition (a) */
+ for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
+ if( iTst>=0 ){
+ int i;
+ int szMax = 0;
+ Fts5StructureLevel *pTst = &pStruct->aLevel[iTst];
+ assert( pTst->nMerge==0 );
+ for(i=0; i<pTst->nSeg; i++){
+ int sz = pTst->aSeg[i].pgnoLast - pTst->aSeg[i].pgnoFirst + 1;
+ if( sz>szMax ) szMax = sz;
+ }
+ if( szMax>=szSeg ){
+ /* Condition (a) is true. Promote the newest segment on level
+ ** iLvl to level iTst. */
+ iPromote = iTst;
+ szPromote = szMax;
+ }
+ }
+
+ /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
+ ** is a no-op if it is not. */
+ if( iPromote<0 ){
+ iPromote = iLvl;
+ szPromote = szSeg;
+ }
+ fts5StructurePromoteTo(p, iPromote, szPromote, pStruct);
+ }
+}
+
+
+/*
+** Advance the iterator passed as the only argument. If the end of the
+** doclist-index page is reached, return non-zero.
+*/
+static int fts5DlidxLvlNext(Fts5DlidxLvl *pLvl){
+ Fts5Data *pData = pLvl->pData;
+
+ if( pLvl->iOff==0 ){
+ assert( pLvl->bEof==0 );
+ pLvl->iOff = 1;
+ pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
+ pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
+ pLvl->iFirstOff = pLvl->iOff;
+ }else{
+ int iOff;
+ for(iOff=pLvl->iOff; iOff<pData->nn; iOff++){
+ if( pData->p[iOff] ) break;
+ }
+
+ if( iOff<pData->nn ){
+ i64 iVal;
+ pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
+ iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal);
+ pLvl->iRowid += iVal;
+ pLvl->iOff = iOff;
+ }else{
+ pLvl->bEof = 1;
+ }
+ }
+
+ return pLvl->bEof;
+}
+
+/*
+** Advance the iterator passed as the only argument.
+*/
+static int fts5DlidxIterNextR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlNext(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterNextR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ) fts5DlidxLvlNext(pLvl);
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterNext(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterNextR(p, pIter, 0);
+}
+
+/*
+** The iterator passed as the first argument has the following fields set
+** as follows. This function sets up the rest of the iterator so that it
+** points to the first rowid in the doclist-index.
+**
+** pData:
+** pointer to doclist-index record,
+**
+** When this function is called pIter->iLeafPgno is the page number the
+** doclist is associated with (the one featuring the term).
+*/
+static int fts5DlidxIterFirst(Fts5DlidxIter *pIter){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DlidxLvlNext(&pIter->aLvl[i]);
+ }
+ return pIter->aLvl[0].bEof;
+}
+
+
+static int fts5DlidxIterEof(Fts5Index *p, Fts5DlidxIter *pIter){
+ return p->rc!=SQLITE_OK || pIter->aLvl[0].bEof;
+}
+
+static void fts5DlidxIterLast(Fts5Index *p, Fts5DlidxIter *pIter){
+ int i;
+
+ /* Advance each level to the last entry on the last page */
+ for(i=pIter->nLvl-1; p->rc==SQLITE_OK && i>=0; i--){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[i];
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+
+ if( i>0 ){
+ Fts5DlidxLvl *pChild = &pLvl[-1];
+ fts5DataRelease(pChild->pData);
+ memset(pChild, 0, sizeof(Fts5DlidxLvl));
+ pChild->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, i-1, pLvl->iLeafPgno)
+ );
+ }
+ }
+}
+
+/*
+** Move the iterator passed as the only argument to the previous entry.
+*/
+static int fts5DlidxLvlPrev(Fts5DlidxLvl *pLvl){
+ int iOff = pLvl->iOff;
+
+ assert( pLvl->bEof==0 );
+ if( iOff<=pLvl->iFirstOff ){
+ pLvl->bEof = 1;
+ }else{
+ u8 *a = pLvl->pData->p;
+ i64 iVal;
+ int iLimit;
+ int ii;
+ int nZero = 0;
+
+ /* Currently iOff points to the first byte of a varint. This block
+ ** decrements iOff until it points to the first byte of the previous
+ ** varint. Taking care not to read any memory locations that occur
+ ** before the buffer in memory. */
+ iLimit = (iOff>9 ? iOff-9 : 0);
+ for(iOff--; iOff>iLimit; iOff--){
+ if( (a[iOff-1] & 0x80)==0 ) break;
+ }
+
+ fts5GetVarint(&a[iOff], (u64*)&iVal);
+ pLvl->iRowid -= iVal;
+ pLvl->iLeafPgno--;
+
+ /* Skip backwards past any 0x00 varints. */
+ for(ii=iOff-1; ii>=pLvl->iFirstOff && a[ii]==0x00; ii--){
+ nZero++;
+ }
+ if( ii>=pLvl->iFirstOff && (a[ii] & 0x80) ){
+ /* The byte immediately before the last 0x00 byte has the 0x80 bit
+ ** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80
+ ** bytes before a[ii]. */
+ int bZero = 0; /* True if last 0x00 counts */
+ if( (ii-8)>=pLvl->iFirstOff ){
+ int j;
+ for(j=1; j<=8 && (a[ii-j] & 0x80); j++);
+ bZero = (j>8);
+ }
+ if( bZero==0 ) nZero--;
+ }
+ pLvl->iLeafPgno -= nZero;
+ pLvl->iOff = iOff - nZero;
+ }
+
+ return pLvl->bEof;
+}
+
+static int fts5DlidxIterPrevR(Fts5Index *p, Fts5DlidxIter *pIter, int iLvl){
+ Fts5DlidxLvl *pLvl = &pIter->aLvl[iLvl];
+
+ assert( iLvl<pIter->nLvl );
+ if( fts5DlidxLvlPrev(pLvl) ){
+ if( (iLvl+1) < pIter->nLvl ){
+ fts5DlidxIterPrevR(p, pIter, iLvl+1);
+ if( pLvl[1].bEof==0 ){
+ fts5DataRelease(pLvl->pData);
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p,
+ FTS5_DLIDX_ROWID(pIter->iSegid, iLvl, pLvl[1].iLeafPgno)
+ );
+ if( pLvl->pData ){
+ while( fts5DlidxLvlNext(pLvl)==0 );
+ pLvl->bEof = 0;
+ }
+ }
+ }
+ }
+
+ return pIter->aLvl[0].bEof;
+}
+static int fts5DlidxIterPrev(Fts5Index *p, Fts5DlidxIter *pIter){
+ return fts5DlidxIterPrevR(p, pIter, 0);
+}
+
+/*
+** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
+*/
+static void fts5DlidxIterFree(Fts5DlidxIter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nLvl; i++){
+ fts5DataRelease(pIter->aLvl[i].pData);
+ }
+ sqlite3_free(pIter);
+ }
+}
+
+static Fts5DlidxIter *fts5DlidxIterInit(
+ Fts5Index *p, /* Fts5 Backend to iterate within */
+ int bRev, /* True for ORDER BY ASC */
+ int iSegid, /* Segment id */
+ int iLeafPg /* Leaf page number to load dlidx for */
+){
+ Fts5DlidxIter *pIter = 0;
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ int nByte = sizeof(Fts5DlidxIter) + i * sizeof(Fts5DlidxLvl);
+ Fts5DlidxIter *pNew;
+
+ pNew = (Fts5DlidxIter*)sqlite3_realloc(pIter, nByte);
+ if( pNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ i64 iRowid = FTS5_DLIDX_ROWID(iSegid, i, iLeafPg);
+ Fts5DlidxLvl *pLvl = &pNew->aLvl[i];
+ pIter = pNew;
+ memset(pLvl, 0, sizeof(Fts5DlidxLvl));
+ pLvl->pData = fts5DataRead(p, iRowid);
+ if( pLvl->pData && (pLvl->pData->p[0] & 0x0001)==0 ){
+ bDone = 1;
+ }
+ pIter->nLvl = i+1;
+ }
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pIter->iSegid = iSegid;
+ if( bRev==0 ){
+ fts5DlidxIterFirst(pIter);
+ }else{
+ fts5DlidxIterLast(p, pIter);
+ }
+ }
+
+ if( p->rc!=SQLITE_OK ){
+ fts5DlidxIterFree(pIter);
+ pIter = 0;
+ }
+
+ return pIter;
+}
+
+static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iRowid;
+}
+static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
+ return pIter->aLvl[0].iLeafPgno;
+}
+
+/*
+** Load the next leaf page into the segment iterator.
+*/
+static void fts5SegIterNextPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter /* Iterator to advance to next page */
+){
+ Fts5Data *pLeaf;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->iLeafPgno++;
+ if( pIter->pNextLeaf ){
+ pIter->pLeaf = pIter->pNextLeaf;
+ pIter->pNextLeaf = 0;
+ }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){
+ pIter->pLeaf = fts5DataRead(p,
+ FTS5_SEGMENT_ROWID(pSeg->iSegid, pIter->iLeafPgno)
+ );
+ }else{
+ pIter->pLeaf = 0;
+ }
+ pLeaf = pIter->pLeaf;
+
+ if( pLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf;
+ if( fts5LeafIsTermless(pLeaf) ){
+ pIter->iEndofDoclist = pLeaf->nn+1;
+ }else{
+ pIter->iPgidxOff += fts5GetVarint32(&pLeaf->p[pIter->iPgidxOff],
+ pIter->iEndofDoclist
+ );
+ }
+ }
+}
+
+/*
+** Argument p points to a buffer containing a varint to be interpreted as a
+** position list size field. Read the varint and return the number of bytes
+** read. Before returning, set *pnSz to the number of bytes in the position
+** list, and *pbDel to true if the delete flag is set, or false otherwise.
+*/
+static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
+ int nSz;
+ int n = 0;
+ fts5FastGetVarint32(p, n, nSz);
+ assert_nc( nSz>=0 );
+ *pnSz = nSz/2;
+ *pbDel = nSz & 0x0001;
+ return n;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of a
+** position-list size field. Read the value of the field and store it
+** in the following variables:
+**
+** Fts5SegIter.nPos
+** Fts5SegIter.bDel
+**
+** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
+** position list content (if any).
+*/
+static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
+ if( p->rc==SQLITE_OK ){
+ int iOff = pIter->iLeafOffset; /* Offset to read at */
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ int iEod = MIN(pIter->iEndofDoclist, pIter->pLeaf->szLeaf);
+ pIter->bDel = 0;
+ pIter->nPos = 1;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->bDel = 1;
+ iOff++;
+ if( iOff<iEod && pIter->pLeaf->p[iOff]==0 ){
+ pIter->nPos = 1;
+ iOff++;
+ }else{
+ pIter->nPos = 0;
+ }
+ }
+ }else{
+ int nSz;
+ fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ pIter->iLeafOffset = iOff;
+ }
+}
+
+static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ int iOff = pIter->iLeafOffset;
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ if( iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ){
+ if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
+ return;
+ }
+ iOff = 4;
+ a = pIter->pLeaf->p;
+ }
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+}
+
+/*
+** Fts5SegIter.iLeafOffset currently points to the first byte of the
+** "nSuffix" field of a term. Function parameter nKeep contains the value
+** of the "nPrefix" field (if there was one - it is passed 0 if this is
+** the first term in the segment).
+**
+** This function populates:
+**
+** Fts5SegIter.term
+** Fts5SegIter.rowid
+**
+** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
+** the first position list. The position list belonging to document
+** (Fts5SegIter.iRowid).
+*/
+static void fts5SegIterLoadTerm(Fts5Index *p, Fts5SegIter *pIter, int nKeep){
+ u8 *a = pIter->pLeaf->p; /* Buffer to read data from */
+ int iOff = pIter->iLeafOffset; /* Offset to read at */
+ int nNew; /* Bytes of new data */
+
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ if( iOff+nNew>pIter->pLeaf->nn ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ pIter->term.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+ iOff += nNew;
+ pIter->iTermLeafOffset = iOff;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+ pIter->iLeafOffset = iOff;
+
+ if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
+ pIter->iEndofDoclist += nExtra;
+ }
+
+ fts5SegIterLoadRowid(p, pIter);
+}
+
+static void fts5SegIterNext(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_Reverse(Fts5Index*, Fts5SegIter*, int*);
+static void fts5SegIterNext_None(Fts5Index*, Fts5SegIter*, int*);
+
+static void fts5SegIterSetNext(Fts5Index *p, Fts5SegIter *pIter){
+ if( pIter->flags & FTS5_SEGITER_REVERSE ){
+ pIter->xNext = fts5SegIterNext_Reverse;
+ }else if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xNext = fts5SegIterNext_None;
+ }else{
+ pIter->xNext = fts5SegIterNext;
+ }
+}
+
+/*
+** Initialize the iterator object pIter to iterate through the entries in
+** segment pSeg. The iterator is left pointing to the first entry when
+** this function returns.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterInit(
+ Fts5Index *p, /* FTS index object */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ if( pSeg->pgnoFirst==0 ){
+ /* This happens if the segment is being used as an input to an incremental
+ ** merge and all data has already been "trimmed". See function
+ ** fts5TrimSegments() for details. In this case leave the iterator empty.
+ ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
+ ** at EOF already. */
+ assert( pIter->pLeaf==0 );
+ return;
+ }
+
+ if( p->rc==SQLITE_OK ){
+ memset(pIter, 0, sizeof(*pIter));
+ fts5SegIterSetNext(p, pIter);
+ pIter->pSeg = pSeg;
+ pIter->iLeafPgno = pSeg->pgnoFirst-1;
+ fts5SegIterNextPage(p, pIter);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ pIter->iLeafOffset = 4;
+ assert_nc( pIter->pLeaf->nn>4 );
+ assert( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
+ pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
+ fts5SegIterLoadTerm(p, pIter, 0);
+ fts5SegIterLoadNPos(p, pIter);
+ }
+}
+
+/*
+** This function is only ever called on iterators created by calls to
+** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
+**
+** The iterator is in an unusual state when this function is called: the
+** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
+** the position-list size field for the first relevant rowid on the page.
+** Fts5SegIter.rowid is set, but nPos and bDel are not.
+**
+** This function advances the iterator so that it points to the last
+** relevant rowid on the page and, if necessary, initializes the
+** aRowidOffset[] and iRowidOffset variables. At this point the iterator
+** is in its regular state - Fts5SegIter.iLeafOffset points to the first
+** byte of the position list content associated with said rowid.
+*/
+static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
+ int eDetail = p->pConfig->eDetail;
+ int n = pIter->pLeaf->szLeaf;
+ int i = pIter->iLeafOffset;
+ u8 *a = pIter->pLeaf->p;
+ int iRowidOffset = 0;
+
+ if( n>pIter->iEndofDoclist ){
+ n = pIter->iEndofDoclist;
+ }
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ while( 1 ){
+ i64 iDelta = 0;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ /* todo */
+ if( i<n && a[i]==0 ){
+ i++;
+ if( i<n && a[i]==0 ) i++;
+ }
+ }else{
+ int nPos;
+ int bDummy;
+ i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
+ i += nPos;
+ }
+ if( i>=n ) break;
+ i += fts5GetVarint(&a[i], (u64*)&iDelta);
+ pIter->iRowid += iDelta;
+
+ /* If necessary, grow the pIter->aRowidOffset[] array. */
+ if( iRowidOffset>=pIter->nRowidOffset ){
+ int nNew = pIter->nRowidOffset + 8;
+ int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
+ if( aNew==0 ){
+ p->rc = SQLITE_NOMEM;
+ break;
+ }
+ pIter->aRowidOffset = aNew;
+ pIter->nRowidOffset = nNew;
+ }
+
+ pIter->aRowidOffset[iRowidOffset++] = pIter->iLeafOffset;
+ pIter->iLeafOffset = i;
+ }
+ pIter->iRowidOffset = iRowidOffset;
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+/*
+**
+*/
+static void fts5SegIterReverseNewPage(Fts5Index *p, Fts5SegIter *pIter){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
+ Fts5Data *pNew;
+ pIter->iLeafPgno--;
+ pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
+ pIter->pSeg->iSegid, pIter->iLeafPgno
+ ));
+ if( pNew ){
+ /* iTermLeafOffset may be equal to szLeaf if the term is the last
+ ** thing on the page - i.e. the first rowid is on the following page.
+ ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
+ if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
+ assert( pIter->pLeaf==0 );
+ if( pIter->iTermLeafOffset<pNew->szLeaf ){
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = pIter->iTermLeafOffset;
+ }
+ }else{
+ int iRowidOff;
+ iRowidOff = fts5LeafFirstRowidOff(pNew);
+ if( iRowidOff ){
+ pIter->pLeaf = pNew;
+ pIter->iLeafOffset = iRowidOff;
+ }
+ }
+
+ if( pIter->pLeaf ){
+ u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
+ pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid);
+ break;
+ }else{
+ fts5DataRelease(pNew);
+ }
+ }
+ }
+
+ if( pIter->pLeaf ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ fts5SegIterReverseInitPage(p, pIter);
+ }
+}
+
+/*
+** Return true if the iterator passed as the second argument currently
+** points to a delete marker. A delete marker is an entry with a 0 byte
+** position-list.
+*/
+static int fts5MultiIterIsEmpty(Fts5Index *p, Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ return (p->rc==SQLITE_OK && pSeg->pLeaf && pSeg->nPos==0);
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used by reverse iterators.
+*/
+static void fts5SegIterNext_Reverse(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbUnused /* Unused */
+){
+ assert( pIter->flags & FTS5_SEGITER_REVERSE );
+ assert( pIter->pNextLeaf==0 );
+ UNUSED_PARAM(pbUnused);
+
+ if( pIter->iRowidOffset>0 ){
+ u8 *a = pIter->pLeaf->p;
+ int iOff;
+ i64 iDelta;
+
+ pIter->iRowidOffset--;
+ pIter->iLeafOffset = pIter->aRowidOffset[pIter->iRowidOffset];
+ fts5SegIterLoadNPos(p, pIter);
+ iOff = pIter->iLeafOffset;
+ if( p->pConfig->eDetail!=FTS5_DETAIL_NONE ){
+ iOff += pIter->nPos;
+ }
+ fts5GetVarint(&a[iOff], (u64*)&iDelta);
+ pIter->iRowid -= iDelta;
+ }else{
+ fts5SegIterReverseNewPage(p, pIter);
+ }
+}
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** This version of fts5SegIterNext() is only used if detail=none and the
+** iterator is not a reverse direction iterator.
+*/
+static void fts5SegIterNext_None(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ int iOff;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (pIter->flags & FTS5_SEGITER_REVERSE)==0 );
+ assert( p->pConfig->eDetail==FTS5_DETAIL_NONE );
+
+ ASSERT_SZLEAF_OK(pIter->pLeaf);
+ iOff = pIter->iLeafOffset;
+
+ /* Next entry is on the next page */
+ if( pIter->pSeg && iOff>=pIter->pLeaf->szLeaf ){
+ fts5SegIterNextPage(p, pIter);
+ if( p->rc || pIter->pLeaf==0 ) return;
+ pIter->iRowid = 0;
+ iOff = 4;
+ }
+
+ if( iOff<pIter->iEndofDoclist ){
+ /* Next entry is on the current page */
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&pIter->pLeaf->p[iOff], (u64*)&iDelta);
+ pIter->iLeafOffset = iOff;
+ pIter->iRowid += iDelta;
+ }else if( (pIter->flags & FTS5_SEGITER_ONETERM)==0 ){
+ if( pIter->pSeg ){
+ int nKeep = 0;
+ if( iOff!=fts5LeafFirstTermOff(pIter->pLeaf) ){
+ iOff += fts5GetVarint32(&pIter->pLeaf->p[iOff], nKeep);
+ }
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ }else{
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList;
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ if( pList==0 ) goto next_none_eof;
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList;
+ sqlite3Fts5BufferSet(&p->rc,&pIter->term, (int)strlen(zTerm), (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ }
+
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }else{
+ goto next_none_eof;
+ }
+
+ fts5SegIterLoadNPos(p, pIter);
+
+ return;
+ next_none_eof:
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+}
+
+
+/*
+** Advance iterator pIter to the next entry.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
+** is not considered an error if the iterator reaches EOF. If an error has
+** already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterNext(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int *pbNewTerm /* OUT: Set for new term */
+){
+ Fts5Data *pLeaf = pIter->pLeaf;
+ int iOff;
+ int bNewTerm = 0;
+ int nKeep = 0;
+ u8 *a;
+ int n;
+
+ assert( pbNewTerm==0 || *pbNewTerm==0 );
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ /* Search for the end of the position list within the current page. */
+ a = pLeaf->p;
+ n = pLeaf->szLeaf;
+
+ ASSERT_SZLEAF_OK(pLeaf);
+ iOff = pIter->iLeafOffset + pIter->nPos;
+
+ if( iOff<n ){
+ /* The next entry is on the current page. */
+ assert_nc( iOff<=pIter->iEndofDoclist );
+ if( iOff>=pIter->iEndofDoclist ){
+ bNewTerm = 1;
+ if( iOff!=fts5LeafFirstTermOff(pLeaf) ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }else{
+ u64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
+ pIter->iRowid += iDelta;
+ assert_nc( iDelta>0 );
+ }
+ pIter->iLeafOffset = iOff;
+
+ }else if( pIter->pSeg==0 ){
+ const u8 *pList = 0;
+ const char *zTerm = 0;
+ int nList = 0;
+ assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
+ if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
+ sqlite3Fts5HashScanNext(p->pHash);
+ sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
+ }
+ if( pList==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ pIter->pLeaf->p = (u8*)pList;
+ pIter->pLeaf->nn = nList;
+ pIter->pLeaf->szLeaf = nList;
+ pIter->iEndofDoclist = nList+1;
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
+ (u8*)zTerm);
+ pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
+ *pbNewTerm = 1;
+ }
+ }else{
+ iOff = 0;
+ /* Next entry is not on the current page */
+ while( iOff==0 ){
+ fts5SegIterNextPage(p, pIter);
+ pLeaf = pIter->pLeaf;
+ if( pLeaf==0 ) break;
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
+ iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
+ );
+ }
+
+ }
+ else if( pLeaf->nn>pLeaf->szLeaf ){
+ pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
+ &pLeaf->p[pLeaf->szLeaf], iOff
+ );
+ pIter->iLeafOffset = iOff;
+ pIter->iEndofDoclist = iOff;
+ bNewTerm = 1;
+ }
+ assert_nc( iOff<pLeaf->szLeaf );
+ if( iOff>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ return;
+ }
+ }
+ }
+
+ /* Check if the iterator is now at EOF. If so, return early. */
+ if( pIter->pLeaf ){
+ if( bNewTerm ){
+ if( pIter->flags & FTS5_SEGITER_ONETERM ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ }else{
+ fts5SegIterLoadTerm(p, pIter, nKeep);
+ fts5SegIterLoadNPos(p, pIter);
+ if( pbNewTerm ) *pbNewTerm = 1;
+ }
+ }else{
+ /* The following could be done by calling fts5SegIterLoadNPos(). But
+ ** this block is particularly performance critical, so equivalent
+ ** code is inlined.
+ **
+ ** Later: Switched back to fts5SegIterLoadNPos() because it supports
+ ** detail=none mode. Not ideal.
+ */
+ int nSz;
+ assert( p->rc==SQLITE_OK );
+ fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
+ pIter->bDel = (nSz & 0x0001);
+ pIter->nPos = nSz>>1;
+ assert_nc( pIter->nPos>=0 );
+ }
+ }
+}
+
+#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
+
+#define fts5IndexSkipVarint(a, iOff) { \
+ int iEnd = iOff+9; \
+ while( (a[iOff++] & 0x80) && iOff<iEnd ); \
+}
+
+/*
+** Iterator pIter currently points to the first rowid in a doclist. This
+** function sets the iterator up so that iterates in reverse order through
+** the doclist.
+*/
+static void fts5SegIterReverse(Fts5Index *p, Fts5SegIter *pIter){
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ Fts5Data *pLast = 0;
+ int pgnoLast = 0;
+
+ if( pDlidx ){
+ int iSegid = pIter->pSeg->iSegid;
+ pgnoLast = fts5DlidxIterPgno(pDlidx);
+ pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
+ }else{
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
+ ** position-list content for the current rowid. Back it up so that it
+ ** points to the start of the position-list size field. */
+ int iPoslist;
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
+ iPoslist = pIter->iTermLeafOffset;
+ }else{
+ iPoslist = 4;
+ }
+ fts5IndexSkipVarint(pLeaf->p, iPoslist);
+ pIter->iLeafOffset = iPoslist;
+
+ /* If this condition is true then the largest rowid for the current
+ ** term may not be stored on the current page. So search forward to
+ ** see where said rowid really is. */
+ if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
+ int pgno;
+ Fts5StructureSegment *pSeg = pIter->pSeg;
+
+ /* The last rowid in the doclist may not be on the current page. Search
+ ** forward to find the page containing the last rowid. */
+ for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
+ i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno);
+ Fts5Data *pNew = fts5DataRead(p, iAbs);
+ if( pNew ){
+ int iRowid, bTermless;
+ iRowid = fts5LeafFirstRowidOff(pNew);
+ bTermless = fts5LeafIsTermless(pNew);
+ if( iRowid ){
+ SWAPVAL(Fts5Data*, pNew, pLast);
+ pgnoLast = pgno;
+ }
+ fts5DataRelease(pNew);
+ if( bTermless==0 ) break;
+ }
+ }
+ }
+ }
+
+ /* If pLast is NULL at this point, then the last rowid for this doclist
+ ** lies on the page currently indicated by the iterator. In this case
+ ** pIter->iLeafOffset is already set to point to the position-list size
+ ** field associated with the first relevant rowid on the page.
+ **
+ ** Or, if pLast is non-NULL, then it is the page that contains the last
+ ** rowid. In this case configure the iterator so that it points to the
+ ** first rowid on this page.
+ */
+ if( pLast ){
+ int iOff;
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = pLast;
+ pIter->iLeafPgno = pgnoLast;
+ iOff = fts5LeafFirstRowidOff(pLast);
+ iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+
+ if( fts5LeafIsTermless(pLast) ){
+ pIter->iEndofDoclist = pLast->nn+1;
+ }else{
+ pIter->iEndofDoclist = fts5LeafFirstTermOff(pLast);
+ }
+
+ }
+
+ fts5SegIterReverseInitPage(p, pIter);
+}
+
+/*
+** Iterator pIter currently points to the first rowid of a doclist.
+** There is a doclist-index associated with the final term on the current
+** page. If the current term is the last term on the page, load the
+** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
+*/
+static void fts5SegIterLoadDlidx(Fts5Index *p, Fts5SegIter *pIter){
+ int iSeg = pIter->pSeg->iSegid;
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5Data *pLeaf = pIter->pLeaf; /* Current leaf data */
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx==0 );
+
+ /* Check if the current doclist ends on this page. If it does, return
+ ** early without loading the doclist-index (as it belongs to a different
+ ** term. */
+ if( pIter->iTermLeafPgno==pIter->iLeafPgno
+ && pIter->iEndofDoclist<pLeaf->szLeaf
+ ){
+ return;
+ }
+
+ pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
+}
+
+/*
+** The iterator object passed as the second argument currently contains
+** no valid values except for the Fts5SegIter.pLeaf member variable. This
+** function searches the leaf page for a term matching (pTerm/nTerm).
+**
+** If the specified term is found on the page, then the iterator is left
+** pointing to it. If argument bGe is zero and the term is not found,
+** the iterator is left pointing at EOF.
+**
+** If bGe is non-zero and the specified term is not found, then the
+** iterator is left pointing to the smallest term in the segment that
+** is larger than the specified term, even if this term is not on the
+** current page.
+*/
+static void fts5LeafSeek(
+ Fts5Index *p, /* Leave any error code here */
+ int bGe, /* True for a >= search */
+ Fts5SegIter *pIter, /* Iterator to seek */
+ const u8 *pTerm, int nTerm /* Term to search for */
+){
+ int iOff;
+ const u8 *a = pIter->pLeaf->p;
+ int szLeaf = pIter->pLeaf->szLeaf;
+ int n = pIter->pLeaf->nn;
+
+ int nMatch = 0;
+ int nKeep = 0;
+ int nNew = 0;
+ int iTermOff;
+ int iPgidx; /* Current offset in pgidx */
+ int bEndOfPage = 0;
+
+ assert( p->rc==SQLITE_OK );
+
+ iPgidx = szLeaf;
+ iPgidx += fts5GetVarint32(&a[iPgidx], iTermOff);
+ iOff = iTermOff;
+
+ while( 1 ){
+
+ /* Figure out how many new bytes are in this term */
+ fts5FastGetVarint32(a, iOff, nNew);
+ if( nKeep<nMatch ){
+ goto search_failed;
+ }
+
+ assert( nKeep>=nMatch );
+ if( nKeep==nMatch ){
+ int nCmp;
+ int i;
+ nCmp = MIN(nNew, nTerm-nMatch);
+ for(i=0; i<nCmp; i++){
+ if( a[iOff+i]!=pTerm[nMatch+i] ) break;
+ }
+ nMatch += i;
+
+ if( nTerm==nMatch ){
+ if( i==nNew ){
+ goto search_success;
+ }else{
+ goto search_failed;
+ }
+ }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){
+ goto search_failed;
+ }
+ }
+
+ if( iPgidx>=n ){
+ bEndOfPage = 1;
+ break;
+ }
+
+ iPgidx += fts5GetVarint32(&a[iPgidx], nKeep);
+ iTermOff += nKeep;
+ iOff = iTermOff;
+
+ /* Read the nKeep field of the next term. */
+ fts5FastGetVarint32(a, iOff, nKeep);
+ }
+
+ search_failed:
+ if( bGe==0 ){
+ fts5DataRelease(pIter->pLeaf);
+ pIter->pLeaf = 0;
+ return;
+ }else if( bEndOfPage ){
+ do {
+ fts5SegIterNextPage(p, pIter);
+ if( pIter->pLeaf==0 ) return;
+ a = pIter->pLeaf->p;
+ if( fts5LeafIsTermless(pIter->pLeaf)==0 ){
+ iPgidx = pIter->pLeaf->szLeaf;
+ iPgidx += fts5GetVarint32(&pIter->pLeaf->p[iPgidx], iOff);
+ if( iOff<4 || iOff>=pIter->pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ nKeep = 0;
+ iTermOff = iOff;
+ n = pIter->pLeaf->nn;
+ iOff += fts5GetVarint32(&a[iOff], nNew);
+ break;
+ }
+ }
+ }while( 1 );
+ }
+
+ search_success:
+
+ pIter->iLeafOffset = iOff + nNew;
+ pIter->iTermLeafOffset = pIter->iLeafOffset;
+ pIter->iTermLeafPgno = pIter->iLeafPgno;
+
+ fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm);
+ fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
+
+ if( iPgidx>=n ){
+ pIter->iEndofDoclist = pIter->pLeaf->nn+1;
+ }else{
+ int nExtra;
+ iPgidx += fts5GetVarint32(&a[iPgidx], nExtra);
+ pIter->iEndofDoclist = iTermOff + nExtra;
+ }
+ pIter->iPgidxOff = iPgidx;
+
+ fts5SegIterLoadRowid(p, pIter);
+ fts5SegIterLoadNPos(p, pIter);
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within segment
+** pSeg. If there is no such term in the index, the iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterSeekInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5StructureSegment *pSeg, /* Description of segment */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ int iPg = 1;
+ int bGe = (flags & FTS5INDEX_QUERY_SCAN);
+ int bDlidx = 0; /* True if there is a doclist-index */
+
+ assert( bGe==0 || (flags & FTS5INDEX_QUERY_DESC)==0 );
+ assert( pTerm && nTerm );
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->pSeg = pSeg;
+
+ /* This block sets stack variable iPg to the leaf page number that may
+ ** contain term (pTerm/nTerm), if it is present in the segment. */
+ if( p->pIdxSelect==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxSelect, sqlite3_mprintf(
+ "SELECT pgno FROM '%q'.'%q_idx' WHERE "
+ "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+ if( p->rc ) return;
+ sqlite3_bind_int(p->pIdxSelect, 1, pSeg->iSegid);
+ sqlite3_bind_blob(p->pIdxSelect, 2, pTerm, nTerm, SQLITE_STATIC);
+ if( SQLITE_ROW==sqlite3_step(p->pIdxSelect) ){
+ i64 val = sqlite3_column_int(p->pIdxSelect, 0);
+ iPg = (int)(val>>1);
+ bDlidx = (val & 0x0001);
+ }
+ p->rc = sqlite3_reset(p->pIdxSelect);
+
+ if( iPg<pSeg->pgnoFirst ){
+ iPg = pSeg->pgnoFirst;
+ bDlidx = 0;
+ }
+
+ pIter->iLeafPgno = iPg - 1;
+ fts5SegIterNextPage(p, pIter);
+
+ if( pIter->pLeaf ){
+ fts5LeafSeek(p, bGe, pIter, pTerm, nTerm);
+ }
+
+ if( p->rc==SQLITE_OK && bGe==0 ){
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ if( pIter->pLeaf ){
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ }
+ if( bDlidx ){
+ fts5SegIterLoadDlidx(p, pIter);
+ }
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ fts5SegIterReverse(p, pIter);
+ }
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+
+ /* Either:
+ **
+ ** 1) an error has occurred, or
+ ** 2) the iterator points to EOF, or
+ ** 3) the iterator points to an entry with term (pTerm/nTerm), or
+ ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
+ ** to an entry with a term greater than or equal to (pTerm/nTerm).
+ */
+ assert( p->rc!=SQLITE_OK /* 1 */
+ || pIter->pLeaf==0 /* 2 */
+ || fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)==0 /* 3 */
+ || (bGe && fts5BufferCompareBlob(&pIter->term, pTerm, nTerm)>0) /* 4 */
+ );
+}
+
+/*
+** Initialize the object pIter to point to term pTerm/nTerm within the
+** in-memory hash table. If there is no such term in the hash-table, the
+** iterator is set to EOF.
+**
+** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
+** an error has already occurred when this function is called, it is a no-op.
+*/
+static void fts5SegIterHashInit(
+ Fts5Index *p, /* FTS5 backend */
+ const u8 *pTerm, int nTerm, /* Term to seek to */
+ int flags, /* Mask of FTS5INDEX_XXX flags */
+ Fts5SegIter *pIter /* Object to populate */
+){
+ const u8 *pList = 0;
+ int nList = 0;
+ const u8 *z = 0;
+ int n = 0;
+
+ assert( p->pHash );
+ assert( p->rc==SQLITE_OK );
+
+ if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
+ p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
+ sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
+ n = (z ? (int)strlen((const char*)z) : 0);
+ }else{
+ pIter->flags |= FTS5_SEGITER_ONETERM;
+ sqlite3Fts5HashQuery(p->pHash, (const char*)pTerm, nTerm, &pList, &nList);
+ z = pTerm;
+ n = nTerm;
+ }
+
+ if( pList ){
+ Fts5Data *pLeaf;
+ sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
+ pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
+ if( pLeaf==0 ) return;
+ pLeaf->p = (u8*)pList;
+ pLeaf->nn = pLeaf->szLeaf = nList;
+ pIter->pLeaf = pLeaf;
+ pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pLeaf->nn;
+
+ if( flags & FTS5INDEX_QUERY_DESC ){
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ }
+
+ fts5SegIterSetNext(p, pIter);
+}
+
+/*
+** Zero the iterator passed as the only argument.
+*/
+static void fts5SegIterClear(Fts5SegIter *pIter){
+ fts5BufferFree(&pIter->term);
+ fts5DataRelease(pIter->pLeaf);
+ fts5DataRelease(pIter->pNextLeaf);
+ fts5DlidxIterFree(pIter->pDlidx);
+ sqlite3_free(pIter->aRowidOffset);
+ memset(pIter, 0, sizeof(Fts5SegIter));
+}
+
+#ifdef SQLITE_DEBUG
+
+/*
+** This function is used as part of the big assert() procedure implemented by
+** fts5AssertMultiIterSetup(). It ensures that the result currently stored
+** in *pRes is the correct result of comparing the current positions of the
+** two iterators.
+*/
+static void fts5AssertComparisonResult(
+ Fts5Iter *pIter,
+ Fts5SegIter *p1,
+ Fts5SegIter *p2,
+ Fts5CResult *pRes
+){
+ int i1 = p1 - pIter->aSeg;
+ int i2 = p2 - pIter->aSeg;
+
+ if( p1->pLeaf || p2->pLeaf ){
+ if( p1->pLeaf==0 ){
+ assert( pRes->iFirst==i2 );
+ }else if( p2->pLeaf==0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ int nMin = MIN(p1->term.n, p2->term.n);
+ int res = memcmp(p1->term.p, p2->term.p, nMin);
+ if( res==0 ) res = p1->term.n - p2->term.n;
+
+ if( res==0 ){
+ assert( pRes->bTermEq==1 );
+ assert( p1->iRowid!=p2->iRowid );
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : 1;
+ }else{
+ assert( pRes->bTermEq==0 );
+ }
+
+ if( res<0 ){
+ assert( pRes->iFirst==i1 );
+ }else{
+ assert( pRes->iFirst==i2 );
+ }
+ }
+ }
+}
+
+/*
+** This function is a no-op unless SQLITE_DEBUG is defined when this module
+** is compiled. In that case, this function is essentially an assert()
+** statement used to verify that the contents of the pIter->aFirst[] array
+** are correct.
+*/
+static void fts5AssertMultiIterSetup(Fts5Index *p, Fts5Iter *pIter){
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pFirst = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int i;
+
+ assert( (pFirst->pLeaf==0)==pIter->base.bEof );
+
+ /* Check that pIter->iSwitchRowid is set correctly. */
+ for(i=0; i<pIter->nSeg; i++){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ assert( p1==pFirst
+ || p1->pLeaf==0
+ || fts5BufferCompare(&pFirst->term, &p1->term)
+ || p1->iRowid==pIter->iSwitchRowid
+ || (p1->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ );
+ }
+
+ for(i=0; i<pIter->nSeg; i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[i];
+ Fts5SegIter *p2 = &pIter->aSeg[i+1];
+ Fts5CResult *pRes = &pIter->aFirst[(pIter->nSeg + i) / 2];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+
+ for(i=1; i<(pIter->nSeg / 2); i+=2){
+ Fts5SegIter *p1 = &pIter->aSeg[ pIter->aFirst[i*2].iFirst ];
+ Fts5SegIter *p2 = &pIter->aSeg[ pIter->aFirst[i*2+1].iFirst ];
+ Fts5CResult *pRes = &pIter->aFirst[i];
+ fts5AssertComparisonResult(pIter, p1, p2, pRes);
+ }
+ }
+}
+#else
+# define fts5AssertMultiIterSetup(x,y)
+#endif
+
+/*
+** Do the comparison necessary to populate pIter->aFirst[iOut].
+**
+** If the returned value is non-zero, then it is the index of an entry
+** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
+** to a key that is a duplicate of another, higher priority,
+** segment-iterator in the pSeg->aSeg[] array.
+*/
+static int fts5MultiIterDoCompare(Fts5Iter *pIter, int iOut){
+ int i1; /* Index of left-hand Fts5SegIter */
+ int i2; /* Index of right-hand Fts5SegIter */
+ int iRes;
+ Fts5SegIter *p1; /* Left-hand Fts5SegIter */
+ Fts5SegIter *p2; /* Right-hand Fts5SegIter */
+ Fts5CResult *pRes = &pIter->aFirst[iOut];
+
+ assert( iOut<pIter->nSeg && iOut>0 );
+ assert( pIter->bRev==0 || pIter->bRev==1 );
+
+ if( iOut>=(pIter->nSeg/2) ){
+ i1 = (iOut - pIter->nSeg/2) * 2;
+ i2 = i1 + 1;
+ }else{
+ i1 = pIter->aFirst[iOut*2].iFirst;
+ i2 = pIter->aFirst[iOut*2+1].iFirst;
+ }
+ p1 = &pIter->aSeg[i1];
+ p2 = &pIter->aSeg[i2];
+
+ pRes->bTermEq = 0;
+ if( p1->pLeaf==0 ){ /* If p1 is at EOF */
+ iRes = i2;
+ }else if( p2->pLeaf==0 ){ /* If p2 is at EOF */
+ iRes = i1;
+ }else{
+ int res = fts5BufferCompare(&p1->term, &p2->term);
+ if( res==0 ){
+ assert( i2>i1 );
+ assert( i2!=0 );
+ pRes->bTermEq = 1;
+ if( p1->iRowid==p2->iRowid ){
+ p1->bDel = p2->bDel;
+ return i2;
+ }
+ res = ((p1->iRowid > p2->iRowid)==pIter->bRev) ? -1 : +1;
+ }
+ assert( res!=0 );
+ if( res<0 ){
+ iRes = i1;
+ }else{
+ iRes = i2;
+ }
+ }
+
+ pRes->iFirst = (u16)iRes;
+ return 0;
+}
+
+/*
+** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
+** It is an error if leaf iLeafPgno does not exist or contains no rowids.
+*/
+static void fts5SegIterGotoPage(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ int iLeafPgno
+){
+ assert( iLeafPgno>pIter->iLeafPgno );
+
+ if( iLeafPgno>pIter->pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5DataRelease(pIter->pNextLeaf);
+ pIter->pNextLeaf = 0;
+ pIter->iLeafPgno = iLeafPgno-1;
+ fts5SegIterNextPage(p, pIter);
+ assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );
+
+ if( p->rc==SQLITE_OK ){
+ int iOff;
+ u8 *a = pIter->pLeaf->p;
+ int n = pIter->pLeaf->szLeaf;
+
+ iOff = fts5LeafFirstRowidOff(pIter->pLeaf);
+ if( iOff<4 || iOff>=n ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
+ pIter->iLeafOffset = iOff;
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ }
+ }
+}
+
+/*
+** Advance the iterator passed as the second argument until it is at or
+** past rowid iFrom. Regardless of the value of iFrom, the iterator is
+** always advanced at least once.
+*/
+static void fts5SegIterNextFrom(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegIter *pIter, /* Iterator to advance */
+ i64 iMatch /* Advance iterator at least this far */
+){
+ int bRev = (pIter->flags & FTS5_SEGITER_REVERSE);
+ Fts5DlidxIter *pDlidx = pIter->pDlidx;
+ int iLeafPgno = pIter->iLeafPgno;
+ int bMove = 1;
+
+ assert( pIter->flags & FTS5_SEGITER_ONETERM );
+ assert( pIter->pDlidx );
+ assert( pIter->pLeaf );
+
+ if( bRev==0 ){
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch>fts5DlidxIterRowid(pDlidx) ){
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+ fts5DlidxIterNext(p, pDlidx);
+ }
+ assert_nc( iLeafPgno>=pIter->iLeafPgno || p->rc );
+ if( iLeafPgno>pIter->iLeafPgno ){
+ fts5SegIterGotoPage(p, pIter, iLeafPgno);
+ bMove = 0;
+ }
+ }else{
+ assert( pIter->pNextLeaf==0 );
+ assert( iMatch<pIter->iRowid );
+ while( !fts5DlidxIterEof(p, pDlidx) && iMatch<fts5DlidxIterRowid(pDlidx) ){
+ fts5DlidxIterPrev(p, pDlidx);
+ }
+ iLeafPgno = fts5DlidxIterPgno(pDlidx);
+
+ assert( fts5DlidxIterEof(p, pDlidx) || iLeafPgno<=pIter->iLeafPgno );
+
+ if( iLeafPgno<pIter->iLeafPgno ){
+ pIter->iLeafPgno = iLeafPgno+1;
+ fts5SegIterReverseNewPage(p, pIter);
+ bMove = 0;
+ }
+ }
+
+ do{
+ if( bMove && p->rc==SQLITE_OK ) pIter->xNext(p, pIter, 0);
+ if( pIter->pLeaf==0 ) break;
+ if( bRev==0 && pIter->iRowid>=iMatch ) break;
+ if( bRev!=0 && pIter->iRowid<=iMatch ) break;
+ bMove = 1;
+ }while( p->rc==SQLITE_OK );
+}
+
+
+/*
+** Free the iterator object passed as the second argument.
+*/
+static void fts5MultiIterFree(Fts5Iter *pIter){
+ if( pIter ){
+ int i;
+ for(i=0; i<pIter->nSeg; i++){
+ fts5SegIterClear(&pIter->aSeg[i]);
+ }
+ fts5StructureRelease(pIter->pStruct);
+ fts5BufferFree(&pIter->poslist);
+ sqlite3_free(pIter);
+ }
+}
+
+static void fts5MultiIterAdvanced(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ int iMinset /* Minimum entry in aFirst[] to set */
+){
+ int i;
+ for(i=(pIter->nSeg+iChanged)/2; i>=iMinset && p->rc==SQLITE_OK; i=i/2){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pIter, i)) ){
+ Fts5SegIter *pSeg = &pIter->aSeg[iEq];
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, 0);
+ i = pIter->nSeg + iEq;
+ }
+ }
+}
+
+/*
+** Sub-iterator iChanged of iterator pIter has just been advanced. It still
+** points to the same term though - just a different rowid. This function
+** attempts to update the contents of the pIter->aFirst[] accordingly.
+** If it does so successfully, 0 is returned. Otherwise 1.
+**
+** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
+** on the iterator instead. That function does the same as this one, except
+** that it deals with more complicated cases as well.
+*/
+static int fts5MultiIterAdvanceRowid(
+ Fts5Iter *pIter, /* Iterator to update aFirst[] array for */
+ int iChanged, /* Index of sub-iterator just advanced */
+ Fts5SegIter **ppFirst
+){
+ Fts5SegIter *pNew = &pIter->aSeg[iChanged];
+
+ if( pNew->iRowid==pIter->iSwitchRowid
+ || (pNew->iRowid<pIter->iSwitchRowid)==pIter->bRev
+ ){
+ int i;
+ Fts5SegIter *pOther = &pIter->aSeg[iChanged ^ 0x0001];
+ pIter->iSwitchRowid = pIter->bRev ? SMALLEST_INT64 : LARGEST_INT64;
+ for(i=(pIter->nSeg+iChanged)/2; 1; i=i/2){
+ Fts5CResult *pRes = &pIter->aFirst[i];
+
+ assert( pNew->pLeaf );
+ assert( pRes->bTermEq==0 || pOther->pLeaf );
+
+ if( pRes->bTermEq ){
+ if( pNew->iRowid==pOther->iRowid ){
+ return 1;
+ }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ pNew = pOther;
+ }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){
+ pIter->iSwitchRowid = pOther->iRowid;
+ }
+ }
+ pRes->iFirst = (u16)(pNew - pIter->aSeg);
+ if( i==1 ) break;
+
+ pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
+ }
+ }
+
+ *ppFirst = pNew;
+ return 0;
+}
+
+/*
+** Set the pIter->bEof variable based on the state of the sub-iterators.
+*/
+static void fts5MultiIterSetEof(Fts5Iter *pIter){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ pIter->base.bEof = pSeg->pLeaf==0;
+ pIter->iSwitchRowid = pSeg->iRowid;
+}
+
+/*
+** Move the iterator to the next entry.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. It is not
+** considered an error if the iterator reaches EOF, or if it is already at
+** EOF when this function is called.
+*/
+static void fts5MultiIterNext(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int bFrom, /* True if argument iFrom is valid */
+ i64 iFrom /* Advance at least as far as this */
+){
+ int bUseFrom = bFrom;
+ while( p->rc==SQLITE_OK ){
+ int iFirst = pIter->aFirst[1].iFirst;
+ int bNewTerm = 0;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ assert( p->rc==SQLITE_OK );
+ if( bUseFrom && pSeg->pDlidx ){
+ fts5SegIterNextFrom(p, pSeg, iFrom);
+ }else{
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ }
+
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ pSeg = &pIter->aSeg[pIter->aFirst[1].iFirst];
+ if( pSeg->pLeaf==0 ) return;
+ }
+
+ fts5AssertMultiIterSetup(p, pIter);
+ assert( pSeg==&pIter->aSeg[pIter->aFirst[1].iFirst] && pSeg->pLeaf );
+ if( pIter->bSkipEmpty==0 || pSeg->nPos ){
+ pIter->xSetOutputs(pIter, pSeg);
+ return;
+ }
+ bUseFrom = 0;
+ }
+}
+
+static void fts5MultiIterNext2(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ int *pbNewTerm /* OUT: True if *might* be new term */
+){
+ assert( pIter->bSkipEmpty );
+ if( p->rc==SQLITE_OK ){
+ do {
+ int iFirst = pIter->aFirst[1].iFirst;
+ Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
+ int bNewTerm = 0;
+
+ assert( p->rc==SQLITE_OK );
+ pSeg->xNext(p, pSeg, &bNewTerm);
+ if( pSeg->pLeaf==0 || bNewTerm
+ || fts5MultiIterAdvanceRowid(pIter, iFirst, &pSeg)
+ ){
+ fts5MultiIterAdvanced(p, pIter, iFirst, 1);
+ fts5MultiIterSetEof(pIter);
+ *pbNewTerm = 1;
+ }else{
+ *pbNewTerm = 0;
+ }
+ fts5AssertMultiIterSetup(p, pIter);
+
+ }while( fts5MultiIterIsEmpty(p, pIter) );
+ }
+}
+
+static void fts5IterSetOutputs_Noop(Fts5Iter *pUnused1, Fts5SegIter *pUnused2){
+ UNUSED_PARAM2(pUnused1, pUnused2);
+}
+
+static Fts5Iter *fts5MultiIterAlloc(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ int nSeg
+){
+ Fts5Iter *pNew;
+ int nSlot; /* Power of two >= nSeg */
+
+ for(nSlot=2; nSlot<nSeg; nSlot=nSlot*2);
+ pNew = fts5IdxMalloc(p,
+ sizeof(Fts5Iter) + /* pNew */
+ sizeof(Fts5SegIter) * (nSlot-1) + /* pNew->aSeg[] */
+ sizeof(Fts5CResult) * nSlot /* pNew->aFirst[] */
+ );
+ if( pNew ){
+ pNew->nSeg = nSlot;
+ pNew->aFirst = (Fts5CResult*)&pNew->aSeg[nSlot];
+ pNew->pIndex = p;
+ pNew->xSetOutputs = fts5IterSetOutputs_Noop;
+ }
+ return pNew;
+}
+
+static void fts5PoslistCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
+ }
+}
+
+typedef struct PoslistCallbackCtx PoslistCallbackCtx;
+struct PoslistCallbackCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int eState; /* See above */
+};
+
+typedef struct PoslistOffsetsCtx PoslistOffsetsCtx;
+struct PoslistOffsetsCtx {
+ Fts5Buffer *pBuf; /* Append to this buffer */
+ Fts5Colset *pColset; /* Restrict matches to this column */
+ int iRead;
+ int iWrite;
+};
+
+/*
+** TODO: Make this more efficient!
+*/
+static int fts5IndexColsetTest(Fts5Colset *pColset, int iCol){
+ int i;
+ for(i=0; i<pColset->nCol; i++){
+ if( pColset->aiCol[i]==iCol ) return 1;
+ }
+ return 0;
+}
+
+static void fts5PoslistOffsetsCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistOffsetsCtx *pCtx = (PoslistOffsetsCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ int i = 0;
+ while( i<nChunk ){
+ int iVal;
+ i += fts5GetVarint32(&pChunk[i], iVal);
+ iVal += pCtx->iRead - 2;
+ pCtx->iRead = iVal;
+ if( fts5IndexColsetTest(pCtx->pColset, iVal) ){
+ fts5BufferSafeAppendVarint(pCtx->pBuf, iVal + 2 - pCtx->iWrite);
+ pCtx->iWrite = iVal;
+ }
+ }
+ }
+}
+
+static void fts5PoslistFilterCallback(
+ Fts5Index *pUnused,
+ void *pContext,
+ const u8 *pChunk, int nChunk
+){
+ PoslistCallbackCtx *pCtx = (PoslistCallbackCtx*)pContext;
+ UNUSED_PARAM(pUnused);
+ assert_nc( nChunk>=0 );
+ if( nChunk>0 ){
+ /* Search through to find the first varint with value 1. This is the
+ ** start of the next columns hits. */
+ int i = 0;
+ int iStart = 0;
+
+ if( pCtx->eState==2 ){
+ int iCol;
+ fts5FastGetVarint32(pChunk, i, iCol);
+ if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
+ pCtx->eState = 1;
+ fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
+ }else{
+ pCtx->eState = 0;
+ }
+ }
+
+ do {
+ while( i<nChunk && pChunk[i]!=0x01 ){
+ while( pChunk[i] & 0x80 ) i++;
+ i++;
+ }
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ }
+ if( i<nChunk ){
+ int iCol;
+ iStart = i;
+ i++;
+ if( i>=nChunk ){
+ pCtx->eState = 2;
+ }else{
+ fts5FastGetVarint32(pChunk, i, iCol);
+ pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
+ if( pCtx->eState ){
+ fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
+ iStart = i;
+ }
+ }
+ }
+ }while( i<nChunk );
+ }
+}
+
+static void fts5ChunkIterate(
+ Fts5Index *p, /* Index object */
+ Fts5SegIter *pSeg, /* Poslist of this iterator */
+ void *pCtx, /* Context pointer for xChunk callback */
+ void (*xChunk)(Fts5Index*, void*, const u8*, int)
+){
+ int nRem = pSeg->nPos; /* Number of bytes still to come */
+ Fts5Data *pData = 0;
+ u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
+ int pgno = pSeg->iLeafPgno;
+ int pgnoSave = 0;
+
+ /* This function does notmwork with detail=none databases. */
+ assert( p->pConfig->eDetail!=FTS5_DETAIL_NONE );
+
+ if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
+ pgnoSave = pgno+1;
+ }
+
+ while( 1 ){
+ xChunk(p, pCtx, pChunk, nChunk);
+ nRem -= nChunk;
+ fts5DataRelease(pData);
+ if( nRem<=0 ){
+ break;
+ }else{
+ pgno++;
+ pData = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, pgno));
+ if( pData==0 ) break;
+ pChunk = &pData->p[4];
+ nChunk = MIN(nRem, pData->szLeaf - 4);
+ if( pgno==pgnoSave ){
+ assert( pSeg->pNextLeaf==0 );
+ pSeg->pNextLeaf = pData;
+ pData = 0;
+ }
+ }
+ }
+}
+
+/*
+** Iterator pIter currently points to a valid entry (not EOF). This
+** function appends the position list data for the current entry to
+** buffer pBuf. It does not make a copy of the position-list size
+** field.
+*/
+static void fts5SegiterPoslist(
+ Fts5Index *p,
+ Fts5SegIter *pSeg,
+ Fts5Colset *pColset,
+ Fts5Buffer *pBuf
+){
+ if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
+ if( pColset==0 ){
+ fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
+ }else{
+ if( p->pConfig->eDetail==FTS5_DETAIL_FULL ){
+ PoslistCallbackCtx sCtx;
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ sCtx.eState = fts5IndexColsetTest(pColset, 0);
+ assert( sCtx.eState==0 || sCtx.eState==1 );
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
+ }else{
+ PoslistOffsetsCtx sCtx;
+ memset(&sCtx, 0, sizeof(sCtx));
+ sCtx.pBuf = pBuf;
+ sCtx.pColset = pColset;
+ fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistOffsetsCallback);
+ }
+ }
+ }
+}
+
+/*
+** IN/OUT parameter (*pa) points to a position list n bytes in size. If
+** the position list contains entries for column iCol, then (*pa) is set
+** to point to the sub-position-list for that column and the number of
+** bytes in it returned. Or, if the argument position list does not
+** contain any entries for column iCol, return 0.
+*/
+static int fts5IndexExtractCol(
+ const u8 **pa, /* IN/OUT: Pointer to poslist */
+ int n, /* IN: Size of poslist in bytes */
+ int iCol /* Column to extract from poslist */
+){
+ int iCurrent = 0; /* Anything before the first 0x01 is col 0 */
+ const u8 *p = *pa;
+ const u8 *pEnd = &p[n]; /* One byte past end of position list */
+
+ while( iCol>iCurrent ){
+ /* Advance pointer p until it points to pEnd or an 0x01 byte that is
+ ** not part of a varint. Note that it is not possible for a negative
+ ** or extremely large varint to occur within an uncorrupted position
+ ** list. So the last byte of each varint may be assumed to have a clear
+ ** 0x80 bit. */
+ while( *p!=0x01 ){
+ while( *p++ & 0x80 );
+ if( p>=pEnd ) return 0;
+ }
+ *pa = p++;
+ iCurrent = *p++;
+ if( iCurrent & 0x80 ){
+ p--;
+ p += fts5GetVarint32(p, iCurrent);
+ }
+ }
+ if( iCol!=iCurrent ) return 0;
+
+ /* Advance pointer p until it points to pEnd or an 0x01 byte that is
+ ** not part of a varint */
+ while( p<pEnd && *p!=0x01 ){
+ while( *p++ & 0x80 );
+ }
+
+ return p - (*pa);
+}
+
+static int fts5IndexExtractColset (
+ Fts5Colset *pColset, /* Colset to filter on */
+ const u8 *pPos, int nPos, /* Position list */
+ Fts5Buffer *pBuf /* Output buffer */
+){
+ int rc = SQLITE_OK;
+ int i;
+
+ fts5BufferZero(pBuf);
+ for(i=0; i<pColset->nCol; i++){
+ const u8 *pSub = pPos;
+ int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
+ if( nSub ){
+ fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
+ }
+ }
+ return rc;
+}
+
+/*
+** xSetOutputs callback used by detail=none tables.
+*/
+static void fts5IterSetOutputs_None(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_NONE );
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+}
+
+/*
+** xSetOutputs callback used by detail=full and detail=col tables when no
+** column filters are specified.
+*/
+static void fts5IterSetOutputs_Nocolset(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.nData = pSeg->nPos;
+
+ assert( pIter->pIndex->pConfig->eDetail!=FTS5_DETAIL_NONE );
+ assert( pIter->pColset==0 );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ pIter->base.pData = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used by detail=col when there is a column filter
+** and there are 100 or more columns. Also called as a fallback from
+** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
+*/
+static void fts5IterSetOutputs_Col(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pIter->pColset, &pIter->poslist);
+ pIter->base.iRowid = pSeg->iRowid;
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+}
+
+/*
+** xSetOutputs callback used when:
+**
+** * detail=col,
+** * there is a column filter, and
+** * the table contains 100 or fewer columns.
+**
+** The last point is to ensure all column numbers are stored as
+** single-byte varints.
+*/
+static void fts5IterSetOutputs_Col100(Fts5Iter *pIter, Fts5SegIter *pSeg){
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ assert( pIter->pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos>pSeg->pLeaf->szLeaf ){
+ fts5IterSetOutputs_Col(pIter, pSeg);
+ }else{
+ u8 *a = (u8*)&pSeg->pLeaf->p[pSeg->iLeafOffset];
+ u8 *pEnd = (u8*)&a[pSeg->nPos];
+ int iPrev = 0;
+ int *aiCol = pIter->pColset->aiCol;
+ int *aiColEnd = &aiCol[pIter->pColset->nCol];
+
+ u8 *aOut = pIter->poslist.p;
+ int iPrevOut = 0;
+
+ pIter->base.iRowid = pSeg->iRowid;
+
+ while( a<pEnd ){
+ iPrev += (int)a++[0] - 2;
+ while( *aiCol<iPrev ){
+ aiCol++;
+ if( aiCol==aiColEnd ) goto setoutputs_col_out;
+ }
+ if( *aiCol==iPrev ){
+ *aOut++ = (iPrev - iPrevOut) + 2;
+ iPrevOut = iPrev;
+ }
+ }
+
+setoutputs_col_out:
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = aOut - pIter->poslist.p;
+ }
+}
+
+/*
+** xSetOutputs callback used by detail=full when there is a column filter.
+*/
+static void fts5IterSetOutputs_Full(Fts5Iter *pIter, Fts5SegIter *pSeg){
+ Fts5Colset *pColset = pIter->pColset;
+ pIter->base.iRowid = pSeg->iRowid;
+
+ assert( pIter->pIndex->pConfig->eDetail==FTS5_DETAIL_FULL );
+ assert( pColset );
+
+ if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
+ /* All data is stored on the current page. Populate the output
+ ** variables to point into the body of the page object. */
+ const u8 *a = &pSeg->pLeaf->p[pSeg->iLeafOffset];
+ if( pColset->nCol==1 ){
+ pIter->base.nData = fts5IndexExtractCol(&a, pSeg->nPos,pColset->aiCol[0]);
+ pIter->base.pData = a;
+ }else{
+ fts5BufferZero(&pIter->poslist);
+ fts5IndexExtractColset(pColset, a, pSeg->nPos, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ }
+ }else{
+ /* The data is distributed over two or more pages. Copy it into the
+ ** Fts5Iter.poslist buffer and then set the output pointer to point
+ ** to this buffer. */
+ fts5BufferZero(&pIter->poslist);
+ fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
+ pIter->base.pData = pIter->poslist.p;
+ pIter->base.nData = pIter->poslist.n;
+ }
+}
+
+static void fts5IterSetOutputCb(int *pRc, Fts5Iter *pIter){
+ if( *pRc==SQLITE_OK ){
+ Fts5Config *pConfig = pIter->pIndex->pConfig;
+ if( pConfig->eDetail==FTS5_DETAIL_NONE ){
+ pIter->xSetOutputs = fts5IterSetOutputs_None;
+ }
+
+ else if( pIter->pColset==0 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Nocolset;
+ }
+
+ else if( pConfig->eDetail==FTS5_DETAIL_FULL ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Full;
+ }
+
+ else{
+ assert( pConfig->eDetail==FTS5_DETAIL_COLUMNS );
+ if( pConfig->nCol<=100 ){
+ pIter->xSetOutputs = fts5IterSetOutputs_Col100;
+ sqlite3Fts5BufferSize(pRc, &pIter->poslist, pConfig->nCol);
+ }else{
+ pIter->xSetOutputs = fts5IterSetOutputs_Col;
+ }
+ }
+ }
+}
+
+
+/*
+** Allocate a new Fts5Iter object.
+**
+** The new object will be used to iterate through data in structure pStruct.
+** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
+** is zero or greater, data from the first nSegment segments on level iLevel
+** is merged.
+**
+** The iterator initially points to the first term/rowid entry in the
+** iterated data.
+*/
+static void fts5MultiIterNew(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Structure *pStruct, /* Structure of specific index */
+ int flags, /* FTS5INDEX_QUERY_XXX flags */
+ Fts5Colset *pColset, /* Colset to filter on (or NULL) */
+ const u8 *pTerm, int nTerm, /* Term to seek to (or NULL/0) */
+ int iLevel, /* Level to iterate (-1 for all) */
+ int nSegment, /* Number of segments to merge (iLevel>=0) */
+ Fts5Iter **ppOut /* New object */
+){
+ int nSeg = 0; /* Number of segment-iters in use */
+ int iIter = 0; /* */
+ int iSeg; /* Used to iterate through segments */
+ Fts5StructureLevel *pLvl;
+ Fts5Iter *pNew;
+
+ assert( (pTerm==0 && nTerm==0) || iLevel<0 );
+
+ /* Allocate space for the new multi-seg-iterator. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ nSeg = pStruct->nSegment;
+ nSeg += (p->pHash ? 1 : 0);
+ }else{
+ nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
+ }
+ }
+ *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
+ if( pNew==0 ) return;
+ pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
+ pNew->bSkipEmpty = (0!=(flags & FTS5INDEX_QUERY_SKIPEMPTY));
+ pNew->pStruct = pStruct;
+ pNew->pColset = pColset;
+ fts5StructureRef(pStruct);
+ if( (flags & FTS5INDEX_QUERY_NOOUTPUT)==0 ){
+ fts5IterSetOutputCb(&p->rc, pNew);
+ }
+
+ /* Initialize each of the component segment iterators. */
+ if( p->rc==SQLITE_OK ){
+ if( iLevel<0 ){
+ Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
+ if( p->pHash ){
+ /* Add a segment iterator for the current contents of the hash table. */
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ fts5SegIterHashInit(p, pTerm, nTerm, flags, pIter);
+ }
+ for(pLvl=&pStruct->aLevel[0]; pLvl<pEnd; pLvl++){
+ for(iSeg=pLvl->nSeg-1; iSeg>=0; iSeg--){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ Fts5SegIter *pIter = &pNew->aSeg[iIter++];
+ if( pTerm==0 ){
+ fts5SegIterInit(p, pSeg, pIter);
+ }else{
+ fts5SegIterSeekInit(p, pTerm, nTerm, flags, pSeg, pIter);
+ }
+ }
+ }
+ }else{
+ pLvl = &pStruct->aLevel[iLevel];
+ for(iSeg=nSeg-1; iSeg>=0; iSeg--){
+ fts5SegIterInit(p, &pLvl->aSeg[iSeg], &pNew->aSeg[iIter++]);
+ }
+ }
+ assert( iIter==nSeg );
+ }
+
+ /* If the above was successful, each component iterators now points
+ ** to the first entry in its segment. In this case initialize the
+ ** aFirst[] array. Or, if an error has occurred, free the iterator
+ ** object and set the output variable to NULL. */
+ if( p->rc==SQLITE_OK ){
+ for(iIter=pNew->nSeg-1; iIter>0; iIter--){
+ int iEq;
+ if( (iEq = fts5MultiIterDoCompare(pNew, iIter)) ){
+ Fts5SegIter *pSeg = &pNew->aSeg[iEq];
+ if( p->rc==SQLITE_OK ) pSeg->xNext(p, pSeg, 0);
+ fts5MultiIterAdvanced(p, pNew, iEq, iIter);
+ }
+ }
+ fts5MultiIterSetEof(pNew);
+ fts5AssertMultiIterSetup(p, pNew);
+
+ if( pNew->bSkipEmpty && fts5MultiIterIsEmpty(p, pNew) ){
+ fts5MultiIterNext(p, pNew, 0, 0);
+ }else if( pNew->base.bEof==0 ){
+ Fts5SegIter *pSeg = &pNew->aSeg[pNew->aFirst[1].iFirst];
+ pNew->xSetOutputs(pNew, pSeg);
+ }
+
+ }else{
+ fts5MultiIterFree(pNew);
+ *ppOut = 0;
+ }
+}
+
+/*
+** Create an Fts5Iter that iterates through the doclist provided
+** as the second argument.
+*/
+static void fts5MultiIterNew2(
+ Fts5Index *p, /* FTS5 backend to iterate within */
+ Fts5Data *pData, /* Doclist to iterate through */
+ int bDesc, /* True for descending rowid order */
+ Fts5Iter **ppOut /* New object */
+){
+ Fts5Iter *pNew;
+ pNew = fts5MultiIterAlloc(p, 2);
+ if( pNew ){
+ Fts5SegIter *pIter = &pNew->aSeg[1];
+
+ pIter->flags = FTS5_SEGITER_ONETERM;
+ if( pData->szLeaf>0 ){
+ pIter->pLeaf = pData;
+ pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
+ pIter->iEndofDoclist = pData->nn;
+ pNew->aFirst[1].iFirst = 1;
+ if( bDesc ){
+ pNew->bRev = 1;
+ pIter->flags |= FTS5_SEGITER_REVERSE;
+ fts5SegIterReverseInitPage(p, pIter);
+ }else{
+ fts5SegIterLoadNPos(p, pIter);
+ }
+ pData = 0;
+ }else{
+ pNew->base.bEof = 1;
+ }
+ fts5SegIterSetNext(p, pIter);
+
+ *ppOut = pNew;
+ }
+
+ fts5DataRelease(pData);
+}
+
+/*
+** Return true if the iterator is at EOF or if an error has occurred.
+** False otherwise.
+*/
+static int fts5MultiIterEof(Fts5Index *p, Fts5Iter *pIter){
+ assert( p->rc
+ || (pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf==0)==pIter->base.bEof
+ );
+ return (p->rc || pIter->base.bEof);
+}
+
+/*
+** Return the rowid of the entry that the iterator currently points
+** to. If the iterator points to EOF when this function is called the
+** results are undefined.
+*/
+static i64 fts5MultiIterRowid(Fts5Iter *pIter){
+ assert( pIter->aSeg[ pIter->aFirst[1].iFirst ].pLeaf );
+ return pIter->aSeg[ pIter->aFirst[1].iFirst ].iRowid;
+}
+
+/*
+** Move the iterator to the next entry at or following iMatch.
+*/
+static void fts5MultiIterNextFrom(
+ Fts5Index *p,
+ Fts5Iter *pIter,
+ i64 iMatch
+){
+ while( 1 ){
+ i64 iRowid;
+ fts5MultiIterNext(p, pIter, 1, iMatch);
+ if( fts5MultiIterEof(p, pIter) ) break;
+ iRowid = fts5MultiIterRowid(pIter);
+ if( pIter->bRev==0 && iRowid>=iMatch ) break;
+ if( pIter->bRev!=0 && iRowid<=iMatch ) break;
+ }
+}
+
+/*
+** Return a pointer to a buffer containing the term associated with the
+** entry that the iterator currently points to.
+*/
+static const u8 *fts5MultiIterTerm(Fts5Iter *pIter, int *pn){
+ Fts5SegIter *p = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ *pn = p->term.n;
+ return p->term.p;
+}
+
+/*
+** Allocate a new segment-id for the structure pStruct. The new segment
+** id must be between 1 and 65335 inclusive, and must not be used by
+** any currently existing segment. If a free segment id cannot be found,
+** SQLITE_FULL is returned.
+**
+** If an error has already occurred, this function is a no-op. 0 is
+** returned in this case.
+*/
+static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
+ int iSegid = 0;
+
+ if( p->rc==SQLITE_OK ){
+ if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
+ p->rc = SQLITE_FULL;
+ }else{
+ while( iSegid==0 ){
+ int iLvl, iSeg;
+ sqlite3_randomness(sizeof(u32), (void*)&iSegid);
+ iSegid = iSegid & ((1 << FTS5_DATA_ID_B)-1);
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
+ iSegid = 0;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return iSegid;
+}
+
+/*
+** Discard all data currently cached in the hash-tables.
+*/
+static void fts5IndexDiscardData(Fts5Index *p){
+ assert( p->pHash || p->nPendingData==0 );
+ if( p->pHash ){
+ sqlite3Fts5HashClear(p->pHash);
+ p->nPendingData = 0;
+ }
+}
+
+/*
+** Return the size of the prefix, in bytes, that buffer
+** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
+**
+** Buffer (pNew/<length-unknown>) is guaranteed to be greater
+** than buffer (pOld/nOld).
+*/
+static int fts5PrefixCompress(int nOld, const u8 *pOld, const u8 *pNew){
+ int i;
+ for(i=0; i<nOld; i++){
+ if( pOld[i]!=pNew[i] ) break;
+ }
+ return i;
+}
+
+static void fts5WriteDlidxClear(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int bFlush /* If true, write dlidx to disk */
+){
+ int i;
+ assert( bFlush==0 || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n>0) );
+ for(i=0; i<pWriter->nDlidx; i++){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+ if( pDlidx->buf.n==0 ) break;
+ if( bFlush ){
+ assert( pDlidx->pgno!=0 );
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ }
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ }
+}
+
+/*
+** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
+** Any new array elements are zeroed before returning.
+*/
+static int fts5WriteDlidxGrow(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nLvl
+){
+ if( p->rc==SQLITE_OK && nLvl>=pWriter->nDlidx ){
+ Fts5DlidxWriter *aDlidx = (Fts5DlidxWriter*)sqlite3_realloc(
+ pWriter->aDlidx, sizeof(Fts5DlidxWriter) * nLvl
+ );
+ if( aDlidx==0 ){
+ p->rc = SQLITE_NOMEM;
+ }else{
+ int nByte = sizeof(Fts5DlidxWriter) * (nLvl - pWriter->nDlidx);
+ memset(&aDlidx[pWriter->nDlidx], 0, nByte);
+ pWriter->aDlidx = aDlidx;
+ pWriter->nDlidx = nLvl;
+ }
+ }
+ return p->rc;
+}
+
+/*
+** If the current doclist-index accumulating in pWriter->aDlidx[] is large
+** enough, flush it to disk and return 1. Otherwise discard it and return
+** zero.
+*/
+static int fts5WriteFlushDlidx(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag = 0;
+
+ /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
+ ** to the database, also write the doclist-index to disk. */
+ if( pWriter->aDlidx[0].buf.n>0 && pWriter->nEmpty>=FTS5_MIN_DLIDX_SIZE ){
+ bFlag = 1;
+ }
+ fts5WriteDlidxClear(p, pWriter, bFlag);
+ pWriter->nEmpty = 0;
+ return bFlag;
+}
+
+/*
+** This function is called whenever processing of the doclist for the
+** last term on leaf page (pWriter->iBtPage) is completed.
+**
+** The doclist-index for that term is currently stored in-memory within the
+** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
+** writes it out to disk. Or, if it is too small to bother with, discards
+** it.
+**
+** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
+*/
+static void fts5WriteFlushBtree(Fts5Index *p, Fts5SegWriter *pWriter){
+ int bFlag;
+
+ assert( pWriter->iBtPage || pWriter->nEmpty==0 );
+ if( pWriter->iBtPage==0 ) return;
+ bFlag = fts5WriteFlushDlidx(p, pWriter);
+
+ if( p->rc==SQLITE_OK ){
+ const char *z = (pWriter->btterm.n>0?(const char*)pWriter->btterm.p:"");
+ /* The following was already done in fts5WriteInit(): */
+ /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
+ sqlite3_bind_blob(p->pIdxWriter, 2, z, pWriter->btterm.n, SQLITE_STATIC);
+ sqlite3_bind_int64(p->pIdxWriter, 3, bFlag + ((i64)pWriter->iBtPage<<1));
+ sqlite3_step(p->pIdxWriter);
+ p->rc = sqlite3_reset(p->pIdxWriter);
+ }
+ pWriter->iBtPage = 0;
+}
+
+/*
+** This is called once for each leaf page except the first that contains
+** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
+** is larger than all terms written to earlier leaves, and equal to or
+** smaller than the first term on the new leaf.
+**
+** If an error occurs, an error code is left in Fts5Index.rc. If an error
+** has already occurred when this function is called, it is a no-op.
+*/
+static void fts5WriteBtreeTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter, /* Writer object */
+ int nTerm, const u8 *pTerm /* First term on new page */
+){
+ fts5WriteFlushBtree(p, pWriter);
+ fts5BufferSet(&p->rc, &pWriter->btterm, nTerm, pTerm);
+ pWriter->iBtPage = pWriter->writer.pgno;
+}
+
+/*
+** This function is called when flushing a leaf page that contains no
+** terms at all to disk.
+*/
+static void fts5WriteBtreeNoTerm(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5SegWriter *pWriter /* Writer object */
+){
+ /* If there were no rowids on the leaf page either and the doclist-index
+ ** has already been started, append an 0x00 byte to it. */
+ if( pWriter->bFirstRowidInPage && pWriter->aDlidx[0].buf.n>0 ){
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[0];
+ assert( pDlidx->bPrevValid );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, 0);
+ }
+
+ /* Increment the "number of sequential leaves without a term" counter. */
+ pWriter->nEmpty++;
+}
+
+static i64 fts5DlidxExtractFirstRowid(Fts5Buffer *pBuf){
+ i64 iRowid;
+ int iOff;
+
+ iOff = 1 + fts5GetVarint(&pBuf->p[1], (u64*)&iRowid);
+ fts5GetVarint(&pBuf->p[iOff], (u64*)&iRowid);
+ return iRowid;
+}
+
+/*
+** Rowid iRowid has just been appended to the current leaf page. It is the
+** first on the page. This function appends an appropriate entry to the current
+** doclist-index.
+*/
+static void fts5WriteDlidxAppend(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ int i;
+ int bDone = 0;
+
+ for(i=0; p->rc==SQLITE_OK && bDone==0; i++){
+ i64 iVal;
+ Fts5DlidxWriter *pDlidx = &pWriter->aDlidx[i];
+
+ if( pDlidx->buf.n>=p->pConfig->pgsz ){
+ /* The current doclist-index page is full. Write it to disk and push
+ ** a copy of iRowid (which will become the first rowid on the next
+ ** doclist-index leaf page) up into the next level of the b-tree
+ ** hierarchy. If the node being flushed is currently the root node,
+ ** also push its first rowid upwards. */
+ pDlidx->buf.p[0] = 0x01; /* Not the root node */
+ fts5DataWrite(p,
+ FTS5_DLIDX_ROWID(pWriter->iSegid, i, pDlidx->pgno),
+ pDlidx->buf.p, pDlidx->buf.n
+ );
+ fts5WriteDlidxGrow(p, pWriter, i+2);
+ pDlidx = &pWriter->aDlidx[i];
+ if( p->rc==SQLITE_OK && pDlidx[1].buf.n==0 ){
+ i64 iFirst = fts5DlidxExtractFirstRowid(&pDlidx->buf);
+
+ /* This was the root node. Push its first rowid up to the new root. */
+ pDlidx[1].pgno = pDlidx->pgno;
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, 0);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, pDlidx->pgno);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx[1].buf, iFirst);
+ pDlidx[1].bPrevValid = 1;
+ pDlidx[1].iPrev = iFirst;
+ }
+
+ sqlite3Fts5BufferZero(&pDlidx->buf);
+ pDlidx->bPrevValid = 0;
+ pDlidx->pgno++;
+ }else{
+ bDone = 1;
+ }
+
+ if( pDlidx->bPrevValid ){
+ iVal = iRowid - pDlidx->iPrev;
+ }else{
+ i64 iPgno = (i==0 ? pWriter->writer.pgno : pDlidx[-1].pgno);
+ assert( pDlidx->buf.n==0 );
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, !bDone);
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iPgno);
+ iVal = iRowid;
+ }
+
+ sqlite3Fts5BufferAppendVarint(&p->rc, &pDlidx->buf, iVal);
+ pDlidx->bPrevValid = 1;
+ pDlidx->iPrev = iRowid;
+ }
+}
+
+static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
+ static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
+ Fts5PageWriter *pPage = &pWriter->writer;
+ i64 iRowid;
+
+ assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );
+
+ /* Set the szLeaf header field. */
+ assert( 0==fts5GetU16(&pPage->buf.p[2]) );
+ fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);
+
+ if( pWriter->bFirstTermInPage ){
+ /* No term was written to this page. */
+ assert( pPage->pgidx.n==0 );
+ fts5WriteBtreeNoTerm(p, pWriter);
+ }else{
+ /* Append the pgidx to the page buffer. Set the szLeaf header field. */
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, pPage->pgidx.n, pPage->pgidx.p);
+ }
+
+ /* Write the page out to disk */
+ iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, pPage->pgno);
+ fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);
+
+ /* Initialize the next page. */
+ fts5BufferZero(&pPage->buf);
+ fts5BufferZero(&pPage->pgidx);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
+ pPage->iPrevPgidx = 0;
+ pPage->pgno++;
+
+ /* Increase the leaves written counter */
+ pWriter->nLeafWritten++;
+
+ /* The new leaf holds no terms or rowids */
+ pWriter->bFirstTermInPage = 1;
+ pWriter->bFirstRowidInPage = 1;
+}
+
+/*
+** Append term pTerm/nTerm to the segment being written by the writer passed
+** as the second argument.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5WriteAppendTerm(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int nTerm, const u8 *pTerm
+){
+ int nPrefix; /* Bytes of prefix compression for term */
+ Fts5PageWriter *pPage = &pWriter->writer;
+ Fts5Buffer *pPgidx = &pWriter->writer.pgidx;
+
+ assert( p->rc==SQLITE_OK );
+ assert( pPage->buf.n>=4 );
+ assert( pPage->buf.n>4 || pWriter->bFirstTermInPage );
+
+ /* If the current leaf page is full, flush it to disk. */
+ if( (pPage->buf.n + pPgidx->n + nTerm + 2)>=p->pConfig->pgsz ){
+ if( pPage->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ fts5BufferGrow(&p->rc, &pPage->buf, nTerm+FTS5_DATA_PADDING);
+ }
+
+ /* TODO1: Updating pgidx here. */
+ pPgidx->n += sqlite3Fts5PutVarint(
+ &pPgidx->p[pPgidx->n], pPage->buf.n - pPage->iPrevPgidx
+ );
+ pPage->iPrevPgidx = pPage->buf.n;
+#if 0
+ fts5PutU16(&pPgidx->p[pPgidx->n], pPage->buf.n);
+ pPgidx->n += 2;
+#endif
+
+ if( pWriter->bFirstTermInPage ){
+ nPrefix = 0;
+ if( pPage->pgno!=1 ){
+ /* This is the first term on a leaf that is not the leftmost leaf in
+ ** the segment b-tree. In this case it is necessary to add a term to
+ ** the b-tree hierarchy that is (a) larger than the largest term
+ ** already written to the segment and (b) smaller than or equal to
+ ** this term. In other words, a prefix of (pTerm/nTerm) that is one
+ ** byte longer than the longest prefix (pTerm/nTerm) shares with the
+ ** previous term.
+ **
+ ** Usually, the previous term is available in pPage->term. The exception
+ ** is if this is the first term written in an incremental-merge step.
+ ** In this case the previous term is not available, so just write a
+ ** copy of (pTerm/nTerm) into the parent node. This is slightly
+ ** inefficient, but still correct. */
+ int n = nTerm;
+ if( pPage->term.n ){
+ n = 1 + fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
+ }
+ fts5WriteBtreeTerm(p, pWriter, n, pTerm);
+ pPage = &pWriter->writer;
+ }
+ }else{
+ nPrefix = fts5PrefixCompress(pPage->term.n, pPage->term.p, pTerm);
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nPrefix);
+ }
+
+ /* Append the number of bytes of new data, then the term data itself
+ ** to the page. */
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, nTerm - nPrefix);
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nTerm - nPrefix, &pTerm[nPrefix]);
+
+ /* Update the Fts5PageWriter.term field. */
+ fts5BufferSet(&p->rc, &pPage->term, nTerm, pTerm);
+ pWriter->bFirstTermInPage = 0;
+
+ pWriter->bFirstRowidInPage = 0;
+ pWriter->bFirstRowidInDoclist = 1;
+
+ assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
+ pWriter->aDlidx[0].pgno = pPage->pgno;
+}
+
+/*
+** Append a rowid and position-list size field to the writers output.
+*/
+static void fts5WriteAppendRowid(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ i64 iRowid
+){
+ if( p->rc==SQLITE_OK ){
+ Fts5PageWriter *pPage = &pWriter->writer;
+
+ if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+
+ /* If this is to be the first rowid written to the page, set the
+ ** rowid-pointer in the page-header. Also append a value to the dlidx
+ ** buffer, in case a doclist-index is required. */
+ if( pWriter->bFirstRowidInPage ){
+ fts5PutU16(pPage->buf.p, (u16)pPage->buf.n);
+ fts5WriteDlidxAppend(p, pWriter, iRowid);
+ }
+
+ /* Write the rowid. */
+ if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
+ }else{
+ assert( p->rc || iRowid>pWriter->iPrevRowid );
+ fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
+ }
+ pWriter->iPrevRowid = iRowid;
+ pWriter->bFirstRowidInDoclist = 0;
+ pWriter->bFirstRowidInPage = 0;
+ }
+}
+
+static void fts5WriteAppendPoslistData(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ const u8 *aData,
+ int nData
+){
+ Fts5PageWriter *pPage = &pWriter->writer;
+ const u8 *a = aData;
+ int n = nData;
+
+ assert( p->pConfig->pgsz>0 );
+ while( p->rc==SQLITE_OK
+ && (pPage->buf.n + pPage->pgidx.n + n)>=p->pConfig->pgsz
+ ){
+ int nReq = p->pConfig->pgsz - pPage->buf.n - pPage->pgidx.n;
+ int nCopy = 0;
+ while( nCopy<nReq ){
+ i64 dummy;
+ nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy);
+ }
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
+ a += nCopy;
+ n -= nCopy;
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ if( n>0 ){
+ fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
+ }
+}
+
+/*
+** Flush any data cached by the writer object to the database. Free any
+** allocations associated with the writer.
+*/
+static void fts5WriteFinish(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter, /* Writer object */
+ int *pnLeaf /* OUT: Number of leaf pages in b-tree */
+){
+ int i;
+ Fts5PageWriter *pLeaf = &pWriter->writer;
+ if( p->rc==SQLITE_OK ){
+ assert( pLeaf->pgno>=1 );
+ if( pLeaf->buf.n>4 ){
+ fts5WriteFlushLeaf(p, pWriter);
+ }
+ *pnLeaf = pLeaf->pgno-1;
+ fts5WriteFlushBtree(p, pWriter);
+ }
+ fts5BufferFree(&pLeaf->term);
+ fts5BufferFree(&pLeaf->buf);
+ fts5BufferFree(&pLeaf->pgidx);
+ fts5BufferFree(&pWriter->btterm);
+
+ for(i=0; i<pWriter->nDlidx; i++){
+ sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
+ }
+ sqlite3_free(pWriter->aDlidx);
+}
+
+static void fts5WriteInit(
+ Fts5Index *p,
+ Fts5SegWriter *pWriter,
+ int iSegid
+){
+ const int nBuffer = p->pConfig->pgsz + FTS5_DATA_PADDING;
+
+ memset(pWriter, 0, sizeof(Fts5SegWriter));
+ pWriter->iSegid = iSegid;
+
+ fts5WriteDlidxGrow(p, pWriter, 1);
+ pWriter->writer.pgno = 1;
+ pWriter->bFirstTermInPage = 1;
+ pWriter->iBtPage = 1;
+
+ assert( pWriter->writer.buf.n==0 );
+ assert( pWriter->writer.pgidx.n==0 );
+
+ /* Grow the two buffers to pgsz + padding bytes in size. */
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.pgidx, nBuffer);
+ sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.buf, nBuffer);
+
+ if( p->pIdxWriter==0 ){
+ Fts5Config *pConfig = p->pConfig;
+ fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
+ "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
+ pConfig->zDb, pConfig->zName
+ ));
+ }
+
+ if( p->rc==SQLITE_OK ){
+ /* Initialize the 4-byte leaf-page header to 0x00. */
+ memset(pWriter->writer.buf.p, 0, 4);
+ pWriter->writer.buf.n = 4;
+
+ /* Bind the current output segment id to the index-writer. This is an
+ ** optimization over binding the same value over and over as rows are
+ ** inserted into %_idx by the current writer. */
+ sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid);
+ }
+}
+
+/*
+** Iterator pIter was used to iterate through the input segments of on an
+** incremental merge operation. This function is called if the incremental
+** merge step has finished but the input has not been completely exhausted.
+*/
+static void fts5TrimSegments(Fts5Index *p, Fts5Iter *pIter){
+ int i;
+ Fts5Buffer buf;
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ for(i=0; i<pIter->nSeg; i++){
+ Fts5SegIter *pSeg = &pIter->aSeg[i];
+ if( pSeg->pSeg==0 ){
+ /* no-op */
+ }else if( pSeg->pLeaf==0 ){
+ /* All keys from this input segment have been transfered to the output.
+ ** Set both the first and last page-numbers to 0 to indicate that the
+ ** segment is now empty. */
+ pSeg->pSeg->pgnoLast = 0;
+ pSeg->pSeg->pgnoFirst = 0;
+ }else{
+ int iOff = pSeg->iTermLeafOffset; /* Offset on new first leaf page */
+ i64 iLeafRowid;
+ Fts5Data *pData;
+ int iId = pSeg->pSeg->iSegid;
+ u8 aHdr[4] = {0x00, 0x00, 0x00, 0x00};
+
+ iLeafRowid = FTS5_SEGMENT_ROWID(iId, pSeg->iTermLeafPgno);
+ pData = fts5DataRead(p, iLeafRowid);
+ if( pData ){
+ fts5BufferZero(&buf);
+ fts5BufferGrow(&p->rc, &buf, pData->nn);
+ fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
+ fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
+ fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
+ fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff, &pData->p[iOff]);
+ if( p->rc==SQLITE_OK ){
+ /* Set the szLeaf field */
+ fts5PutU16(&buf.p[2], (u16)buf.n);
+ }
+
+ /* Set up the new page-index array */
+ fts5BufferAppendVarint(&p->rc, &buf, 4);
+ if( pSeg->iLeafPgno==pSeg->iTermLeafPgno
+ && pSeg->iEndofDoclist<pData->szLeaf
+ ){
+ int nDiff = pData->szLeaf - pSeg->iEndofDoclist;
+ fts5BufferAppendVarint(&p->rc, &buf, buf.n - 1 - nDiff - 4);
+ fts5BufferAppendBlob(&p->rc, &buf,
+ pData->nn - pSeg->iPgidxOff, &pData->p[pSeg->iPgidxOff]
+ );
+ }
+
+ fts5DataRelease(pData);
+ pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
+ fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 1), iLeafRowid);
+ fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
+ }
+ }
+ }
+ fts5BufferFree(&buf);
+}
+
+static void fts5MergeChunkCallback(
+ Fts5Index *p,
+ void *pCtx,
+ const u8 *pChunk, int nChunk
+){
+ Fts5SegWriter *pWriter = (Fts5SegWriter*)pCtx;
+ fts5WriteAppendPoslistData(p, pWriter, pChunk, nChunk);
+}
+
+/*
+**
+*/
+static void fts5IndexMergeLevel(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Stucture of index */
+ int iLvl, /* Level to read input from */
+ int *pnRem /* Write up to this many output leaves */
+){
+ Fts5Structure *pStruct = *ppStruct;
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ Fts5StructureLevel *pLvlOut;
+ Fts5Iter *pIter = 0; /* Iterator to read input data */
+ int nRem = pnRem ? *pnRem : 0; /* Output leaf pages left to write */
+ int nInput; /* Number of input segments */
+ Fts5SegWriter writer; /* Writer object */
+ Fts5StructureSegment *pSeg; /* Output segment */
+ Fts5Buffer term;
+ int bOldest; /* True if the output segment is the oldest */
+ int eDetail = p->pConfig->eDetail;
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+
+ assert( iLvl<pStruct->nLevel );
+ assert( pLvl->nMerge<=pLvl->nSeg );
+
+ memset(&writer, 0, sizeof(Fts5SegWriter));
+ memset(&term, 0, sizeof(Fts5Buffer));
+ if( pLvl->nMerge ){
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+ assert( pLvlOut->nSeg>0 );
+ nInput = pLvl->nMerge;
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg-1];
+
+ fts5WriteInit(p, &writer, pSeg->iSegid);
+ writer.writer.pgno = pSeg->pgnoLast+1;
+ writer.iBtPage = 0;
+ }else{
+ int iSegid = fts5AllocateSegid(p, pStruct);
+
+ /* Extend the Fts5Structure object as required to ensure the output
+ ** segment exists. */
+ if( iLvl==pStruct->nLevel-1 ){
+ fts5StructureAddLevel(&p->rc, ppStruct);
+ pStruct = *ppStruct;
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, iLvl+1, 1, 0);
+ if( p->rc ) return;
+ pLvl = &pStruct->aLevel[iLvl];
+ pLvlOut = &pStruct->aLevel[iLvl+1];
+
+ fts5WriteInit(p, &writer, iSegid);
+
+ /* Add the new segment to the output level */
+ pSeg = &pLvlOut->aSeg[pLvlOut->nSeg];
+ pLvlOut->nSeg++;
+ pSeg->pgnoFirst = 1;
+ pSeg->iSegid = iSegid;
+ pStruct->nSegment++;
+
+ /* Read input from all segments in the input level */
+ nInput = pLvl->nSeg;
+ }
+ bOldest = (pLvlOut->nSeg==1 && pStruct->nLevel==iLvl+2);
+
+ assert( iLvl>=0 );
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, iLvl, nInput, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ Fts5SegIter *pSegIter = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ int nPos; /* position-list size field value */
+ int nTerm;
+ const u8 *pTerm;
+
+ /* Check for key annihilation. */
+ if( pSegIter->nPos==0 && (bOldest || pSegIter->bDel==0) ) continue;
+
+ pTerm = fts5MultiIterTerm(pIter, &nTerm);
+ if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
+ if( pnRem && writer.nLeafWritten>nRem ){
+ break;
+ }
+
+ /* This is a new term. Append a term to the output segment. */
+ fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
+ fts5BufferSet(&p->rc, &term, nTerm, pTerm);
+ }
+
+ /* Append the rowid to the output */
+ /* WRITEPOSLISTSIZE */
+ fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter));
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( pSegIter->bDel ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ if( pSegIter->nPos>0 ){
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, 0);
+ }
+ }
+ }else{
+ /* Append the position-list data to the output */
+ nPos = pSegIter->nPos*2 + pSegIter->bDel;
+ fts5BufferAppendVarint(&p->rc, &writer.writer.buf, nPos);
+ fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
+ }
+ }
+
+ /* Flush the last leaf page to disk. Set the output segment b-tree height
+ ** and last leaf page number at the same time. */
+ fts5WriteFinish(p, &writer, &pSeg->pgnoLast);
+
+ if( fts5MultiIterEof(p, pIter) ){
+ int i;
+
+ /* Remove the redundant segments from the %_data table */
+ for(i=0; i<nInput; i++){
+ fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);
+ }
+
+ /* Remove the redundant segments from the input level */
+ if( pLvl->nSeg!=nInput ){
+ int nMove = (pLvl->nSeg - nInput) * sizeof(Fts5StructureSegment);
+ memmove(pLvl->aSeg, &pLvl->aSeg[nInput], nMove);
+ }
+ pStruct->nSegment -= nInput;
+ pLvl->nSeg -= nInput;
+ pLvl->nMerge = 0;
+ if( pSeg->pgnoLast==0 ){
+ pLvlOut->nSeg--;
+ pStruct->nSegment--;
+ }
+ }else{
+ assert( pSeg->pgnoLast>0 );
+ fts5TrimSegments(p, pIter);
+ pLvl->nMerge = nInput;
+ }
+
+ fts5MultiIterFree(pIter);
+ fts5BufferFree(&term);
+ if( pnRem ) *pnRem -= writer.nLeafWritten;
+}
+
+/*
+** Do up to nPg pages of automerge work on the index.
+*/
+static void fts5IndexMerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nPg /* Pages of work to do */
+){
+ int nRem = nPg;
+ Fts5Structure *pStruct = *ppStruct;
+ while( nRem>0 && p->rc==SQLITE_OK ){
+ int iLvl; /* To iterate through levels */
+ int iBestLvl = 0; /* Level offering the most input segments */
+ int nBest = 0; /* Number of input segments on best level */
+
+ /* Set iBestLvl to the level to read input segments from. */
+ assert( pStruct->nLevel>0 );
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
+ if( pLvl->nMerge ){
+ if( pLvl->nMerge>nBest ){
+ iBestLvl = iLvl;
+ nBest = pLvl->nMerge;
+ }
+ break;
+ }
+ if( pLvl->nSeg>nBest ){
+ nBest = pLvl->nSeg;
+ iBestLvl = iLvl;
+ }
+ }
+
+ /* If nBest is still 0, then the index must be empty. */
+#ifdef SQLITE_DEBUG
+ for(iLvl=0; nBest==0 && iLvl<pStruct->nLevel; iLvl++){
+ assert( pStruct->aLevel[iLvl].nSeg==0 );
+ }
+#endif
+
+ if( nBest<p->pConfig->nAutomerge
+ && pStruct->aLevel[iBestLvl].nMerge==0
+ ){
+ break;
+ }
+ fts5IndexMergeLevel(p, &pStruct, iBestLvl, &nRem);
+ if( p->rc==SQLITE_OK && pStruct->aLevel[iBestLvl].nMerge==0 ){
+ fts5StructurePromote(p, iBestLvl+1, pStruct);
+ }
+ }
+ *ppStruct = pStruct;
+}
+
+/*
+** A total of nLeaf leaf pages of data has just been flushed to a level-0
+** segment. This function updates the write-counter accordingly and, if
+** necessary, performs incremental merge work.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5IndexAutomerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct, /* IN/OUT: Current structure of index */
+ int nLeaf /* Number of output leaves just written */
+){
+ if( p->rc==SQLITE_OK && p->pConfig->nAutomerge>0 ){
+ Fts5Structure *pStruct = *ppStruct;
+ u64 nWrite; /* Initial value of write-counter */
+ int nWork; /* Number of work-quanta to perform */
+ int nRem; /* Number of leaf pages left to write */
+
+ /* Update the write-counter. While doing so, set nWork. */
+ nWrite = pStruct->nWriteCounter;
+ nWork = (int)(((nWrite + nLeaf) / p->nWorkUnit) - (nWrite / p->nWorkUnit));
+ pStruct->nWriteCounter += nLeaf;
+ nRem = (int)(p->nWorkUnit * nWork * pStruct->nLevel);
+
+ fts5IndexMerge(p, ppStruct, nRem);
+ }
+}
+
+static void fts5IndexCrisismerge(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Structure **ppStruct /* IN/OUT: Current structure of index */
+){
+ const int nCrisis = p->pConfig->nCrisisMerge;
+ Fts5Structure *pStruct = *ppStruct;
+ int iLvl = 0;
+
+ assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 );
+ while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
+ fts5IndexMergeLevel(p, &pStruct, iLvl, 0);
+ assert( p->rc!=SQLITE_OK || pStruct->nLevel>(iLvl+1) );
+ fts5StructurePromote(p, iLvl+1, pStruct);
+ iLvl++;
+ }
+ *ppStruct = pStruct;
+}
+
+static int fts5IndexReturn(Fts5Index *p){
+ int rc = p->rc;
+ p->rc = SQLITE_OK;
+ return rc;
+}
+
+typedef struct Fts5FlushCtx Fts5FlushCtx;
+struct Fts5FlushCtx {
+ Fts5Index *pIdx;
+ Fts5SegWriter writer;
+};
+
+/*
+** Buffer aBuf[] contains a list of varints, all small enough to fit
+** in a 32-bit integer. Return the size of the largest prefix of this
+** list nMax bytes or less in size.
+*/
+static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
+ int ret;
+ u32 dummy;
+ ret = fts5GetVarint32(aBuf, dummy);
+ if( ret<nMax ){
+ while( 1 ){
+ int i = fts5GetVarint32(&aBuf[ret], dummy);
+ if( (ret + i) > nMax ) break;
+ ret += i;
+ }
+ }
+ return ret;
+}
+
+/*
+** Flush the contents of in-memory hash table iHash to a new level-0
+** segment on disk. Also update the corresponding structure record.
+**
+** If an error occurs, set the Fts5Index.rc error code. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5FlushOneHash(Fts5Index *p){
+ Fts5Hash *pHash = p->pHash;
+ Fts5Structure *pStruct;
+ int iSegid;
+ int pgnoLast = 0; /* Last leaf page number in segment */
+
+ /* Obtain a reference to the index structure and allocate a new segment-id
+ ** for the new level-0 segment. */
+ pStruct = fts5StructureRead(p);
+ iSegid = fts5AllocateSegid(p, pStruct);
+
+ if( iSegid ){
+ const int pgsz = p->pConfig->pgsz;
+ int eDetail = p->pConfig->eDetail;
+ Fts5StructureSegment *pSeg; /* New segment within pStruct */
+ Fts5Buffer *pBuf; /* Buffer in which to assemble leaf page */
+ Fts5Buffer *pPgidx; /* Buffer in which to assemble pgidx */
+
+ Fts5SegWriter writer;
+ fts5WriteInit(p, &writer, iSegid);
+
+ pBuf = &writer.writer.buf;
+ pPgidx = &writer.writer.pgidx;
+
+ /* fts5WriteInit() should have initialized the buffers to (most likely)
+ ** the maximum space required. */
+ assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+ assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );
+
+ /* Begin scanning through hash table entries. This loop runs once for each
+ ** term/doclist currently stored within the hash table. */
+ if( p->rc==SQLITE_OK ){
+ p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
+ }
+ while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
+ const char *zTerm; /* Buffer containing term */
+ const u8 *pDoclist; /* Pointer to doclist for this term */
+ int nDoclist; /* Size of doclist in bytes */
+
+ /* Write the term for this entry to disk. */
+ sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
+ fts5WriteAppendTerm(p, &writer, (int)strlen(zTerm), (const u8*)zTerm);
+
+ assert( writer.bFirstRowidInPage==0 );
+ if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
+ /* The entire doclist will fit on the current leaf. */
+ fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
+ }else{
+ i64 iRowid = 0;
+ i64 iDelta = 0;
+ int iOff = 0;
+
+ /* The entire doclist will not fit on this leaf. The following
+ ** loop iterates through the poslists that make up the current
+ ** doclist. */
+ while( p->rc==SQLITE_OK && iOff<nDoclist ){
+ iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);
+ iRowid += iDelta;
+
+ if( writer.bFirstRowidInPage ){
+ fts5PutU16(&pBuf->p[0], (u16)pBuf->n); /* first rowid on page */
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
+ writer.bFirstRowidInPage = 0;
+ fts5WriteDlidxAppend(p, &writer, iRowid);
+ }else{
+ pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
+ }
+ assert( pBuf->n<=pBuf->nSpace );
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ if( iOff<nDoclist && pDoclist[iOff]==0 ){
+ pBuf->p[pBuf->n++] = 0;
+ iOff++;
+ }
+ }
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ }else{
+ int bDummy;
+ int nPos;
+ int nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
+ nCopy += nPos;
+ if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
+ /* The entire poslist will fit on the current leaf. So copy
+ ** it in one go. */
+ fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
+ }else{
+ /* The entire poslist will not fit on this leaf. So it needs
+ ** to be broken into sections. The only qualification being
+ ** that each varint must be stored contiguously. */
+ const u8 *pPoslist = &pDoclist[iOff];
+ int iPos = 0;
+ while( p->rc==SQLITE_OK ){
+ int nSpace = pgsz - pBuf->n - pPgidx->n;
+ int n = 0;
+ if( (nCopy - iPos)<=nSpace ){
+ n = nCopy - iPos;
+ }else{
+ n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
+ }
+ assert( n>0 );
+ fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
+ iPos += n;
+ if( (pBuf->n + pPgidx->n)>=pgsz ){
+ fts5WriteFlushLeaf(p, &writer);
+ }
+ if( iPos>=nCopy ) break;
+ }
+ }
+ iOff += nCopy;
+ }
+ }
+ }
+
+ /* TODO2: Doclist terminator written here. */
+ /* pBuf->p[pBuf->n++] = '\0'; */
+ assert( pBuf->n<=pBuf->nSpace );
+ sqlite3Fts5HashScanNext(pHash);
+ }
+ sqlite3Fts5HashClear(pHash);
+ fts5WriteFinish(p, &writer, &pgnoLast);
+
+ /* Update the Fts5Structure. It is written back to the database by the
+ ** fts5StructureRelease() call below. */
+ if( pStruct->nLevel==0 ){
+ fts5StructureAddLevel(&p->rc, &pStruct);
+ }
+ fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
+ if( p->rc==SQLITE_OK ){
+ pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
+ pSeg->iSegid = iSegid;
+ pSeg->pgnoFirst = 1;
+ pSeg->pgnoLast = pgnoLast;
+ pStruct->nSegment++;
+ }
+ fts5StructurePromote(p, 0, pStruct);
+ }
+
+ fts5IndexAutomerge(p, &pStruct, pgnoLast);
+ fts5IndexCrisismerge(p, &pStruct);
+ fts5StructureWrite(p, pStruct);
+ fts5StructureRelease(pStruct);
+}
+
+/*
+** Flush any data stored in the in-memory hash tables to the database.
+*/
+static void fts5IndexFlush(Fts5Index *p){
+ /* Unless it is empty, flush the hash table to disk */
+ if( p->nPendingData ){
+ assert( p->pHash );
+ p->nPendingData = 0;
+ fts5FlushOneHash(p);
+ }
+}
+
+
+static int sqlite3Fts5IndexOptimize(Fts5Index *p){
+ Fts5Structure *pStruct;
+ Fts5Structure *pNew = 0;
+ int nSeg = 0;
+
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ pStruct = fts5StructureRead(p);
+
+ if( pStruct ){
+ assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
+ nSeg = pStruct->nSegment;
+ if( nSeg>1 ){
+ int nByte = sizeof(Fts5Structure);
+ nByte += (pStruct->nLevel+1) * sizeof(Fts5StructureLevel);
+ pNew = (Fts5Structure*)sqlite3Fts5MallocZero(&p->rc, nByte);
+ }
+ }
+ if( pNew ){
+ Fts5StructureLevel *pLvl;
+ int nByte = nSeg * sizeof(Fts5StructureSegment);
+ pNew->nLevel = pStruct->nLevel+1;
+ pNew->nRef = 1;
+ pNew->nWriteCounter = pStruct->nWriteCounter;
+ pLvl = &pNew->aLevel[pStruct->nLevel];
+ pLvl->aSeg = (Fts5StructureSegment*)sqlite3Fts5MallocZero(&p->rc, nByte);
+ if( pLvl->aSeg ){
+ int iLvl, iSeg;
+ int iSegOut = 0;
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ pLvl->aSeg[iSegOut] = pStruct->aLevel[iLvl].aSeg[iSeg];
+ iSegOut++;
+ }
+ }
+ pNew->nSegment = pLvl->nSeg = nSeg;
+ }else{
+ sqlite3_free(pNew);
+ pNew = 0;
+ }
+ }
+
+ if( pNew ){
+ int iLvl = pNew->nLevel-1;
+ while( p->rc==SQLITE_OK && pNew->aLevel[iLvl].nSeg>0 ){
+ int nRem = FTS5_OPT_WORK_UNIT;
+ fts5IndexMergeLevel(p, &pNew, iLvl, &nRem);
+ }
+
+ fts5StructureWrite(p, pNew);
+ fts5StructureRelease(pNew);
+ }
+
+ fts5StructureRelease(pStruct);
+ return fts5IndexReturn(p);
+}
+
+static int sqlite3Fts5IndexMerge(Fts5Index *p, int nMerge){
+ Fts5Structure *pStruct;
+
+ pStruct = fts5StructureRead(p);
+ if( pStruct && pStruct->nLevel ){
+ fts5IndexMerge(p, &pStruct, nMerge);
+ fts5StructureWrite(p, pStruct);
+ }
+ fts5StructureRelease(pStruct);
+
+ return fts5IndexReturn(p);
+}
+
+static void fts5AppendRowid(
+ Fts5Index *p,
+ i64 iDelta,
+ Fts5Iter *pUnused,
+ Fts5Buffer *pBuf
+){
+ UNUSED_PARAM(pUnused);
+ fts5BufferAppendVarint(&p->rc, pBuf, iDelta);
+}
+
+static void fts5AppendPoslist(
+ Fts5Index *p,
+ i64 iDelta,
+ Fts5Iter *pMulti,
+ Fts5Buffer *pBuf
+){
+ int nData = pMulti->base.nData;
+ assert( nData>0 );
+ if( p->rc==SQLITE_OK && 0==fts5BufferGrow(&p->rc, pBuf, nData+9+9) ){
+ fts5BufferSafeAppendVarint(pBuf, iDelta);
+ fts5BufferSafeAppendVarint(pBuf, nData*2);
+ fts5BufferSafeAppendBlob(pBuf, pMulti->base.pData, nData);
+ }
+}
+
+
+static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
+ u8 *p = pIter->aPoslist + pIter->nSize + pIter->nPoslist;
+
+ assert( pIter->aPoslist );
+ if( p>=pIter->aEof ){
+ pIter->aPoslist = 0;
+ }else{
+ i64 iDelta;
+
+ p += fts5GetVarint(p, (u64*)&iDelta);
+ pIter->iRowid += iDelta;
+
+ /* Read position list size */
+ if( p[0] & 0x80 ){
+ int nPos;
+ pIter->nSize = fts5GetVarint32(p, nPos);
+ pIter->nPoslist = (nPos>>1);
+ }else{
+ pIter->nPoslist = ((int)(p[0])) >> 1;
+ pIter->nSize = 1;
+ }
+
+ pIter->aPoslist = p;
+ }
+}
+
+static void fts5DoclistIterInit(
+ Fts5Buffer *pBuf,
+ Fts5DoclistIter *pIter
+){
+ memset(pIter, 0, sizeof(*pIter));
+ pIter->aPoslist = pBuf->p;
+ pIter->aEof = &pBuf->p[pBuf->n];
+ fts5DoclistIterNext(pIter);
+}
+
+#if 0
+/*
+** Append a doclist to buffer pBuf.
+**
+** This function assumes that space within the buffer has already been
+** allocated.
+*/
+static void fts5MergeAppendDocid(
+ Fts5Buffer *pBuf, /* Buffer to write to */
+ i64 *piLastRowid, /* IN/OUT: Previous rowid written (if any) */
+ i64 iRowid /* Rowid to append */
+){
+ assert( pBuf->n!=0 || (*piLastRowid)==0 );
+ fts5BufferSafeAppendVarint(pBuf, iRowid - *piLastRowid);
+ *piLastRowid = iRowid;
+}
+#endif
+
+#define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
+ assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
+ fts5BufferSafeAppendVarint((pBuf), (iRowid) - (iLastRowid)); \
+ (iLastRowid) = (iRowid); \
+}
+
+/*
+** Swap the contents of buffer *p1 with that of *p2.
+*/
+static void fts5BufferSwap(Fts5Buffer *p1, Fts5Buffer *p2){
+ Fts5Buffer tmp = *p1;
+ *p1 = *p2;
+ *p2 = tmp;
+}
+
+static void fts5NextRowid(Fts5Buffer *pBuf, int *piOff, i64 *piRowid){
+ int i = *piOff;
+ if( i>=pBuf->n ){
+ *piOff = -1;
+ }else{
+ u64 iVal;
+ *piOff = i + sqlite3Fts5GetVarint(&pBuf->p[i], &iVal);
+ *piRowid += iVal;
+ }
+}
+
+/*
+** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
+** In this case the buffers consist of a delta-encoded list of rowids only.
+*/
+static void fts5MergeRowidLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ Fts5Buffer *p2 /* Second list to merge */
+){
+ int i1 = 0;
+ int i2 = 0;
+ i64 iRowid1 = 0;
+ i64 iRowid2 = 0;
+ i64 iOut = 0;
+
+ Fts5Buffer out;
+ memset(&out, 0, sizeof(out));
+ sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
+ if( p->rc ) return;
+
+ fts5NextRowid(p1, &i1, &iRowid1);
+ fts5NextRowid(p2, &i2, &iRowid2);
+ while( i1>=0 || i2>=0 ){
+ if( i1>=0 && (i2<0 || iRowid1<iRowid2) ){
+ assert( iOut==0 || iRowid1>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid1 - iOut);
+ iOut = iRowid1;
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }else{
+ assert( iOut==0 || iRowid2>iOut );
+ fts5BufferSafeAppendVarint(&out, iRowid2 - iOut);
+ iOut = iRowid2;
+ if( i1>=0 && iRowid1==iRowid2 ){
+ fts5NextRowid(p1, &i1, &iRowid1);
+ }
+ fts5NextRowid(p2, &i2, &iRowid2);
+ }
+ }
+
+ fts5BufferSwap(&out, p1);
+ fts5BufferFree(&out);
+}
+
+/*
+** Buffers p1 and p2 contain doclists. This function merges the content
+** of the two doclists together and sets buffer p1 to the result before
+** returning.
+**
+** If an error occurs, an error code is left in p->rc. If an error has
+** already occurred, this function is a no-op.
+*/
+static void fts5MergePrefixLists(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5Buffer *p1, /* First list to merge */
+ Fts5Buffer *p2 /* Second list to merge */
+){
+ if( p2->n ){
+ i64 iLastRowid = 0;
+ Fts5DoclistIter i1;
+ Fts5DoclistIter i2;
+ Fts5Buffer out = {0, 0, 0};
+ Fts5Buffer tmp = {0, 0, 0};
+
+ if( sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n) ) return;
+ fts5DoclistIterInit(p1, &i1);
+ fts5DoclistIterInit(p2, &i2);
+
+ while( 1 ){
+ if( i1.iRowid<i2.iRowid ){
+ /* Copy entry from i1 */
+ fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
+ fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
+ fts5DoclistIterNext(&i1);
+ if( i1.aPoslist==0 ) break;
+ }
+ else if( i2.iRowid!=i1.iRowid ){
+ /* Copy entry from i2 */
+ fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
+ fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.nPoslist+i2.nSize);
+ fts5DoclistIterNext(&i2);
+ if( i2.aPoslist==0 ) break;
+ }
+ else{
+ /* Merge the two position lists. */
+ i64 iPos1 = 0;
+ i64 iPos2 = 0;
+ int iOff1 = 0;
+ int iOff2 = 0;
+ u8 *a1 = &i1.aPoslist[i1.nSize];
+ u8 *a2 = &i2.aPoslist[i2.nSize];
+
+ i64 iPrev = 0;
+ Fts5PoslistWriter writer;
+ memset(&writer, 0, sizeof(writer));
+
+ fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
+ fts5BufferZero(&tmp);
+ sqlite3Fts5BufferSize(&p->rc, &tmp, i1.nPoslist + i2.nPoslist);
+ if( p->rc ) break;
+
+ sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
+ sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
+ assert( iPos1>=0 && iPos2>=0 );
+
+ if( iPos1<iPos2 ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
+ sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
+ }else{
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
+ sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
+ }
+
+ if( iPos1>=0 && iPos2>=0 ){
+ while( 1 ){
+ if( iPos1<iPos2 ){
+ if( iPos1!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
+ }
+ sqlite3Fts5PoslistNext64(a1, i1.nPoslist, &iOff1, &iPos1);
+ if( iPos1<0 ) break;
+ }else{
+ assert( iPos2!=iPrev );
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
+ sqlite3Fts5PoslistNext64(a2, i2.nPoslist, &iOff2, &iPos2);
+ if( iPos2<0 ) break;
+ }
+ }
+ }
+
+ if( iPos1>=0 ){
+ if( iPos1!=iPrev ){
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos1);
+ }
+ fts5BufferSafeAppendBlob(&tmp, &a1[iOff1], i1.nPoslist-iOff1);
+ }else{
+ assert( iPos2>=0 && iPos2!=iPrev );
+ sqlite3Fts5PoslistSafeAppend(&tmp, &iPrev, iPos2);
+ fts5BufferSafeAppendBlob(&tmp, &a2[iOff2], i2.nPoslist-iOff2);
+ }
+
+ /* WRITEPOSLISTSIZE */
+ fts5BufferSafeAppendVarint(&out, tmp.n * 2);
+ fts5BufferSafeAppendBlob(&out, tmp.p, tmp.n);
+ fts5DoclistIterNext(&i1);
+ fts5DoclistIterNext(&i2);
+ if( i1.aPoslist==0 || i2.aPoslist==0 ) break;
+ }
+ }
+
+ if( i1.aPoslist ){
+ fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
+ fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.aEof - i1.aPoslist);
+ }
+ else if( i2.aPoslist ){
+ fts5MergeAppendDocid(&out, iLastRowid, i2.iRowid);
+ fts5BufferSafeAppendBlob(&out, i2.aPoslist, i2.aEof - i2.aPoslist);
+ }
+
+ fts5BufferSet(&p->rc, p1, out.n, out.p);
+ fts5BufferFree(&tmp);
+ fts5BufferFree(&out);
+ }
+}
+
+static void fts5SetupPrefixIter(
+ Fts5Index *p, /* Index to read from */
+ int bDesc, /* True for "ORDER BY rowid DESC" */
+ const u8 *pToken, /* Buffer containing prefix to match */
+ int nToken, /* Size of buffer pToken in bytes */
+ Fts5Colset *pColset, /* Restrict matches to these columns */
+ Fts5Iter **ppIter /* OUT: New iterator */
+){
+ Fts5Structure *pStruct;
+ Fts5Buffer *aBuf;
+ const int nBuf = 32;
+
+ void (*xMerge)(Fts5Index*, Fts5Buffer*, Fts5Buffer*);
+ void (*xAppend)(Fts5Index*, i64, Fts5Iter*, Fts5Buffer*);
+ if( p->pConfig->eDetail==FTS5_DETAIL_NONE ){
+ xMerge = fts5MergeRowidLists;
+ xAppend = fts5AppendRowid;
+ }else{
+ xMerge = fts5MergePrefixLists;
+ xAppend = fts5AppendPoslist;
+ }
+
+ aBuf = (Fts5Buffer*)fts5IdxMalloc(p, sizeof(Fts5Buffer)*nBuf);
+ pStruct = fts5StructureRead(p);
+
+ if( aBuf && pStruct ){
+ const int flags = FTS5INDEX_QUERY_SCAN
+ | FTS5INDEX_QUERY_SKIPEMPTY
+ | FTS5INDEX_QUERY_NOOUTPUT;
+ int i;
+ i64 iLastRowid = 0;
+ Fts5Iter *p1 = 0; /* Iterator used to gather data from index */
+ Fts5Data *pData;
+ Fts5Buffer doclist;
+ int bNewTerm = 1;
+
+ memset(&doclist, 0, sizeof(doclist));
+ fts5MultiIterNew(p, pStruct, flags, pColset, pToken, nToken, -1, 0, &p1);
+ fts5IterSetOutputCb(&p->rc, p1);
+ for( /* no-op */ ;
+ fts5MultiIterEof(p, p1)==0;
+ fts5MultiIterNext2(p, p1, &bNewTerm)
+ ){
+ Fts5SegIter *pSeg = &p1->aSeg[ p1->aFirst[1].iFirst ];
+ int nTerm = pSeg->term.n;
+ const u8 *pTerm = pSeg->term.p;
+ p1->xSetOutputs(p1, pSeg);
+
+ assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
+ if( bNewTerm ){
+ if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
+ }
+
+ if( p1->base.nData==0 ) continue;
+
+ if( p1->base.iRowid<=iLastRowid && doclist.n>0 ){
+ for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
+ assert( i<nBuf );
+ if( aBuf[i].n==0 ){
+ fts5BufferSwap(&doclist, &aBuf[i]);
+ fts5BufferZero(&doclist);
+ }else{
+ xMerge(p, &doclist, &aBuf[i]);
+ fts5BufferZero(&aBuf[i]);
+ }
+ }
+ iLastRowid = 0;
+ }
+
+ xAppend(p, p1->base.iRowid-iLastRowid, p1, &doclist);
+ iLastRowid = p1->base.iRowid;
+ }
+
+ for(i=0; i<nBuf; i++){
+ if( p->rc==SQLITE_OK ){
+ xMerge(p, &doclist, &aBuf[i]);
+ }
+ fts5BufferFree(&aBuf[i]);
+ }
+ fts5MultiIterFree(p1);
+
+ pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
+ if( pData ){
+ pData->p = (u8*)&pData[1];
+ pData->nn = pData->szLeaf = doclist.n;
+ memcpy(pData->p, doclist.p, doclist.n);
+ fts5MultiIterNew2(p, pData, bDesc, ppIter);
+ }
+ fts5BufferFree(&doclist);
+ }
+
+ fts5StructureRelease(pStruct);
+ sqlite3_free(aBuf);
+}
+
+
+/*
+** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
+** to the document with rowid iRowid.
+*/
+static int sqlite3Fts5IndexBeginWrite(Fts5Index *p, int bDelete, i64 iRowid){
+ assert( p->rc==SQLITE_OK );
+
+ /* Allocate the hash table if it has not already been allocated */
+ if( p->pHash==0 ){
+ p->rc = sqlite3Fts5HashNew(p->pConfig, &p->pHash, &p->nPendingData);
+ }
+
+ /* Flush the hash table to disk if required */
+ if( iRowid<p->iWriteRowid
+ || (iRowid==p->iWriteRowid && p->bDelete==0)
+ || (p->nPendingData > p->pConfig->nHashSize)
+ ){
+ fts5IndexFlush(p);
+ }
+
+ p->iWriteRowid = iRowid;
+ p->bDelete = bDelete;
+ return fts5IndexReturn(p);
+}
+
+/*
+** Commit data to disk.
+*/
+static int sqlite3Fts5IndexSync(Fts5Index *p, int bCommit){
+ assert( p->rc==SQLITE_OK );
+ fts5IndexFlush(p);
+ if( bCommit ) fts5CloseReader(p);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Discard any data stored in the in-memory hash tables. Do not write it
+** to the database. Additionally, assume that the contents of the %_data
+** table may have changed on disk. So any in-memory caches of %_data
+** records must be invalidated.
+*/
+static int sqlite3Fts5IndexRollback(Fts5Index *p){
+ fts5CloseReader(p);
+ fts5IndexDiscardData(p);
+ /* assert( p->rc==SQLITE_OK ); */
+ return SQLITE_OK;
+}
+
+/*
+** The %_data table is completely empty when this function is called. This
+** function populates it with the initial structure objects for each index,
+** and the initial version of the "averages" record (a zero-byte blob).
+*/
+static int sqlite3Fts5IndexReinit(Fts5Index *p){
+ Fts5Structure s;
+ memset(&s, 0, sizeof(Fts5Structure));
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, (const u8*)"", 0);
+ fts5StructureWrite(p, &s);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying %_data table.
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5IndexOpen(
+ Fts5Config *pConfig,
+ int bCreate,
+ Fts5Index **pp,
+ char **pzErr
+){
+ int rc = SQLITE_OK;
+ Fts5Index *p; /* New object */
+
+ *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
+ if( rc==SQLITE_OK ){
+ p->pConfig = pConfig;
+ p->nWorkUnit = FTS5_WORK_UNIT;
+ p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName);
+ if( p->zDataTbl && bCreate ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
+ );
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(pConfig, "idx",
+ "segid, term, pgno, PRIMARY KEY(segid, term)",
+ 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p);
+ }
+ }
+ }
+
+ assert( rc!=SQLITE_OK || p->rc==SQLITE_OK );
+ if( rc ){
+ sqlite3Fts5IndexClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
+*/
+static int sqlite3Fts5IndexClose(Fts5Index *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ assert( p->pReader==0 );
+ sqlite3_finalize(p->pWriter);
+ sqlite3_finalize(p->pDeleter);
+ sqlite3_finalize(p->pIdxWriter);
+ sqlite3_finalize(p->pIdxDeleter);
+ sqlite3_finalize(p->pIdxSelect);
+ sqlite3Fts5HashFree(p->pHash);
+ sqlite3_free(p->zDataTbl);
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+/*
+** Argument p points to a buffer containing utf-8 text that is n bytes in
+** size. Return the number of bytes in the nChar character prefix of the
+** buffer, or 0 if there are less than nChar characters in total.
+*/
+static int sqlite3Fts5IndexCharlenToBytelen(
+ const char *p,
+ int nByte,
+ int nChar
+){
+ int n = 0;
+ int i;
+ for(i=0; i<nChar; i++){
+ if( n>=nByte ) return 0; /* Input contains fewer than nChar chars */
+ if( (unsigned char)p[n++]>=0xc0 ){
+ while( (p[n] & 0xc0)==0x80 ) n++;
+ }
+ }
+ return n;
+}
+
+/*
+** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
+** unicode characters in the string.
+*/
+static int fts5IndexCharlen(const char *pIn, int nIn){
+ int nChar = 0;
+ int i = 0;
+ while( i<nIn ){
+ if( (unsigned char)pIn[i++]>=0xc0 ){
+ while( i<nIn && (pIn[i] & 0xc0)==0x80 ) i++;
+ }
+ nChar++;
+ }
+ return nChar;
+}
+
+/*
+** Insert or remove data to or from the index. Each time a document is
+** added to or removed from the index, this function is called one or more
+** times.
+**
+** For an insert, it must be called once for each token in the new document.
+** If the operation is a delete, it must be called (at least) once for each
+** unique token in the document with an iCol value less than zero. The iPos
+** argument is ignored for a delete.
+*/
+static int sqlite3Fts5IndexWrite(
+ Fts5Index *p, /* Index to write to */
+ int iCol, /* Column token appears in (-ve -> delete) */
+ int iPos, /* Position of token within column */
+ const char *pToken, int nToken /* Token to add or remove to or from index */
+){
+ int i; /* Used to iterate through indexes */
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = p->pConfig;
+
+ assert( p->rc==SQLITE_OK );
+ assert( (iCol<0)==p->bDelete );
+
+ /* Add the entry to the main terms index. */
+ rc = sqlite3Fts5HashWrite(
+ p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
+ );
+
+ for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
+ const int nChar = pConfig->aPrefix[i];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5HashWrite(p->pHash,
+ p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
+ nByte
+ );
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Open a new iterator to iterate though all rowid that match the
+** specified token or token prefix.
+*/
+static int sqlite3Fts5IndexQuery(
+ Fts5Index *p, /* FTS index to query */
+ const char *pToken, int nToken, /* Token (or prefix) to query for */
+ int flags, /* Mask of FTS5INDEX_QUERY_X flags */
+ Fts5Colset *pColset, /* Match these columns only */
+ Fts5IndexIter **ppIter /* OUT: New iterator object */
+){
+ Fts5Config *pConfig = p->pConfig;
+ Fts5Iter *pRet = 0;
+ Fts5Buffer buf = {0, 0, 0};
+
+ /* If the QUERY_SCAN flag is set, all other flags must be clear. */
+ assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );
+
+ if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
+ int iIdx = 0; /* Index to search */
+ memcpy(&buf.p[1], pToken, nToken);
+
+ /* Figure out which index to search and set iIdx accordingly. If this
+ ** is a prefix query for which there is no prefix index, set iIdx to
+ ** greater than pConfig->nPrefix to indicate that the query will be
+ ** satisfied by scanning multiple terms in the main index.
+ **
+ ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
+ ** prefix-query. Instead of using a prefix-index (if one exists),
+ ** evaluate the prefix query using the main FTS index. This is used
+ ** for internal sanity checking by the integrity-check in debug
+ ** mode only. */
+#ifdef SQLITE_DEBUG
+ if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
+ assert( flags & FTS5INDEX_QUERY_PREFIX );
+ iIdx = 1+pConfig->nPrefix;
+ }else
+#endif
+ if( flags & FTS5INDEX_QUERY_PREFIX ){
+ int nChar = fts5IndexCharlen(pToken, nToken);
+ for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
+ if( pConfig->aPrefix[iIdx-1]==nChar ) break;
+ }
+ }
+
+ if( iIdx<=pConfig->nPrefix ){
+ /* Straight index lookup */
+ Fts5Structure *pStruct = fts5StructureRead(p);
+ buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
+ if( pStruct ){
+ fts5MultiIterNew(p, pStruct, flags | FTS5INDEX_QUERY_SKIPEMPTY,
+ pColset, buf.p, nToken+1, -1, 0, &pRet
+ );
+ fts5StructureRelease(pStruct);
+ }
+ }else{
+ /* Scan multiple terms in the main index */
+ int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
+ buf.p[0] = FTS5_MAIN_PREFIX;
+ fts5SetupPrefixIter(p, bDesc, buf.p, nToken+1, pColset, &pRet);
+ assert( p->rc!=SQLITE_OK || pRet->pColset==0 );
+ fts5IterSetOutputCb(&p->rc, pRet);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pRet->aSeg[pRet->aFirst[1].iFirst];
+ if( pSeg->pLeaf ) pRet->xSetOutputs(pRet, pSeg);
+ }
+ }
+
+ if( p->rc ){
+ sqlite3Fts5IterClose(&pRet->base);
+ pRet = 0;
+ fts5CloseReader(p);
+ }
+
+ *ppIter = &pRet->base;
+ sqlite3Fts5BufferFree(&buf);
+ }
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return true if the iterator passed as the only argument is at EOF.
+*/
+/*
+** Move to the next matching rowid.
+*/
+static int sqlite3Fts5IterNext(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ assert( pIter->pIndex->rc==SQLITE_OK );
+ fts5MultiIterNext(pIter->pIndex, pIter, 0, 0);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching term/rowid. Used by the fts5vocab module.
+*/
+static int sqlite3Fts5IterNextScan(Fts5IndexIter *pIndexIter){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *p = pIter->pIndex;
+
+ assert( pIter->pIndex->rc==SQLITE_OK );
+
+ fts5MultiIterNext(p, pIter, 0, 0);
+ if( p->rc==SQLITE_OK ){
+ Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
+ if( pSeg->pLeaf && pSeg->term.p[0]!=FTS5_MAIN_PREFIX ){
+ fts5DataRelease(pSeg->pLeaf);
+ pSeg->pLeaf = 0;
+ pIter->base.bEof = 1;
+ }
+ }
+
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Move to the next matching rowid that occurs at or after iMatch. The
+** definition of "at or after" depends on whether this iterator iterates
+** in ascending or descending rowid order.
+*/
+static int sqlite3Fts5IterNextFrom(Fts5IndexIter *pIndexIter, i64 iMatch){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ fts5MultiIterNextFrom(pIter->pIndex, pIter, iMatch);
+ return fts5IndexReturn(pIter->pIndex);
+}
+
+/*
+** Return the current term.
+*/
+static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIndexIter, int *pn){
+ int n;
+ const char *z = (const char*)fts5MultiIterTerm((Fts5Iter*)pIndexIter, &n);
+ *pn = n-1;
+ return &z[1];
+}
+
+/*
+** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
+*/
+static void sqlite3Fts5IterClose(Fts5IndexIter *pIndexIter){
+ if( pIndexIter ){
+ Fts5Iter *pIter = (Fts5Iter*)pIndexIter;
+ Fts5Index *pIndex = pIter->pIndex;
+ fts5MultiIterFree(pIter);
+ fts5CloseReader(pIndex);
+ }
+}
+
+/*
+** Read and decode the "averages" record from the database.
+**
+** Parameter anSize must point to an array of size nCol, where nCol is
+** the number of user defined columns in the FTS table.
+*/
+static int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){
+ int nCol = p->pConfig->nCol;
+ Fts5Data *pData;
+
+ *pnRow = 0;
+ memset(anSize, 0, sizeof(i64) * nCol);
+ pData = fts5DataRead(p, FTS5_AVERAGES_ROWID);
+ if( p->rc==SQLITE_OK && pData->nn ){
+ int i = 0;
+ int iCol;
+ i += fts5GetVarint(&pData->p[i], (u64*)pnRow);
+ for(iCol=0; i<pData->nn && iCol<nCol; iCol++){
+ i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]);
+ }
+ }
+
+ fts5DataRelease(pData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Replace the current "averages" record with the contents of the buffer
+** supplied as the second argument.
+*/
+static int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8 *pData, int nData){
+ assert( p->rc==SQLITE_OK );
+ fts5DataWrite(p, FTS5_AVERAGES_ROWID, pData, nData);
+ return fts5IndexReturn(p);
+}
+
+/*
+** Return the total number of blocks this module has read from the %_data
+** table since it was created.
+*/
+static int sqlite3Fts5IndexReads(Fts5Index *p){
+ return p->nRead;
+}
+
+/*
+** Set the 32-bit cookie value stored at the start of all structure
+** records to the value passed as the second argument.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int sqlite3Fts5IndexSetCookie(Fts5Index *p, int iNew){
+ int rc; /* Return code */
+ Fts5Config *pConfig = p->pConfig; /* Configuration object */
+ u8 aCookie[4]; /* Binary representation of iNew */
+ sqlite3_blob *pBlob = 0;
+
+ assert( p->rc==SQLITE_OK );
+ sqlite3Fts5Put32(aCookie, iNew);
+
+ rc = sqlite3_blob_open(pConfig->db, pConfig->zDb, p->zDataTbl,
+ "block", FTS5_STRUCTURE_ROWID, 1, &pBlob
+ );
+ if( rc==SQLITE_OK ){
+ sqlite3_blob_write(pBlob, aCookie, 4, 0);
+ rc = sqlite3_blob_close(pBlob);
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5IndexLoadConfig(Fts5Index *p){
+ Fts5Structure *pStruct;
+ pStruct = fts5StructureRead(p);
+ fts5StructureRelease(pStruct);
+ return fts5IndexReturn(p);
+}
+
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the integrity-check
+** functionality.
+*/
+
+/*
+** Return a simple checksum value based on the arguments.
+*/
+static u64 sqlite3Fts5IndexEntryCksum(
+ i64 iRowid,
+ int iCol,
+ int iPos,
+ int iIdx,
+ const char *pTerm,
+ int nTerm
+){
+ int i;
+ u64 ret = iRowid;
+ ret += (ret<<3) + iCol;
+ ret += (ret<<3) + iPos;
+ if( iIdx>=0 ) ret += (ret<<3) + (FTS5_MAIN_PREFIX + iIdx);
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + pTerm[i];
+ return ret;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** This function is purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+**
+** Instead, it tests that the same set of pgno/rowid combinations are
+** visited regardless of whether the doclist-index identified by parameters
+** iSegid/iLeaf is iterated in forwards or reverse order.
+*/
+static void fts5TestDlidxReverse(
+ Fts5Index *p,
+ int iSegid, /* Segment id to load from */
+ int iLeaf /* Load doclist-index for this leaf */
+){
+ Fts5DlidxIter *pDlidx = 0;
+ u64 cksum1 = 13;
+ u64 cksum2 = 13;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( pgno>iLeaf );
+ cksum1 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ for(pDlidx=fts5DlidxIterInit(p, 1, iSegid, iLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterPrev(p, pDlidx)
+ ){
+ i64 iRowid = fts5DlidxIterRowid(pDlidx);
+ int pgno = fts5DlidxIterPgno(pDlidx);
+ assert( fts5DlidxIterPgno(pDlidx)>iLeaf );
+ cksum2 += iRowid + ((i64)pgno<<32);
+ }
+ fts5DlidxIterFree(pDlidx);
+ pDlidx = 0;
+
+ if( p->rc==SQLITE_OK && cksum1!=cksum2 ) p->rc = FTS5_CORRUPT;
+}
+
+static int fts5QueryCksum(
+ Fts5Index *p, /* Fts5 index object */
+ int iIdx,
+ const char *z, /* Index key to query for */
+ int n, /* Size of index key in bytes */
+ int flags, /* Flags for Fts5IndexQuery */
+ u64 *pCksum /* IN/OUT: Checksum value */
+){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum = *pCksum;
+ Fts5IndexIter *pIter = 0;
+ int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIter);
+
+ while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIter) ){
+ i64 rowid = pIter->iRowid;
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, 0, 0, iIdx, z, n);
+ }else{
+ Fts5PoslistReader sReader;
+ for(sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &sReader);
+ sReader.bEof==0;
+ sqlite3Fts5PoslistReaderNext(&sReader)
+ ){
+ int iCol = FTS5_POS2COLUMN(sReader.iPos);
+ int iOff = FTS5_POS2OFFSET(sReader.iPos);
+ cksum ^= sqlite3Fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNext(pIter);
+ }
+ }
+ sqlite3Fts5IterClose(pIter);
+
+ *pCksum = cksum;
+ return rc;
+}
+
+
+/*
+** This function is also purely an internal test. It does not contribute to
+** FTS functionality, or even the integrity-check, in any way.
+*/
+static void fts5TestTerm(
+ Fts5Index *p,
+ Fts5Buffer *pPrev, /* Previous term */
+ const char *z, int n, /* Possibly new term to test */
+ u64 expected,
+ u64 *pCksum
+){
+ int rc = p->rc;
+ if( pPrev->n==0 ){
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+ }else
+ if( rc==SQLITE_OK && (pPrev->n!=n || memcmp(pPrev->p, z, n)) ){
+ u64 cksum3 = *pCksum;
+ const char *zTerm = (const char*)&pPrev->p[1]; /* term sans prefix-byte */
+ int nTerm = pPrev->n-1; /* Size of zTerm in bytes */
+ int iIdx = (pPrev->p[0] - FTS5_MAIN_PREFIX);
+ int flags = (iIdx==0 ? 0 : FTS5INDEX_QUERY_PREFIX);
+ u64 ck1 = 0;
+ u64 ck2 = 0;
+
+ /* Check that the results returned for ASC and DESC queries are
+ ** the same. If not, call this corruption. */
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, flags, &ck1);
+ if( rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_DESC;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ }
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+
+ /* If this is a prefix query, check that the results returned if the
+ ** the index is disabled are the same. In both ASC and DESC order.
+ **
+ ** This check may only be performed if the hash table is empty. This
+ ** is because the hash table only supports a single scan query at
+ ** a time, and the multi-iter loop from which this function is called
+ ** is already performing such a scan. */
+ if( p->nPendingData==0 ){
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ if( iIdx>0 && rc==SQLITE_OK ){
+ int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
+ ck2 = 0;
+ rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
+ if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ cksum3 ^= ck1;
+ fts5BufferSet(&rc, pPrev, n, (const u8*)z);
+
+ if( rc==SQLITE_OK && cksum3!=expected ){
+ rc = FTS5_CORRUPT;
+ }
+ *pCksum = cksum3;
+ }
+ p->rc = rc;
+}
+
+#else
+# define fts5TestDlidxReverse(x,y,z)
+# define fts5TestTerm(u,v,w,x,y,z)
+#endif
+
+/*
+** Check that:
+**
+** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
+** contain zero terms.
+** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
+** contain zero rowids.
+*/
+static void fts5IndexIntegrityCheckEmpty(
+ Fts5Index *p,
+ Fts5StructureSegment *pSeg, /* Segment to check internal consistency */
+ int iFirst,
+ int iNoRowid,
+ int iLast
+){
+ int i;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){
+ Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, i));
+ if( pLeaf ){
+ if( !fts5LeafIsTermless(pLeaf) ) p->rc = FTS5_CORRUPT;
+ if( i>=iNoRowid && 0!=fts5LeafFirstRowidOff(pLeaf) ) p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+}
+
+static void fts5IntegrityCheckPgidx(Fts5Index *p, Fts5Data *pLeaf){
+ int iTermOff = 0;
+ int ii;
+
+ Fts5Buffer buf1 = {0,0,0};
+ Fts5Buffer buf2 = {0,0,0};
+
+ ii = pLeaf->szLeaf;
+ while( ii<pLeaf->nn && p->rc==SQLITE_OK ){
+ int res;
+ int iOff;
+ int nIncr;
+
+ ii += fts5GetVarint32(&pLeaf->p[ii], nIncr);
+ iTermOff += nIncr;
+ iOff = iTermOff;
+
+ if( iOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else if( iTermOff==nIncr ){
+ int nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5BufferSet(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+ }else{
+ int nKeep, nByte;
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nKeep);
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
+ if( nKeep>buf1.n || (iOff+nByte)>pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ buf1.n = nKeep;
+ fts5BufferAppendBlob(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
+ }
+
+ if( p->rc==SQLITE_OK ){
+ res = fts5BufferCompare(&buf1, &buf2);
+ if( res<=0 ) p->rc = FTS5_CORRUPT;
+ }
+ }
+ fts5BufferSet(&p->rc, &buf2, buf1.n, buf1.p);
+ }
+
+ fts5BufferFree(&buf1);
+ fts5BufferFree(&buf2);
+}
+
+static void fts5IndexIntegrityCheckSegment(
+ Fts5Index *p, /* FTS5 backend object */
+ Fts5StructureSegment *pSeg /* Segment to check internal consistency */
+){
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pStmt = 0;
+ int rc2;
+ int iIdxPrevLeaf = pSeg->pgnoFirst-1;
+ int iDlidxPrevLeaf = pSeg->pgnoLast;
+
+ if( pSeg->pgnoFirst==0 ) return;
+
+ fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf(
+ "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d",
+ pConfig->zDb, pConfig->zName, pSeg->iSegid
+ ));
+
+ /* Iterate through the b-tree hierarchy. */
+ while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
+ i64 iRow; /* Rowid for this leaf */
+ Fts5Data *pLeaf; /* Data for this leaf */
+
+ int nIdxTerm = sqlite3_column_bytes(pStmt, 1);
+ const char *zIdxTerm = (const char*)sqlite3_column_text(pStmt, 1);
+ int iIdxLeaf = sqlite3_column_int(pStmt, 2);
+ int bIdxDlidx = sqlite3_column_int(pStmt, 3);
+
+ /* If the leaf in question has already been trimmed from the segment,
+ ** ignore this b-tree entry. Otherwise, load it into memory. */
+ if( iIdxLeaf<pSeg->pgnoFirst ) continue;
+ iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, iIdxLeaf);
+ pLeaf = fts5DataRead(p, iRow);
+ if( pLeaf==0 ) break;
+
+ /* Check that the leaf contains at least one term, and that it is equal
+ ** to or larger than the split-key in zIdxTerm. Also check that if there
+ ** is also a rowid pointer within the leaf page header, it points to a
+ ** location before the term. */
+ if( pLeaf->nn<=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ int iOff; /* Offset of first term on leaf */
+ int iRowidOff; /* Offset of first rowid on leaf */
+ int nTerm; /* Size of term on leaf in bytes */
+ int res; /* Comparison of term and split-key */
+
+ iOff = fts5LeafFirstTermOff(pLeaf);
+ iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ if( iRowidOff>=iOff ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
+ res = memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm));
+ if( res==0 ) res = nTerm - nIdxTerm;
+ if( res<0 ) p->rc = FTS5_CORRUPT;
+ }
+
+ fts5IntegrityCheckPgidx(p, pLeaf);
+ }
+ fts5DataRelease(pLeaf);
+ if( p->rc ) break;
+
+ /* Now check that the iter.nEmpty leaves following the current leaf
+ ** (a) exist and (b) contain no terms. */
+ fts5IndexIntegrityCheckEmpty(
+ p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1
+ );
+ if( p->rc ) break;
+
+ /* If there is a doclist-index, check that it looks right. */
+ if( bIdxDlidx ){
+ Fts5DlidxIter *pDlidx = 0; /* For iterating through doclist index */
+ int iPrevLeaf = iIdxLeaf;
+ int iSegid = pSeg->iSegid;
+ int iPg = 0;
+ i64 iKey;
+
+ for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf);
+ fts5DlidxIterEof(p, pDlidx)==0;
+ fts5DlidxIterNext(p, pDlidx)
+ ){
+
+ /* Check any rowid-less pages that occur before the current leaf. */
+ for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPg);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ if( fts5LeafFirstRowidOff(pLeaf)!=0 ) p->rc = FTS5_CORRUPT;
+ fts5DataRelease(pLeaf);
+ }
+ }
+ iPrevLeaf = fts5DlidxIterPgno(pDlidx);
+
+ /* Check that the leaf page indicated by the iterator really does
+ ** contain the rowid suggested by the same. */
+ iKey = FTS5_SEGMENT_ROWID(iSegid, iPrevLeaf);
+ pLeaf = fts5DataRead(p, iKey);
+ if( pLeaf ){
+ i64 iRowid;
+ int iRowidOff = fts5LeafFirstRowidOff(pLeaf);
+ ASSERT_SZLEAF_OK(pLeaf);
+ if( iRowidOff>=pLeaf->szLeaf ){
+ p->rc = FTS5_CORRUPT;
+ }else{
+ fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
+ if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT;
+ }
+ fts5DataRelease(pLeaf);
+ }
+ }
+
+ iDlidxPrevLeaf = iPg;
+ fts5DlidxIterFree(pDlidx);
+ fts5TestDlidxReverse(p, iSegid, iIdxLeaf);
+ }else{
+ iDlidxPrevLeaf = pSeg->pgnoLast;
+ /* TODO: Check there is no doclist index */
+ }
+
+ iIdxPrevLeaf = iIdxLeaf;
+ }
+
+ rc2 = sqlite3_finalize(pStmt);
+ if( p->rc==SQLITE_OK ) p->rc = rc2;
+
+ /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
+#if 0
+ if( p->rc==SQLITE_OK && iter.iLeaf!=pSeg->pgnoLast ){
+ p->rc = FTS5_CORRUPT;
+ }
+#endif
+}
+
+
+/*
+** Run internal checks to ensure that the FTS index (a) is internally
+** consistent and (b) contains entries for which the XOR of the checksums
+** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
+**
+** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
+** checksum does not match. Return SQLITE_OK if all checks pass without
+** error, or some other SQLite error code if another error (e.g. OOM)
+** occurs.
+*/
+static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
+ int eDetail = p->pConfig->eDetail;
+ u64 cksum2 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer poslist = {0,0,0}; /* Buffer used to hold a poslist */
+ Fts5Iter *pIter; /* Used to iterate through entire index */
+ Fts5Structure *pStruct; /* Index structure */
+
+#ifdef SQLITE_DEBUG
+ /* Used by extra internal tests only run if NDEBUG is not defined */
+ u64 cksum3 = 0; /* Checksum based on contents of indexes */
+ Fts5Buffer term = {0,0,0}; /* Buffer used to hold most recent term */
+#endif
+ const int flags = FTS5INDEX_QUERY_NOOUTPUT;
+
+ /* Load the FTS index structure */
+ pStruct = fts5StructureRead(p);
+
+ /* Check that the internal nodes of each segment match the leaves */
+ if( pStruct ){
+ int iLvl, iSeg;
+ for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
+ for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pStruct->aLevel[iLvl].aSeg[iSeg];
+ fts5IndexIntegrityCheckSegment(p, pSeg);
+ }
+ }
+ }
+
+ /* The cksum argument passed to this function is a checksum calculated
+ ** based on all expected entries in the FTS index (including prefix index
+ ** entries). This block checks that a checksum calculated based on the
+ ** actual contents of FTS index is identical.
+ **
+ ** Two versions of the same checksum are calculated. The first (stack
+ ** variable cksum2) based on entries extracted from the full-text index
+ ** while doing a linear scan of each individual index in turn.
+ **
+ ** As each term visited by the linear scans, a separate query for the
+ ** same term is performed. cksum3 is calculated based on the entries
+ ** extracted by these queries.
+ */
+ for(fts5MultiIterNew(p, pStruct, flags, 0, 0, 0, -1, 0, &pIter);
+ fts5MultiIterEof(p, pIter)==0;
+ fts5MultiIterNext(p, pIter, 0, 0)
+ ){
+ int n; /* Size of term in bytes */
+ i64 iPos = 0; /* Position read from poslist */
+ int iOff = 0; /* Offset within poslist */
+ i64 iRowid = fts5MultiIterRowid(pIter);
+ char *z = (char*)fts5MultiIterTerm(pIter, &n);
+
+ /* If this is a new term, query for it. Update cksum3 with the results. */
+ fts5TestTerm(p, &term, z, n, cksum2, &cksum3);
+
+ if( eDetail==FTS5_DETAIL_NONE ){
+ if( 0==fts5MultiIterIsEmpty(p, pIter) ){
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, 0, 0, -1, z, n);
+ }
+ }else{
+ poslist.n = 0;
+ fts5SegiterPoslist(p, &pIter->aSeg[pIter->aFirst[1].iFirst], 0, &poslist);
+ while( 0==sqlite3Fts5PoslistNext64(poslist.p, poslist.n, &iOff, &iPos) ){
+ int iCol = FTS5_POS2COLUMN(iPos);
+ int iTokOff = FTS5_POS2OFFSET(iPos);
+ cksum2 ^= sqlite3Fts5IndexEntryCksum(iRowid, iCol, iTokOff, -1, z, n);
+ }
+ }
+ }
+ fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);
+
+ fts5MultiIterFree(pIter);
+ if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;
+
+ fts5StructureRelease(pStruct);
+#ifdef SQLITE_DEBUG
+ fts5BufferFree(&term);
+#endif
+ fts5BufferFree(&poslist);
+ return fts5IndexReturn(p);
+}
+
+/*************************************************************************
+**************************************************************************
+** Below this point is the implementation of the fts5_decode() scalar
+** function only.
+*/
+
+/*
+** Decode a segment-data rowid from the %_data table. This function is
+** the opposite of macro FTS5_SEGMENT_ROWID().
+*/
+static void fts5DecodeRowid(
+ i64 iRowid, /* Rowid from %_data table */
+ int *piSegid, /* OUT: Segment id */
+ int *pbDlidx, /* OUT: Dlidx flag */
+ int *piHeight, /* OUT: Height */
+ int *piPgno /* OUT: Page number */
+){
+ *piPgno = (int)(iRowid & (((i64)1 << FTS5_DATA_PAGE_B) - 1));
+ iRowid >>= FTS5_DATA_PAGE_B;
+
+ *piHeight = (int)(iRowid & (((i64)1 << FTS5_DATA_HEIGHT_B) - 1));
+ iRowid >>= FTS5_DATA_HEIGHT_B;
+
+ *pbDlidx = (int)(iRowid & 0x0001);
+ iRowid >>= FTS5_DATA_DLI_B;
+
+ *piSegid = (int)(iRowid & (((i64)1 << FTS5_DATA_ID_B) - 1));
+}
+
+static void fts5DebugRowid(int *pRc, Fts5Buffer *pBuf, i64 iKey){
+ int iSegid, iHeight, iPgno, bDlidx; /* Rowid compenents */
+ fts5DecodeRowid(iKey, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ if( iSegid==0 ){
+ if( iKey==FTS5_AVERAGES_ROWID ){
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{averages} ");
+ }else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{structure}");
+ }
+ }
+ else{
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "{%ssegid=%d h=%d pgno=%d}",
+ bDlidx ? "dlidx " : "", iSegid, iHeight, iPgno
+ );
+ }
+}
+
+static void fts5DebugStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ Fts5Structure *p
+){
+ int iLvl, iSeg; /* Iterate through levels, segments */
+
+ for(iLvl=0; iLvl<p->nLevel; iLvl++){
+ Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf,
+ " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
+ );
+ for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
+ Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d}",
+ pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
+ );
+ }
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
+ }
+}
+
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
+** function appends a human-readable representation of the same object
+** to the buffer passed as the second argument.
+*/
+static void fts5DecodeStructure(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int rc; /* Return code */
+ Fts5Structure *p = 0; /* Decoded structure object */
+
+ rc = fts5StructureDecode(pBlob, nBlob, 0, &p);
+ if( rc!=SQLITE_OK ){
+ *pRc = rc;
+ return;
+ }
+
+ fts5DebugStructure(pRc, pBuf, p);
+ fts5StructureRelease(p);
+}
+
+/*
+** This is part of the fts5_decode() debugging aid.
+**
+** Arguments pBlob/nBlob contain an "averages" record. This function
+** appends a human-readable representation of record to the buffer passed
+** as the second argument.
+*/
+static void fts5DecodeAverages(
+ int *pRc, /* IN/OUT: error code */
+ Fts5Buffer *pBuf,
+ const u8 *pBlob, int nBlob
+){
+ int i = 0;
+ const char *zSpace = "";
+
+ while( i<nBlob ){
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pBlob[i], &iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "%s%d", zSpace, (int)iVal);
+ zSpace = " ";
+ }
+}
+
+/*
+** Buffer (a/n) is assumed to contain a list of serialized varints. Read
+** each varint and append its string representation to buffer pBuf. Return
+** after either the input buffer is exhausted or a 0 value is read.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodePoslist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ int iOff = 0;
+ while( iOff<n ){
+ int iVal;
+ iOff += fts5GetVarint32(&a[iOff], iVal);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %d", iVal);
+ }
+ return iOff;
+}
+
+/*
+** The start of buffer (a/n) contains the start of a doclist. The doclist
+** may or may not finish within the buffer. This function appends a text
+** representation of the part of the doclist that is present to buffer
+** pBuf.
+**
+** The return value is the number of bytes read from the input buffer.
+*/
+static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
+ i64 iDocid = 0;
+ int iOff = 0;
+
+ if( n>0 ){
+ iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ while( iOff<n ){
+ int nPos;
+ int bDel;
+ iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDel);
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " nPos=%d%s", nPos, bDel?"*":"");
+ iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
+ if( iOff<n ){
+ i64 iDelta;
+ iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
+ iDocid += iDelta;
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
+ }
+ }
+
+ return iOff;
+}
+
+/*
+** This function is part of the fts5_decode() debugging function. It is
+** only ever used with detail=none tables.
+**
+** Buffer (pData/nData) contains a doclist in the format used by detail=none
+** tables. This function appends a human-readable version of that list to
+** buffer pBuf.
+**
+** If *pRc is other than SQLITE_OK when this function is called, it is a
+** no-op. If an OOM or other error occurs within this function, *pRc is
+** set to an SQLite error code before returning. The final state of buffer
+** pBuf is undefined in this case.
+*/
+static void fts5DecodeRowidList(
+ int *pRc, /* IN/OUT: Error code */
+ Fts5Buffer *pBuf, /* Buffer to append text to */
+ const u8 *pData, int nData /* Data to decode list-of-rowids from */
+){
+ int i = 0;
+ i64 iRowid = 0;
+
+ while( i<nData ){
+ const char *zApp = "";
+ u64 iVal;
+ i += sqlite3Fts5GetVarint(&pData[i], &iVal);
+ iRowid += iVal;
+
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ if( i<nData && pData[i]==0x00 ){
+ i++;
+ zApp = "+";
+ }else{
+ zApp = "*";
+ }
+ }
+
+ sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " %lld%s", iRowid, zApp);
+ }
+}
+
+/*
+** The implementation of user-defined scalar function fts5_decode().
+*/
+static void fts5DecodeFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ i64 iRowid; /* Rowid for record being decoded */
+ int iSegid,iHeight,iPgno,bDlidx;/* Rowid components */
+ const u8 *aBlob; int n; /* Record to decode */
+ u8 *a = 0;
+ Fts5Buffer s; /* Build up text to return here */
+ int rc = SQLITE_OK; /* Return code */
+ int nSpace = 0;
+ int eDetailNone = (sqlite3_user_data(pCtx)!=0);
+
+ assert( nArg==2 );
+ UNUSED_PARAM(nArg);
+ memset(&s, 0, sizeof(Fts5Buffer));
+ iRowid = sqlite3_value_int64(apVal[0]);
+
+ /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
+ ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
+ ** buffer overreads even if the record is corrupt. */
+ n = sqlite3_value_bytes(apVal[1]);
+ aBlob = sqlite3_value_blob(apVal[1]);
+ nSpace = n + FTS5_DATA_ZERO_PADDING;
+ a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
+ if( a==0 ) goto decode_out;
+ memcpy(a, aBlob, n);
+
+
+ fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);
+
+ fts5DebugRowid(&rc, &s, iRowid);
+ if( bDlidx ){
+ Fts5Data dlidx;
+ Fts5DlidxLvl lvl;
+
+ dlidx.p = a;
+ dlidx.nn = n;
+
+ memset(&lvl, 0, sizeof(Fts5DlidxLvl));
+ lvl.pData = &dlidx;
+ lvl.iLeafPgno = iPgno;
+
+ for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
+ sqlite3Fts5BufferAppendPrintf(&rc, &s,
+ " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
+ );
+ }
+ }else if( iSegid==0 ){
+ if( iRowid==FTS5_AVERAGES_ROWID ){
+ fts5DecodeAverages(&rc, &s, a, n);
+ }else{
+ fts5DecodeStructure(&rc, &s, a, n);
+ }
+ }else if( eDetailNone ){
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf;
+ int iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ int iTermOff;
+ int nKeep = 0;
+ int iOff;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ /* Decode any entries that occur before the first term. */
+ if( szLeaf<n ){
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }else{
+ iTermOff = szLeaf;
+ }
+ fts5DecodeRowidList(&rc, &s, &a[4], iTermOff-4);
+
+ iOff = iTermOff;
+ while( iOff<szLeaf ){
+ int nAppend;
+
+ /* Read the term data for the next term*/
+ iOff += fts5GetVarint32(&a[iOff], nAppend);
+ term.n = nKeep;
+ fts5BufferAppendBlob(&rc, &term, nAppend, &a[iOff]);
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += nAppend;
+
+ /* Figure out where the doclist for this term ends */
+ if( iPgidxOff<n ){
+ int nIncr;
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nIncr);
+ iTermOff += nIncr;
+ }else{
+ iTermOff = szLeaf;
+ }
+
+ fts5DecodeRowidList(&rc, &s, &a[iOff], iTermOff-iOff);
+ iOff = iTermOff;
+ if( iOff<szLeaf ){
+ iOff += fts5GetVarint32(&a[iOff], nKeep);
+ }
+ }
+
+ fts5BufferFree(&term);
+ }else{
+ Fts5Buffer term; /* Current term read from page */
+ int szLeaf; /* Offset of pgidx in a[] */
+ int iPgidxOff;
+ int iPgidxPrev = 0; /* Previous value read from pgidx */
+ int iTermOff = 0;
+ int iRowidOff = 0;
+ int iOff;
+ int nDoclist;
+
+ memset(&term, 0, sizeof(Fts5Buffer));
+
+ if( n<4 ){
+ sqlite3Fts5BufferSet(&rc, &s, 7, (const u8*)"corrupt");
+ goto decode_out;
+ }else{
+ iRowidOff = fts5GetU16(&a[0]);
+ iPgidxOff = szLeaf = fts5GetU16(&a[2]);
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], iTermOff);
+ }
+ }
+
+ /* Decode the position list tail at the start of the page */
+ if( iRowidOff!=0 ){
+ iOff = iRowidOff;
+ }else if( iTermOff!=0 ){
+ iOff = iTermOff;
+ }else{
+ iOff = szLeaf;
+ }
+ fts5DecodePoslist(&rc, &s, &a[4], iOff-4);
+
+ /* Decode any more doclist data that appears on the page before the
+ ** first term. */
+ nDoclist = (iTermOff ? iTermOff : szLeaf) - iOff;
+ fts5DecodeDoclist(&rc, &s, &a[iOff], nDoclist);
+
+ while( iPgidxOff<n ){
+ int bFirst = (iPgidxOff==szLeaf); /* True for first term on page */
+ int nByte; /* Bytes of data */
+ int iEnd;
+
+ iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nByte);
+ iPgidxPrev += nByte;
+ iOff = iPgidxPrev;
+
+ if( iPgidxOff<n ){
+ fts5GetVarint32(&a[iPgidxOff], nByte);
+ iEnd = iPgidxPrev + nByte;
+ }else{
+ iEnd = szLeaf;
+ }
+
+ if( bFirst==0 ){
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ term.n = nByte;
+ }
+ iOff += fts5GetVarint32(&a[iOff], nByte);
+ fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
+ iOff += nByte;
+
+ sqlite3Fts5BufferAppendPrintf(
+ &rc, &s, " term=%.*s", term.n, (const char*)term.p
+ );
+ iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], iEnd-iOff);
+ }
+
+ fts5BufferFree(&term);
+ }
+
+ decode_out:
+ sqlite3_free(a);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
+ }else{
+ sqlite3_result_error_code(pCtx, rc);
+ }
+ fts5BufferFree(&s);
+}
+
+/*
+** The implementation of user-defined scalar function fts5_rowid().
+*/
+static void fts5RowidFunction(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args (always 2) */
+ sqlite3_value **apVal /* Function arguments */
+){
+ const char *zArg;
+ if( nArg==0 ){
+ sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
+ }else{
+ zArg = (const char*)sqlite3_value_text(apVal[0]);
+ if( 0==sqlite3_stricmp(zArg, "segment") ){
+ i64 iRowid;
+ int segid, pgno;
+ if( nArg!=3 ){
+ sqlite3_result_error(pCtx,
+ "should be: fts5_rowid('segment', segid, pgno))", -1
+ );
+ }else{
+ segid = sqlite3_value_int(apVal[1]);
+ pgno = sqlite3_value_int(apVal[2]);
+ iRowid = FTS5_SEGMENT_ROWID(segid, pgno);
+ sqlite3_result_int64(pCtx, iRowid);
+ }
+ }else{
+ sqlite3_result_error(pCtx,
+ "first arg to fts5_rowid() must be 'segment'" , -1
+ );
+ }
+ }
+}
+
+/*
+** This is called as part of registering the FTS5 module with database
+** connection db. It registers several user-defined scalar functions useful
+** with FTS5.
+**
+** If successful, SQLITE_OK is returned. If an error occurs, some other
+** SQLite error code is returned instead.
+*/
+static int sqlite3Fts5IndexInit(sqlite3 *db){
+ int rc = sqlite3_create_function(
+ db, "fts5_decode", 2, SQLITE_UTF8, 0, fts5DecodeFunction, 0, 0
+ );
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_decode_none", 2,
+ SQLITE_UTF8, (void*)db, fts5DecodeFunction, 0, 0
+ );
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_rowid", -1, SQLITE_UTF8, 0, fts5RowidFunction, 0, 0
+ );
+ }
+ return rc;
+}
+
+#line 1 "fts5_main.c"
+/*
+** 2014 Jun 09
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite module implementing full-text search.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This variable is set to false when running tests for which the on disk
+** structures should not be corrupt. Otherwise, true. If it is false, extra
+** assert() conditions in the fts5 code are activated - conditions that are
+** only true if it is guaranteed that the fts5 database is not corrupt.
+*/
+int sqlite3_fts5_may_be_corrupt = 1;
+
+
+typedef struct Fts5Auxdata Fts5Auxdata;
+typedef struct Fts5Auxiliary Fts5Auxiliary;
+typedef struct Fts5Cursor Fts5Cursor;
+typedef struct Fts5Sorter Fts5Sorter;
+typedef struct Fts5Table Fts5Table;
+typedef struct Fts5TokenizerModule Fts5TokenizerModule;
+
+/*
+** NOTES ON TRANSACTIONS:
+**
+** SQLite invokes the following virtual table methods as transactions are
+** opened and closed by the user:
+**
+** xBegin(): Start of a new transaction.
+** xSync(): Initial part of two-phase commit.
+** xCommit(): Final part of two-phase commit.
+** xRollback(): Rollback the transaction.
+**
+** Anything that is required as part of a commit that may fail is performed
+** in the xSync() callback. Current versions of SQLite ignore any errors
+** returned by xCommit().
+**
+** And as sub-transactions are opened/closed:
+**
+** xSavepoint(int S): Open savepoint S.
+** xRelease(int S): Commit and close savepoint S.
+** xRollbackTo(int S): Rollback to start of savepoint S.
+**
+** During a write-transaction the fts5_index.c module may cache some data
+** in-memory. It is flushed to disk whenever xSync(), xRelease() or
+** xSavepoint() is called. And discarded whenever xRollback() or xRollbackTo()
+** is called.
+**
+** Additionally, if SQLITE_DEBUG is defined, an instance of the following
+** structure is used to record the current transaction state. This information
+** is not required, but it is used in the assert() statements executed by
+** function fts5CheckTransactionState() (see below).
+*/
+struct Fts5TransactionState {
+ int eState; /* 0==closed, 1==open, 2==synced */
+ int iSavepoint; /* Number of open savepoints (0 -> none) */
+};
+
+/*
+** A single object of this type is allocated when the FTS5 module is
+** registered with a database handle. It is used to store pointers to
+** all registered FTS5 extensions - tokenizers and auxiliary functions.
+*/
+struct Fts5Global {
+ fts5_api api; /* User visible part of object (see fts5.h) */
+ sqlite3 *db; /* Associated database connection */
+ i64 iNextId; /* Used to allocate unique cursor ids */
+ Fts5Auxiliary *pAux; /* First in list of all aux. functions */
+ Fts5TokenizerModule *pTok; /* First in list of all tokenizer modules */
+ Fts5TokenizerModule *pDfltTok; /* Default tokenizer module */
+ Fts5Cursor *pCsr; /* First in list of all open cursors */
+};
+
+/*
+** Each auxiliary function registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pAux list.
+*/
+struct Fts5Auxiliary {
+ Fts5Global *pGlobal; /* Global context for this function */
+ char *zFunc; /* Function name (nul-terminated) */
+ void *pUserData; /* User-data pointer */
+ fts5_extension_function xFunc; /* Callback function */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5Auxiliary *pNext; /* Next registered auxiliary function */
+};
+
+/*
+** Each tokenizer module registered with the FTS5 module is represented
+** by an object of the following type. All such objects are stored as part
+** of the Fts5Global.pTok list.
+*/
+struct Fts5TokenizerModule {
+ char *zName; /* Name of tokenizer */
+ void *pUserData; /* User pointer passed to xCreate() */
+ fts5_tokenizer x; /* Tokenizer functions */
+ void (*xDestroy)(void*); /* Destructor function */
+ Fts5TokenizerModule *pNext; /* Next registered tokenizer module */
+};
+
+/*
+** Virtual-table object.
+*/
+struct Fts5Table {
+ sqlite3_vtab base; /* Base class used by SQLite core */
+ Fts5Config *pConfig; /* Virtual table configuration */
+ Fts5Index *pIndex; /* Full-text index */
+ Fts5Storage *pStorage; /* Document store */
+ Fts5Global *pGlobal; /* Global (connection wide) data */
+ Fts5Cursor *pSortCsr; /* Sort data from this cursor */
+#ifdef SQLITE_DEBUG
+ struct Fts5TransactionState ts;
+#endif
+};
+
+struct Fts5MatchPhrase {
+ Fts5Buffer *pPoslist; /* Pointer to current poslist */
+ int nTerm; /* Size of phrase in terms */
+};
+
+/*
+** pStmt:
+** SELECT rowid, <fts> FROM <fts> ORDER BY +rank;
+**
+** aIdx[]:
+** There is one entry in the aIdx[] array for each phrase in the query,
+** the value of which is the offset within aPoslist[] following the last
+** byte of the position list for the corresponding phrase.
+*/
+struct Fts5Sorter {
+ sqlite3_stmt *pStmt;
+ i64 iRowid; /* Current rowid */
+ const u8 *aPoslist; /* Position lists for current row */
+ int nIdx; /* Number of entries in aIdx[] */
+ int aIdx[1]; /* Offsets into aPoslist for current row */
+};
+
+
+/*
+** Virtual-table cursor object.
+**
+** iSpecial:
+** If this is a 'special' query (refer to function fts5SpecialMatch()),
+** then this variable contains the result of the query.
+**
+** iFirstRowid, iLastRowid:
+** These variables are only used for FTS5_PLAN_MATCH cursors. Assuming the
+** cursor iterates in ascending order of rowids, iFirstRowid is the lower
+** limit of rowids to return, and iLastRowid the upper. In other words, the
+** WHERE clause in the user's query might have been:
+**
+** <tbl> MATCH <expr> AND rowid BETWEEN $iFirstRowid AND $iLastRowid
+**
+** If the cursor iterates in descending order of rowid, iFirstRowid
+** is the upper limit (i.e. the "first" rowid visited) and iLastRowid
+** the lower.
+*/
+struct Fts5Cursor {
+ sqlite3_vtab_cursor base; /* Base class used by SQLite core */
+ Fts5Cursor *pNext; /* Next cursor in Fts5Cursor.pCsr list */
+ int *aColumnSize; /* Values for xColumnSize() */
+ i64 iCsrId; /* Cursor id */
+
+ /* Zero from this point onwards on cursor reset */
+ int ePlan; /* FTS5_PLAN_XXX value */
+ int bDesc; /* True for "ORDER BY rowid DESC" queries */
+ i64 iFirstRowid; /* Return no rowids earlier than this */
+ i64 iLastRowid; /* Return no rowids later than this */
+ sqlite3_stmt *pStmt; /* Statement used to read %_content */
+ Fts5Expr *pExpr; /* Expression for MATCH queries */
+ Fts5Sorter *pSorter; /* Sorter for "ORDER BY rank" queries */
+ int csrflags; /* Mask of cursor flags (see below) */
+ i64 iSpecial; /* Result of special query */
+
+ /* "rank" function. Populated on demand from vtab.xColumn(). */
+ char *zRank; /* Custom rank function */
+ char *zRankArgs; /* Custom rank function args */
+ Fts5Auxiliary *pRank; /* Rank callback (or NULL) */
+ int nRankArg; /* Number of trailing arguments for rank() */
+ sqlite3_value **apRankArg; /* Array of trailing arguments */
+ sqlite3_stmt *pRankArgStmt; /* Origin of objects in apRankArg[] */
+
+ /* Auxiliary data storage */
+ Fts5Auxiliary *pAux; /* Currently executing extension function */
+ Fts5Auxdata *pAuxdata; /* First in linked list of saved aux-data */
+
+ /* Cache used by auxiliary functions xInst() and xInstCount() */
+ Fts5PoslistReader *aInstIter; /* One for each phrase */
+ int nInstAlloc; /* Size of aInst[] array (entries / 3) */
+ int nInstCount; /* Number of phrase instances */
+ int *aInst; /* 3 integers per phrase instance */
+};
+
+/*
+** Bits that make up the "idxNum" parameter passed indirectly by
+** xBestIndex() to xFilter().
+*/
+#define FTS5_BI_MATCH 0x0001 /* <tbl> MATCH ? */
+#define FTS5_BI_RANK 0x0002 /* rank MATCH ? */
+#define FTS5_BI_ROWID_EQ 0x0004 /* rowid == ? */
+#define FTS5_BI_ROWID_LE 0x0008 /* rowid <= ? */
+#define FTS5_BI_ROWID_GE 0x0010 /* rowid >= ? */
+
+#define FTS5_BI_ORDER_RANK 0x0020
+#define FTS5_BI_ORDER_ROWID 0x0040
+#define FTS5_BI_ORDER_DESC 0x0080
+
+/*
+** Values for Fts5Cursor.csrflags
+*/
+#define FTS5CSR_EOF 0x01
+#define FTS5CSR_REQUIRE_CONTENT 0x02
+#define FTS5CSR_REQUIRE_DOCSIZE 0x04
+#define FTS5CSR_REQUIRE_INST 0x08
+#define FTS5CSR_FREE_ZRANK 0x10
+#define FTS5CSR_REQUIRE_RESEEK 0x20
+#define FTS5CSR_REQUIRE_POSLIST 0x40
+
+#define BitFlagAllTest(x,y) (((x) & (y))==(y))
+#define BitFlagTest(x,y) (((x) & (y))!=0)
+
+
+/*
+** Macros to Set(), Clear() and Test() cursor flags.
+*/
+#define CsrFlagSet(pCsr, flag) ((pCsr)->csrflags |= (flag))
+#define CsrFlagClear(pCsr, flag) ((pCsr)->csrflags &= ~(flag))
+#define CsrFlagTest(pCsr, flag) ((pCsr)->csrflags & (flag))
+
+struct Fts5Auxdata {
+ Fts5Auxiliary *pAux; /* Extension to which this belongs */
+ void *pPtr; /* Pointer value */
+ void(*xDelete)(void*); /* Destructor */
+ Fts5Auxdata *pNext; /* Next object in linked list */
+};
+
+#ifdef SQLITE_DEBUG
+#define FTS5_BEGIN 1
+#define FTS5_SYNC 2
+#define FTS5_COMMIT 3
+#define FTS5_ROLLBACK 4
+#define FTS5_SAVEPOINT 5
+#define FTS5_RELEASE 6
+#define FTS5_ROLLBACKTO 7
+static void fts5CheckTransactionState(Fts5Table *p, int op, int iSavepoint){
+ switch( op ){
+ case FTS5_BEGIN:
+ assert( p->ts.eState==0 );
+ p->ts.eState = 1;
+ p->ts.iSavepoint = -1;
+ break;
+
+ case FTS5_SYNC:
+ assert( p->ts.eState==1 );
+ p->ts.eState = 2;
+ break;
+
+ case FTS5_COMMIT:
+ assert( p->ts.eState==2 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_ROLLBACK:
+ assert( p->ts.eState==1 || p->ts.eState==2 || p->ts.eState==0 );
+ p->ts.eState = 0;
+ break;
+
+ case FTS5_SAVEPOINT:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint>p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint;
+ break;
+
+ case FTS5_RELEASE:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint<=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint-1;
+ break;
+
+ case FTS5_ROLLBACKTO:
+ assert( p->ts.eState==1 );
+ assert( iSavepoint>=0 );
+ assert( iSavepoint<=p->ts.iSavepoint );
+ p->ts.iSavepoint = iSavepoint;
+ break;
+ }
+}
+#else
+# define fts5CheckTransactionState(x,y,z)
+#endif
+
+/*
+** Return true if pTab is a contentless table.
+*/
+static int fts5IsContentless(Fts5Table *pTab){
+ return pTab->pConfig->eContent==FTS5_CONTENT_NONE;
+}
+
+/*
+** Delete a virtual table handle allocated by fts5InitVtab().
+*/
+static void fts5FreeVtab(Fts5Table *pTab){
+ if( pTab ){
+ sqlite3Fts5IndexClose(pTab->pIndex);
+ sqlite3Fts5StorageClose(pTab->pStorage);
+ sqlite3Fts5ConfigFree(pTab->pConfig);
+ sqlite3_free(pTab);
+ }
+}
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5DisconnectMethod(sqlite3_vtab *pVtab){
+ fts5FreeVtab((Fts5Table*)pVtab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5DestroyMethod(sqlite3_vtab *pVtab){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ int rc = sqlite3Fts5DropAll(pTab->pConfig);
+ if( rc==SQLITE_OK ){
+ fts5FreeVtab((Fts5Table*)pVtab);
+ }
+ return rc;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5")
+** argv[1] -> database name
+** argv[2] -> table name
+** argv[...] -> "column name" and other module argument fields.
+*/
+static int fts5InitVtab(
+ int bCreate, /* True for xCreate, false for xConnect */
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Hash table containing tokenizers */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pAux;
+ const char **azConfig = (const char**)argv;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5Config *pConfig = 0; /* Results of parsing argc/argv */
+ Fts5Table *pTab = 0; /* New virtual table object */
+
+ /* Allocate the new vtab object and parse the configuration */
+ pTab = (Fts5Table*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Table));
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigParse(pGlobal, db, argc, azConfig, &pConfig, pzErr);
+ assert( (rc==SQLITE_OK && *pzErr==0) || pConfig==0 );
+ }
+ if( rc==SQLITE_OK ){
+ pTab->pConfig = pConfig;
+ pTab->pGlobal = pGlobal;
+ }
+
+ /* Open the index sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexOpen(pConfig, bCreate, &pTab->pIndex, pzErr);
+ }
+
+ /* Open the storage sub-system */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageOpen(
+ pConfig, pTab->pIndex, bCreate, &pTab->pStorage, pzErr
+ );
+ }
+
+ /* Call sqlite3_declare_vtab() */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigDeclareVtab(pConfig);
+ }
+
+ /* Load the initial configuration */
+ if( rc==SQLITE_OK ){
+ assert( pConfig->pzErrmsg==0 );
+ pConfig->pzErrmsg = pzErr;
+ rc = sqlite3Fts5IndexLoadConfig(pTab->pIndex);
+ sqlite3Fts5IndexRollback(pTab->pIndex);
+ pConfig->pzErrmsg = 0;
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5FreeVtab(pTab);
+ pTab = 0;
+ }else if( bCreate ){
+ fts5CheckTransactionState(pTab, FTS5_BEGIN, 0);
+ }
+ *ppVTab = (sqlite3_vtab*)pTab;
+ return rc;
+}
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5InitVtab().
+*/
+static int fts5ConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5CreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** The different query plans.
+*/
+#define FTS5_PLAN_MATCH 1 /* (<tbl> MATCH ?) */
+#define FTS5_PLAN_SOURCE 2 /* A source cursor for SORTED_MATCH */
+#define FTS5_PLAN_SPECIAL 3 /* An internal query */
+#define FTS5_PLAN_SORTED_MATCH 4 /* (<tbl> MATCH ? ORDER BY rank) */
+#define FTS5_PLAN_SCAN 5 /* No usable constraint */
+#define FTS5_PLAN_ROWID 6 /* (rowid = ?) */
+
+/*
+** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
+** extension is currently being used by a version of SQLite too old to
+** support index-info flags. In that case this function is a no-op.
+*/
+static void fts5SetUniqueFlag(sqlite3_index_info *pIdxInfo){
+#if SQLITE_VERSION_NUMBER>=3008012
+#ifndef SQLITE_CORE
+ if( sqlite3_libversion_number()>=3008012 )
+#endif
+ {
+ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
+ }
+#endif
+}
+
+/*
+** Implementation of the xBestIndex method for FTS5 tables. Within the
+** WHERE constraint, it searches for the following:
+**
+** 1. A MATCH constraint against the special column.
+** 2. A MATCH constraint against the "rank" column.
+** 3. An == constraint against the rowid column.
+** 4. A < or <= constraint against the rowid column.
+** 5. A > or >= constraint against the rowid column.
+**
+** Within the ORDER BY, either:
+**
+** 5. ORDER BY rank [ASC|DESC]
+** 6. ORDER BY rowid [ASC|DESC]
+**
+** Costs are assigned as follows:
+**
+** a) If an unusable MATCH operator is present in the WHERE clause, the
+** cost is unconditionally set to 1e50 (a really big number).
+**
+** a) If a MATCH operator is present, the cost depends on the other
+** constraints also present. As follows:
+**
+** * No other constraints: cost=1000.0
+** * One rowid range constraint: cost=750.0
+** * Both rowid range constraints: cost=500.0
+** * An == rowid constraint: cost=100.0
+**
+** b) Otherwise, if there is no MATCH:
+**
+** * No other constraints: cost=1000000.0
+** * One rowid range constraint: cost=750000.0
+** * Both rowid range constraints: cost=250000.0
+** * An == rowid constraint: cost=10.0
+**
+** Costs are not modified by the ORDER BY clause.
+*/
+static int fts5BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
+ Fts5Table *pTab = (Fts5Table*)pVTab;
+ Fts5Config *pConfig = pTab->pConfig;
+ int idxFlags = 0; /* Parameter passed through to xFilter() */
+ int bHasMatch;
+ int iNext;
+ int i;
+
+ struct Constraint {
+ int op; /* Mask against sqlite3_index_constraint.op */
+ int fts5op; /* FTS5 mask for idxFlags */
+ int iCol; /* 0==rowid, 1==tbl, 2==rank */
+ int omit; /* True to omit this if found */
+ int iConsIndex; /* Index in pInfo->aConstraint[] */
+ } aConstraint[] = {
+ {SQLITE_INDEX_CONSTRAINT_MATCH|SQLITE_INDEX_CONSTRAINT_EQ,
+ FTS5_BI_MATCH, 1, 1, -1},
+ {SQLITE_INDEX_CONSTRAINT_MATCH|SQLITE_INDEX_CONSTRAINT_EQ,
+ FTS5_BI_RANK, 2, 1, -1},
+ {SQLITE_INDEX_CONSTRAINT_EQ, FTS5_BI_ROWID_EQ, 0, 0, -1},
+ {SQLITE_INDEX_CONSTRAINT_LT|SQLITE_INDEX_CONSTRAINT_LE,
+ FTS5_BI_ROWID_LE, 0, 0, -1},
+ {SQLITE_INDEX_CONSTRAINT_GT|SQLITE_INDEX_CONSTRAINT_GE,
+ FTS5_BI_ROWID_GE, 0, 0, -1},
+ };
+
+ int aColMap[3];
+ aColMap[0] = -1;
+ aColMap[1] = pConfig->nCol;
+ aColMap[2] = pConfig->nCol+1;
+
+ /* Set idxFlags flags for all WHERE clause terms that will be used. */
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ int j;
+ for(j=0; j<ArraySize(aConstraint); j++){
+ struct Constraint *pC = &aConstraint[j];
+ if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
+ if( p->usable ){
+ pC->iConsIndex = i;
+ idxFlags |= pC->fts5op;
+ }else if( j==0 ){
+ /* As there exists an unusable MATCH constraint this is an
+ ** unusable plan. Set a prohibitively high cost. */
+ pInfo->estimatedCost = 1e50;
+ return SQLITE_OK;
+ }
+ }
+ }
+ }
+
+ /* Set idxFlags flags for the ORDER BY clause */
+ if( pInfo->nOrderBy==1 ){
+ int iSort = pInfo->aOrderBy[0].iColumn;
+ if( iSort==(pConfig->nCol+1) && BitFlagTest(idxFlags, FTS5_BI_MATCH) ){
+ idxFlags |= FTS5_BI_ORDER_RANK;
+ }else if( iSort==-1 ){
+ idxFlags |= FTS5_BI_ORDER_ROWID;
+ }
+ if( BitFlagTest(idxFlags, FTS5_BI_ORDER_RANK|FTS5_BI_ORDER_ROWID) ){
+ pInfo->orderByConsumed = 1;
+ if( pInfo->aOrderBy[0].desc ){
+ idxFlags |= FTS5_BI_ORDER_DESC;
+ }
+ }
+ }
+
+ /* Calculate the estimated cost based on the flags set in idxFlags. */
+ bHasMatch = BitFlagTest(idxFlags, FTS5_BI_MATCH);
+ if( BitFlagTest(idxFlags, FTS5_BI_ROWID_EQ) ){
+ pInfo->estimatedCost = bHasMatch ? 100.0 : 10.0;
+ if( bHasMatch==0 ) fts5SetUniqueFlag(pInfo);
+ }else if( BitFlagAllTest(idxFlags, FTS5_BI_ROWID_LE|FTS5_BI_ROWID_GE) ){
+ pInfo->estimatedCost = bHasMatch ? 500.0 : 250000.0;
+ }else if( BitFlagTest(idxFlags, FTS5_BI_ROWID_LE|FTS5_BI_ROWID_GE) ){
+ pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
+ }else{
+ pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
+ }
+
+ /* Assign argvIndex values to each constraint in use. */
+ iNext = 1;
+ for(i=0; i<ArraySize(aConstraint); i++){
+ struct Constraint *pC = &aConstraint[i];
+ if( pC->iConsIndex>=0 ){
+ pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
+ pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
+ }
+ }
+
+ pInfo->idxNum = idxFlags;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
+ Fts5Table *pTab = (Fts5Table*)pVTab;
+ Fts5Config *pConfig = pTab->pConfig;
+ Fts5Cursor *pCsr; /* New cursor object */
+ int nByte; /* Bytes of space to allocate */
+ int rc = SQLITE_OK; /* Return code */
+
+ nByte = sizeof(Fts5Cursor) + pConfig->nCol * sizeof(int);
+ pCsr = (Fts5Cursor*)sqlite3_malloc(nByte);
+ if( pCsr ){
+ Fts5Global *pGlobal = pTab->pGlobal;
+ memset(pCsr, 0, nByte);
+ pCsr->aColumnSize = (int*)&pCsr[1];
+ pCsr->pNext = pGlobal->pCsr;
+ pGlobal->pCsr = pCsr;
+ pCsr->iCsrId = ++pGlobal->iNextId;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static int fts5StmtType(Fts5Cursor *pCsr){
+ if( pCsr->ePlan==FTS5_PLAN_SCAN ){
+ return (pCsr->bDesc) ? FTS5_STMT_SCAN_DESC : FTS5_STMT_SCAN_ASC;
+ }
+ return FTS5_STMT_LOOKUP;
+}
+
+/*
+** This function is called after the cursor passed as the only argument
+** is moved to point at a different row. It clears all cached data
+** specific to the previous row stored by the cursor object.
+*/
+static void fts5CsrNewrow(Fts5Cursor *pCsr){
+ CsrFlagSet(pCsr,
+ FTS5CSR_REQUIRE_CONTENT
+ | FTS5CSR_REQUIRE_DOCSIZE
+ | FTS5CSR_REQUIRE_INST
+ | FTS5CSR_REQUIRE_POSLIST
+ );
+}
+
+static void fts5FreeCursorComponents(Fts5Cursor *pCsr){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ Fts5Auxdata *pData;
+ Fts5Auxdata *pNext;
+
+ sqlite3_free(pCsr->aInstIter);
+ sqlite3_free(pCsr->aInst);
+ if( pCsr->pStmt ){
+ int eStmt = fts5StmtType(pCsr);
+ sqlite3Fts5StorageStmtRelease(pTab->pStorage, eStmt, pCsr->pStmt);
+ }
+ if( pCsr->pSorter ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ }
+
+ if( pCsr->ePlan!=FTS5_PLAN_SOURCE ){
+ sqlite3Fts5ExprFree(pCsr->pExpr);
+ }
+
+ for(pData=pCsr->pAuxdata; pData; pData=pNext){
+ pNext = pData->pNext;
+ if( pData->xDelete ) pData->xDelete(pData->pPtr);
+ sqlite3_free(pData);
+ }
+
+ sqlite3_finalize(pCsr->pRankArgStmt);
+ sqlite3_free(pCsr->apRankArg);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_FREE_ZRANK) ){
+ sqlite3_free(pCsr->zRank);
+ sqlite3_free(pCsr->zRankArgs);
+ }
+
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan - (u8*)pCsr));
+}
+
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5CloseMethod(sqlite3_vtab_cursor *pCursor){
+ if( pCursor ){
+ Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ Fts5Cursor **pp;
+
+ fts5FreeCursorComponents(pCsr);
+ /* Remove the cursor from the Fts5Global.pCsr list */
+ for(pp=&pTab->pGlobal->pCsr; (*pp)!=pCsr; pp=&(*pp)->pNext);
+ *pp = pCsr->pNext;
+
+ sqlite3_free(pCsr);
+ }
+ return SQLITE_OK;
+}
+
+static int fts5SorterNext(Fts5Cursor *pCsr){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int rc;
+
+ rc = sqlite3_step(pSorter->pStmt);
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ }else if( rc==SQLITE_ROW ){
+ const u8 *a;
+ const u8 *aBlob;
+ int nBlob;
+ int i;
+ int iOff = 0;
+ rc = SQLITE_OK;
+
+ pSorter->iRowid = sqlite3_column_int64(pSorter->pStmt, 0);
+ nBlob = sqlite3_column_bytes(pSorter->pStmt, 1);
+ aBlob = a = sqlite3_column_blob(pSorter->pStmt, 1);
+
+ /* nBlob==0 in detail=none mode. */
+ if( nBlob>0 ){
+ for(i=0; i<(pSorter->nIdx-1); i++){
+ int iVal;
+ a += fts5GetVarint32(a, iVal);
+ iOff += iVal;
+ pSorter->aIdx[i] = iOff;
+ }
+ pSorter->aIdx[i] = &aBlob[nBlob] - a;
+ pSorter->aPoslist = a;
+ }
+
+ fts5CsrNewrow(pCsr);
+ }
+
+ return rc;
+}
+
+
+/*
+** Set the FTS5CSR_REQUIRE_RESEEK flag on all FTS5_PLAN_MATCH cursors
+** open on table pTab.
+*/
+static void fts5TripCursors(Fts5Table *pTab){
+ Fts5Cursor *pCsr;
+ for(pCsr=pTab->pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->ePlan==FTS5_PLAN_MATCH
+ && pCsr->base.pVtab==(sqlite3_vtab*)pTab
+ ){
+ CsrFlagSet(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ }
+ }
+}
+
+/*
+** If the REQUIRE_RESEEK flag is set on the cursor passed as the first
+** argument, close and reopen all Fts5IndexIter iterators that the cursor
+** is using. Then attempt to move the cursor to a rowid equal to or laster
+** (in the cursors sort order - ASC or DESC) than the current rowid.
+**
+** If the new rowid is not equal to the old, set output parameter *pbSkip
+** to 1 before returning. Otherwise, leave it unchanged.
+**
+** Return SQLITE_OK if successful or if no reseek was required, or an
+** error code if an error occurred.
+*/
+static int fts5CursorReseek(Fts5Cursor *pCsr, int *pbSkip){
+ int rc = SQLITE_OK;
+ assert( *pbSkip==0 );
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_RESEEK) ){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ int bDesc = pCsr->bDesc;
+ i64 iRowid = sqlite3Fts5ExprRowid(pCsr->pExpr);
+
+ rc = sqlite3Fts5ExprFirst(pCsr->pExpr, pTab->pIndex, iRowid, bDesc);
+ if( rc==SQLITE_OK && iRowid!=sqlite3Fts5ExprRowid(pCsr->pExpr) ){
+ *pbSkip = 1;
+ }
+
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_RESEEK);
+ fts5CsrNewrow(pCsr);
+ if( sqlite3Fts5ExprEof(pCsr->pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ *pbSkip = 1;
+ }
+ }
+ return rc;
+}
+
+
+/*
+** Advance the cursor to the next row in the table that matches the
+** search criteria.
+**
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
+** even if we reach end-of-file. The fts5EofMethod() will be called
+** subsequently to determine whether or not an EOF was hit.
+*/
+static int fts5NextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc;
+
+ assert( (pCsr->ePlan<3)==
+ (pCsr->ePlan==FTS5_PLAN_MATCH || pCsr->ePlan==FTS5_PLAN_SOURCE)
+ );
+ assert( !CsrFlagTest(pCsr, FTS5CSR_EOF) );
+
+ if( pCsr->ePlan<3 ){
+ int bSkip = 0;
+ if( (rc = fts5CursorReseek(pCsr, &bSkip)) || bSkip ) return rc;
+ rc = sqlite3Fts5ExprNext(pCsr->pExpr, pCsr->iLastRowid);
+ CsrFlagSet(pCsr, sqlite3Fts5ExprEof(pCsr->pExpr));
+ fts5CsrNewrow(pCsr);
+ }else{
+ switch( pCsr->ePlan ){
+ case FTS5_PLAN_SPECIAL: {
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = SQLITE_OK;
+ break;
+ }
+
+ case FTS5_PLAN_SORTED_MATCH: {
+ rc = fts5SorterNext(pCsr);
+ break;
+ }
+
+ default:
+ rc = sqlite3_step(pCsr->pStmt);
+ if( rc!=SQLITE_ROW ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ rc = sqlite3_reset(pCsr->pStmt);
+ }else{
+ rc = SQLITE_OK;
+ }
+ break;
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5PrepareStatement(
+ sqlite3_stmt **ppStmt,
+ Fts5Config *pConfig,
+ const char *zFmt,
+ ...
+){
+ sqlite3_stmt *pRet = 0;
+ int rc;
+ char *zSql;
+ va_list ap;
+
+ va_start(ap, zFmt);
+ zSql = sqlite3_vmprintf(zFmt, ap);
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
+ if( rc!=SQLITE_OK ){
+ *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
+ }
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ *ppStmt = pRet;
+ return rc;
+}
+
+static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
+ Fts5Config *pConfig = pTab->pConfig;
+ Fts5Sorter *pSorter;
+ int nPhrase;
+ int nByte;
+ int rc;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
+ pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
+ if( pSorter==0 ) return SQLITE_NOMEM;
+ memset(pSorter, 0, nByte);
+ pSorter->nIdx = nPhrase;
+
+ /* TODO: It would be better to have some system for reusing statement
+ ** handles here, rather than preparing a new one for each query. But that
+ ** is not possible as SQLite reference counts the virtual table objects.
+ ** And since the statement required here reads from this very virtual
+ ** table, saving it creates a circular reference.
+ **
+ ** If SQLite a built-in statement cache, this wouldn't be a problem. */
+ rc = fts5PrepareStatement(&pSorter->pStmt, pConfig,
+ "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
+ pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
+ (zRankArgs ? ", " : ""),
+ (zRankArgs ? zRankArgs : ""),
+ bDesc ? "DESC" : "ASC"
+ );
+
+ pCsr->pSorter = pSorter;
+ if( rc==SQLITE_OK ){
+ assert( pTab->pSortCsr==0 );
+ pTab->pSortCsr = pCsr;
+ rc = fts5SorterNext(pCsr);
+ pTab->pSortCsr = 0;
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3_finalize(pSorter->pStmt);
+ sqlite3_free(pSorter);
+ pCsr->pSorter = 0;
+ }
+
+ return rc;
+}
+
+static int fts5CursorFirst(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
+ int rc;
+ Fts5Expr *pExpr = pCsr->pExpr;
+ rc = sqlite3Fts5ExprFirst(pExpr, pTab->pIndex, pCsr->iFirstRowid, bDesc);
+ if( sqlite3Fts5ExprEof(pExpr) ){
+ CsrFlagSet(pCsr, FTS5CSR_EOF);
+ }
+ fts5CsrNewrow(pCsr);
+ return rc;
+}
+
+/*
+** Process a "special" query. A special query is identified as one with a
+** MATCH expression that begins with a '*' character. The remainder of
+** the text passed to the MATCH operator are used as the special query
+** parameters.
+*/
+static int fts5SpecialMatch(
+ Fts5Table *pTab,
+ Fts5Cursor *pCsr,
+ const char *zQuery
+){
+ int rc = SQLITE_OK; /* Return code */
+ const char *z = zQuery; /* Special query text */
+ int n; /* Number of bytes in text at z */
+
+ while( z[0]==' ' ) z++;
+ for(n=0; z[n] && z[n]!=' '; n++);
+
+ assert( pTab->base.zErrMsg==0 );
+ pCsr->ePlan = FTS5_PLAN_SPECIAL;
+
+ if( 0==sqlite3_strnicmp("reads", z, n) ){
+ pCsr->iSpecial = sqlite3Fts5IndexReads(pTab->pIndex);
+ }
+ else if( 0==sqlite3_strnicmp("id", z, n) ){
+ pCsr->iSpecial = pCsr->iCsrId;
+ }
+ else{
+ /* An unrecognized directive. Return an error message. */
+ pTab->base.zErrMsg = sqlite3_mprintf("unknown special query: %.*s", n, z);
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+/*
+** Search for an auxiliary function named zName that can be used with table
+** pTab. If one is found, return a pointer to the corresponding Fts5Auxiliary
+** structure. Otherwise, if no such function exists, return NULL.
+*/
+static Fts5Auxiliary *fts5FindAuxiliary(Fts5Table *pTab, const char *zName){
+ Fts5Auxiliary *pAux;
+
+ for(pAux=pTab->pGlobal->pAux; pAux; pAux=pAux->pNext){
+ if( sqlite3_stricmp(zName, pAux->zFunc)==0 ) return pAux;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+
+static int fts5FindRankFunction(Fts5Cursor *pCsr){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->pConfig;
+ int rc = SQLITE_OK;
+ Fts5Auxiliary *pAux = 0;
+ const char *zRank = pCsr->zRank;
+ const char *zRankArgs = pCsr->zRankArgs;
+
+ if( zRankArgs ){
+ char *zSql = sqlite3Fts5Mprintf(&rc, "SELECT %s", zRankArgs);
+ if( zSql ){
+ sqlite3_stmt *pStmt = 0;
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pStmt, 0);
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pCsr->pRankArgStmt==0 );
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){
+ int nByte;
+ pCsr->nRankArg = sqlite3_column_count(pStmt);
+ nByte = sizeof(sqlite3_value*)*pCsr->nRankArg;
+ pCsr->apRankArg = (sqlite3_value**)sqlite3Fts5MallocZero(&rc, nByte);
+ if( rc==SQLITE_OK ){
+ int i;
+ for(i=0; i<pCsr->nRankArg; i++){
+ pCsr->apRankArg[i] = sqlite3_column_value(pStmt, i);
+ }
+ }
+ pCsr->pRankArgStmt = pStmt;
+ }else{
+ rc = sqlite3_finalize(pStmt);
+ assert( rc!=SQLITE_OK );
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ pAux = fts5FindAuxiliary(pTab, zRank);
+ if( pAux==0 ){
+ assert( pTab->base.zErrMsg==0 );
+ pTab->base.zErrMsg = sqlite3_mprintf("no such function: %s", zRank);
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ pCsr->pRank = pAux;
+ return rc;
+}
+
+
+static int fts5CursorParseRank(
+ Fts5Config *pConfig,
+ Fts5Cursor *pCsr,
+ sqlite3_value *pRank
+){
+ int rc = SQLITE_OK;
+ if( pRank ){
+ const char *z = (const char*)sqlite3_value_text(pRank);
+ char *zRank = 0;
+ char *zRankArgs = 0;
+
+ if( z==0 ){
+ if( sqlite3_value_type(pRank)==SQLITE_NULL ) rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5ConfigParseRank(z, &zRank, &zRankArgs);
+ }
+ if( rc==SQLITE_OK ){
+ pCsr->zRank = zRank;
+ pCsr->zRankArgs = zRankArgs;
+ CsrFlagSet(pCsr, FTS5CSR_FREE_ZRANK);
+ }else if( rc==SQLITE_ERROR ){
+ pCsr->base.pVtab->zErrMsg = sqlite3_mprintf(
+ "parse error in rank function: %s", z
+ );
+ }
+ }else{
+ if( pConfig->zRank ){
+ pCsr->zRank = (char*)pConfig->zRank;
+ pCsr->zRankArgs = (char*)pConfig->zRankArgs;
+ }else{
+ pCsr->zRank = (char*)FTS5_DEFAULT_RANK;
+ pCsr->zRankArgs = 0;
+ }
+ }
+ return rc;
+}
+
+static i64 fts5GetRowidLimit(sqlite3_value *pVal, i64 iDefault){
+ if( pVal ){
+ int eType = sqlite3_value_numeric_type(pVal);
+ if( eType==SQLITE_INTEGER ){
+ return sqlite3_value_int64(pVal);
+ }
+ }
+ return iDefault;
+}
+
+/*
+** This is the xFilter interface for the virtual table. See
+** the virtual table xFilter method documentation for additional
+** information.
+**
+** There are three possible query strategies:
+**
+** 1. Full-text search using a MATCH operator.
+** 2. A by-rowid lookup.
+** 3. A full-table scan.
+*/
+static int fts5FilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *zUnused, /* Unused */
+ int nVal, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK; /* Error code */
+ int iVal = 0; /* Counter for apVal[] */
+ int bDesc; /* True if ORDER BY [rank|rowid] DESC */
+ int bOrderByRank; /* True if ORDER BY rank */
+ sqlite3_value *pMatch = 0; /* <tbl> MATCH ? expression (or NULL) */
+ sqlite3_value *pRank = 0; /* rank MATCH ? expression (or NULL) */
+ sqlite3_value *pRowidEq = 0; /* rowid = ? expression (or NULL) */
+ sqlite3_value *pRowidLe = 0; /* rowid <= ? expression (or NULL) */
+ sqlite3_value *pRowidGe = 0; /* rowid >= ? expression (or NULL) */
+ char **pzErrmsg = pConfig->pzErrmsg;
+
+ UNUSED_PARAM(zUnused);
+ UNUSED_PARAM(nVal);
+
+ if( pCsr->ePlan ){
+ fts5FreeCursorComponents(pCsr);
+ memset(&pCsr->ePlan, 0, sizeof(Fts5Cursor) - ((u8*)&pCsr->ePlan-(u8*)pCsr));
+ }
+
+ assert( pCsr->pStmt==0 );
+ assert( pCsr->pExpr==0 );
+ assert( pCsr->csrflags==0 );
+ assert( pCsr->pRank==0 );
+ assert( pCsr->zRank==0 );
+ assert( pCsr->zRankArgs==0 );
+
+ assert( pzErrmsg==0 || pzErrmsg==&pTab->base.zErrMsg );
+ pConfig->pzErrmsg = &pTab->base.zErrMsg;
+
+ /* Decode the arguments passed through to this function.
+ **
+ ** Note: The following set of if(...) statements must be in the same
+ ** order as the corresponding entries in the struct at the top of
+ ** fts5BestIndexMethod(). */
+ if( BitFlagTest(idxNum, FTS5_BI_MATCH) ) pMatch = apVal[iVal++];
+ if( BitFlagTest(idxNum, FTS5_BI_RANK) ) pRank = apVal[iVal++];
+ if( BitFlagTest(idxNum, FTS5_BI_ROWID_EQ) ) pRowidEq = apVal[iVal++];
+ if( BitFlagTest(idxNum, FTS5_BI_ROWID_LE) ) pRowidLe = apVal[iVal++];
+ if( BitFlagTest(idxNum, FTS5_BI_ROWID_GE) ) pRowidGe = apVal[iVal++];
+ assert( iVal==nVal );
+ bOrderByRank = ((idxNum & FTS5_BI_ORDER_RANK) ? 1 : 0);
+ pCsr->bDesc = bDesc = ((idxNum & FTS5_BI_ORDER_DESC) ? 1 : 0);
+
+ /* Set the cursor upper and lower rowid limits. Only some strategies
+ ** actually use them. This is ok, as the xBestIndex() method leaves the
+ ** sqlite3_index_constraint.omit flag clear for range constraints
+ ** on the rowid field. */
+ if( pRowidEq ){
+ pRowidLe = pRowidGe = pRowidEq;
+ }
+ if( bDesc ){
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }else{
+ pCsr->iLastRowid = fts5GetRowidLimit(pRowidLe, LARGEST_INT64);
+ pCsr->iFirstRowid = fts5GetRowidLimit(pRowidGe, SMALLEST_INT64);
+ }
+
+ if( pTab->pSortCsr ){
+ /* If pSortCsr is non-NULL, then this call is being made as part of
+ ** processing for a "... MATCH <expr> ORDER BY rank" query (ePlan is
+ ** set to FTS5_PLAN_SORTED_MATCH). pSortCsr is the cursor that will
+ ** return results to the user for this query. The current cursor
+ ** (pCursor) is used to execute the query issued by function
+ ** fts5CursorFirstSorted() above. */
+ assert( pRowidEq==0 && pRowidLe==0 && pRowidGe==0 && pRank==0 );
+ assert( nVal==0 && pMatch==0 && bOrderByRank==0 && bDesc==0 );
+ assert( pCsr->iLastRowid==LARGEST_INT64 );
+ assert( pCsr->iFirstRowid==SMALLEST_INT64 );
+ pCsr->ePlan = FTS5_PLAN_SOURCE;
+ pCsr->pExpr = pTab->pSortCsr->pExpr;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ sqlite3Fts5ExprClearEof(pCsr->pExpr);
+ }else if( pMatch ){
+ const char *zExpr = (const char*)sqlite3_value_text(apVal[0]);
+ if( zExpr==0 ) zExpr = "";
+
+ rc = fts5CursorParseRank(pConfig, pCsr, pRank);
+ if( rc==SQLITE_OK ){
+ if( zExpr[0]=='*' ){
+ /* The user has issued a query of the form "MATCH '*...'". This
+ ** indicates that the MATCH expression is not a full text query,
+ ** but a request for an internal parameter. */
+ rc = fts5SpecialMatch(pTab, pCsr, &zExpr[1]);
+ }else{
+ char **pzErr = &pTab->base.zErrMsg;
+ rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pCsr->pExpr, pzErr);
+ if( rc==SQLITE_OK ){
+ if( bOrderByRank ){
+ pCsr->ePlan = FTS5_PLAN_SORTED_MATCH;
+ rc = fts5CursorFirstSorted(pTab, pCsr, bDesc);
+ }else{
+ pCsr->ePlan = FTS5_PLAN_MATCH;
+ rc = fts5CursorFirst(pTab, pCsr, bDesc);
+ }
+ }
+ }
+ }
+ }else if( pConfig->zContent==0 ){
+ *pConfig->pzErrmsg = sqlite3_mprintf(
+ "%s: table does not support scanning", pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ /* This is either a full-table scan (ePlan==FTS5_PLAN_SCAN) or a lookup
+ ** by rowid (ePlan==FTS5_PLAN_ROWID). */
+ pCsr->ePlan = (pRowidEq ? FTS5_PLAN_ROWID : FTS5_PLAN_SCAN);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, fts5StmtType(pCsr), &pCsr->pStmt, &pTab->base.zErrMsg
+ );
+ if( rc==SQLITE_OK ){
+ if( pCsr->ePlan==FTS5_PLAN_ROWID ){
+ sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
+ }else{
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iFirstRowid);
+ sqlite3_bind_int64(pCsr->pStmt, 2, pCsr->iLastRowid);
+ }
+ rc = fts5NextMethod(pCursor);
+ }
+ }
+
+ pConfig->pzErrmsg = pzErrmsg;
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5EofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ return (CsrFlagTest(pCsr, FTS5CSR_EOF) ? 1 : 0);
+}
+
+/*
+** Return the rowid that the cursor currently points to.
+*/
+static i64 fts5CursorRowid(Fts5Cursor *pCsr){
+ assert( pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SOURCE
+ );
+ if( pCsr->pSorter ){
+ return pCsr->pSorter->iRowid;
+ }else{
+ return sqlite3Fts5ExprRowid(pCsr->pExpr);
+ }
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. fts5
+** exposes %_content.rowid as the rowid for the virtual table. The
+** rowid should be written to *pRowid.
+*/
+static int fts5RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int ePlan = pCsr->ePlan;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+ switch( ePlan ){
+ case FTS5_PLAN_SPECIAL:
+ *pRowid = 0;
+ break;
+
+ case FTS5_PLAN_SOURCE:
+ case FTS5_PLAN_MATCH:
+ case FTS5_PLAN_SORTED_MATCH:
+ *pRowid = fts5CursorRowid(pCsr);
+ break;
+
+ default:
+ *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
+ break;
+ }
+
+ return SQLITE_OK;
+}
+
+/*
+** If the cursor requires seeking (bSeekRequired flag is set), seek it.
+** Return SQLITE_OK if no error occurs, or an SQLite error code otherwise.
+**
+** If argument bErrormsg is true and an error occurs, an error message may
+** be left in sqlite3_vtab.zErrMsg.
+*/
+static int fts5SeekCursor(Fts5Cursor *pCsr, int bErrormsg){
+ int rc = SQLITE_OK;
+
+ /* If the cursor does not yet have a statement handle, obtain one now. */
+ if( pCsr->pStmt==0 ){
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ int eStmt = fts5StmtType(pCsr);
+ rc = sqlite3Fts5StorageStmt(
+ pTab->pStorage, eStmt, &pCsr->pStmt, (bErrormsg?&pTab->base.zErrMsg:0)
+ );
+ assert( rc!=SQLITE_OK || pTab->base.zErrMsg==0 );
+ assert( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) );
+ }
+
+ if( rc==SQLITE_OK && CsrFlagTest(pCsr, FTS5CSR_REQUIRE_CONTENT) ){
+ assert( pCsr->pExpr );
+ sqlite3_reset(pCsr->pStmt);
+ sqlite3_bind_int64(pCsr->pStmt, 1, fts5CursorRowid(pCsr));
+ rc = sqlite3_step(pCsr->pStmt);
+ if( rc==SQLITE_ROW ){
+ rc = SQLITE_OK;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_CONTENT);
+ }else{
+ rc = sqlite3_reset(pCsr->pStmt);
+ if( rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+ }
+ return rc;
+}
+
+static void fts5SetVtabError(Fts5Table *p, const char *zFormat, ...){
+ va_list ap; /* ... printf arguments */
+ va_start(ap, zFormat);
+ assert( p->base.zErrMsg==0 );
+ p->base.zErrMsg = sqlite3_vmprintf(zFormat, ap);
+ va_end(ap);
+}
+
+/*
+** This function is called to handle an FTS INSERT command. In other words,
+** an INSERT statement of the form:
+**
+** INSERT INTO fts(fts) VALUES($pCmd)
+** INSERT INTO fts(fts, rank) VALUES($pCmd, $pVal)
+**
+** Argument pVal is the value assigned to column "fts" by the INSERT
+** statement. This function returns SQLITE_OK if successful, or an SQLite
+** error code if an error occurs.
+**
+** The commands implemented by this function are documented in the "Special
+** INSERT Directives" section of the documentation. It should be updated if
+** more commands are added to this function.
+*/
+static int fts5SpecialInsert(
+ Fts5Table *pTab, /* Fts5 table object */
+ const char *zCmd, /* Text inserted into table-name column */
+ sqlite3_value *pVal /* Value inserted into rank column */
+){
+ Fts5Config *pConfig = pTab->pConfig;
+ int rc = SQLITE_OK;
+ int bError = 0;
+
+ if( 0==sqlite3_stricmp("delete-all", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5SetVtabError(pTab,
+ "'delete-all' may only be used with a "
+ "contentless or external content fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageDeleteAll(pTab->pStorage);
+ }
+ }else if( 0==sqlite3_stricmp("rebuild", zCmd) ){
+ if( pConfig->eContent==FTS5_CONTENT_NONE ){
+ fts5SetVtabError(pTab,
+ "'rebuild' may not be used with a contentless fts5 table"
+ );
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageRebuild(pTab->pStorage);
+ }
+ }else if( 0==sqlite3_stricmp("optimize", zCmd) ){
+ rc = sqlite3Fts5StorageOptimize(pTab->pStorage);
+ }else if( 0==sqlite3_stricmp("merge", zCmd) ){
+ int nMerge = sqlite3_value_int(pVal);
+ rc = sqlite3Fts5StorageMerge(pTab->pStorage, nMerge);
+ }else if( 0==sqlite3_stricmp("integrity-check", zCmd) ){
+ rc = sqlite3Fts5StorageIntegrity(pTab->pStorage);
+#ifdef SQLITE_DEBUG
+ }else if( 0==sqlite3_stricmp("prefix-index", zCmd) ){
+ pConfig->bPrefixIndex = sqlite3_value_int(pVal);
+#endif
+ }else{
+ rc = sqlite3Fts5IndexLoadConfig(pTab->pIndex);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ConfigSetValue(pTab->pConfig, zCmd, pVal, &bError);
+ }
+ if( rc==SQLITE_OK ){
+ if( bError ){
+ rc = SQLITE_ERROR;
+ }else{
+ rc = sqlite3Fts5StorageConfigValue(pTab->pStorage, zCmd, pVal, 0);
+ }
+ }
+ }
+ return rc;
+}
+
+static int fts5SpecialDelete(
+ Fts5Table *pTab,
+ sqlite3_value **apVal
+){
+ int rc = SQLITE_OK;
+ int eType1 = sqlite3_value_type(apVal[1]);
+ if( eType1==SQLITE_INTEGER ){
+ sqlite3_int64 iDel = sqlite3_value_int64(apVal[1]);
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, &apVal[2]);
+ }
+ return rc;
+}
+
+static void fts5StorageInsert(
+ int *pRc,
+ Fts5Table *pTab,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ int rc = *pRc;
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, piRowid);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *piRowid);
+ }
+ *pRc = rc;
+}
+
+/*
+** This function is the implementation of the xUpdate callback used by
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
+** inserted, updated or deleted.
+**
+** A delete specifies a single argument - the rowid of the row to remove.
+**
+** Update and insert operations pass:
+**
+** 1. The "old" rowid, or NULL.
+** 2. The "new" rowid.
+** 3. Values for each of the nCol matchable columns.
+** 4. Values for the two hidden columns (<tablename> and "rank").
+*/
+static int fts5UpdateMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nArg, /* Size of argument array */
+ sqlite3_value **apVal, /* Array of arguments */
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
+){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ Fts5Config *pConfig = pTab->pConfig;
+ int eType0; /* value_type() of apVal[0] */
+ int rc = SQLITE_OK; /* Return code */
+
+ /* A transaction must be open when this is called. */
+ assert( pTab->ts.eState==1 );
+
+ assert( pVtab->zErrMsg==0 );
+ assert( nArg==1 || nArg==(2+pConfig->nCol+2) );
+ assert( nArg==1
+ || sqlite3_value_type(apVal[1])==SQLITE_INTEGER
+ || sqlite3_value_type(apVal[1])==SQLITE_NULL
+ );
+ assert( pTab->pConfig->pzErrmsg==0 );
+ pTab->pConfig->pzErrmsg = &pTab->base.zErrMsg;
+
+ /* Put any active cursors into REQUIRE_SEEK state. */
+ fts5TripCursors(pTab);
+
+ eType0 = sqlite3_value_type(apVal[0]);
+ if( eType0==SQLITE_NULL
+ && sqlite3_value_type(apVal[2+pConfig->nCol])!=SQLITE_NULL
+ ){
+ /* A "special" INSERT op. These are handled separately. */
+ const char *z = (const char*)sqlite3_value_text(apVal[2+pConfig->nCol]);
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL
+ && 0==sqlite3_stricmp("delete", z)
+ ){
+ rc = fts5SpecialDelete(pTab, apVal);
+ }else{
+ rc = fts5SpecialInsert(pTab, z, apVal[2 + pConfig->nCol + 1]);
+ }
+ }else{
+ /* A regular INSERT, UPDATE or DELETE statement. The trick here is that
+ ** any conflict on the rowid value must be detected before any
+ ** modifications are made to the database file. There are 4 cases:
+ **
+ ** 1) DELETE
+ ** 2) UPDATE (rowid not modified)
+ ** 3) UPDATE (rowid modified)
+ ** 4) INSERT
+ **
+ ** Cases 3 and 4 may violate the rowid constraint.
+ */
+ int eConflict = SQLITE_ABORT;
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ eConflict = sqlite3_vtab_on_conflict(pConfig->db);
+ }
+
+ assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
+ assert( nArg!=1 || eType0==SQLITE_INTEGER );
+
+ /* Filter out attempts to run UPDATE or DELETE on contentless tables.
+ ** This is not suported. */
+ if( eType0==SQLITE_INTEGER && fts5IsContentless(pTab) ){
+ pTab->base.zErrMsg = sqlite3_mprintf(
+ "cannot %s contentless fts5 table: %s",
+ (nArg>1 ? "UPDATE" : "DELETE from"), pConfig->zName
+ );
+ rc = SQLITE_ERROR;
+ }
+
+ /* Case 1: DELETE */
+ else if( nArg==1 ){
+ i64 iDel = sqlite3_value_int64(apVal[0]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iDel, 0);
+ }
+
+ /* Case 2: INSERT */
+ else if( eType0!=SQLITE_INTEGER ){
+ /* If this is a REPLACE, first remove the current entry (if any) */
+ if( eConflict==SQLITE_REPLACE
+ && sqlite3_value_type(apVal[1])==SQLITE_INTEGER
+ ){
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* Rowid to delete */
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+
+ /* Case 2: UPDATE */
+ else{
+ i64 iOld = sqlite3_value_int64(apVal[0]); /* Old rowid */
+ i64 iNew = sqlite3_value_int64(apVal[1]); /* New rowid */
+ if( iOld!=iNew ){
+ if( eConflict==SQLITE_REPLACE ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iNew, 0);
+ }
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }else{
+ rc = sqlite3Fts5StorageContentInsert(pTab->pStorage, apVal, pRowid);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageIndexInsert(pTab->pStorage, apVal, *pRowid);
+ }
+ }
+ }else{
+ rc = sqlite3Fts5StorageDelete(pTab->pStorage, iOld, 0);
+ fts5StorageInsert(&rc, pTab, apVal, pRowid);
+ }
+ }
+ }
+
+ pTab->pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xSync() method.
+*/
+static int fts5SyncMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_SYNC, 0);
+ pTab->pConfig->pzErrmsg = &pTab->base.zErrMsg;
+ fts5TripCursors(pTab);
+ rc = sqlite3Fts5StorageSync(pTab->pStorage, 1);
+ pTab->pConfig->pzErrmsg = 0;
+ return rc;
+}
+
+/*
+** Implementation of xBegin() method.
+*/
+static int fts5BeginMethod(sqlite3_vtab *pVtab){
+ UNUSED_PARAM(pVtab); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_BEGIN, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xCommit() method. This is a no-op. The contents of
+** the pending-terms hash-table have already been flushed into the database
+** by fts5SyncMethod().
+*/
+static int fts5CommitMethod(sqlite3_vtab *pVtab){
+ UNUSED_PARAM(pVtab); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState((Fts5Table*)pVtab, FTS5_COMMIT, 0);
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xRollback(). Discard the contents of the pending-terms
+** hash-table. Any changes made to the database are reverted by SQLite.
+*/
+static int fts5RollbackMethod(sqlite3_vtab *pVtab){
+ int rc;
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACK, 0);
+ rc = sqlite3Fts5StorageRollback(pTab->pStorage);
+ return rc;
+}
+
+static int fts5CsrPoslist(Fts5Cursor*, int, const u8**, int*);
+
+static void *fts5ApiUserData(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return pCsr->pAux->pUserData;
+}
+
+static int fts5ApiColumnCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return ((Fts5Table*)(pCsr->base.pVtab))->pConfig->nCol;
+}
+
+static int fts5ApiColumnTotalSize(
+ Fts5Context *pCtx,
+ int iCol,
+ sqlite3_int64 *pnToken
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageSize(pTab->pStorage, iCol, pnToken);
+}
+
+static int fts5ApiRowCount(Fts5Context *pCtx, i64 *pnRow){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ return sqlite3Fts5StorageRowCount(pTab->pStorage, pnRow);
+}
+
+static int fts5ApiTokenize(
+ Fts5Context *pCtx,
+ const char *pText, int nText,
+ void *pUserData,
+ int (*xToken)(void*, int, const char*, int, int, int)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ return sqlite3Fts5Tokenize(
+ pTab->pConfig, FTS5_TOKENIZE_AUX, pText, nText, pUserData, xToken
+ );
+}
+
+static int fts5ApiPhraseCount(Fts5Context *pCtx){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+}
+
+static int fts5ApiPhraseSize(Fts5Context *pCtx, int iPhrase){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ return sqlite3Fts5ExprPhraseSize(pCsr->pExpr, iPhrase);
+}
+
+static int fts5ApiColumnText(
+ Fts5Context *pCtx,
+ int iCol,
+ const char **pz,
+ int *pn
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ if( fts5IsContentless((Fts5Table*)(pCsr->base.pVtab)) ){
+ *pz = 0;
+ *pn = 0;
+ }else{
+ rc = fts5SeekCursor(pCsr, 0);
+ if( rc==SQLITE_OK ){
+ *pz = (const char*)sqlite3_column_text(pCsr->pStmt, iCol+1);
+ *pn = sqlite3_column_bytes(pCsr->pStmt, iCol+1);
+ }
+ }
+ return rc;
+}
+
+static int fts5CsrPoslist(
+ Fts5Cursor *pCsr,
+ int iPhrase,
+ const u8 **pa,
+ int *pn
+){
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+ int rc = SQLITE_OK;
+ int bLive = (pCsr->pSorter==0);
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_POSLIST) ){
+
+ if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
+ Fts5PoslistPopulator *aPopulator;
+ int i;
+ aPopulator = sqlite3Fts5ExprClearPoslists(pCsr->pExpr, bLive);
+ if( aPopulator==0 ) rc = SQLITE_NOMEM;
+ for(i=0; i<pConfig->nCol && rc==SQLITE_OK; i++){
+ int n; const char *z;
+ rc = fts5ApiColumnText((Fts5Context*)pCsr, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5ExprPopulatePoslists(
+ pConfig, pCsr->pExpr, aPopulator, i, z, n
+ );
+ }
+ }
+ sqlite3_free(aPopulator);
+
+ if( pCsr->pSorter ){
+ sqlite3Fts5ExprCheckPoslists(pCsr->pExpr, pCsr->pSorter->iRowid);
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_POSLIST);
+ }
+
+ if( pCsr->pSorter && pConfig->eDetail==FTS5_DETAIL_FULL ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ *pn = pSorter->aIdx[iPhrase] - i1;
+ *pa = &pSorter->aPoslist[i1];
+ }else{
+ *pn = sqlite3Fts5ExprPoslist(pCsr->pExpr, iPhrase, pa);
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the Fts5Cursor.nInstCount and aInst[] variables are populated
+** correctly for the current view. Return SQLITE_OK if successful, or an
+** SQLite error code otherwise.
+*/
+static int fts5CacheInstArray(Fts5Cursor *pCsr){
+ int rc = SQLITE_OK;
+ Fts5PoslistReader *aIter; /* One iterator for each phrase */
+ int nIter; /* Number of iterators/phrases */
+
+ nIter = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ if( pCsr->aInstIter==0 ){
+ int nByte = sizeof(Fts5PoslistReader) * nIter;
+ pCsr->aInstIter = (Fts5PoslistReader*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+ aIter = pCsr->aInstIter;
+
+ if( aIter ){
+ int nInst = 0; /* Number instances seen so far */
+ int i;
+
+ /* Initialize all iterators */
+ for(i=0; i<nIter && rc==SQLITE_OK; i++){
+ const u8 *a;
+ int n;
+ rc = fts5CsrPoslist(pCsr, i, &a, &n);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ while( 1 ){
+ int *aInst;
+ int iBest = -1;
+ for(i=0; i<nIter; i++){
+ if( (aIter[i].bEof==0)
+ && (iBest<0 || aIter[i].iPos<aIter[iBest].iPos)
+ ){
+ iBest = i;
+ }
+ }
+ if( iBest<0 ) break;
+
+ nInst++;
+ if( nInst>=pCsr->nInstAlloc ){
+ pCsr->nInstAlloc = pCsr->nInstAlloc ? pCsr->nInstAlloc*2 : 32;
+ aInst = (int*)sqlite3_realloc(
+ pCsr->aInst, pCsr->nInstAlloc*sizeof(int)*3
+ );
+ if( aInst ){
+ pCsr->aInst = aInst;
+ }else{
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ }
+
+ aInst = &pCsr->aInst[3 * (nInst-1)];
+ aInst[0] = iBest;
+ aInst[1] = FTS5_POS2COLUMN(aIter[iBest].iPos);
+ aInst[2] = FTS5_POS2OFFSET(aIter[iBest].iPos);
+ sqlite3Fts5PoslistReaderNext(&aIter[iBest]);
+ }
+ }
+
+ pCsr->nInstCount = nInst;
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_INST);
+ }
+ return rc;
+}
+
+static int fts5ApiInstCount(Fts5Context *pCtx, int *pnInst){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr)) ){
+ *pnInst = pCsr->nInstCount;
+ }
+ return rc;
+}
+
+static int fts5ApiInst(
+ Fts5Context *pCtx,
+ int iIdx,
+ int *piPhrase,
+ int *piCol,
+ int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int rc = SQLITE_OK;
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_INST)==0
+ || SQLITE_OK==(rc = fts5CacheInstArray(pCsr))
+ ){
+ if( iIdx<0 || iIdx>=pCsr->nInstCount ){
+ rc = SQLITE_RANGE;
+#if 0
+ }else if( fts5IsOffsetless((Fts5Table*)pCsr->base.pVtab) ){
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 2];
+ *piOff = -1;
+#endif
+ }else{
+ *piPhrase = pCsr->aInst[iIdx*3];
+ *piCol = pCsr->aInst[iIdx*3 + 1];
+ *piOff = pCsr->aInst[iIdx*3 + 2];
+ }
+ }
+ return rc;
+}
+
+static sqlite3_int64 fts5ApiRowid(Fts5Context *pCtx){
+ return fts5CursorRowid((Fts5Cursor*)pCtx);
+}
+
+static int fts5ColumnSizeCb(
+ void *pContext, /* Pointer to int */
+ int tflags,
+ const char *pUnused, /* Buffer containing token */
+ int nUnused, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ int *pCnt = (int*)pContext;
+ UNUSED_PARAM2(pUnused, nUnused);
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 ){
+ (*pCnt)++;
+ }
+ return SQLITE_OK;
+}
+
+static int fts5ApiColumnSize(Fts5Context *pCtx, int iCol, int *pnToken){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ Fts5Config *pConfig = pTab->pConfig;
+ int rc = SQLITE_OK;
+
+ if( CsrFlagTest(pCsr, FTS5CSR_REQUIRE_DOCSIZE) ){
+ if( pConfig->bColumnsize ){
+ i64 iRowid = fts5CursorRowid(pCsr);
+ rc = sqlite3Fts5StorageDocsize(pTab->pStorage, iRowid, pCsr->aColumnSize);
+ }else if( pConfig->zContent==0 ){
+ int i;
+ for(i=0; i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ pCsr->aColumnSize[i] = -1;
+ }
+ }
+ }else{
+ int i;
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i]==0 ){
+ const char *z; int n;
+ void *p = (void*)(&pCsr->aColumnSize[i]);
+ pCsr->aColumnSize[i] = 0;
+ rc = fts5ApiColumnText(pCtx, i, &z, &n);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5Tokenize(
+ pConfig, FTS5_TOKENIZE_AUX, z, n, p, fts5ColumnSizeCb
+ );
+ }
+ }
+ }
+ }
+ CsrFlagClear(pCsr, FTS5CSR_REQUIRE_DOCSIZE);
+ }
+ if( iCol<0 ){
+ int i;
+ *pnToken = 0;
+ for(i=0; i<pConfig->nCol; i++){
+ *pnToken += pCsr->aColumnSize[i];
+ }
+ }else if( iCol<pConfig->nCol ){
+ *pnToken = pCsr->aColumnSize[iCol];
+ }else{
+ *pnToken = 0;
+ rc = SQLITE_RANGE;
+ }
+ return rc;
+}
+
+/*
+** Implementation of the xSetAuxdata() method.
+*/
+static int fts5ApiSetAuxdata(
+ Fts5Context *pCtx, /* Fts5 context */
+ void *pPtr, /* Pointer to save as auxdata */
+ void(*xDelete)(void*) /* Destructor for pPtr (or NULL) */
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+
+ /* Search through the cursors list of Fts5Auxdata objects for one that
+ ** corresponds to the currently executing auxiliary function. */
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ if( pData->xDelete ){
+ pData->xDelete(pData->pPtr);
+ }
+ }else{
+ int rc = SQLITE_OK;
+ pData = (Fts5Auxdata*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Auxdata));
+ if( pData==0 ){
+ if( xDelete ) xDelete(pPtr);
+ return rc;
+ }
+ pData->pAux = pCsr->pAux;
+ pData->pNext = pCsr->pAuxdata;
+ pCsr->pAuxdata = pData;
+ }
+
+ pData->xDelete = xDelete;
+ pData->pPtr = pPtr;
+ return SQLITE_OK;
+}
+
+static void *fts5ApiGetAuxdata(Fts5Context *pCtx, int bClear){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Auxdata *pData;
+ void *pRet = 0;
+
+ for(pData=pCsr->pAuxdata; pData; pData=pData->pNext){
+ if( pData->pAux==pCsr->pAux ) break;
+ }
+
+ if( pData ){
+ pRet = pData->pPtr;
+ if( bClear ){
+ pData->pPtr = 0;
+ pData->xDelete = 0;
+ }
+ }
+
+ return pRet;
+}
+
+static void fts5ApiPhraseNext(
+ Fts5Context *pUnused,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ UNUSED_PARAM(pUnused);
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ *piOff = -1;
+ }else{
+ int iVal;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ if( iVal==1 ){
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ *piCol = iVal;
+ *piOff = 0;
+ pIter->a += fts5GetVarint32(pIter->a, iVal);
+ }
+ *piOff += (iVal-2);
+ }
+}
+
+static int fts5ApiPhraseFirst(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol, int *piOff
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ int n;
+ int rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ pIter->b = &pIter->a[n];
+ *piCol = 0;
+ *piOff = 0;
+ fts5ApiPhraseNext(pCtx, pIter, piCol, piOff);
+ }
+ return rc;
+}
+
+static void fts5ApiPhraseNextColumn(
+ Fts5Context *pCtx,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ }else{
+ int iIncr;
+ pIter->a += fts5GetVarint32(&pIter->a[0], iIncr);
+ *piCol += (iIncr-2);
+ }
+ }else{
+ while( 1 ){
+ int dummy;
+ if( pIter->a>=pIter->b ){
+ *piCol = -1;
+ return;
+ }
+ if( pIter->a[0]==0x01 ) break;
+ pIter->a += fts5GetVarint32(pIter->a, dummy);
+ }
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }
+}
+
+static int fts5ApiPhraseFirstColumn(
+ Fts5Context *pCtx,
+ int iPhrase,
+ Fts5PhraseIter *pIter,
+ int *piCol
+){
+ int rc = SQLITE_OK;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Config *pConfig = ((Fts5Table*)(pCsr->base.pVtab))->pConfig;
+
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ Fts5Sorter *pSorter = pCsr->pSorter;
+ int n;
+ if( pSorter ){
+ int i1 = (iPhrase==0 ? 0 : pSorter->aIdx[iPhrase-1]);
+ n = pSorter->aIdx[iPhrase] - i1;
+ pIter->a = &pSorter->aPoslist[i1];
+ }else{
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, iPhrase, &pIter->a, &n);
+ }
+ if( rc==SQLITE_OK ){
+ pIter->b = &pIter->a[n];
+ *piCol = 0;
+ fts5ApiPhraseNextColumn(pCtx, pIter, piCol);
+ }
+ }else{
+ int n;
+ rc = fts5CsrPoslist(pCsr, iPhrase, &pIter->a, &n);
+ if( rc==SQLITE_OK ){
+ pIter->b = &pIter->a[n];
+ if( n<=0 ){
+ *piCol = -1;
+ }else if( pIter->a[0]==0x01 ){
+ pIter->a += 1 + fts5GetVarint32(&pIter->a[1], *piCol);
+ }else{
+ *piCol = 0;
+ }
+ }
+ }
+
+ return rc;
+}
+
+
+static int fts5ApiQueryPhrase(Fts5Context*, int, void*,
+ int(*)(const Fts5ExtensionApi*, Fts5Context*, void*)
+);
+
+static const Fts5ExtensionApi sFts5Api = {
+ 2, /* iVersion */
+ fts5ApiUserData,
+ fts5ApiColumnCount,
+ fts5ApiRowCount,
+ fts5ApiColumnTotalSize,
+ fts5ApiTokenize,
+ fts5ApiPhraseCount,
+ fts5ApiPhraseSize,
+ fts5ApiInstCount,
+ fts5ApiInst,
+ fts5ApiRowid,
+ fts5ApiColumnText,
+ fts5ApiColumnSize,
+ fts5ApiQueryPhrase,
+ fts5ApiSetAuxdata,
+ fts5ApiGetAuxdata,
+ fts5ApiPhraseFirst,
+ fts5ApiPhraseNext,
+ fts5ApiPhraseFirstColumn,
+ fts5ApiPhraseNextColumn,
+};
+
+/*
+** Implementation of API function xQueryPhrase().
+*/
+static int fts5ApiQueryPhrase(
+ Fts5Context *pCtx,
+ int iPhrase,
+ void *pUserData,
+ int(*xCallback)(const Fts5ExtensionApi*, Fts5Context*, void*)
+){
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCtx;
+ Fts5Table *pTab = (Fts5Table*)(pCsr->base.pVtab);
+ int rc;
+ Fts5Cursor *pNew = 0;
+
+ rc = fts5OpenMethod(pCsr->base.pVtab, (sqlite3_vtab_cursor**)&pNew);
+ if( rc==SQLITE_OK ){
+ pNew->ePlan = FTS5_PLAN_MATCH;
+ pNew->iFirstRowid = SMALLEST_INT64;
+ pNew->iLastRowid = LARGEST_INT64;
+ pNew->base.pVtab = (sqlite3_vtab*)pTab;
+ rc = sqlite3Fts5ExprClonePhrase(pCsr->pExpr, iPhrase, &pNew->pExpr);
+ }
+
+ if( rc==SQLITE_OK ){
+ for(rc = fts5CursorFirst(pTab, pNew, 0);
+ rc==SQLITE_OK && CsrFlagTest(pNew, FTS5CSR_EOF)==0;
+ rc = fts5NextMethod((sqlite3_vtab_cursor*)pNew)
+ ){
+ rc = xCallback(&sFts5Api, (Fts5Context*)pNew, pUserData);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ break;
+ }
+ }
+ }
+
+ fts5CloseMethod((sqlite3_vtab_cursor*)pNew);
+ return rc;
+}
+
+static void fts5ApiInvoke(
+ Fts5Auxiliary *pAux,
+ Fts5Cursor *pCsr,
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( pCsr->pAux==0 );
+ pCsr->pAux = pAux;
+ pAux->xFunc(&sFts5Api, (Fts5Context*)pCsr, context, argc, argv);
+ pCsr->pAux = 0;
+}
+
+static Fts5Cursor *fts5CursorFromCsrid(Fts5Global *pGlobal, i64 iCsrId){
+ Fts5Cursor *pCsr;
+ for(pCsr=pGlobal->pCsr; pCsr; pCsr=pCsr->pNext){
+ if( pCsr->iCsrId==iCsrId ) break;
+ }
+ return pCsr;
+}
+
+static void fts5ApiCallback(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+
+ Fts5Auxiliary *pAux;
+ Fts5Cursor *pCsr;
+ i64 iCsrId;
+
+ assert( argc>=1 );
+ pAux = (Fts5Auxiliary*)sqlite3_user_data(context);
+ iCsrId = sqlite3_value_int64(argv[0]);
+
+ pCsr = fts5CursorFromCsrid(pAux->pGlobal, iCsrId);
+ if( pCsr==0 ){
+ char *zErr = sqlite3_mprintf("no such cursor: %lld", iCsrId);
+ sqlite3_result_error(context, zErr, -1);
+ sqlite3_free(zErr);
+ }else{
+ fts5ApiInvoke(pAux, pCsr, context, argc-1, &argv[1]);
+ }
+}
+
+
+/*
+** Given cursor id iId, return a pointer to the corresponding Fts5Index
+** object. Or NULL If the cursor id does not exist.
+**
+** If successful, set *ppConfig to point to the associated config object
+** before returning.
+*/
+static Fts5Index *sqlite3Fts5IndexFromCsrid(
+ Fts5Global *pGlobal, /* FTS5 global context for db handle */
+ i64 iCsrId, /* Id of cursor to find */
+ Fts5Config **ppConfig /* OUT: Configuration object */
+){
+ Fts5Cursor *pCsr;
+ Fts5Table *pTab;
+
+ pCsr = fts5CursorFromCsrid(pGlobal, iCsrId);
+ pTab = (Fts5Table*)pCsr->base.pVtab;
+ *ppConfig = pTab->pConfig;
+
+ return pTab->pIndex;
+}
+
+/*
+** Return a "position-list blob" corresponding to the current position of
+** cursor pCsr via sqlite3_result_blob(). A position-list blob contains
+** the current position-list for each phrase in the query associated with
+** cursor pCsr.
+**
+** A position-list blob begins with (nPhrase-1) varints, where nPhrase is
+** the number of phrases in the query. Following the varints are the
+** concatenated position lists for each phrase, in order.
+**
+** The first varint (if it exists) contains the size of the position list
+** for phrase 0. The second (same disclaimer) contains the size of position
+** list 1. And so on. There is no size field for the final position list,
+** as it can be derived from the total size of the blob.
+*/
+static int fts5PoslistBlob(sqlite3_context *pCtx, Fts5Cursor *pCsr){
+ int i;
+ int rc = SQLITE_OK;
+ int nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
+ Fts5Buffer val;
+
+ memset(&val, 0, sizeof(Fts5Buffer));
+ switch( ((Fts5Table*)(pCsr->base.pVtab))->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+
+ /* Append the varints */
+ for(i=0; i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &dummy);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ nPoslist = sqlite3Fts5ExprPoslist(pCsr->pExpr, i, &pPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+
+ /* Append the varints */
+ for(i=0; rc==SQLITE_OK && i<(nPhrase-1); i++){
+ const u8 *dummy;
+ int nByte;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &dummy, &nByte);
+ sqlite3Fts5BufferAppendVarint(&rc, &val, nByte);
+ }
+
+ /* Append the position lists */
+ for(i=0; rc==SQLITE_OK && i<nPhrase; i++){
+ const u8 *pPoslist;
+ int nPoslist;
+ rc = sqlite3Fts5ExprPhraseCollist(pCsr->pExpr, i, &pPoslist, &nPoslist);
+ sqlite3Fts5BufferAppendBlob(&rc, &val, nPoslist, pPoslist);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ sqlite3_result_blob(pCtx, val.p, val.n, sqlite3_free);
+ return rc;
+}
+
+/*
+** This is the xColumn method, called by SQLite to request a value from
+** the row that the supplied cursor currently points to.
+*/
+static int fts5ColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5Table *pTab = (Fts5Table*)(pCursor->pVtab);
+ Fts5Config *pConfig = pTab->pConfig;
+ Fts5Cursor *pCsr = (Fts5Cursor*)pCursor;
+ int rc = SQLITE_OK;
+
+ assert( CsrFlagTest(pCsr, FTS5CSR_EOF)==0 );
+
+ if( pCsr->ePlan==FTS5_PLAN_SPECIAL ){
+ if( iCol==pConfig->nCol ){
+ sqlite3_result_int64(pCtx, pCsr->iSpecial);
+ }
+ }else
+
+ if( iCol==pConfig->nCol ){
+ /* User is requesting the value of the special column with the same name
+ ** as the table. Return the cursor integer id number. This value is only
+ ** useful in that it may be passed as the first argument to an FTS5
+ ** auxiliary function. */
+ sqlite3_result_int64(pCtx, pCsr->iCsrId);
+ }else if( iCol==pConfig->nCol+1 ){
+
+ /* The value of the "rank" column. */
+ if( pCsr->ePlan==FTS5_PLAN_SOURCE ){
+ fts5PoslistBlob(pCtx, pCsr);
+ }else if(
+ pCsr->ePlan==FTS5_PLAN_MATCH
+ || pCsr->ePlan==FTS5_PLAN_SORTED_MATCH
+ ){
+ if( pCsr->pRank || SQLITE_OK==(rc = fts5FindRankFunction(pCsr)) ){
+ fts5ApiInvoke(pCsr->pRank, pCsr, pCtx, pCsr->nRankArg, pCsr->apRankArg);
+ }
+ }
+ }else if( !fts5IsContentless(pTab) ){
+ rc = fts5SeekCursor(pCsr, 1);
+ if( rc==SQLITE_OK ){
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
+ }
+ }
+ return rc;
+}
+
+
+/*
+** This routine implements the xFindFunction method for the FTS3
+** virtual table.
+*/
+static int fts5FindFunctionMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ int nUnused, /* Number of SQL function arguments */
+ const char *zName, /* Name of SQL function */
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
+ void **ppArg /* OUT: User data for *pxFunc */
+){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ Fts5Auxiliary *pAux;
+
+ UNUSED_PARAM(nUnused);
+ pAux = fts5FindAuxiliary(pTab, zName);
+ if( pAux ){
+ *pxFunc = fts5ApiCallback;
+ *ppArg = (void*)pAux;
+ return 1;
+ }
+
+ /* No function of the specified name was found. Return 0. */
+ return 0;
+}
+
+/*
+** Implementation of FTS5 xRename method. Rename an fts5 table.
+*/
+static int fts5RenameMethod(
+ sqlite3_vtab *pVtab, /* Virtual table handle */
+ const char *zName /* New name of table */
+){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ return sqlite3Fts5StorageRename(pTab->pStorage, zName);
+}
+
+/*
+** The xSavepoint() method.
+**
+** Flush the contents of the pending-terms table to disk.
+*/
+static int fts5SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState(pTab, FTS5_SAVEPOINT, iSavepoint);
+ fts5TripCursors(pTab);
+ return sqlite3Fts5StorageSync(pTab->pStorage, 0);
+}
+
+/*
+** The xRelease() method.
+**
+** This is a no-op.
+*/
+static int fts5ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState(pTab, FTS5_RELEASE, iSavepoint);
+ fts5TripCursors(pTab);
+ return sqlite3Fts5StorageSync(pTab->pStorage, 0);
+}
+
+/*
+** The xRollbackTo() method.
+**
+** Discard the contents of the pending terms table.
+*/
+static int fts5RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
+ Fts5Table *pTab = (Fts5Table*)pVtab;
+ UNUSED_PARAM(iSavepoint); /* Call below is a no-op for NDEBUG builds */
+ fts5CheckTransactionState(pTab, FTS5_ROLLBACKTO, iSavepoint);
+ fts5TripCursors(pTab);
+ return sqlite3Fts5StorageRollback(pTab->pStorage);
+}
+
+/*
+** Register a new auxiliary function with global context pGlobal.
+*/
+static int fts5CreateAux(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_extension_function xFunc, /* Aux. function implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ int rc = sqlite3_overload_function(pGlobal->db, zName, -1);
+ if( rc==SQLITE_OK ){
+ Fts5Auxiliary *pAux;
+ int nName; /* Size of zName in bytes, including \0 */
+ int nByte; /* Bytes of space to allocate */
+
+ nName = (int)strlen(zName) + 1;
+ nByte = sizeof(Fts5Auxiliary) + nName;
+ pAux = (Fts5Auxiliary*)sqlite3_malloc(nByte);
+ if( pAux ){
+ memset(pAux, 0, nByte);
+ pAux->zFunc = (char*)&pAux[1];
+ memcpy(pAux->zFunc, zName, nName);
+ pAux->pGlobal = pGlobal;
+ pAux->pUserData = pUserData;
+ pAux->xFunc = xFunc;
+ pAux->xDestroy = xDestroy;
+ pAux->pNext = pGlobal->pAux;
+ pGlobal->pAux = pAux;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Register a new tokenizer. This is the implementation of the
+** fts5_api.xCreateTokenizer() method.
+*/
+static int fts5CreateTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void *pUserData, /* User data for aux. function */
+ fts5_tokenizer *pTokenizer, /* Tokenizer implementation */
+ void(*xDestroy)(void*) /* Destructor for pUserData */
+){
+ Fts5Global *pGlobal = (Fts5Global*)pApi;
+ Fts5TokenizerModule *pNew;
+ int nName; /* Size of zName and its \0 terminator */
+ int nByte; /* Bytes of space to allocate */
+ int rc = SQLITE_OK;
+
+ nName = (int)strlen(zName) + 1;
+ nByte = sizeof(Fts5TokenizerModule) + nName;
+ pNew = (Fts5TokenizerModule*)sqlite3_malloc(nByte);
+ if( pNew ){
+ memset(pNew, 0, nByte);
+ pNew->zName = (char*)&pNew[1];
+ memcpy(pNew->zName, zName, nName);
+ pNew->pUserData = pUserData;
+ pNew->x = *pTokenizer;
+ pNew->xDestroy = xDestroy;
+ pNew->pNext = pGlobal->pTok;
+ pGlobal->pTok = pNew;
+ if( pNew->pNext==0 ){
+ pGlobal->pDfltTok = pNew;
+ }
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+
+ return rc;
+}
+
+static Fts5TokenizerModule *fts5LocateTokenizer(
+ Fts5Global *pGlobal,
+ const char *zName
+){
+ Fts5TokenizerModule *pMod = 0;
+
+ if( zName==0 ){
+ pMod = pGlobal->pDfltTok;
+ }else{
+ for(pMod=pGlobal->pTok; pMod; pMod=pMod->pNext){
+ if( sqlite3_stricmp(zName, pMod->zName)==0 ) break;
+ }
+ }
+
+ return pMod;
+}
+
+/*
+** Find a tokenizer. This is the implementation of the
+** fts5_api.xFindTokenizer() method.
+*/
+static int fts5FindTokenizer(
+ fts5_api *pApi, /* Global context (one per db handle) */
+ const char *zName, /* Name of new function */
+ void **ppUserData,
+ fts5_tokenizer *pTokenizer /* Populate this object */
+){
+ int rc = SQLITE_OK;
+ Fts5TokenizerModule *pMod;
+
+ pMod = fts5LocateTokenizer((Fts5Global*)pApi, zName);
+ if( pMod ){
+ *pTokenizer = pMod->x;
+ *ppUserData = pMod->pUserData;
+ }else{
+ memset(pTokenizer, 0, sizeof(fts5_tokenizer));
+ rc = SQLITE_ERROR;
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5GetTokenizer(
+ Fts5Global *pGlobal,
+ const char **azArg,
+ int nArg,
+ Fts5Tokenizer **ppTok,
+ fts5_tokenizer **ppTokApi,
+ char **pzErr
+){
+ Fts5TokenizerModule *pMod;
+ int rc = SQLITE_OK;
+
+ pMod = fts5LocateTokenizer(pGlobal, nArg==0 ? 0 : azArg[0]);
+ if( pMod==0 ){
+ assert( nArg>0 );
+ rc = SQLITE_ERROR;
+ *pzErr = sqlite3_mprintf("no such tokenizer: %s", azArg[0]);
+ }else{
+ rc = pMod->x.xCreate(pMod->pUserData, &azArg[1], (nArg?nArg-1:0), ppTok);
+ *ppTokApi = &pMod->x;
+ if( rc!=SQLITE_OK && pzErr ){
+ *pzErr = sqlite3_mprintf("error in tokenizer constructor");
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ *ppTokApi = 0;
+ *ppTok = 0;
+ }
+
+ return rc;
+}
+
+static void fts5ModuleDestroy(void *pCtx){
+ Fts5TokenizerModule *pTok, *pNextTok;
+ Fts5Auxiliary *pAux, *pNextAux;
+ Fts5Global *pGlobal = (Fts5Global*)pCtx;
+
+ for(pAux=pGlobal->pAux; pAux; pAux=pNextAux){
+ pNextAux = pAux->pNext;
+ if( pAux->xDestroy ) pAux->xDestroy(pAux->pUserData);
+ sqlite3_free(pAux);
+ }
+
+ for(pTok=pGlobal->pTok; pTok; pTok=pNextTok){
+ pNextTok = pTok->pNext;
+ if( pTok->xDestroy ) pTok->xDestroy(pTok->pUserData);
+ sqlite3_free(pTok);
+ }
+
+ sqlite3_free(pGlobal);
+}
+
+static void fts5Fts5Func(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apUnused /* Function arguments */
+){
+ Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
+ char buf[8];
+ UNUSED_PARAM2(nArg, apUnused);
+ assert( nArg==0 );
+ assert( sizeof(buf)>=sizeof(pGlobal) );
+ memcpy(buf, (void*)&pGlobal, sizeof(pGlobal));
+ sqlite3_result_blob(pCtx, buf, sizeof(pGlobal), SQLITE_TRANSIENT);
+}
+
+/*
+** Implementation of fts5_source_id() function.
+*/
+static void fts5SourceIdFunc(
+ sqlite3_context *pCtx, /* Function call context */
+ int nArg, /* Number of args */
+ sqlite3_value **apUnused /* Function arguments */
+){
+ assert( nArg==0 );
+ UNUSED_PARAM2(nArg, apUnused);
+ sqlite3_result_text(pCtx, "fts5: 2016-02-19 16:19:23 0cb728c15c66f1bf09cc1e0731a95ba937c6c71c", -1, SQLITE_TRANSIENT);
+}
+
+static int fts5Init(sqlite3 *db){
+ static const sqlite3_module fts5Mod = {
+ /* iVersion */ 2,
+ /* xCreate */ fts5CreateMethod,
+ /* xConnect */ fts5ConnectMethod,
+ /* xBestIndex */ fts5BestIndexMethod,
+ /* xDisconnect */ fts5DisconnectMethod,
+ /* xDestroy */ fts5DestroyMethod,
+ /* xOpen */ fts5OpenMethod,
+ /* xClose */ fts5CloseMethod,
+ /* xFilter */ fts5FilterMethod,
+ /* xNext */ fts5NextMethod,
+ /* xEof */ fts5EofMethod,
+ /* xColumn */ fts5ColumnMethod,
+ /* xRowid */ fts5RowidMethod,
+ /* xUpdate */ fts5UpdateMethod,
+ /* xBegin */ fts5BeginMethod,
+ /* xSync */ fts5SyncMethod,
+ /* xCommit */ fts5CommitMethod,
+ /* xRollback */ fts5RollbackMethod,
+ /* xFindFunction */ fts5FindFunctionMethod,
+ /* xRename */ fts5RenameMethod,
+ /* xSavepoint */ fts5SavepointMethod,
+ /* xRelease */ fts5ReleaseMethod,
+ /* xRollbackTo */ fts5RollbackToMethod,
+ };
+
+ int rc;
+ Fts5Global *pGlobal = 0;
+
+ pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global));
+ if( pGlobal==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ void *p = (void*)pGlobal;
+ memset(pGlobal, 0, sizeof(Fts5Global));
+ pGlobal->db = db;
+ pGlobal->api.iVersion = 2;
+ pGlobal->api.xCreateFunction = fts5CreateAux;
+ pGlobal->api.xCreateTokenizer = fts5CreateTokenizer;
+ pGlobal->api.xFindTokenizer = fts5FindTokenizer;
+ rc = sqlite3_create_module_v2(db, "fts5", &fts5Mod, p, fts5ModuleDestroy);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5IndexInit(db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5ExprInit(pGlobal, db);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5AuxInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5TokenizerInit(&pGlobal->api);
+ if( rc==SQLITE_OK ) rc = sqlite3Fts5VocabInit(pGlobal, db);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5", 0, SQLITE_UTF8, p, fts5Fts5Func, 0, 0
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3_create_function(
+ db, "fts5_source_id", 0, SQLITE_UTF8, p, fts5SourceIdFunc, 0, 0
+ );
+ }
+ }
+
+ /* If SQLITE_FTS5_ENABLE_TEST_MI is defined, assume that the file
+ ** fts5_test_mi.c is compiled and linked into the executable. And call
+ ** its entry point to enable the matchinfo() demo. */
+#ifdef SQLITE_FTS5_ENABLE_TEST_MI
+ if( rc==SQLITE_OK ){
+ extern int sqlite3Fts5TestRegisterMatchinfo(sqlite3*);
+ rc = sqlite3Fts5TestRegisterMatchinfo(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** The following functions are used to register the module with SQLite. If
+** this module is being built as part of the SQLite core (SQLITE_CORE is
+** defined), then sqlite3_open() will call sqlite3Fts5Init() directly.
+**
+** Or, if this module is being built as a loadable extension,
+** sqlite3Fts5Init() is omitted and the two standard entry points
+** sqlite3_fts_init() and sqlite3_fts5_init() defined instead.
+*/
+#ifndef SQLITE_CORE
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+int sqlite3_fts_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+
+#ifdef _WIN32
+__declspec(dllexport)
+#endif
+int sqlite3_fts5_init(
+ sqlite3 *db,
+ char **pzErrMsg,
+ const sqlite3_api_routines *pApi
+){
+ SQLITE_EXTENSION_INIT2(pApi);
+ (void)pzErrMsg; /* Unused parameter */
+ return fts5Init(db);
+}
+#else
+int sqlite3Fts5Init(sqlite3 *db){
+ return fts5Init(db);
+}
+#endif
+
+#line 1 "fts5_storage.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+*/
+
+
+
+/* #include "fts5Int.h" */
+
+struct Fts5Storage {
+ Fts5Config *pConfig;
+ Fts5Index *pIndex;
+ int bTotalsValid; /* True if nTotalRow/aTotalSize[] are valid */
+ i64 nTotalRow; /* Total number of rows in FTS table */
+ i64 *aTotalSize; /* Total sizes of each column */
+ sqlite3_stmt *aStmt[11];
+};
+
+
+#if FTS5_STMT_SCAN_ASC!=0
+# error "FTS5_STMT_SCAN_ASC mismatch"
+#endif
+#if FTS5_STMT_SCAN_DESC!=1
+# error "FTS5_STMT_SCAN_DESC mismatch"
+#endif
+#if FTS5_STMT_LOOKUP!=2
+# error "FTS5_STMT_LOOKUP mismatch"
+#endif
+
+#define FTS5_STMT_INSERT_CONTENT 3
+#define FTS5_STMT_REPLACE_CONTENT 4
+#define FTS5_STMT_DELETE_CONTENT 5
+#define FTS5_STMT_REPLACE_DOCSIZE 6
+#define FTS5_STMT_DELETE_DOCSIZE 7
+#define FTS5_STMT_LOOKUP_DOCSIZE 8
+#define FTS5_STMT_REPLACE_CONFIG 9
+#define FTS5_STMT_SCAN 10
+
+/*
+** Prepare the two insert statements - Fts5Storage.pInsertContent and
+** Fts5Storage.pInsertDocsize - if they have not already been prepared.
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageGetStmt(
+ Fts5Storage *p, /* Storage handle */
+ int eStmt, /* FTS5_STMT_XXX constant */
+ sqlite3_stmt **ppStmt, /* OUT: Prepared statement handle */
+ char **pzErrMsg /* OUT: Error message (if any) */
+){
+ int rc = SQLITE_OK;
+
+ /* If there is no %_docsize table, there should be no requests for
+ ** statements to operate on it. */
+ assert( p->pConfig->bColumnsize || (
+ eStmt!=FTS5_STMT_REPLACE_DOCSIZE
+ && eStmt!=FTS5_STMT_DELETE_DOCSIZE
+ && eStmt!=FTS5_STMT_LOOKUP_DOCSIZE
+ ));
+
+ assert( eStmt>=0 && eStmt<ArraySize(p->aStmt) );
+ if( p->aStmt[eStmt]==0 ){
+ const char *azStmt[] = {
+ "SELECT %s FROM %s T WHERE T.%Q >= ? AND T.%Q <= ? ORDER BY T.%Q ASC",
+ "SELECT %s FROM %s T WHERE T.%Q <= ? AND T.%Q >= ? ORDER BY T.%Q DESC",
+ "SELECT %s FROM %s T WHERE T.%Q=?", /* LOOKUP */
+
+ "INSERT INTO %Q.'%q_content' VALUES(%s)", /* INSERT_CONTENT */
+ "REPLACE INTO %Q.'%q_content' VALUES(%s)", /* REPLACE_CONTENT */
+ "DELETE FROM %Q.'%q_content' WHERE id=?", /* DELETE_CONTENT */
+ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", /* REPLACE_DOCSIZE */
+ "DELETE FROM %Q.'%q_docsize' WHERE id=?", /* DELETE_DOCSIZE */
+
+ "SELECT sz FROM %Q.'%q_docsize' WHERE id=?", /* LOOKUP_DOCSIZE */
+
+ "REPLACE INTO %Q.'%q_config' VALUES(?,?)", /* REPLACE_CONFIG */
+ "SELECT %s FROM %s AS T", /* SCAN */
+ };
+ Fts5Config *pC = p->pConfig;
+ char *zSql = 0;
+
+ switch( eStmt ){
+ case FTS5_STMT_SCAN:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent
+ );
+ break;
+
+ case FTS5_STMT_SCAN_ASC:
+ case FTS5_STMT_SCAN_DESC:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zContentExprlist,
+ pC->zContent, pC->zContentRowid, pC->zContentRowid,
+ pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_LOOKUP:
+ zSql = sqlite3_mprintf(azStmt[eStmt],
+ pC->zContentExprlist, pC->zContent, pC->zContentRowid
+ );
+ break;
+
+ case FTS5_STMT_INSERT_CONTENT:
+ case FTS5_STMT_REPLACE_CONTENT: {
+ int nCol = pC->nCol + 1;
+ char *zBind;
+ int i;
+
+ zBind = sqlite3_malloc(1 + nCol*2);
+ if( zBind ){
+ for(i=0; i<nCol; i++){
+ zBind[i*2] = '?';
+ zBind[i*2 + 1] = ',';
+ }
+ zBind[i*2-1] = '\0';
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName, zBind);
+ sqlite3_free(zBind);
+ }
+ break;
+ }
+
+ default:
+ zSql = sqlite3_mprintf(azStmt[eStmt], pC->zDb, pC->zName);
+ break;
+ }
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_prepare_v2(pC->db, zSql, -1, &p->aStmt[eStmt], 0);
+ sqlite3_free(zSql);
+ if( rc!=SQLITE_OK && pzErrMsg ){
+ *pzErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pC->db));
+ }
+ }
+ }
+
+ *ppStmt = p->aStmt[eStmt];
+ return rc;
+}
+
+
+static int fts5ExecPrintf(
+ sqlite3 *db,
+ char **pzErr,
+ const char *zFormat,
+ ...
+){
+ int rc;
+ va_list ap; /* ... printf arguments */
+ char *zSql;
+
+ va_start(ap, zFormat);
+ zSql = sqlite3_vmprintf(zFormat, ap);
+
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ rc = sqlite3_exec(db, zSql, 0, 0, pzErr);
+ sqlite3_free(zSql);
+ }
+
+ va_end(ap);
+ return rc;
+}
+
+/*
+** Drop all shadow tables. Return SQLITE_OK if successful or an SQLite error
+** code otherwise.
+*/
+static int sqlite3Fts5DropAll(Fts5Config *pConfig){
+ int rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_data';"
+ "DROP TABLE IF EXISTS %Q.'%q_idx';"
+ "DROP TABLE IF EXISTS %Q.'%q_config';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DROP TABLE IF EXISTS %Q.'%q_content';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+ return rc;
+}
+
+static void fts5StorageRenameOne(
+ Fts5Config *pConfig, /* Current FTS5 configuration */
+ int *pRc, /* IN/OUT: Error code */
+ const char *zTail, /* Tail of table name e.g. "data", "config" */
+ const char *zName /* New name of FTS5 table */
+){
+ if( *pRc==SQLITE_OK ){
+ *pRc = fts5ExecPrintf(pConfig->db, 0,
+ "ALTER TABLE %Q.'%q_%s' RENAME TO '%q_%s';",
+ pConfig->zDb, pConfig->zName, zTail, zName, zTail
+ );
+ }
+}
+
+static int sqlite3Fts5StorageRename(Fts5Storage *pStorage, const char *zName){
+ Fts5Config *pConfig = pStorage->pConfig;
+ int rc = sqlite3Fts5StorageSync(pStorage, 1);
+
+ fts5StorageRenameOne(pConfig, &rc, "data", zName);
+ fts5StorageRenameOne(pConfig, &rc, "idx", zName);
+ fts5StorageRenameOne(pConfig, &rc, "config", zName);
+ if( pConfig->bColumnsize ){
+ fts5StorageRenameOne(pConfig, &rc, "docsize", zName);
+ }
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ fts5StorageRenameOne(pConfig, &rc, "content", zName);
+ }
+ return rc;
+}
+
+/*
+** Create the shadow table named zPost, with definition zDefn. Return
+** SQLITE_OK if successful, or an SQLite error code otherwise.
+*/
+static int sqlite3Fts5CreateTable(
+ Fts5Config *pConfig, /* FTS5 configuration */
+ const char *zPost, /* Shadow table to create (e.g. "content") */
+ const char *zDefn, /* Columns etc. for shadow table */
+ int bWithout, /* True for without rowid */
+ char **pzErr /* OUT: Error message */
+){
+ int rc;
+ char *zErr = 0;
+
+ rc = fts5ExecPrintf(pConfig->db, &zErr, "CREATE TABLE %Q.'%q_%q'(%s)%s",
+ pConfig->zDb, pConfig->zName, zPost, zDefn, bWithout?" WITHOUT ROWID":""
+ );
+ if( zErr ){
+ *pzErr = sqlite3_mprintf(
+ "fts5: error creating shadow table %q_%s: %s",
+ pConfig->zName, zPost, zErr
+ );
+ sqlite3_free(zErr);
+ }
+
+ return rc;
+}
+
+/*
+** Open a new Fts5Index handle. If the bCreate argument is true, create
+** and initialize the underlying tables
+**
+** If successful, set *pp to point to the new object and return SQLITE_OK.
+** Otherwise, set *pp to NULL and return an SQLite error code.
+*/
+static int sqlite3Fts5StorageOpen(
+ Fts5Config *pConfig,
+ Fts5Index *pIndex,
+ int bCreate,
+ Fts5Storage **pp,
+ char **pzErr /* OUT: Error message */
+){
+ int rc = SQLITE_OK;
+ Fts5Storage *p; /* New object */
+ int nByte; /* Bytes of space to allocate */
+
+ nByte = sizeof(Fts5Storage) /* Fts5Storage object */
+ + pConfig->nCol * sizeof(i64); /* Fts5Storage.aTotalSize[] */
+ *pp = p = (Fts5Storage*)sqlite3_malloc(nByte);
+ if( !p ) return SQLITE_NOMEM;
+
+ memset(p, 0, nByte);
+ p->aTotalSize = (i64*)&p[1];
+ p->pConfig = pConfig;
+ p->pIndex = pIndex;
+
+ if( bCreate ){
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ int nDefn = 32 + pConfig->nCol*10;
+ char *zDefn = sqlite3_malloc(32 + pConfig->nCol * 10);
+ if( zDefn==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ int iOff;
+ sqlite3_snprintf(nDefn, zDefn, "id INTEGER PRIMARY KEY");
+ iOff = (int)strlen(zDefn);
+ for(i=0; i<pConfig->nCol; i++){
+ sqlite3_snprintf(nDefn-iOff, &zDefn[iOff], ", c%d", i);
+ iOff += (int)strlen(&zDefn[iOff]);
+ }
+ rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
+ }
+ sqlite3_free(zDefn);
+ }
+
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "docsize", "id INTEGER PRIMARY KEY, sz BLOB", 0, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5CreateTable(
+ pConfig, "config", "k PRIMARY KEY, v", 1, pzErr
+ );
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ }
+
+ if( rc ){
+ sqlite3Fts5StorageClose(p);
+ *pp = 0;
+ }
+ return rc;
+}
+
+/*
+** Close a handle opened by an earlier call to sqlite3Fts5StorageOpen().
+*/
+static int sqlite3Fts5StorageClose(Fts5Storage *p){
+ int rc = SQLITE_OK;
+ if( p ){
+ int i;
+
+ /* Finalize all SQL statements */
+ for(i=0; i<ArraySize(p->aStmt); i++){
+ sqlite3_finalize(p->aStmt[i]);
+ }
+
+ sqlite3_free(p);
+ }
+ return rc;
+}
+
+typedef struct Fts5InsertCtx Fts5InsertCtx;
+struct Fts5InsertCtx {
+ Fts5Storage *pStorage;
+ int iCol;
+ int szCol; /* Size of column value in tokens */
+};
+
+/*
+** Tokenization callback used when inserting tokens into the FTS index.
+*/
+static int fts5StorageInsertCallback(
+ void *pContext, /* Pointer to Fts5InsertCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5InsertCtx *pCtx = (Fts5InsertCtx*)pContext;
+ Fts5Index *pIdx = pCtx->pStorage->pIndex;
+ UNUSED_PARAM2(iUnused1, iUnused2);
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+ return sqlite3Fts5IndexWrite(pIdx, pCtx->iCol, pCtx->szCol-1, pToken, nToken);
+}
+
+/*
+** If a row with rowid iDel is present in the %_content table, add the
+** delete-markers to the FTS index necessary to delete it. Do not actually
+** remove the %_content row at this time though.
+*/
+static int fts5StorageDeleteFromIndex(
+ Fts5Storage *p,
+ i64 iDel,
+ sqlite3_value **apVal
+){
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pSeek = 0; /* SELECT to read row iDel from %_data */
+ int rc; /* Return code */
+ int rc2; /* sqlite3_reset() return code */
+ int iCol;
+ Fts5InsertCtx ctx;
+
+ if( apVal==0 ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP, &pSeek, 0);
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3_bind_int64(pSeek, 1, iDel);
+ if( sqlite3_step(pSeek)!=SQLITE_ROW ){
+ return sqlite3_reset(pSeek);
+ }
+ }
+
+ ctx.pStorage = p;
+ ctx.iCol = -1;
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 1, iDel);
+ for(iCol=1; rc==SQLITE_OK && iCol<=pConfig->nCol; iCol++){
+ if( pConfig->abUnindexed[iCol-1]==0 ){
+ const char *zText;
+ int nText;
+ if( pSeek ){
+ zText = (const char*)sqlite3_column_text(pSeek, iCol);
+ nText = sqlite3_column_bytes(pSeek, iCol);
+ }else{
+ zText = (const char*)sqlite3_value_text(apVal[iCol-1]);
+ nText = sqlite3_value_bytes(apVal[iCol-1]);
+ }
+ ctx.szCol = 0;
+ rc = sqlite3Fts5Tokenize(pConfig, FTS5_TOKENIZE_DOCUMENT,
+ zText, nText, (void*)&ctx, fts5StorageInsertCallback
+ );
+ p->aTotalSize[iCol-1] -= (i64)ctx.szCol;
+ }
+ }
+ p->nTotalRow--;
+
+ rc2 = sqlite3_reset(pSeek);
+ if( rc==SQLITE_OK ) rc = rc2;
+ return rc;
+}
+
+
+/*
+** Insert a record into the %_docsize table. Specifically, do:
+**
+** INSERT OR REPLACE INTO %_docsize(id, sz) VALUES(iRowid, pBuf);
+**
+** If there is no %_docsize table (as happens if the columnsize=0 option
+** is specified when the FTS5 table is created), this function is a no-op.
+*/
+static int fts5StorageInsertDocsize(
+ Fts5Storage *p, /* Storage module to write to */
+ i64 iRowid, /* id value */
+ Fts5Buffer *pBuf /* sz value */
+){
+ int rc = SQLITE_OK;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pReplace, 1, iRowid);
+ sqlite3_bind_blob(pReplace, 2, pBuf->p, pBuf->n, SQLITE_STATIC);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ }
+ }
+ return rc;
+}
+
+/*
+** Load the contents of the "averages" record from disk into the
+** p->nTotalRow and p->aTotalSize[] variables. If successful, and if
+** argument bCache is true, set the p->bTotalsValid flag to indicate
+** that the contents of aTotalSize[] and nTotalRow are valid until
+** further notice.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageLoadTotals(Fts5Storage *p, int bCache){
+ int rc = SQLITE_OK;
+ if( p->bTotalsValid==0 ){
+ rc = sqlite3Fts5IndexGetAverages(p->pIndex, &p->nTotalRow, p->aTotalSize);
+ p->bTotalsValid = bCache;
+ }
+ return rc;
+}
+
+/*
+** Store the current contents of the p->nTotalRow and p->aTotalSize[]
+** variables in the "averages" record on disk.
+**
+** Return SQLITE_OK if successful, or an SQLite error code if an error
+** occurs.
+*/
+static int fts5StorageSaveTotals(Fts5Storage *p){
+ int nCol = p->pConfig->nCol;
+ int i;
+ Fts5Buffer buf;
+ int rc = SQLITE_OK;
+ memset(&buf, 0, sizeof(buf));
+
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->nTotalRow);
+ for(i=0; i<nCol; i++){
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, p->aTotalSize[i]);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexSetAverages(p->pIndex, buf.p, buf.n);
+ }
+ sqlite3_free(buf.p);
+
+ return rc;
+}
+
+/*
+** Remove a row from the FTS table.
+*/
+static int sqlite3Fts5StorageDelete(Fts5Storage *p, i64 iDel, sqlite3_value **apVal){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+ sqlite3_stmt *pDel = 0;
+
+ assert( pConfig->eContent!=FTS5_CONTENT_NORMAL || apVal==0 );
+ rc = fts5StorageLoadTotals(p, 1);
+
+ /* Delete the index records */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageDeleteFromIndex(p, iDel, apVal);
+ }
+
+ /* Delete the %_docsize record */
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_DOCSIZE, &pDel, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ /* Delete the %_content record */
+ if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_int64(pDel, 1, iDel);
+ sqlite3_step(pDel);
+ rc = sqlite3_reset(pDel);
+ }
+ }
+
+ /* Write the averages record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageSaveTotals(p);
+ }
+
+ return rc;
+}
+
+/*
+** Delete all entries in the FTS5 index.
+*/
+static int sqlite3Fts5StorageDeleteAll(Fts5Storage *p){
+ Fts5Config *pConfig = p->pConfig;
+ int rc;
+
+ /* Delete the contents of the %_data and %_docsize tables. */
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_data';"
+ "DELETE FROM %Q.'%q_idx';",
+ pConfig->zDb, pConfig->zName,
+ pConfig->zDb, pConfig->zName
+ );
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ rc = fts5ExecPrintf(pConfig->db, 0,
+ "DELETE FROM %Q.'%q_docsize';",
+ pConfig->zDb, pConfig->zName
+ );
+ }
+
+ /* Reinitialize the %_data table. This call creates the initial structure
+ ** and averages records. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexReinit(p->pIndex);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5StorageConfigValue(p, "version", 0, FTS5_CURRENT_VERSION);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRebuild(Fts5Storage *p){
+ Fts5Buffer buf = {0,0,0};
+ Fts5Config *pConfig = p->pConfig;
+ sqlite3_stmt *pScan = 0;
+ Fts5InsertCtx ctx;
+ int rc;
+
+ memset(&ctx, 0, sizeof(Fts5InsertCtx));
+ ctx.pStorage = p;
+ rc = sqlite3Fts5StorageDeleteAll(p);
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageLoadTotals(p, 1);
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ }
+
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pScan) ){
+ i64 iRowid = sqlite3_column_int64(pScan, 0);
+
+ sqlite3Fts5BufferZero(&buf);
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ (const char*)sqlite3_column_text(pScan, ctx.iCol+1),
+ sqlite3_column_bytes(pScan, ctx.iCol+1),
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ }
+ sqlite3_free(buf.p);
+
+ /* Write the averages record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageSaveTotals(p);
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageOptimize(Fts5Storage *p){
+ return sqlite3Fts5IndexOptimize(p->pIndex);
+}
+
+static int sqlite3Fts5StorageMerge(Fts5Storage *p, int nMerge){
+ return sqlite3Fts5IndexMerge(p->pIndex, nMerge);
+}
+
+/*
+** Allocate a new rowid. This is used for "external content" tables when
+** a NULL value is inserted into the rowid column. The new rowid is allocated
+** by inserting a dummy row into the %_docsize table. The dummy will be
+** overwritten later.
+**
+** If the %_docsize table does not exist, SQLITE_MISMATCH is returned. In
+** this case the user is required to provide a rowid explicitly.
+*/
+static int fts5StorageNewRowid(Fts5Storage *p, i64 *piRowid){
+ int rc = SQLITE_MISMATCH;
+ if( p->pConfig->bColumnsize ){
+ sqlite3_stmt *pReplace = 0;
+ rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_DOCSIZE, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_null(pReplace, 1);
+ sqlite3_bind_null(pReplace, 2);
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ }
+ if( rc==SQLITE_OK ){
+ *piRowid = sqlite3_last_insert_rowid(p->pConfig->db);
+ }
+ }
+ return rc;
+}
+
+/*
+** Insert a new row into the FTS content table.
+*/
+static int sqlite3Fts5StorageContentInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 *piRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK;
+
+ /* Insert the new row into the %_content table. */
+ if( pConfig->eContent!=FTS5_CONTENT_NORMAL ){
+ if( sqlite3_value_type(apVal[1])==SQLITE_INTEGER ){
+ *piRowid = sqlite3_value_int64(apVal[1]);
+ }else{
+ rc = fts5StorageNewRowid(p, piRowid);
+ }
+ }else{
+ sqlite3_stmt *pInsert = 0; /* Statement to write %_content table */
+ int i; /* Counter variable */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0);
+ for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){
+ rc = sqlite3_bind_value(pInsert, i, apVal[i]);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3_step(pInsert);
+ rc = sqlite3_reset(pInsert);
+ }
+ *piRowid = sqlite3_last_insert_rowid(pConfig->db);
+ }
+
+ return rc;
+}
+
+/*
+** Insert new entries into the FTS index and %_docsize table.
+*/
+static int sqlite3Fts5StorageIndexInsert(
+ Fts5Storage *p,
+ sqlite3_value **apVal,
+ i64 iRowid
+){
+ Fts5Config *pConfig = p->pConfig;
+ int rc = SQLITE_OK; /* Return code */
+ Fts5InsertCtx ctx; /* Tokenization callback context object */
+ Fts5Buffer buf; /* Buffer used to build up %_docsize blob */
+
+ memset(&buf, 0, sizeof(Fts5Buffer));
+ ctx.pStorage = p;
+ rc = fts5StorageLoadTotals(p, 1);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexBeginWrite(p->pIndex, 0, iRowid);
+ }
+ for(ctx.iCol=0; rc==SQLITE_OK && ctx.iCol<pConfig->nCol; ctx.iCol++){
+ ctx.szCol = 0;
+ if( pConfig->abUnindexed[ctx.iCol]==0 ){
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ (const char*)sqlite3_value_text(apVal[ctx.iCol+2]),
+ sqlite3_value_bytes(apVal[ctx.iCol+2]),
+ (void*)&ctx,
+ fts5StorageInsertCallback
+ );
+ }
+ sqlite3Fts5BufferAppendVarint(&rc, &buf, ctx.szCol);
+ p->aTotalSize[ctx.iCol] += (i64)ctx.szCol;
+ }
+ p->nTotalRow++;
+
+ /* Write the %_docsize record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageInsertDocsize(p, iRowid, &buf);
+ }
+ sqlite3_free(buf.p);
+
+ /* Write the averages record */
+ if( rc==SQLITE_OK ){
+ rc = fts5StorageSaveTotals(p);
+ }
+
+ return rc;
+}
+
+static int fts5StorageCount(Fts5Storage *p, const char *zSuffix, i64 *pnRow){
+ Fts5Config *pConfig = p->pConfig;
+ char *zSql;
+ int rc;
+
+ zSql = sqlite3_mprintf("SELECT count(*) FROM %Q.'%q_%s'",
+ pConfig->zDb, pConfig->zName, zSuffix
+ );
+ if( zSql==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ sqlite3_stmt *pCnt = 0;
+ rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pCnt, 0);
+ if( rc==SQLITE_OK ){
+ if( SQLITE_ROW==sqlite3_step(pCnt) ){
+ *pnRow = sqlite3_column_int64(pCnt, 0);
+ }
+ rc = sqlite3_finalize(pCnt);
+ }
+ }
+
+ sqlite3_free(zSql);
+ return rc;
+}
+
+/*
+** Context object used by sqlite3Fts5StorageIntegrity().
+*/
+typedef struct Fts5IntegrityCtx Fts5IntegrityCtx;
+struct Fts5IntegrityCtx {
+ i64 iRowid;
+ int iCol;
+ int szCol;
+ u64 cksum;
+ Fts5Termset *pTermset;
+ Fts5Config *pConfig;
+};
+
+
+/*
+** Tokenization callback used by integrity check.
+*/
+static int fts5StorageIntegrityCallback(
+ void *pContext, /* Pointer to Fts5IntegrityCtx object */
+ int tflags,
+ const char *pToken, /* Buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iUnused1, /* Start offset of token */
+ int iUnused2 /* End offset of token */
+){
+ Fts5IntegrityCtx *pCtx = (Fts5IntegrityCtx*)pContext;
+ Fts5Termset *pTermset = pCtx->pTermset;
+ int bPresent;
+ int ii;
+ int rc = SQLITE_OK;
+ int iPos;
+ int iCol;
+
+ UNUSED_PARAM2(iUnused1, iUnused2);
+
+ if( (tflags & FTS5_TOKEN_COLOCATED)==0 || pCtx->szCol==0 ){
+ pCtx->szCol++;
+ }
+
+ switch( pCtx->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+ iPos = pCtx->szCol-1;
+ iCol = pCtx->iCol;
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+ iPos = pCtx->iCol;
+ iCol = 0;
+ break;
+
+ default:
+ assert( pCtx->pConfig->eDetail==FTS5_DETAIL_NONE );
+ iPos = 0;
+ iCol = 0;
+ break;
+ }
+
+ rc = sqlite3Fts5TermsetAdd(pTermset, 0, pToken, nToken, &bPresent);
+ if( rc==SQLITE_OK && bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, 0, pToken, nToken
+ );
+ }
+
+ for(ii=0; rc==SQLITE_OK && ii<pCtx->pConfig->nPrefix; ii++){
+ const int nChar = pCtx->pConfig->aPrefix[ii];
+ int nByte = sqlite3Fts5IndexCharlenToBytelen(pToken, nToken, nChar);
+ if( nByte ){
+ rc = sqlite3Fts5TermsetAdd(pTermset, ii+1, pToken, nByte, &bPresent);
+ if( bPresent==0 ){
+ pCtx->cksum ^= sqlite3Fts5IndexEntryCksum(
+ pCtx->iRowid, iCol, iPos, ii+1, pToken, nByte
+ );
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Check that the contents of the FTS index match that of the %_content
+** table. Return SQLITE_OK if they do, or SQLITE_CORRUPT if not. Return
+** some other SQLite error code if an error occurs while attempting to
+** determine this.
+*/
+static int sqlite3Fts5StorageIntegrity(Fts5Storage *p){
+ Fts5Config *pConfig = p->pConfig;
+ int rc; /* Return code */
+ int *aColSize; /* Array of size pConfig->nCol */
+ i64 *aTotalSize; /* Array of size pConfig->nCol */
+ Fts5IntegrityCtx ctx;
+ sqlite3_stmt *pScan;
+
+ memset(&ctx, 0, sizeof(Fts5IntegrityCtx));
+ ctx.pConfig = p->pConfig;
+ aTotalSize = (i64*)sqlite3_malloc(pConfig->nCol * (sizeof(int)+sizeof(i64)));
+ if( !aTotalSize ) return SQLITE_NOMEM;
+ aColSize = (int*)&aTotalSize[pConfig->nCol];
+ memset(aTotalSize, 0, sizeof(i64) * pConfig->nCol);
+
+ /* Generate the expected index checksum based on the contents of the
+ ** %_content table. This block stores the checksum in ctx.cksum. */
+ rc = fts5StorageGetStmt(p, FTS5_STMT_SCAN, &pScan, 0);
+ if( rc==SQLITE_OK ){
+ int rc2;
+ while( SQLITE_ROW==sqlite3_step(pScan) ){
+ int i;
+ ctx.iRowid = sqlite3_column_int64(pScan, 0);
+ ctx.szCol = 0;
+ if( pConfig->bColumnsize ){
+ rc = sqlite3Fts5StorageDocsize(p, ctx.iRowid, aColSize);
+ }
+ if( rc==SQLITE_OK && pConfig->eDetail==FTS5_DETAIL_NONE ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( pConfig->abUnindexed[i] ) continue;
+ ctx.iCol = i;
+ ctx.szCol = 0;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ rc = sqlite3Fts5TermsetNew(&ctx.pTermset);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5Tokenize(pConfig,
+ FTS5_TOKENIZE_DOCUMENT,
+ (const char*)sqlite3_column_text(pScan, i+1),
+ sqlite3_column_bytes(pScan, i+1),
+ (void*)&ctx,
+ fts5StorageIntegrityCallback
+ );
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize && ctx.szCol!=aColSize[i] ){
+ rc = FTS5_CORRUPT;
+ }
+ aTotalSize[i] += ctx.szCol;
+ if( pConfig->eDetail==FTS5_DETAIL_COLUMNS ){
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+ }
+ }
+ sqlite3Fts5TermsetFree(ctx.pTermset);
+ ctx.pTermset = 0;
+
+ if( rc!=SQLITE_OK ) break;
+ }
+ rc2 = sqlite3_reset(pScan);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }
+
+ /* Test that the "totals" (sometimes called "averages") record looks Ok */
+ if( rc==SQLITE_OK ){
+ int i;
+ rc = fts5StorageLoadTotals(p, 0);
+ for(i=0; rc==SQLITE_OK && i<pConfig->nCol; i++){
+ if( p->aTotalSize[i]!=aTotalSize[i] ) rc = FTS5_CORRUPT;
+ }
+ }
+
+ /* Check that the %_docsize and %_content tables contain the expected
+ ** number of rows. */
+ if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "content", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+ if( rc==SQLITE_OK && pConfig->bColumnsize ){
+ i64 nRow = 0;
+ rc = fts5StorageCount(p, "docsize", &nRow);
+ if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
+ }
+
+ /* Pass the expected checksum down to the FTS index module. It will
+ ** verify, amongst other things, that it matches the checksum generated by
+ ** inspecting the index itself. */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexIntegrityCheck(p->pIndex, ctx.cksum);
+ }
+
+ sqlite3_free(aTotalSize);
+ return rc;
+}
+
+/*
+** Obtain an SQLite statement handle that may be used to read data from the
+** %_content table.
+*/
+static int sqlite3Fts5StorageStmt(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt **pp,
+ char **pzErrMsg
+){
+ int rc;
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ rc = fts5StorageGetStmt(p, eStmt, pp, pzErrMsg);
+ if( rc==SQLITE_OK ){
+ assert( p->aStmt[eStmt]==*pp );
+ p->aStmt[eStmt] = 0;
+ }
+ return rc;
+}
+
+/*
+** Release an SQLite statement handle obtained via an earlier call to
+** sqlite3Fts5StorageStmt(). The eStmt parameter passed to this function
+** must match that passed to the sqlite3Fts5StorageStmt() call.
+*/
+static void sqlite3Fts5StorageStmtRelease(
+ Fts5Storage *p,
+ int eStmt,
+ sqlite3_stmt *pStmt
+){
+ assert( eStmt==FTS5_STMT_SCAN_ASC
+ || eStmt==FTS5_STMT_SCAN_DESC
+ || eStmt==FTS5_STMT_LOOKUP
+ );
+ if( p->aStmt[eStmt]==0 ){
+ sqlite3_reset(pStmt);
+ p->aStmt[eStmt] = pStmt;
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+}
+
+static int fts5StorageDecodeSizeArray(
+ int *aCol, int nCol, /* Array to populate */
+ const u8 *aBlob, int nBlob /* Record to read varints from */
+){
+ int i;
+ int iOff = 0;
+ for(i=0; i<nCol; i++){
+ if( iOff>=nBlob ) return 1;
+ iOff += fts5GetVarint32(&aBlob[iOff], aCol[i]);
+ }
+ return (iOff!=nBlob);
+}
+
+/*
+** Argument aCol points to an array of integers containing one entry for
+** each table column. This function reads the %_docsize record for the
+** specified rowid and populates aCol[] with the results.
+**
+** An SQLite error code is returned if an error occurs, or SQLITE_OK
+** otherwise.
+*/
+static int sqlite3Fts5StorageDocsize(Fts5Storage *p, i64 iRowid, int *aCol){
+ int nCol = p->pConfig->nCol; /* Number of user columns in table */
+ sqlite3_stmt *pLookup = 0; /* Statement to query %_docsize */
+ int rc; /* Return Code */
+
+ assert( p->pConfig->bColumnsize );
+ rc = fts5StorageGetStmt(p, FTS5_STMT_LOOKUP_DOCSIZE, &pLookup, 0);
+ if( rc==SQLITE_OK ){
+ int bCorrupt = 1;
+ sqlite3_bind_int64(pLookup, 1, iRowid);
+ if( SQLITE_ROW==sqlite3_step(pLookup) ){
+ const u8 *aBlob = sqlite3_column_blob(pLookup, 0);
+ int nBlob = sqlite3_column_bytes(pLookup, 0);
+ if( 0==fts5StorageDecodeSizeArray(aCol, nCol, aBlob, nBlob) ){
+ bCorrupt = 0;
+ }
+ }
+ rc = sqlite3_reset(pLookup);
+ if( bCorrupt && rc==SQLITE_OK ){
+ rc = FTS5_CORRUPT;
+ }
+ }
+
+ return rc;
+}
+
+static int sqlite3Fts5StorageSize(Fts5Storage *p, int iCol, i64 *pnToken){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ *pnToken = 0;
+ if( iCol<0 ){
+ int i;
+ for(i=0; i<p->pConfig->nCol; i++){
+ *pnToken += p->aTotalSize[i];
+ }
+ }else if( iCol<p->pConfig->nCol ){
+ *pnToken = p->aTotalSize[iCol];
+ }else{
+ rc = SQLITE_RANGE;
+ }
+ }
+ return rc;
+}
+
+static int sqlite3Fts5StorageRowCount(Fts5Storage *p, i64 *pnRow){
+ int rc = fts5StorageLoadTotals(p, 0);
+ if( rc==SQLITE_OK ){
+ *pnRow = p->nTotalRow;
+ }
+ return rc;
+}
+
+/*
+** Flush any data currently held in-memory to disk.
+*/
+static int sqlite3Fts5StorageSync(Fts5Storage *p, int bCommit){
+ if( bCommit && p->bTotalsValid ){
+ int rc = fts5StorageSaveTotals(p);
+ p->bTotalsValid = 0;
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ return sqlite3Fts5IndexSync(p->pIndex, bCommit);
+}
+
+static int sqlite3Fts5StorageRollback(Fts5Storage *p){
+ p->bTotalsValid = 0;
+ return sqlite3Fts5IndexRollback(p->pIndex);
+}
+
+static int sqlite3Fts5StorageConfigValue(
+ Fts5Storage *p,
+ const char *z,
+ sqlite3_value *pVal,
+ int iVal
+){
+ sqlite3_stmt *pReplace = 0;
+ int rc = fts5StorageGetStmt(p, FTS5_STMT_REPLACE_CONFIG, &pReplace, 0);
+ if( rc==SQLITE_OK ){
+ sqlite3_bind_text(pReplace, 1, z, -1, SQLITE_STATIC);
+ if( pVal ){
+ sqlite3_bind_value(pReplace, 2, pVal);
+ }else{
+ sqlite3_bind_int(pReplace, 2, iVal);
+ }
+ sqlite3_step(pReplace);
+ rc = sqlite3_reset(pReplace);
+ }
+ if( rc==SQLITE_OK && pVal ){
+ int iNew = p->pConfig->iCookie + 1;
+ rc = sqlite3Fts5IndexSetCookie(p->pIndex, iNew);
+ if( rc==SQLITE_OK ){
+ p->pConfig->iCookie = iNew;
+ }
+ }
+ return rc;
+}
+
+
+
+#line 1 "fts5_tokenize.c"
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+
+/* #include "fts5Int.h" */
+
+/**************************************************************************
+** Start of ascii tokenizer implementation.
+*/
+
+/*
+** For tokenizers with no "unicode" modifier, the set of token characters
+** is the same as the set of ASCII range alphanumeric characters.
+*/
+static unsigned char aAsciiTokenChar[128] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00..0x0F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10..0x1F */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20..0x2F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30..0x3F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40..0x4F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x50..0x5F */
+ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60..0x6F */
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 0x70..0x7F */
+};
+
+typedef struct AsciiTokenizer AsciiTokenizer;
+struct AsciiTokenizer {
+ unsigned char aTokenChar[128];
+};
+
+static void fts5AsciiAddExceptions(
+ AsciiTokenizer *p,
+ const char *zArg,
+ int bTokenChars
+){
+ int i;
+ for(i=0; zArg[i]; i++){
+ if( (zArg[i] & 0x80)==0 ){
+ p->aTokenChar[(int)zArg[i]] = (unsigned char)bTokenChars;
+ }
+ }
+}
+
+/*
+** Delete a "ascii" tokenizer.
+*/
+static void fts5AsciiDelete(Fts5Tokenizer *p){
+ sqlite3_free(p);
+}
+
+/*
+** Create an "ascii" tokenizer.
+*/
+static int fts5AsciiCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK;
+ AsciiTokenizer *p = 0;
+ UNUSED_PARAM(pUnused);
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = sqlite3_malloc(sizeof(AsciiTokenizer));
+ if( p==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ int i;
+ memset(p, 0, sizeof(AsciiTokenizer));
+ memcpy(p->aTokenChar, aAsciiTokenChar, sizeof(aAsciiTokenChar));
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ fts5AsciiAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ fts5AsciiAddExceptions(p, zArg, 0);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ fts5AsciiDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ }
+ }
+
+ *ppOut = (Fts5Tokenizer*)p;
+ return rc;
+}
+
+
+static void asciiFold(char *aOut, const char *aIn, int nByte){
+ int i;
+ for(i=0; i<nByte; i++){
+ char c = aIn[i];
+ if( c>='A' && c<='Z' ) c += 32;
+ aOut[i] = c;
+ }
+}
+
+/*
+** Tokenize some text using the ascii tokenizer.
+*/
+static int fts5AsciiTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ AsciiTokenizer *p = (AsciiTokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ int ie;
+ int is = 0;
+
+ char aFold[64];
+ int nFold = sizeof(aFold);
+ char *pFold = aFold;
+ unsigned char *a = p->aTokenChar;
+
+ UNUSED_PARAM(iUnused);
+
+ while( is<nText && rc==SQLITE_OK ){
+ int nByte;
+
+ /* Skip any leading divider characters. */
+ while( is<nText && ((pText[is]&0x80)==0 && a[(int)pText[is]]==0) ){
+ is++;
+ }
+ if( is==nText ) break;
+
+ /* Count the token characters */
+ ie = is+1;
+ while( ie<nText && ((pText[ie]&0x80) || a[(int)pText[ie]] ) ){
+ ie++;
+ }
+
+ /* Fold to lower case */
+ nByte = ie-is;
+ if( nByte>nFold ){
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ pFold = sqlite3_malloc(nByte*2);
+ if( pFold==0 ){
+ rc = SQLITE_NOMEM;
+ break;
+ }
+ nFold = nByte*2;
+ }
+ asciiFold(pFold, &pText[is], nByte);
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, pFold, nByte, is, ie);
+ is = ie+1;
+ }
+
+ if( pFold!=aFold ) sqlite3_free(pFold);
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of unicode61 tokenizer implementation.
+*/
+
+
+/*
+** The following two macros - READ_UTF8 and WRITE_UTF8 - have been copied
+** from the sqlite3 source file utf.c. If this file is compiled as part
+** of the amalgamation, they are not required.
+*/
+#ifndef SQLITE_AMALGAMATION
+
+static const unsigned char sqlite3Utf8Trans1[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
+};
+
+#define READ_UTF8(zIn, zTerm, c) \
+ c = *(zIn++); \
+ if( c>=0xc0 ){ \
+ c = sqlite3Utf8Trans1[c-0xc0]; \
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
+ c = (c<<6) + (0x3f & *(zIn++)); \
+ } \
+ if( c<0x80 \
+ || (c&0xFFFFF800)==0xD800 \
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
+ }
+
+
+#define WRITE_UTF8(zOut, c) { \
+ if( c<0x00080 ){ \
+ *zOut++ = (unsigned char)(c&0xFF); \
+ } \
+ else if( c<0x00800 ){ \
+ *zOut++ = 0xC0 + (unsigned char)((c>>6)&0x1F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+ else if( c<0x10000 ){ \
+ *zOut++ = 0xE0 + (unsigned char)((c>>12)&0x0F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ }else{ \
+ *zOut++ = 0xF0 + (unsigned char)((c>>18) & 0x07); \
+ *zOut++ = 0x80 + (unsigned char)((c>>12) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)((c>>6) & 0x3F); \
+ *zOut++ = 0x80 + (unsigned char)(c & 0x3F); \
+ } \
+}
+
+#endif /* ifndef SQLITE_AMALGAMATION */
+
+typedef struct Unicode61Tokenizer Unicode61Tokenizer;
+struct Unicode61Tokenizer {
+ unsigned char aTokenChar[128]; /* ASCII range token characters */
+ char *aFold; /* Buffer to fold text into */
+ int nFold; /* Size of aFold[] in bytes */
+ int bRemoveDiacritic; /* True if remove_diacritics=1 is set */
+ int nException;
+ int *aiException;
+};
+
+static int fts5UnicodeAddExceptions(
+ Unicode61Tokenizer *p, /* Tokenizer object */
+ const char *z, /* Characters to treat as exceptions */
+ int bTokenChars /* 1 for 'tokenchars', 0 for 'separators' */
+){
+ int rc = SQLITE_OK;
+ int n = (int)strlen(z);
+ int *aNew;
+
+ if( n>0 ){
+ aNew = (int*)sqlite3_realloc(p->aiException, (n+p->nException)*sizeof(int));
+ if( aNew ){
+ int nNew = p->nException;
+ const unsigned char *zCsr = (const unsigned char*)z;
+ const unsigned char *zTerm = (const unsigned char*)&z[n];
+ while( zCsr<zTerm ){
+ int iCode;
+ int bToken;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( iCode<128 ){
+ p->aTokenChar[iCode] = (unsigned char)bTokenChars;
+ }else{
+ bToken = sqlite3Fts5UnicodeIsalnum(iCode);
+ assert( (bToken==0 || bToken==1) );
+ assert( (bTokenChars==0 || bTokenChars==1) );
+ if( bToken!=bTokenChars && sqlite3Fts5UnicodeIsdiacritic(iCode)==0 ){
+ int i;
+ for(i=0; i<nNew; i++){
+ if( aNew[i]>iCode ) break;
+ }
+ memmove(&aNew[i+1], &aNew[i], (nNew-i)*sizeof(int));
+ aNew[i] = iCode;
+ nNew++;
+ }
+ }
+ }
+ p->aiException = aNew;
+ p->nException = nNew;
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Return true if the p->aiException[] array contains the value iCode.
+*/
+static int fts5UnicodeIsException(Unicode61Tokenizer *p, int iCode){
+ if( p->nException>0 ){
+ int *a = p->aiException;
+ int iLo = 0;
+ int iHi = p->nException-1;
+
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( iCode==a[iTest] ){
+ return 1;
+ }else if( iCode>a[iTest] ){
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*
+** Delete a "unicode61" tokenizer.
+*/
+static void fts5UnicodeDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTok;
+ sqlite3_free(p->aiException);
+ sqlite3_free(p->aFold);
+ sqlite3_free(p);
+ }
+ return;
+}
+
+/*
+** Create a "unicode61" tokenizer.
+*/
+static int fts5UnicodeCreate(
+ void *pUnused,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ int rc = SQLITE_OK; /* Return code */
+ Unicode61Tokenizer *p = 0; /* New tokenizer object */
+
+ UNUSED_PARAM(pUnused);
+
+ if( nArg%2 ){
+ rc = SQLITE_ERROR;
+ }else{
+ p = (Unicode61Tokenizer*)sqlite3_malloc(sizeof(Unicode61Tokenizer));
+ if( p ){
+ int i;
+ memset(p, 0, sizeof(Unicode61Tokenizer));
+ memcpy(p->aTokenChar, aAsciiTokenChar, sizeof(aAsciiTokenChar));
+ p->bRemoveDiacritic = 1;
+ p->nFold = 64;
+ p->aFold = sqlite3_malloc(p->nFold * sizeof(char));
+ if( p->aFold==0 ){
+ rc = SQLITE_NOMEM;
+ }
+ for(i=0; rc==SQLITE_OK && i<nArg; i+=2){
+ const char *zArg = azArg[i+1];
+ if( 0==sqlite3_stricmp(azArg[i], "remove_diacritics") ){
+ if( (zArg[0]!='0' && zArg[0]!='1') || zArg[1] ){
+ rc = SQLITE_ERROR;
+ }
+ p->bRemoveDiacritic = (zArg[0]=='1');
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "tokenchars") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 1);
+ }else
+ if( 0==sqlite3_stricmp(azArg[i], "separators") ){
+ rc = fts5UnicodeAddExceptions(p, zArg, 0);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ }
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc!=SQLITE_OK ){
+ fts5UnicodeDelete((Fts5Tokenizer*)p);
+ p = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)p;
+ }
+ return rc;
+}
+
+/*
+** Return true if, for the purposes of tokenizing with the tokenizer
+** passed as the first argument, codepoint iCode is considered a token
+** character (not a separator).
+*/
+static int fts5UnicodeIsAlnum(Unicode61Tokenizer *p, int iCode){
+ assert( (sqlite3Fts5UnicodeIsalnum(iCode) & 0xFFFFFFFE)==0 );
+ return sqlite3Fts5UnicodeIsalnum(iCode) ^ fts5UnicodeIsException(p, iCode);
+}
+
+static int fts5UnicodeTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int iUnused,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ Unicode61Tokenizer *p = (Unicode61Tokenizer*)pTokenizer;
+ int rc = SQLITE_OK;
+ unsigned char *a = p->aTokenChar;
+
+ unsigned char *zTerm = (unsigned char*)&pText[nText];
+ unsigned char *zCsr = (unsigned char *)pText;
+
+ /* Output buffer */
+ char *aFold = p->aFold;
+ int nFold = p->nFold;
+ const char *pEnd = &aFold[nFold-6];
+
+ UNUSED_PARAM(iUnused);
+
+ /* Each iteration of this loop gobbles up a contiguous run of separators,
+ ** then the next token. */
+ while( rc==SQLITE_OK ){
+ int iCode; /* non-ASCII codepoint read from input */
+ char *zOut = aFold;
+ int is;
+ int ie;
+
+ /* Skip any separator characters. */
+ while( 1 ){
+ if( zCsr>=zTerm ) goto tokenize_done;
+ if( *zCsr & 0x80 ) {
+ /* A character outside of the ascii range. Skip past it if it is
+ ** a separator character. Or break out of the loop if it is not. */
+ is = zCsr - (unsigned char*)pText;
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p, iCode) ){
+ goto non_ascii_tokenchar;
+ }
+ }else{
+ if( a[*zCsr] ){
+ is = zCsr - (unsigned char*)pText;
+ goto ascii_tokenchar;
+ }
+ zCsr++;
+ }
+ }
+
+ /* Run through the tokenchars. Fold them into the output buffer along
+ ** the way. */
+ while( zCsr<zTerm ){
+
+ /* Grow the output buffer so that there is sufficient space to fit the
+ ** largest possible utf-8 character. */
+ if( zOut>pEnd ){
+ aFold = sqlite3_malloc(nFold*2);
+ if( aFold==0 ){
+ rc = SQLITE_NOMEM;
+ goto tokenize_done;
+ }
+ zOut = &aFold[zOut - p->aFold];
+ memcpy(aFold, p->aFold, nFold);
+ sqlite3_free(p->aFold);
+ p->aFold = aFold;
+ p->nFold = nFold = nFold*2;
+ pEnd = &aFold[nFold-6];
+ }
+
+ if( *zCsr & 0x80 ){
+ /* An non-ascii-range character. Fold it into the output buffer if
+ ** it is a token character, or break out of the loop if it is not. */
+ READ_UTF8(zCsr, zTerm, iCode);
+ if( fts5UnicodeIsAlnum(p,iCode)||sqlite3Fts5UnicodeIsdiacritic(iCode) ){
+ non_ascii_tokenchar:
+ iCode = sqlite3Fts5UnicodeFold(iCode, p->bRemoveDiacritic);
+ if( iCode ) WRITE_UTF8(zOut, iCode);
+ }else{
+ break;
+ }
+ }else if( a[*zCsr]==0 ){
+ /* An ascii-range separator character. End of token. */
+ break;
+ }else{
+ ascii_tokenchar:
+ if( *zCsr>='A' && *zCsr<='Z' ){
+ *zOut++ = *zCsr + 32;
+ }else{
+ *zOut++ = *zCsr;
+ }
+ zCsr++;
+ }
+ ie = zCsr - (unsigned char*)pText;
+ }
+
+ /* Invoke the token callback */
+ rc = xToken(pCtx, 0, aFold, zOut-aFold, is, ie);
+ }
+
+ tokenize_done:
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK;
+ return rc;
+}
+
+/**************************************************************************
+** Start of porter stemmer implementation.
+*/
+
+/* Any tokens larger than this (in bytes) are passed through without
+** stemming. */
+#define FTS5_PORTER_MAX_TOKEN 64
+
+typedef struct PorterTokenizer PorterTokenizer;
+struct PorterTokenizer {
+ fts5_tokenizer tokenizer; /* Parent tokenizer module */
+ Fts5Tokenizer *pTokenizer; /* Parent tokenizer instance */
+ char aBuf[FTS5_PORTER_MAX_TOKEN + 64];
+};
+
+/*
+** Delete a "porter" tokenizer.
+*/
+static void fts5PorterDelete(Fts5Tokenizer *pTok){
+ if( pTok ){
+ PorterTokenizer *p = (PorterTokenizer*)pTok;
+ if( p->pTokenizer ){
+ p->tokenizer.xDelete(p->pTokenizer);
+ }
+ sqlite3_free(p);
+ }
+}
+
+/*
+** Create a "porter" tokenizer.
+*/
+static int fts5PorterCreate(
+ void *pCtx,
+ const char **azArg, int nArg,
+ Fts5Tokenizer **ppOut
+){
+ fts5_api *pApi = (fts5_api*)pCtx;
+ int rc = SQLITE_OK;
+ PorterTokenizer *pRet;
+ void *pUserdata = 0;
+ const char *zBase = "unicode61";
+
+ if( nArg>0 ){
+ zBase = azArg[0];
+ }
+
+ pRet = (PorterTokenizer*)sqlite3_malloc(sizeof(PorterTokenizer));
+ if( pRet ){
+ memset(pRet, 0, sizeof(PorterTokenizer));
+ rc = pApi->xFindTokenizer(pApi, zBase, &pUserdata, &pRet->tokenizer);
+ }else{
+ rc = SQLITE_NOMEM;
+ }
+ if( rc==SQLITE_OK ){
+ int nArg2 = (nArg>0 ? nArg-1 : 0);
+ const char **azArg2 = (nArg2 ? &azArg[1] : 0);
+ rc = pRet->tokenizer.xCreate(pUserdata, azArg2, nArg2, &pRet->pTokenizer);
+ }
+
+ if( rc!=SQLITE_OK ){
+ fts5PorterDelete((Fts5Tokenizer*)pRet);
+ pRet = 0;
+ }
+ *ppOut = (Fts5Tokenizer*)pRet;
+ return rc;
+}
+
+typedef struct PorterContext PorterContext;
+struct PorterContext {
+ void *pCtx;
+ int (*xToken)(void*, int, const char*, int, int, int);
+ char *aBuf;
+};
+
+typedef struct PorterRule PorterRule;
+struct PorterRule {
+ const char *zSuffix;
+ int nSuffix;
+ int (*xCond)(char *zStem, int nStem);
+ const char *zOutput;
+ int nOutput;
+};
+
+#if 0
+static int fts5PorterApply(char *aBuf, int *pnBuf, PorterRule *aRule){
+ int ret = -1;
+ int nBuf = *pnBuf;
+ PorterRule *p;
+
+ for(p=aRule; p->zSuffix; p++){
+ assert( strlen(p->zSuffix)==p->nSuffix );
+ assert( strlen(p->zOutput)==p->nOutput );
+ if( nBuf<p->nSuffix ) continue;
+ if( 0==memcmp(&aBuf[nBuf - p->nSuffix], p->zSuffix, p->nSuffix) ) break;
+ }
+
+ if( p->zSuffix ){
+ int nStem = nBuf - p->nSuffix;
+ if( p->xCond==0 || p->xCond(aBuf, nStem) ){
+ memcpy(&aBuf[nStem], p->zOutput, p->nOutput);
+ *pnBuf = nStem + p->nOutput;
+ ret = p - aRule;
+ }
+ }
+
+ return ret;
+}
+#endif
+
+static int fts5PorterIsVowel(char c, int bYIsVowel){
+ return (
+ c=='a' || c=='e' || c=='i' || c=='o' || c=='u' || (bYIsVowel && c=='y')
+ );
+}
+
+static int fts5PorterGobbleVC(char *zStem, int nStem, int bPrevCons){
+ int i;
+ int bCons = bPrevCons;
+
+ /* Scan for a vowel */
+ for(i=0; i<nStem; i++){
+ if( 0==(bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) break;
+ }
+
+ /* Scan for a consonent */
+ for(i++; i<nStem; i++){
+ if( (bCons = !fts5PorterIsVowel(zStem[i], bCons)) ) return i+1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m > 0) */
+static int fts5Porter_MGt0(char *zStem, int nStem){
+ return !!fts5PorterGobbleVC(zStem, nStem, 0);
+}
+
+/* porter rule condition: (m > 1) */
+static int fts5Porter_MGt1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (m = 1) */
+static int fts5Porter_MEq1(char *zStem, int nStem){
+ int n;
+ n = fts5PorterGobbleVC(zStem, nStem, 0);
+ if( n && 0==fts5PorterGobbleVC(&zStem[n], nStem-n, 1) ){
+ return 1;
+ }
+ return 0;
+}
+
+/* porter rule condition: (*o) */
+static int fts5Porter_Ostar(char *zStem, int nStem){
+ if( zStem[nStem-1]=='w' || zStem[nStem-1]=='x' || zStem[nStem-1]=='y' ){
+ return 0;
+ }else{
+ int i;
+ int mask = 0;
+ int bCons = 0;
+ for(i=0; i<nStem; i++){
+ bCons = !fts5PorterIsVowel(zStem[i], bCons);
+ assert( bCons==0 || bCons==1 );
+ mask = (mask << 1) + bCons;
+ }
+ return ((mask & 0x0007)==0x0005);
+ }
+}
+
+/* porter rule condition: (m > 1 and (*S or *T)) */
+static int fts5Porter_MGt1_and_S_or_T(char *zStem, int nStem){
+ assert( nStem>0 );
+ return (zStem[nStem-1]=='s' || zStem[nStem-1]=='t')
+ && fts5Porter_MGt1(zStem, nStem);
+}
+
+/* porter rule condition: (*v*) */
+static int fts5Porter_Vowel(char *zStem, int nStem){
+ int i;
+ for(i=0; i<nStem; i++){
+ if( fts5PorterIsVowel(zStem[i], i>0) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/**************************************************************************
+***************************************************************************
+** GENERATED CODE STARTS HERE (mkportersteps.tcl)
+*/
+
+static int fts5PorterStep4(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("al", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("ance", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ence", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>2 && 0==memcmp("er", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("ic", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>4 && 0==memcmp("able", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("ible", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ant", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ement", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }else if( nBuf>4 && 0==memcmp("ment", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }else if( nBuf>3 && 0==memcmp("ent", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>3 && 0==memcmp("ion", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1_and_S_or_T(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>2 && 0==memcmp("ou", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>3 && 0==memcmp("ism", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>3 && 0==memcmp("ate", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("iti", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ous", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>3 && 0==memcmp("ive", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>3 && 0==memcmp("ize", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt1(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>2 && 0==memcmp("at", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ate", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'b':
+ if( nBuf>2 && 0==memcmp("bl", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ble", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ case 'i':
+ if( nBuf>2 && 0==memcmp("iz", &aBuf[nBuf-2], 2) ){
+ memcpy(&aBuf[nBuf-2], "ize", 3);
+ *pnBuf = nBuf - 2 + 3;
+ ret = 1;
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep2(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>7 && 0==memcmp("ational", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ate", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("tional", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "tion", 4);
+ *pnBuf = nBuf - 6 + 4;
+ }
+ }
+ break;
+
+ case 'c':
+ if( nBuf>4 && 0==memcmp("enci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ence", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }else if( nBuf>4 && 0==memcmp("anci", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ance", 4);
+ *pnBuf = nBuf - 4 + 4;
+ }
+ }
+ break;
+
+ case 'e':
+ if( nBuf>4 && 0==memcmp("izer", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ize", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'g':
+ if( nBuf>4 && 0==memcmp("logi", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "log", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 'l':
+ if( nBuf>3 && 0==memcmp("bli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ble", 3);
+ *pnBuf = nBuf - 3 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("alli", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "al", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("entli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ent", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>3 && 0==memcmp("eli", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "e", 1);
+ *pnBuf = nBuf - 3 + 1;
+ }
+ }else if( nBuf>5 && 0==memcmp("ousli", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ous", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }
+ break;
+
+ case 'o':
+ if( nBuf>7 && 0==memcmp("ization", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ize", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>5 && 0==memcmp("ation", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ate", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>4 && 0==memcmp("ator", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ate", 3);
+ *pnBuf = nBuf - 4 + 3;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>5 && 0==memcmp("alism", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>7 && 0==memcmp("iveness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ive", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("fulness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ful", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }else if( nBuf>7 && 0==memcmp("ousness", &aBuf[nBuf-7], 7) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-7) ){
+ memcpy(&aBuf[nBuf-7], "ous", 3);
+ *pnBuf = nBuf - 7 + 3;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("aliti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iviti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ive", 3);
+ *pnBuf = nBuf - 5 + 3;
+ }
+ }else if( nBuf>6 && 0==memcmp("biliti", &aBuf[nBuf-6], 6) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-6) ){
+ memcpy(&aBuf[nBuf-6], "ble", 3);
+ *pnBuf = nBuf - 6 + 3;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep3(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'a':
+ if( nBuf>4 && 0==memcmp("ical", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ memcpy(&aBuf[nBuf-4], "ic", 2);
+ *pnBuf = nBuf - 4 + 2;
+ }
+ }
+ break;
+
+ case 's':
+ if( nBuf>4 && 0==memcmp("ness", &aBuf[nBuf-4], 4) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-4) ){
+ *pnBuf = nBuf - 4;
+ }
+ }
+ break;
+
+ case 't':
+ if( nBuf>5 && 0==memcmp("icate", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }else if( nBuf>5 && 0==memcmp("iciti", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "ic", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ case 'u':
+ if( nBuf>3 && 0==memcmp("ful", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ }
+ }
+ break;
+
+ case 'v':
+ if( nBuf>5 && 0==memcmp("ative", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ *pnBuf = nBuf - 5;
+ }
+ }
+ break;
+
+ case 'z':
+ if( nBuf>5 && 0==memcmp("alize", &aBuf[nBuf-5], 5) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-5) ){
+ memcpy(&aBuf[nBuf-5], "al", 2);
+ *pnBuf = nBuf - 5 + 2;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+
+static int fts5PorterStep1B(char *aBuf, int *pnBuf){
+ int ret = 0;
+ int nBuf = *pnBuf;
+ switch( aBuf[nBuf-2] ){
+
+ case 'e':
+ if( nBuf>3 && 0==memcmp("eed", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_MGt0(aBuf, nBuf-3) ){
+ memcpy(&aBuf[nBuf-3], "ee", 2);
+ *pnBuf = nBuf - 3 + 2;
+ }
+ }else if( nBuf>2 && 0==memcmp("ed", &aBuf[nBuf-2], 2) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-2) ){
+ *pnBuf = nBuf - 2;
+ ret = 1;
+ }
+ }
+ break;
+
+ case 'n':
+ if( nBuf>3 && 0==memcmp("ing", &aBuf[nBuf-3], 3) ){
+ if( fts5Porter_Vowel(aBuf, nBuf-3) ){
+ *pnBuf = nBuf - 3;
+ ret = 1;
+ }
+ }
+ break;
+
+ }
+ return ret;
+}
+
+/*
+** GENERATED CODE ENDS HERE (mkportersteps.tcl)
+***************************************************************************
+**************************************************************************/
+
+static void fts5PorterStep1A(char *aBuf, int *pnBuf){
+ int nBuf = *pnBuf;
+ if( aBuf[nBuf-1]=='s' ){
+ if( aBuf[nBuf-2]=='e' ){
+ if( (nBuf>4 && aBuf[nBuf-4]=='s' && aBuf[nBuf-3]=='s')
+ || (nBuf>3 && aBuf[nBuf-3]=='i' )
+ ){
+ *pnBuf = nBuf-2;
+ }else{
+ *pnBuf = nBuf-1;
+ }
+ }
+ else if( aBuf[nBuf-2]!='s' ){
+ *pnBuf = nBuf-1;
+ }
+ }
+}
+
+static int fts5PorterCb(
+ void *pCtx,
+ int tflags,
+ const char *pToken,
+ int nToken,
+ int iStart,
+ int iEnd
+){
+ PorterContext *p = (PorterContext*)pCtx;
+
+ char *aBuf;
+ int nBuf;
+
+ if( nToken>FTS5_PORTER_MAX_TOKEN || nToken<3 ) goto pass_through;
+ aBuf = p->aBuf;
+ nBuf = nToken;
+ memcpy(aBuf, pToken, nBuf);
+
+ /* Step 1. */
+ fts5PorterStep1A(aBuf, &nBuf);
+ if( fts5PorterStep1B(aBuf, &nBuf) ){
+ if( fts5PorterStep1B2(aBuf, &nBuf)==0 ){
+ char c = aBuf[nBuf-1];
+ if( fts5PorterIsVowel(c, 0)==0
+ && c!='l' && c!='s' && c!='z' && c==aBuf[nBuf-2]
+ ){
+ nBuf--;
+ }else if( fts5Porter_MEq1(aBuf, nBuf) && fts5Porter_Ostar(aBuf, nBuf) ){
+ aBuf[nBuf++] = 'e';
+ }
+ }
+ }
+
+ /* Step 1C. */
+ if( aBuf[nBuf-1]=='y' && fts5Porter_Vowel(aBuf, nBuf-1) ){
+ aBuf[nBuf-1] = 'i';
+ }
+
+ /* Steps 2 through 4. */
+ fts5PorterStep2(aBuf, &nBuf);
+ fts5PorterStep3(aBuf, &nBuf);
+ fts5PorterStep4(aBuf, &nBuf);
+
+ /* Step 5a. */
+ assert( nBuf>0 );
+ if( aBuf[nBuf-1]=='e' ){
+ if( fts5Porter_MGt1(aBuf, nBuf-1)
+ || (fts5Porter_MEq1(aBuf, nBuf-1) && !fts5Porter_Ostar(aBuf, nBuf-1))
+ ){
+ nBuf--;
+ }
+ }
+
+ /* Step 5b. */
+ if( nBuf>1 && aBuf[nBuf-1]=='l'
+ && aBuf[nBuf-2]=='l' && fts5Porter_MGt1(aBuf, nBuf-1)
+ ){
+ nBuf--;
+ }
+
+ return p->xToken(p->pCtx, tflags, aBuf, nBuf, iStart, iEnd);
+
+ pass_through:
+ return p->xToken(p->pCtx, tflags, pToken, nToken, iStart, iEnd);
+}
+
+/*
+** Tokenize using the porter tokenizer.
+*/
+static int fts5PorterTokenize(
+ Fts5Tokenizer *pTokenizer,
+ void *pCtx,
+ int flags,
+ const char *pText, int nText,
+ int (*xToken)(void*, int, const char*, int nToken, int iStart, int iEnd)
+){
+ PorterTokenizer *p = (PorterTokenizer*)pTokenizer;
+ PorterContext sCtx;
+ sCtx.xToken = xToken;
+ sCtx.pCtx = pCtx;
+ sCtx.aBuf = p->aBuf;
+ return p->tokenizer.xTokenize(
+ p->pTokenizer, (void*)&sCtx, flags, pText, nText, fts5PorterCb
+ );
+}
+
+/*
+** Register all built-in tokenizers with FTS5.
+*/
+static int sqlite3Fts5TokenizerInit(fts5_api *pApi){
+ struct BuiltinTokenizer {
+ const char *zName;
+ fts5_tokenizer x;
+ } aBuiltin[] = {
+ { "unicode61", {fts5UnicodeCreate, fts5UnicodeDelete, fts5UnicodeTokenize}},
+ { "ascii", {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
+ { "porter", {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
+ };
+
+ int rc = SQLITE_OK; /* Return code */
+ int i; /* To iterate through builtin functions */
+
+ for(i=0; rc==SQLITE_OK && i<ArraySize(aBuiltin); i++){
+ rc = pApi->xCreateTokenizer(pApi,
+ aBuiltin[i].zName,
+ (void*)pApi,
+ &aBuiltin[i].x,
+ 0
+ );
+ }
+
+ return rc;
+}
+
+
+
+#line 1 "fts5_unicode2.c"
+/*
+** 2012 May 25
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+*/
+
+/*
+** DO NOT EDIT THIS MACHINE GENERATED FILE.
+*/
+
+
+#include <assert.h>
+
+/*
+** Return true if the argument corresponds to a unicode codepoint
+** classified as either a letter or a number. Otherwise false.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+static int sqlite3Fts5UnicodeIsalnum(int c){
+ /* Each unsigned integer in the following array corresponds to a contiguous
+ ** range of unicode codepoints that are not either letters or numbers (i.e.
+ ** codepoints for which this function should return 0).
+ **
+ ** The most significant 22 bits in each 32-bit value contain the first
+ ** codepoint in the range. The least significant 10 bits are used to store
+ ** the size of the range (always at least 1). In other words, the value
+ ** ((C<<22) + N) represents a range of N codepoints starting with codepoint
+ ** C. It is not possible to represent a range larger than 1023 codepoints
+ ** using this format.
+ */
+ static const unsigned int aEntry[] = {
+ 0x00000030, 0x0000E807, 0x00016C06, 0x0001EC2F, 0x0002AC07,
+ 0x0002D001, 0x0002D803, 0x0002EC01, 0x0002FC01, 0x00035C01,
+ 0x0003DC01, 0x000B0804, 0x000B480E, 0x000B9407, 0x000BB401,
+ 0x000BBC81, 0x000DD401, 0x000DF801, 0x000E1002, 0x000E1C01,
+ 0x000FD801, 0x00120808, 0x00156806, 0x00162402, 0x00163C01,
+ 0x00164437, 0x0017CC02, 0x00180005, 0x00181816, 0x00187802,
+ 0x00192C15, 0x0019A804, 0x0019C001, 0x001B5001, 0x001B580F,
+ 0x001B9C07, 0x001BF402, 0x001C000E, 0x001C3C01, 0x001C4401,
+ 0x001CC01B, 0x001E980B, 0x001FAC09, 0x001FD804, 0x00205804,
+ 0x00206C09, 0x00209403, 0x0020A405, 0x0020C00F, 0x00216403,
+ 0x00217801, 0x0023901B, 0x00240004, 0x0024E803, 0x0024F812,
+ 0x00254407, 0x00258804, 0x0025C001, 0x00260403, 0x0026F001,
+ 0x0026F807, 0x00271C02, 0x00272C03, 0x00275C01, 0x00278802,
+ 0x0027C802, 0x0027E802, 0x00280403, 0x0028F001, 0x0028F805,
+ 0x00291C02, 0x00292C03, 0x00294401, 0x0029C002, 0x0029D401,
+ 0x002A0403, 0x002AF001, 0x002AF808, 0x002B1C03, 0x002B2C03,
+ 0x002B8802, 0x002BC002, 0x002C0403, 0x002CF001, 0x002CF807,
+ 0x002D1C02, 0x002D2C03, 0x002D5802, 0x002D8802, 0x002DC001,
+ 0x002E0801, 0x002EF805, 0x002F1803, 0x002F2804, 0x002F5C01,
+ 0x002FCC08, 0x00300403, 0x0030F807, 0x00311803, 0x00312804,
+ 0x00315402, 0x00318802, 0x0031FC01, 0x00320802, 0x0032F001,
+ 0x0032F807, 0x00331803, 0x00332804, 0x00335402, 0x00338802,
+ 0x00340802, 0x0034F807, 0x00351803, 0x00352804, 0x00355C01,
+ 0x00358802, 0x0035E401, 0x00360802, 0x00372801, 0x00373C06,
+ 0x00375801, 0x00376008, 0x0037C803, 0x0038C401, 0x0038D007,
+ 0x0038FC01, 0x00391C09, 0x00396802, 0x003AC401, 0x003AD006,
+ 0x003AEC02, 0x003B2006, 0x003C041F, 0x003CD00C, 0x003DC417,
+ 0x003E340B, 0x003E6424, 0x003EF80F, 0x003F380D, 0x0040AC14,
+ 0x00412806, 0x00415804, 0x00417803, 0x00418803, 0x00419C07,
+ 0x0041C404, 0x0042080C, 0x00423C01, 0x00426806, 0x0043EC01,
+ 0x004D740C, 0x004E400A, 0x00500001, 0x0059B402, 0x005A0001,
+ 0x005A6C02, 0x005BAC03, 0x005C4803, 0x005CC805, 0x005D4802,
+ 0x005DC802, 0x005ED023, 0x005F6004, 0x005F7401, 0x0060000F,
+ 0x0062A401, 0x0064800C, 0x0064C00C, 0x00650001, 0x00651002,
+ 0x0066C011, 0x00672002, 0x00677822, 0x00685C05, 0x00687802,
+ 0x0069540A, 0x0069801D, 0x0069FC01, 0x006A8007, 0x006AA006,
+ 0x006C0005, 0x006CD011, 0x006D6823, 0x006E0003, 0x006E840D,
+ 0x006F980E, 0x006FF004, 0x00709014, 0x0070EC05, 0x0071F802,
+ 0x00730008, 0x00734019, 0x0073B401, 0x0073C803, 0x00770027,
+ 0x0077F004, 0x007EF401, 0x007EFC03, 0x007F3403, 0x007F7403,
+ 0x007FB403, 0x007FF402, 0x00800065, 0x0081A806, 0x0081E805,
+ 0x00822805, 0x0082801A, 0x00834021, 0x00840002, 0x00840C04,
+ 0x00842002, 0x00845001, 0x00845803, 0x00847806, 0x00849401,
+ 0x00849C01, 0x0084A401, 0x0084B801, 0x0084E802, 0x00850005,
+ 0x00852804, 0x00853C01, 0x00864264, 0x00900027, 0x0091000B,
+ 0x0092704E, 0x00940200, 0x009C0475, 0x009E53B9, 0x00AD400A,
+ 0x00B39406, 0x00B3BC03, 0x00B3E404, 0x00B3F802, 0x00B5C001,
+ 0x00B5FC01, 0x00B7804F, 0x00B8C00C, 0x00BA001A, 0x00BA6C59,
+ 0x00BC00D6, 0x00BFC00C, 0x00C00005, 0x00C02019, 0x00C0A807,
+ 0x00C0D802, 0x00C0F403, 0x00C26404, 0x00C28001, 0x00C3EC01,
+ 0x00C64002, 0x00C6580A, 0x00C70024, 0x00C8001F, 0x00C8A81E,
+ 0x00C94001, 0x00C98020, 0x00CA2827, 0x00CB003F, 0x00CC0100,
+ 0x01370040, 0x02924037, 0x0293F802, 0x02983403, 0x0299BC10,
+ 0x029A7C01, 0x029BC008, 0x029C0017, 0x029C8002, 0x029E2402,
+ 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804,
+ 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012,
+ 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004,
+ 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002,
+ 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803,
+ 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07,
+ 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02,
+ 0x037FFC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802,
+ 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013,
+ 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06,
+ 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003,
+ 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01,
+ 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403,
+ 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009,
+ 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003,
+ 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003,
+ 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E,
+ 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046,
+ 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401,
+ 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401,
+ 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F,
+ 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C,
+ 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002,
+ 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025,
+ 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6,
+ 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46,
+ 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060,
+ 0x380400F0,
+ };
+ static const unsigned int aAscii[4] = {
+ 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001,
+ };
+
+ if( (unsigned int)c<128 ){
+ return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 );
+ }else if( (unsigned int)c<(1<<22) ){
+ unsigned int key = (((unsigned int)c)<<10) | 0x000003FF;
+ int iRes = 0;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aEntry[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( aEntry[0]<key );
+ assert( key>=aEntry[iRes] );
+ return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
+ }
+ return 1;
+}
+
+
+/*
+** If the argument is a codepoint corresponding to a lowercase letter
+** in the ASCII range with a diacritic added, return the codepoint
+** of the ASCII letter only. For example, if passed 235 - "LATIN
+** SMALL LETTER E WITH DIAERESIS" - return 65 ("LATIN SMALL LETTER
+** E"). The resuls of passing a codepoint that corresponds to an
+** uppercase letter are undefined.
+*/
+static int fts5_remove_diacritic(int c){
+ unsigned short aDia[] = {
+ 0, 1797, 1848, 1859, 1891, 1928, 1940, 1995,
+ 2024, 2040, 2060, 2110, 2168, 2206, 2264, 2286,
+ 2344, 2383, 2472, 2488, 2516, 2596, 2668, 2732,
+ 2782, 2842, 2894, 2954, 2984, 3000, 3028, 3336,
+ 3456, 3696, 3712, 3728, 3744, 3896, 3912, 3928,
+ 3968, 4008, 4040, 4106, 4138, 4170, 4202, 4234,
+ 4266, 4296, 4312, 4344, 4408, 4424, 4472, 4504,
+ 6148, 6198, 6264, 6280, 6360, 6429, 6505, 6529,
+ 61448, 61468, 61534, 61592, 61642, 61688, 61704, 61726,
+ 61784, 61800, 61836, 61880, 61914, 61948, 61998, 62122,
+ 62154, 62200, 62218, 62302, 62364, 62442, 62478, 62536,
+ 62554, 62584, 62604, 62640, 62648, 62656, 62664, 62730,
+ 62924, 63050, 63082, 63274, 63390,
+ };
+ char aChar[] = {
+ '\0', 'a', 'c', 'e', 'i', 'n', 'o', 'u', 'y', 'y', 'a', 'c',
+ 'd', 'e', 'e', 'g', 'h', 'i', 'j', 'k', 'l', 'n', 'o', 'r',
+ 's', 't', 'u', 'u', 'w', 'y', 'z', 'o', 'u', 'a', 'i', 'o',
+ 'u', 'g', 'k', 'o', 'j', 'g', 'n', 'a', 'e', 'i', 'o', 'r',
+ 'u', 's', 't', 'h', 'a', 'e', 'o', 'y', '\0', '\0', '\0', '\0',
+ '\0', '\0', '\0', '\0', 'a', 'b', 'd', 'd', 'e', 'f', 'g', 'h',
+ 'h', 'i', 'k', 'l', 'l', 'm', 'n', 'p', 'r', 'r', 's', 't',
+ 'u', 'v', 'w', 'w', 'x', 'y', 'z', 'h', 't', 'w', 'y', 'a',
+ 'e', 'i', 'o', 'u', 'y',
+ };
+
+ unsigned int key = (((unsigned int)c)<<3) | 0x00000007;
+ int iRes = 0;
+ int iHi = sizeof(aDia)/sizeof(aDia[0]) - 1;
+ int iLo = 0;
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ if( key >= aDia[iTest] ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+ assert( key>=aDia[iRes] );
+ return ((c > (aDia[iRes]>>3) + (aDia[iRes]&0x07)) ? c : (int)aChar[iRes]);
+}
+
+
+/*
+** Return true if the argument interpreted as a unicode codepoint
+** is a diacritical modifier character.
+*/
+static int sqlite3Fts5UnicodeIsdiacritic(int c){
+ unsigned int mask0 = 0x08029FDF;
+ unsigned int mask1 = 0x000361F8;
+ if( c<768 || c>817 ) return 0;
+ return (c < 768+32) ?
+ (mask0 & (1 << (c-768))) :
+ (mask1 & (1 << (c-768-32)));
+}
+
+
+/*
+** Interpret the argument as a unicode codepoint. If the codepoint
+** is an upper case character that has a lower case equivalent,
+** return the codepoint corresponding to the lower case version.
+** Otherwise, return a copy of the argument.
+**
+** The results are undefined if the value passed to this function
+** is less than zero.
+*/
+static int sqlite3Fts5UnicodeFold(int c, int bRemoveDiacritic){
+ /* Each entry in the following array defines a rule for folding a range
+ ** of codepoints to lower case. The rule applies to a range of nRange
+ ** codepoints starting at codepoint iCode.
+ **
+ ** If the least significant bit in flags is clear, then the rule applies
+ ** to all nRange codepoints (i.e. all nRange codepoints are upper case and
+ ** need to be folded). Or, if it is set, then the rule only applies to
+ ** every second codepoint in the range, starting with codepoint C.
+ **
+ ** The 7 most significant bits in flags are an index into the aiOff[]
+ ** array. If a specific codepoint C does require folding, then its lower
+ ** case equivalent is ((C + aiOff[flags>>1]) & 0xFFFF).
+ **
+ ** The contents of this array are generated by parsing the CaseFolding.txt
+ ** file distributed as part of the "Unicode Character Database". See
+ ** http://www.unicode.org for details.
+ */
+ static const struct TableEntry {
+ unsigned short iCode;
+ unsigned char flags;
+ unsigned char nRange;
+ } aEntry[] = {
+ {65, 14, 26}, {181, 64, 1}, {192, 14, 23},
+ {216, 14, 7}, {256, 1, 48}, {306, 1, 6},
+ {313, 1, 16}, {330, 1, 46}, {376, 116, 1},
+ {377, 1, 6}, {383, 104, 1}, {385, 50, 1},
+ {386, 1, 4}, {390, 44, 1}, {391, 0, 1},
+ {393, 42, 2}, {395, 0, 1}, {398, 32, 1},
+ {399, 38, 1}, {400, 40, 1}, {401, 0, 1},
+ {403, 42, 1}, {404, 46, 1}, {406, 52, 1},
+ {407, 48, 1}, {408, 0, 1}, {412, 52, 1},
+ {413, 54, 1}, {415, 56, 1}, {416, 1, 6},
+ {422, 60, 1}, {423, 0, 1}, {425, 60, 1},
+ {428, 0, 1}, {430, 60, 1}, {431, 0, 1},
+ {433, 58, 2}, {435, 1, 4}, {439, 62, 1},
+ {440, 0, 1}, {444, 0, 1}, {452, 2, 1},
+ {453, 0, 1}, {455, 2, 1}, {456, 0, 1},
+ {458, 2, 1}, {459, 1, 18}, {478, 1, 18},
+ {497, 2, 1}, {498, 1, 4}, {502, 122, 1},
+ {503, 134, 1}, {504, 1, 40}, {544, 110, 1},
+ {546, 1, 18}, {570, 70, 1}, {571, 0, 1},
+ {573, 108, 1}, {574, 68, 1}, {577, 0, 1},
+ {579, 106, 1}, {580, 28, 1}, {581, 30, 1},
+ {582, 1, 10}, {837, 36, 1}, {880, 1, 4},
+ {886, 0, 1}, {902, 18, 1}, {904, 16, 3},
+ {908, 26, 1}, {910, 24, 2}, {913, 14, 17},
+ {931, 14, 9}, {962, 0, 1}, {975, 4, 1},
+ {976, 140, 1}, {977, 142, 1}, {981, 146, 1},
+ {982, 144, 1}, {984, 1, 24}, {1008, 136, 1},
+ {1009, 138, 1}, {1012, 130, 1}, {1013, 128, 1},
+ {1015, 0, 1}, {1017, 152, 1}, {1018, 0, 1},
+ {1021, 110, 3}, {1024, 34, 16}, {1040, 14, 32},
+ {1120, 1, 34}, {1162, 1, 54}, {1216, 6, 1},
+ {1217, 1, 14}, {1232, 1, 88}, {1329, 22, 38},
+ {4256, 66, 38}, {4295, 66, 1}, {4301, 66, 1},
+ {7680, 1, 150}, {7835, 132, 1}, {7838, 96, 1},
+ {7840, 1, 96}, {7944, 150, 8}, {7960, 150, 6},
+ {7976, 150, 8}, {7992, 150, 8}, {8008, 150, 6},
+ {8025, 151, 8}, {8040, 150, 8}, {8072, 150, 8},
+ {8088, 150, 8}, {8104, 150, 8}, {8120, 150, 2},
+ {8122, 126, 2}, {8124, 148, 1}, {8126, 100, 1},
+ {8136, 124, 4}, {8140, 148, 1}, {8152, 150, 2},
+ {8154, 120, 2}, {8168, 150, 2}, {8170, 118, 2},
+ {8172, 152, 1}, {8184, 112, 2}, {8186, 114, 2},
+ {8188, 148, 1}, {8486, 98, 1}, {8490, 92, 1},
+ {8491, 94, 1}, {8498, 12, 1}, {8544, 8, 16},
+ {8579, 0, 1}, {9398, 10, 26}, {11264, 22, 47},
+ {11360, 0, 1}, {11362, 88, 1}, {11363, 102, 1},
+ {11364, 90, 1}, {11367, 1, 6}, {11373, 84, 1},
+ {11374, 86, 1}, {11375, 80, 1}, {11376, 82, 1},
+ {11378, 0, 1}, {11381, 0, 1}, {11390, 78, 2},
+ {11392, 1, 100}, {11499, 1, 4}, {11506, 0, 1},
+ {42560, 1, 46}, {42624, 1, 24}, {42786, 1, 14},
+ {42802, 1, 62}, {42873, 1, 4}, {42877, 76, 1},
+ {42878, 1, 10}, {42891, 0, 1}, {42893, 74, 1},
+ {42896, 1, 4}, {42912, 1, 10}, {42922, 72, 1},
+ {65313, 14, 26},
+ };
+ static const unsigned short aiOff[] = {
+ 1, 2, 8, 15, 16, 26, 28, 32,
+ 37, 38, 40, 48, 63, 64, 69, 71,
+ 79, 80, 116, 202, 203, 205, 206, 207,
+ 209, 210, 211, 213, 214, 217, 218, 219,
+ 775, 7264, 10792, 10795, 23228, 23256, 30204, 54721,
+ 54753, 54754, 54756, 54787, 54793, 54809, 57153, 57274,
+ 57921, 58019, 58363, 61722, 65268, 65341, 65373, 65406,
+ 65408, 65410, 65415, 65424, 65436, 65439, 65450, 65462,
+ 65472, 65476, 65478, 65480, 65482, 65488, 65506, 65511,
+ 65514, 65521, 65527, 65528, 65529,
+ };
+
+ int ret = c;
+
+ assert( sizeof(unsigned short)==2 && sizeof(unsigned char)==1 );
+
+ if( c<128 ){
+ if( c>='A' && c<='Z' ) ret = c + ('a' - 'A');
+ }else if( c<65536 ){
+ const struct TableEntry *p;
+ int iHi = sizeof(aEntry)/sizeof(aEntry[0]) - 1;
+ int iLo = 0;
+ int iRes = -1;
+
+ assert( c>aEntry[0].iCode );
+ while( iHi>=iLo ){
+ int iTest = (iHi + iLo) / 2;
+ int cmp = (c - aEntry[iTest].iCode);
+ if( cmp>=0 ){
+ iRes = iTest;
+ iLo = iTest+1;
+ }else{
+ iHi = iTest-1;
+ }
+ }
+
+ assert( iRes>=0 && c>=aEntry[iRes].iCode );
+ p = &aEntry[iRes];
+ if( c<(p->iCode + p->nRange) && 0==(0x01 & p->flags & (p->iCode ^ c)) ){
+ ret = (c + (aiOff[p->flags>>1])) & 0x0000FFFF;
+ assert( ret>0 );
+ }
+
+ if( bRemoveDiacritic ) ret = fts5_remove_diacritic(ret);
+ }
+
+ else if( c>=66560 && c<66600 ){
+ ret = c + 40;
+ }
+
+ return ret;
+}
+
+#line 1 "fts5_varint.c"
+/*
+** 2015 May 30
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Routines for varint serialization and deserialization.
+*/
+
+
+/* #include "fts5Int.h" */
+
+/*
+** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
+** Except, this version does handle the single byte case that the core
+** version depends on being handled before its function is called.
+*/
+static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
+ u32 a,b;
+
+ /* The 1-byte case. Overwhelmingly the most common. */
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 0 and 127 */
+ *v = a;
+ return 1;
+ }
+
+ /* The 2-byte case */
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* Values between 128 and 16383 */
+ a &= 0x7f;
+ a = a<<7;
+ *v = a | b;
+ return 2;
+ }
+
+ /* The 3-byte case */
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* Values between 16384 and 2097151 */
+ a &= (0x7f<<14)|(0x7f);
+ b &= 0x7f;
+ b = b<<7;
+ *v = a | b;
+ return 3;
+ }
+
+ /* A 32-bit varint is used to store size information in btrees.
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
+ ** A 3-byte varint is sufficient, for example, to record the size
+ ** of a 1048569-byte BLOB or string.
+ **
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very
+ ** rare larger cases can be handled by the slower 64-bit varint
+ ** routine.
+ */
+ {
+ u64 v64;
+ u8 n;
+ p -= 2;
+ n = sqlite3Fts5GetVarint(p, &v64);
+ *v = (u32)v64;
+ assert( n>3 && n<=9 );
+ return n;
+ }
+}
+
+
+/*
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants
+** are defined here rather than simply putting the constant expressions
+** inline in order to work around bugs in the RVT compiler.
+**
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
+**
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
+*/
+#define SLOT_2_0 0x001fc07f
+#define SLOT_4_2_0 0xf01fc07f
+
+/*
+** Read a 64-bit variable-length integer from memory starting at p[0].
+** Return the number of bytes read. The value is stored in *v.
+*/
+static u8 sqlite3Fts5GetVarint(const unsigned char *p, u64 *v){
+ u32 a,b,s;
+
+ a = *p;
+ /* a: p0 (unmasked) */
+ if (!(a&0x80))
+ {
+ *v = a;
+ return 1;
+ }
+
+ p++;
+ b = *p;
+ /* b: p1 (unmasked) */
+ if (!(b&0x80))
+ {
+ a &= 0x7f;
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 2;
+ }
+
+ /* Verify that constants are precomputed correctly */
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<14 | p2 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_2_0;
+ b &= 0x7f;
+ b = b<<7;
+ a |= b;
+ *v = a;
+ return 3;
+ }
+
+ /* CSE1 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<14 | p3 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_2_0;
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ *v = a;
+ return 4;
+ }
+
+ /* a: p0<<14 | p2 (masked) */
+ /* b: p1<<14 | p3 (unmasked) */
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ /* moved CSE1 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ b &= SLOT_2_0;
+ s = a;
+ /* s: p0<<14 | p2 (masked) */
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */
+ if (!(a&0x80))
+ {
+ /* we can skip these cause they were (effectively) done above in calc'ing s */
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ /* b &= (0x7f<<14)|(0x7f); */
+ b = b<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 5;
+ }
+
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+ s = s<<7;
+ s |= b;
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
+
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */
+ if (!(b&0x80))
+ {
+ /* we can skip this cause it was (effectively) done above in calc'ing s */
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
+ a &= SLOT_2_0;
+ a = a<<7;
+ a |= b;
+ s = s>>18;
+ *v = ((u64)s)<<32 | a;
+ return 6;
+ }
+
+ p++;
+ a = a<<14;
+ a |= *p;
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */
+ if (!(a&0x80))
+ {
+ a &= SLOT_4_2_0;
+ b &= SLOT_2_0;
+ b = b<<7;
+ a |= b;
+ s = s>>11;
+ *v = ((u64)s)<<32 | a;
+ return 7;
+ }
+
+ /* CSE2 from below */
+ a &= SLOT_2_0;
+ p++;
+ b = b<<14;
+ b |= *p;
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */
+ if (!(b&0x80))
+ {
+ b &= SLOT_4_2_0;
+ /* moved CSE2 up */
+ /* a &= (0x7f<<14)|(0x7f); */
+ a = a<<7;
+ a |= b;
+ s = s>>4;
+ *v = ((u64)s)<<32 | a;
+ return 8;
+ }
+
+ p++;
+ a = a<<15;
+ a |= *p;
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */
+
+ /* moved CSE2 up */
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
+ b &= SLOT_2_0;
+ b = b<<8;
+ a |= b;
+
+ s = s<<4;
+ b = p[-4];
+ b &= 0x7f;
+ b = b>>3;
+ s |= b;
+
+ *v = ((u64)s)<<32 | a;
+
+ return 9;
+}
+
+/*
+** The variable-length integer encoding is as follows:
+**
+** KEY:
+** A = 0xxxxxxx 7 bits of data and one flag bit
+** B = 1xxxxxxx 7 bits of data and one flag bit
+** C = xxxxxxxx 8 bits of data
+**
+** 7 bits - A
+** 14 bits - BA
+** 21 bits - BBA
+** 28 bits - BBBA
+** 35 bits - BBBBA
+** 42 bits - BBBBBA
+** 49 bits - BBBBBBA
+** 56 bits - BBBBBBBA
+** 64 bits - BBBBBBBBC
+*/
+
+#ifdef SQLITE_NOINLINE
+# define FTS5_NOINLINE SQLITE_NOINLINE
+#else
+# define FTS5_NOINLINE
+#endif
+
+/*
+** Write a 64-bit variable-length integer to memory starting at p[0].
+** The length of data write will be between 1 and 9 bytes. The number
+** of bytes written is returned.
+**
+** A variable-length integer consists of the lower 7 bits of each byte
+** for all bytes that have the 8th bit set and one byte with the 8th
+** bit clear. Except, if we get to the 9th byte, it stores the full
+** 8 bits and is the last byte.
+*/
+static int FTS5_NOINLINE fts5PutVarint64(unsigned char *p, u64 v){
+ int i, j, n;
+ u8 buf[10];
+ if( v & (((u64)0xff000000)<<32) ){
+ p[8] = (u8)v;
+ v >>= 8;
+ for(i=7; i>=0; i--){
+ p[i] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }
+ return 9;
+ }
+ n = 0;
+ do{
+ buf[n++] = (u8)((v & 0x7f) | 0x80);
+ v >>= 7;
+ }while( v!=0 );
+ buf[0] &= 0x7f;
+ assert( n<=9 );
+ for(i=0, j=n-1; j>=0; j--, i++){
+ p[i] = buf[j];
+ }
+ return n;
+}
+
+static int sqlite3Fts5PutVarint(unsigned char *p, u64 v){
+ if( v<=0x7f ){
+ p[0] = v&0x7f;
+ return 1;
+ }
+ if( v<=0x3fff ){
+ p[0] = ((v>>7)&0x7f)|0x80;
+ p[1] = v&0x7f;
+ return 2;
+ }
+ return fts5PutVarint64(p,v);
+}
+
+
+static int sqlite3Fts5GetVarintLen(u32 iVal){
+#if 0
+ if( iVal<(1 << 7 ) ) return 1;
+#endif
+ assert( iVal>=(1 << 7) );
+ if( iVal<(1 << 14) ) return 2;
+ if( iVal<(1 << 21) ) return 3;
+ if( iVal<(1 << 28) ) return 4;
+ return 5;
+}
+
+
+#line 1 "fts5_vocab.c"
+/*
+** 2015 May 08
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** This is an SQLite virtual table module implementing direct access to an
+** existing FTS5 index. The module may create several different types of
+** tables:
+**
+** col:
+** CREATE TABLE vocab(term, col, doc, cnt, PRIMARY KEY(term, col));
+**
+** One row for each term/column combination. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term within column $col. Field $cnt is set to the total number of
+** instances of term $term in column $col (in any row of the fts5 table).
+**
+** row:
+** CREATE TABLE vocab(term, doc, cnt, PRIMARY KEY(term));
+**
+** One row for each term in the database. The value of $doc is set to
+** the number of fts5 rows that contain at least one instance of term
+** $term. Field $cnt is set to the total number of instances of term
+** $term in the database.
+*/
+
+
+/* #include "fts5Int.h" */
+
+
+typedef struct Fts5VocabTable Fts5VocabTable;
+typedef struct Fts5VocabCursor Fts5VocabCursor;
+
+struct Fts5VocabTable {
+ sqlite3_vtab base;
+ char *zFts5Tbl; /* Name of fts5 table */
+ char *zFts5Db; /* Db containing fts5 table */
+ sqlite3 *db; /* Database handle */
+ Fts5Global *pGlobal; /* FTS5 global object for this database */
+ int eType; /* FTS5_VOCAB_COL or ROW */
+};
+
+struct Fts5VocabCursor {
+ sqlite3_vtab_cursor base;
+ sqlite3_stmt *pStmt; /* Statement holding lock on pIndex */
+ Fts5Index *pIndex; /* Associated FTS5 index */
+
+ int bEof; /* True if this cursor is at EOF */
+ Fts5IndexIter *pIter; /* Term/rowid iterator object */
+
+ int nLeTerm; /* Size of zLeTerm in bytes */
+ char *zLeTerm; /* (term <= $zLeTerm) paramater, or NULL */
+
+ /* These are used by 'col' tables only */
+ Fts5Config *pConfig; /* Fts5 table configuration */
+ int iCol;
+ i64 *aCnt;
+ i64 *aDoc;
+
+ /* Output values used by 'row' and 'col' tables */
+ i64 rowid; /* This table's current rowid value */
+ Fts5Buffer term; /* Current value of 'term' column */
+};
+
+#define FTS5_VOCAB_COL 0
+#define FTS5_VOCAB_ROW 1
+
+#define FTS5_VOCAB_COL_SCHEMA "term, col, doc, cnt"
+#define FTS5_VOCAB_ROW_SCHEMA "term, doc, cnt"
+
+/*
+** Bits for the mask used as the idxNum value by xBestIndex/xFilter.
+*/
+#define FTS5_VOCAB_TERM_EQ 0x01
+#define FTS5_VOCAB_TERM_GE 0x02
+#define FTS5_VOCAB_TERM_LE 0x04
+
+
+/*
+** Translate a string containing an fts5vocab table type to an
+** FTS5_VOCAB_XXX constant. If successful, set *peType to the output
+** value and return SQLITE_OK. Otherwise, set *pzErr to an error message
+** and return SQLITE_ERROR.
+*/
+static int fts5VocabTableType(const char *zType, char **pzErr, int *peType){
+ int rc = SQLITE_OK;
+ char *zCopy = sqlite3Fts5Strndup(&rc, zType, -1);
+ if( rc==SQLITE_OK ){
+ sqlite3Fts5Dequote(zCopy);
+ if( sqlite3_stricmp(zCopy, "col")==0 ){
+ *peType = FTS5_VOCAB_COL;
+ }else
+
+ if( sqlite3_stricmp(zCopy, "row")==0 ){
+ *peType = FTS5_VOCAB_ROW;
+ }else
+ {
+ *pzErr = sqlite3_mprintf("fts5vocab: unknown table type: %Q", zCopy);
+ rc = SQLITE_ERROR;
+ }
+ sqlite3_free(zCopy);
+ }
+
+ return rc;
+}
+
+
+/*
+** The xDisconnect() virtual table method.
+*/
+static int fts5VocabDisconnectMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** The xDestroy() virtual table method.
+*/
+static int fts5VocabDestroyMethod(sqlite3_vtab *pVtab){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVtab;
+ sqlite3_free(pTab);
+ return SQLITE_OK;
+}
+
+/*
+** This function is the implementation of both the xConnect and xCreate
+** methods of the FTS3 virtual table.
+**
+** The argv[] array contains the following:
+**
+** argv[0] -> module name ("fts5vocab")
+** argv[1] -> database name
+** argv[2] -> table name
+**
+** then:
+**
+** argv[3] -> name of fts5 table
+** argv[4] -> type of fts5vocab table
+**
+** or, for tables in the TEMP schema only.
+**
+** argv[3] -> name of fts5 tables database
+** argv[4] -> name of fts5 table
+** argv[5] -> type of fts5vocab table
+*/
+static int fts5VocabInitVtab(
+ sqlite3 *db, /* The SQLite database connection */
+ void *pAux, /* Pointer to Fts5Global object */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
+ char **pzErr /* Write any error message here */
+){
+ const char *azSchema[] = {
+ "CREATE TABlE vocab(" FTS5_VOCAB_COL_SCHEMA ")",
+ "CREATE TABlE vocab(" FTS5_VOCAB_ROW_SCHEMA ")"
+ };
+
+ Fts5VocabTable *pRet = 0;
+ int rc = SQLITE_OK; /* Return code */
+ int bDb;
+
+ bDb = (argc==6 && strlen(argv[1])==4 && memcmp("temp", argv[1], 4)==0);
+
+ if( argc!=5 && bDb==0 ){
+ *pzErr = sqlite3_mprintf("wrong number of vtable arguments");
+ rc = SQLITE_ERROR;
+ }else{
+ int nByte; /* Bytes of space to allocate */
+ const char *zDb = bDb ? argv[3] : argv[1];
+ const char *zTab = bDb ? argv[4] : argv[3];
+ const char *zType = bDb ? argv[5] : argv[4];
+ int nDb = (int)strlen(zDb)+1;
+ int nTab = (int)strlen(zTab)+1;
+ int eType = 0;
+
+ rc = fts5VocabTableType(zType, pzErr, &eType);
+ if( rc==SQLITE_OK ){
+ assert( eType>=0 && eType<ArraySize(azSchema) );
+ rc = sqlite3_declare_vtab(db, azSchema[eType]);
+ }
+
+ nByte = sizeof(Fts5VocabTable) + nDb + nTab;
+ pRet = sqlite3Fts5MallocZero(&rc, nByte);
+ if( pRet ){
+ pRet->pGlobal = (Fts5Global*)pAux;
+ pRet->eType = eType;
+ pRet->db = db;
+ pRet->zFts5Tbl = (char*)&pRet[1];
+ pRet->zFts5Db = &pRet->zFts5Tbl[nTab];
+ memcpy(pRet->zFts5Tbl, zTab, nTab);
+ memcpy(pRet->zFts5Db, zDb, nDb);
+ sqlite3Fts5Dequote(pRet->zFts5Tbl);
+ sqlite3Fts5Dequote(pRet->zFts5Db);
+ }
+ }
+
+ *ppVTab = (sqlite3_vtab*)pRet;
+ return rc;
+}
+
+
+/*
+** The xConnect() and xCreate() methods for the virtual table. All the
+** work is done in function fts5VocabInitVtab().
+*/
+static int fts5VocabConnectMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+static int fts5VocabCreateMethod(
+ sqlite3 *db, /* Database connection */
+ void *pAux, /* Pointer to tokenizer hash table */
+ int argc, /* Number of elements in argv array */
+ const char * const *argv, /* xCreate/xConnect argument array */
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
+ char **pzErr /* OUT: sqlite3_malloc'd error message */
+){
+ return fts5VocabInitVtab(db, pAux, argc, argv, ppVtab, pzErr);
+}
+
+/*
+** Implementation of the xBestIndex method.
+*/
+static int fts5VocabBestIndexMethod(
+ sqlite3_vtab *pUnused,
+ sqlite3_index_info *pInfo
+){
+ int i;
+ int iTermEq = -1;
+ int iTermGe = -1;
+ int iTermLe = -1;
+ int idxNum = 0;
+ int nArg = 0;
+
+ UNUSED_PARAM(pUnused);
+
+ for(i=0; i<pInfo->nConstraint; i++){
+ struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
+ if( p->usable==0 ) continue;
+ if( p->iColumn==0 ){ /* term column */
+ if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_LT ) iTermLe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GE ) iTermGe = i;
+ if( p->op==SQLITE_INDEX_CONSTRAINT_GT ) iTermGe = i;
+ }
+ }
+
+ if( iTermEq>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_EQ;
+ pInfo->aConstraintUsage[iTermEq].argvIndex = ++nArg;
+ pInfo->estimatedCost = 100;
+ }else{
+ pInfo->estimatedCost = 1000000;
+ if( iTermGe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_GE;
+ pInfo->aConstraintUsage[iTermGe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ if( iTermLe>=0 ){
+ idxNum |= FTS5_VOCAB_TERM_LE;
+ pInfo->aConstraintUsage[iTermLe].argvIndex = ++nArg;
+ pInfo->estimatedCost = pInfo->estimatedCost / 2;
+ }
+ }
+
+ pInfo->idxNum = idxNum;
+
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of xOpen method.
+*/
+static int fts5VocabOpenMethod(
+ sqlite3_vtab *pVTab,
+ sqlite3_vtab_cursor **ppCsr
+){
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pVTab;
+ Fts5Index *pIndex = 0;
+ Fts5Config *pConfig = 0;
+ Fts5VocabCursor *pCsr = 0;
+ int rc = SQLITE_OK;
+ sqlite3_stmt *pStmt = 0;
+ char *zSql = 0;
+
+ zSql = sqlite3Fts5Mprintf(&rc,
+ "SELECT t.%Q FROM %Q.%Q AS t WHERE t.%Q MATCH '*id'",
+ pTab->zFts5Tbl, pTab->zFts5Db, pTab->zFts5Tbl, pTab->zFts5Tbl
+ );
+ if( zSql ){
+ rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
+ }
+ sqlite3_free(zSql);
+ assert( rc==SQLITE_OK || pStmt==0 );
+ if( rc==SQLITE_ERROR ) rc = SQLITE_OK;
+
+ if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
+ i64 iId = sqlite3_column_int64(pStmt, 0);
+ pIndex = sqlite3Fts5IndexFromCsrid(pTab->pGlobal, iId, &pConfig);
+ }
+
+ if( rc==SQLITE_OK && pIndex==0 ){
+ rc = sqlite3_finalize(pStmt);
+ pStmt = 0;
+ if( rc==SQLITE_OK ){
+ pVTab->zErrMsg = sqlite3_mprintf(
+ "no such fts5 table: %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
+ );
+ rc = SQLITE_ERROR;
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ int nByte = pConfig->nCol * sizeof(i64) * 2 + sizeof(Fts5VocabCursor);
+ pCsr = (Fts5VocabCursor*)sqlite3Fts5MallocZero(&rc, nByte);
+ }
+
+ if( pCsr ){
+ pCsr->pIndex = pIndex;
+ pCsr->pStmt = pStmt;
+ pCsr->pConfig = pConfig;
+ pCsr->aCnt = (i64*)&pCsr[1];
+ pCsr->aDoc = &pCsr->aCnt[pConfig->nCol];
+ }else{
+ sqlite3_finalize(pStmt);
+ }
+
+ *ppCsr = (sqlite3_vtab_cursor*)pCsr;
+ return rc;
+}
+
+static void fts5VocabResetCursor(Fts5VocabCursor *pCsr){
+ pCsr->rowid = 0;
+ sqlite3Fts5IterClose(pCsr->pIter);
+ pCsr->pIter = 0;
+ sqlite3_free(pCsr->zLeTerm);
+ pCsr->nLeTerm = -1;
+ pCsr->zLeTerm = 0;
+}
+
+/*
+** Close the cursor. For additional information see the documentation
+** on the xClose method of the virtual table interface.
+*/
+static int fts5VocabCloseMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ fts5VocabResetCursor(pCsr);
+ sqlite3Fts5BufferFree(&pCsr->term);
+ sqlite3_finalize(pCsr->pStmt);
+ sqlite3_free(pCsr);
+ return SQLITE_OK;
+}
+
+
+/*
+** Advance the cursor to the next row in the table.
+*/
+static int fts5VocabNextMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
+ int rc = SQLITE_OK;
+ int nCol = pCsr->pConfig->nCol;
+
+ pCsr->rowid++;
+
+ if( pTab->eType==FTS5_VOCAB_COL ){
+ for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
+ if( pCsr->aDoc[pCsr->iCol] ) break;
+ }
+ }
+
+ if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
+ if( sqlite3Fts5IterEof(pCsr->pIter) ){
+ pCsr->bEof = 1;
+ }else{
+ const char *zTerm;
+ int nTerm;
+
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( pCsr->nLeTerm>=0 ){
+ int nCmp = MIN(nTerm, pCsr->nLeTerm);
+ int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
+ if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
+ pCsr->bEof = 1;
+ return SQLITE_OK;
+ }
+ }
+
+ sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
+ memset(pCsr->aCnt, 0, nCol * sizeof(i64));
+ memset(pCsr->aDoc, 0, nCol * sizeof(i64));
+ pCsr->iCol = 0;
+
+ assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
+ while( rc==SQLITE_OK ){
+ const u8 *pPos; int nPos; /* Position list */
+ i64 iPos = 0; /* 64-bit position read from poslist */
+ int iOff = 0; /* Current offset within position list */
+
+ pPos = pCsr->pIter->pData;
+ nPos = pCsr->pIter->nData;
+ switch( pCsr->pConfig->eDetail ){
+ case FTS5_DETAIL_FULL:
+ pPos = pCsr->pIter->pData;
+ nPos = pCsr->pIter->nData;
+ if( pTab->eType==FTS5_VOCAB_ROW ){
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ pCsr->aCnt[0]++;
+ }
+ pCsr->aDoc[0]++;
+ }else{
+ int iCol = -1;
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
+ int ii = FTS5_POS2COLUMN(iPos);
+ pCsr->aCnt[ii]++;
+ if( iCol!=ii ){
+ if( ii>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[ii]++;
+ iCol = ii;
+ }
+ }
+ }
+ break;
+
+ case FTS5_DETAIL_COLUMNS:
+ if( pTab->eType==FTS5_VOCAB_ROW ){
+ pCsr->aDoc[0]++;
+ }else{
+ while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff,&iPos) ){
+ assert_nc( iPos>=0 && iPos<nCol );
+ if( iPos>=nCol ){
+ rc = FTS5_CORRUPT;
+ break;
+ }
+ pCsr->aDoc[iPos]++;
+ }
+ }
+ break;
+
+ default:
+ assert( pCsr->pConfig->eDetail==FTS5_DETAIL_NONE );
+ pCsr->aDoc[0]++;
+ break;
+ }
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IterNextScan(pCsr->pIter);
+ }
+
+ if( rc==SQLITE_OK ){
+ zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
+ if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
+ break;
+ }
+ if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
+ }
+ }
+ }
+ }
+
+ if( rc==SQLITE_OK && pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
+ while( pCsr->aDoc[pCsr->iCol]==0 ) pCsr->iCol++;
+ assert( pCsr->iCol<pCsr->pConfig->nCol );
+ }
+ return rc;
+}
+
+/*
+** This is the xFilter implementation for the virtual table.
+*/
+static int fts5VocabFilterMethod(
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
+ int idxNum, /* Strategy index */
+ const char *zUnused, /* Unused */
+ int nUnused, /* Number of elements in apVal */
+ sqlite3_value **apVal /* Arguments for the indexing scheme */
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int rc = SQLITE_OK;
+
+ int iVal = 0;
+ int f = FTS5INDEX_QUERY_SCAN;
+ const char *zTerm = 0;
+ int nTerm = 0;
+
+ sqlite3_value *pEq = 0;
+ sqlite3_value *pGe = 0;
+ sqlite3_value *pLe = 0;
+
+ UNUSED_PARAM2(zUnused, nUnused);
+
+ fts5VocabResetCursor(pCsr);
+ if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
+ if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];
+
+ if( pEq ){
+ zTerm = (const char *)sqlite3_value_text(pEq);
+ nTerm = sqlite3_value_bytes(pEq);
+ f = 0;
+ }else{
+ if( pGe ){
+ zTerm = (const char *)sqlite3_value_text(pGe);
+ nTerm = sqlite3_value_bytes(pGe);
+ }
+ if( pLe ){
+ const char *zCopy = (const char *)sqlite3_value_text(pLe);
+ pCsr->nLeTerm = sqlite3_value_bytes(pLe);
+ pCsr->zLeTerm = sqlite3_malloc(pCsr->nLeTerm+1);
+ if( pCsr->zLeTerm==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ memcpy(pCsr->zLeTerm, zCopy, pCsr->nLeTerm+1);
+ }
+ }
+ }
+
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3Fts5IndexQuery(pCsr->pIndex, zTerm, nTerm, f, 0, &pCsr->pIter);
+ }
+ if( rc==SQLITE_OK ){
+ rc = fts5VocabNextMethod(pCursor);
+ }
+
+ return rc;
+}
+
+/*
+** This is the xEof method of the virtual table. SQLite calls this
+** routine to find out if it has reached the end of a result set.
+*/
+static int fts5VocabEofMethod(sqlite3_vtab_cursor *pCursor){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ return pCsr->bEof;
+}
+
+static int fts5VocabColumnMethod(
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
+ int iCol /* Index of column to read value from */
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ int eDetail = pCsr->pConfig->eDetail;
+ int eType = ((Fts5VocabTable*)(pCursor->pVtab))->eType;
+ i64 iVal = 0;
+
+ if( iCol==0 ){
+ sqlite3_result_text(
+ pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
+ );
+ }else if( eType==FTS5_VOCAB_COL ){
+ assert( iCol==1 || iCol==2 || iCol==3 );
+ if( iCol==1 ){
+ if( eDetail!=FTS5_DETAIL_NONE ){
+ const char *z = pCsr->pConfig->azCol[pCsr->iCol];
+ sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
+ }
+ }else if( iCol==2 ){
+ iVal = pCsr->aDoc[pCsr->iCol];
+ }else{
+ iVal = pCsr->aCnt[pCsr->iCol];
+ }
+ }else{
+ assert( iCol==1 || iCol==2 );
+ if( iCol==1 ){
+ iVal = pCsr->aDoc[0];
+ }else{
+ iVal = pCsr->aCnt[0];
+ }
+ }
+
+ if( iVal>0 ) sqlite3_result_int64(pCtx, iVal);
+ return SQLITE_OK;
+}
+
+/*
+** This is the xRowid method. The SQLite core calls this routine to
+** retrieve the rowid for the current row of the result set. The
+** rowid should be written to *pRowid.
+*/
+static int fts5VocabRowidMethod(
+ sqlite3_vtab_cursor *pCursor,
+ sqlite_int64 *pRowid
+){
+ Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
+ *pRowid = pCsr->rowid;
+ return SQLITE_OK;
+}
+
+static int sqlite3Fts5VocabInit(Fts5Global *pGlobal, sqlite3 *db){
+ static const sqlite3_module fts5Vocab = {
+ /* iVersion */ 2,
+ /* xCreate */ fts5VocabCreateMethod,
+ /* xConnect */ fts5VocabConnectMethod,
+ /* xBestIndex */ fts5VocabBestIndexMethod,
+ /* xDisconnect */ fts5VocabDisconnectMethod,
+ /* xDestroy */ fts5VocabDestroyMethod,
+ /* xOpen */ fts5VocabOpenMethod,
+ /* xClose */ fts5VocabCloseMethod,
+ /* xFilter */ fts5VocabFilterMethod,
+ /* xNext */ fts5VocabNextMethod,
+ /* xEof */ fts5VocabEofMethod,
+ /* xColumn */ fts5VocabColumnMethod,
+ /* xRowid */ fts5VocabRowidMethod,
+ /* xUpdate */ 0,
+ /* xBegin */ 0,
+ /* xSync */ 0,
+ /* xCommit */ 0,
+ /* xRollback */ 0,
+ /* xFindFunction */ 0,
+ /* xRename */ 0,
+ /* xSavepoint */ 0,
+ /* xRelease */ 0,
+ /* xRollbackTo */ 0,
+ };
+ void *p = (void*)pGlobal;
+
+ return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0);
+}
+
+
+
+
+
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */
diff --git a/src/libtracker-fts/fts5.h b/src/libtracker-fts/fts5.h
new file mode 100644
index 000000000..96ecb38e3
--- /dev/null
+++ b/src/libtracker-fts/fts5.h
@@ -0,0 +1,578 @@
+/*
+** 2014 May 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+******************************************************************************
+**
+** Interfaces to extend FTS5. Using the interfaces defined in this file,
+** FTS5 may be extended with:
+**
+** * custom tokenizers, and
+** * custom auxiliary functions.
+*/
+
+
+#ifndef _FTS5_H
+#define _FTS5_H
+
+#include "sqlite3.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*************************************************************************
+** CUSTOM AUXILIARY FUNCTIONS
+**
+** Virtual table implementations may overload SQL functions by implementing
+** the sqlite3_module.xFindFunction() method.
+*/
+
+typedef struct Fts5ExtensionApi Fts5ExtensionApi;
+typedef struct Fts5Context Fts5Context;
+typedef struct Fts5PhraseIter Fts5PhraseIter;
+
+typedef void (*fts5_extension_function)(
+ const Fts5ExtensionApi *pApi, /* API offered by current FTS version */
+ Fts5Context *pFts, /* First arg to pass to pApi functions */
+ sqlite3_context *pCtx, /* Context for returning result/error */
+ int nVal, /* Number of values in apVal[] array */
+ sqlite3_value **apVal /* Array of trailing arguments */
+);
+
+struct Fts5PhraseIter {
+ const unsigned char *a;
+ const unsigned char *b;
+};
+
+/*
+** EXTENSION API FUNCTIONS
+**
+** xUserData(pFts):
+** Return a copy of the context pointer the extension function was
+** registered with.
+**
+** xColumnTotalSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the FTS5 table. Or, if iCol is
+** non-negative but less than the number of columns in the table, return
+** the total number of tokens in column iCol, considering all rows in
+** the FTS5 table.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** xColumnCount(pFts):
+** Return the number of columns in the table.
+**
+** xColumnSize(pFts, iCol, pnToken):
+** If parameter iCol is less than zero, set output variable *pnToken
+** to the total number of tokens in the current row. Or, if iCol is
+** non-negative but less than the number of columns in the table, set
+** *pnToken to the number of tokens in column iCol of the current row.
+**
+** If parameter iCol is greater than or equal to the number of columns
+** in the table, SQLITE_RANGE is returned. Or, if an error occurs (e.g.
+** an OOM condition or IO error), an appropriate SQLite error code is
+** returned.
+**
+** This function may be quite inefficient if used with an FTS5 table
+** created with the "columnsize=0" option.
+**
+** xColumnText:
+** This function attempts to retrieve the text of column iCol of the
+** current document. If successful, (*pz) is set to point to a buffer
+** containing the text in utf-8 encoding, (*pn) is set to the size in bytes
+** (not characters) of the buffer and SQLITE_OK is returned. Otherwise,
+** if an error occurs, an SQLite error code is returned and the final values
+** of (*pz) and (*pn) are undefined.
+**
+** xPhraseCount:
+** Returns the number of phrases in the current query expression.
+**
+** xPhraseSize:
+** Returns the number of tokens in phrase iPhrase of the query. Phrases
+** are numbered starting from zero.
+**
+** xInstCount:
+** Set *pnInst to the total number of occurrences of all phrases within
+** the query within the current row. Return SQLITE_OK if successful, or
+** an error code (i.e. SQLITE_NOMEM) if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always returns 0.
+**
+** xInst:
+** Query for the details of phrase match iIdx within the current row.
+** Phrase matches are numbered starting from zero, so the iIdx argument
+** should be greater than or equal to zero and smaller than the value
+** output by xInstCount().
+**
+** Usually, output parameter *piPhrase is set to the phrase number, *piCol
+** to the column in which it occurs and *piOff the token offset of the
+** first token of the phrase. The exception is if the table was created
+** with the offsets=0 option specified. In this case *piOff is always
+** set to -1.
+**
+** Returns SQLITE_OK if successful, or an error code (i.e. SQLITE_NOMEM)
+** if an error occurs.
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option.
+**
+** xRowid:
+** Returns the rowid of the current row.
+**
+** xTokenize:
+** Tokenize text using the tokenizer belonging to the FTS5 table.
+**
+** xQueryPhrase(pFts5, iPhrase, pUserData, xCallback):
+** This API function is used to query the FTS table for phrase iPhrase
+** of the current query. Specifically, a query equivalent to:
+**
+** ... FROM ftstable WHERE ftstable MATCH $p ORDER BY rowid
+**
+** with $p set to a phrase equivalent to the phrase iPhrase of the
+** current query is executed. For each row visited, the callback function
+** passed as the fourth argument is invoked. The context and API objects
+** passed to the callback function may be used to access the properties of
+** each matched row. Invoking Api.xUserData() returns a copy of the pointer
+** passed as the third argument to pUserData.
+**
+** If the callback function returns any value other than SQLITE_OK, the
+** query is abandoned and the xQueryPhrase function returns immediately.
+** If the returned value is SQLITE_DONE, xQueryPhrase returns SQLITE_OK.
+** Otherwise, the error code is propagated upwards.
+**
+** If the query runs to completion without incident, SQLITE_OK is returned.
+** Or, if some error occurs before the query completes or is aborted by
+** the callback, an SQLite error code is returned.
+**
+**
+** xSetAuxdata(pFts5, pAux, xDelete)
+**
+** Save the pointer passed as the second argument as the extension functions
+** "auxiliary data". The pointer may then be retrieved by the current or any
+** future invocation of the same fts5 extension function made as part of
+** of the same MATCH query using the xGetAuxdata() API.
+**
+** Each extension function is allocated a single auxiliary data slot for
+** each FTS query (MATCH expression). If the extension function is invoked
+** more than once for a single FTS query, then all invocations share a
+** single auxiliary data context.
+**
+** If there is already an auxiliary data pointer when this function is
+** invoked, then it is replaced by the new pointer. If an xDelete callback
+** was specified along with the original pointer, it is invoked at this
+** point.
+**
+** The xDelete callback, if one is specified, is also invoked on the
+** auxiliary data pointer after the FTS5 query has finished.
+**
+** If an error (e.g. an OOM condition) occurs within this function, an
+** the auxiliary data is set to NULL and an error code returned. If the
+** xDelete parameter was not NULL, it is invoked on the auxiliary data
+** pointer before returning.
+**
+**
+** xGetAuxdata(pFts5, bClear)
+**
+** Returns the current auxiliary data pointer for the fts5 extension
+** function. See the xSetAuxdata() method for details.
+**
+** If the bClear argument is non-zero, then the auxiliary data is cleared
+** (set to NULL) before this function returns. In this case the xDelete,
+** if any, is not invoked.
+**
+**
+** xRowCount(pFts5, pnRow)
+**
+** This function is used to retrieve the total number of rows in the table.
+** In other words, the same value that would be returned by:
+**
+** SELECT count(*) FROM ftstable;
+**
+** xPhraseFirst()
+** This function is used, along with type Fts5PhraseIter and the xPhraseNext
+** method, to iterate through all instances of a single query phrase within
+** the current row. This is the same information as is accessible via the
+** xInstCount/xInst APIs. While the xInstCount/xInst APIs are more convenient
+** to use, this API may be faster under some circumstances. To iterate
+** through instances of phrase iPhrase, use the following code:
+**
+** Fts5PhraseIter iter;
+** int iCol, iOff;
+** for(pApi->xPhraseFirst(pFts, iPhrase, &iter, &iCol, &iOff);
+** iCol>=0;
+** pApi->xPhraseNext(pFts, &iter, &iCol, &iOff)
+** ){
+** // An instance of phrase iPhrase at offset iOff of column iCol
+** }
+**
+** The Fts5PhraseIter structure is defined above. Applications should not
+** modify this structure directly - it should only be used as shown above
+** with the xPhraseFirst() and xPhraseNext() API methods (and by
+** xPhraseFirstColumn() and xPhraseNextColumn() as illustrated below).
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" or "detail=column" option. If the FTS5 table is created
+** with either "detail=none" or "detail=column" and "content=" option
+** (i.e. if it is a contentless table), then this API always iterates
+** through an empty set (all calls to xPhraseFirst() set iCol to -1).
+**
+** xPhraseNext()
+** See xPhraseFirst above.
+**
+** xPhraseFirstColumn()
+** This function and xPhraseNextColumn() are similar to the xPhraseFirst()
+** and xPhraseNext() APIs described above. The difference is that instead
+** of iterating through all instances of a phrase in the current row, these
+** APIs are used to iterate through the set of columns in the current row
+** that contain one or more instances of a specified phrase. For example:
+**
+** Fts5PhraseIter iter;
+** int iCol;
+** for(pApi->xPhraseFirstColumn(pFts, iPhrase, &iter, &iCol);
+** iCol>=0;
+** pApi->xPhraseNextColumn(pFts, &iter, &iCol)
+** ){
+** // Column iCol contains at least one instance of phrase iPhrase
+** }
+**
+** This API can be quite slow if used with an FTS5 table created with the
+** "detail=none" option. If the FTS5 table is created with either
+** "detail=none" "content=" option (i.e. if it is a contentless table),
+** then this API always iterates through an empty set (all calls to
+** xPhraseFirstColumn() set iCol to -1).
+**
+** The information accessed using this API and its companion
+** xPhraseFirstColumn() may also be obtained using xPhraseFirst/xPhraseNext
+** (or xInst/xInstCount). The chief advantage of this API is that it is
+** significantly more efficient than those alternatives when used with
+** "detail=column" tables.
+**
+** xPhraseNextColumn()
+** See xPhraseFirstColumn above.
+*/
+struct Fts5ExtensionApi {
+ int iVersion; /* Currently always set to 3 */
+
+ void *(*xUserData)(Fts5Context*);
+
+ int (*xColumnCount)(Fts5Context*);
+ int (*xRowCount)(Fts5Context*, sqlite3_int64 *pnRow);
+ int (*xColumnTotalSize)(Fts5Context*, int iCol, sqlite3_int64 *pnToken);
+
+ int (*xTokenize)(Fts5Context*,
+ const char *pText, int nText, /* Text to tokenize */
+ void *pCtx, /* Context passed to xToken() */
+ int (*xToken)(void*, int, const char*, int, int, int) /* Callback */
+ );
+
+ int (*xPhraseCount)(Fts5Context*);
+ int (*xPhraseSize)(Fts5Context*, int iPhrase);
+
+ int (*xInstCount)(Fts5Context*, int *pnInst);
+ int (*xInst)(Fts5Context*, int iIdx, int *piPhrase, int *piCol, int *piOff);
+
+ sqlite3_int64 (*xRowid)(Fts5Context*);
+ int (*xColumnText)(Fts5Context*, int iCol, const char **pz, int *pn);
+ int (*xColumnSize)(Fts5Context*, int iCol, int *pnToken);
+
+ int (*xQueryPhrase)(Fts5Context*, int iPhrase, void *pUserData,
+ int(*)(const Fts5ExtensionApi*,Fts5Context*,void*)
+ );
+ int (*xSetAuxdata)(Fts5Context*, void *pAux, void(*xDelete)(void*));
+ void *(*xGetAuxdata)(Fts5Context*, int bClear);
+
+ int (*xPhraseFirst)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*, int*);
+ void (*xPhraseNext)(Fts5Context*, Fts5PhraseIter*, int *piCol, int *piOff);
+
+ int (*xPhraseFirstColumn)(Fts5Context*, int iPhrase, Fts5PhraseIter*, int*);
+ void (*xPhraseNextColumn)(Fts5Context*, Fts5PhraseIter*, int *piCol);
+};
+
+/*
+** CUSTOM AUXILIARY FUNCTIONS
+*************************************************************************/
+
+/*************************************************************************
+** CUSTOM TOKENIZERS
+**
+** Applications may also register custom tokenizer types. A tokenizer
+** is registered by providing fts5 with a populated instance of the
+** following structure. All structure methods must be defined, setting
+** any member of the fts5_tokenizer struct to NULL leads to undefined
+** behaviour. The structure methods are expected to function as follows:
+**
+** xCreate:
+** This function is used to allocate and inititalize a tokenizer instance.
+** A tokenizer instance is required to actually tokenize text.
+**
+** The first argument passed to this function is a copy of the (void*)
+** pointer provided by the application when the fts5_tokenizer object
+** was registered with FTS5 (the third argument to xCreateTokenizer()).
+** The second and third arguments are an array of nul-terminated strings
+** containing the tokenizer arguments, if any, specified following the
+** tokenizer name as part of the CREATE VIRTUAL TABLE statement used
+** to create the FTS5 table.
+**
+** The final argument is an output variable. If successful, (*ppOut)
+** should be set to point to the new tokenizer handle and SQLITE_OK
+** returned. If an error occurs, some value other than SQLITE_OK should
+** be returned. In this case, fts5 assumes that the final value of *ppOut
+** is undefined.
+**
+** xDelete:
+** This function is invoked to delete a tokenizer handle previously
+** allocated using xCreate(). Fts5 guarantees that this function will
+** be invoked exactly once for each successful call to xCreate().
+**
+** xTokenize:
+** This function is expected to tokenize the nText byte string indicated
+** by argument pText. pText may or may not be nul-terminated. The first
+** argument passed to this function is a pointer to an Fts5Tokenizer object
+** returned by an earlier call to xCreate().
+**
+** The second argument indicates the reason that FTS5 is requesting
+** tokenization of the supplied text. This is always one of the following
+** four values:
+**
+** <ul><li> <b>FTS5_TOKENIZE_DOCUMENT</b> - A document is being inserted into
+** or removed from the FTS table. The tokenizer is being invoked to
+** determine the set of tokens to add to (or delete from) the
+** FTS index.
+**
+** <li> <b>FTS5_TOKENIZE_QUERY</b> - A MATCH query is being executed
+** against the FTS index. The tokenizer is being called to tokenize
+** a bareword or quoted string specified as part of the query.
+**
+** <li> <b>(FTS5_TOKENIZE_QUERY | FTS5_TOKENIZE_PREFIX)</b> - Same as
+** FTS5_TOKENIZE_QUERY, except that the bareword or quoted string is
+** followed by a "*" character, indicating that the last token
+** returned by the tokenizer will be treated as a token prefix.
+**
+** <li> <b>FTS5_TOKENIZE_AUX</b> - The tokenizer is being invoked to
+** satisfy an fts5_api.xTokenize() request made by an auxiliary
+** function. Or an fts5_api.xColumnSize() request made by the same
+** on a columnsize=0 database.
+** </ul>
+**
+** For each token in the input string, the supplied callback xToken() must
+** be invoked. The first argument to it should be a copy of the pointer
+** passed as the second argument to xTokenize(). The third and fourth
+** arguments are a pointer to a buffer containing the token text, and the
+** size of the token in bytes. The 4th and 5th arguments are the byte offsets
+** of the first byte of and first byte immediately following the text from
+** which the token is derived within the input.
+**
+** The second argument passed to the xToken() callback ("tflags") should
+** normally be set to 0. The exception is if the tokenizer supports
+** synonyms. In this case see the discussion below for details.
+**
+** FTS5 assumes the xToken() callback is invoked for each token in the
+** order that they occur within the input text.
+**
+** If an xToken() callback returns any value other than SQLITE_OK, then
+** the tokenization should be abandoned and the xTokenize() method should
+** immediately return a copy of the xToken() return value. Or, if the
+** input buffer is exhausted, xTokenize() should return SQLITE_OK. Finally,
+** if an error occurs with the xTokenize() implementation itself, it
+** may abandon the tokenization and return any error code other than
+** SQLITE_OK or SQLITE_DONE.
+**
+** SYNONYM SUPPORT
+**
+** Custom tokenizers may also support synonyms. Consider a case in which a
+** user wishes to query for a phrase such as "first place". Using the
+** built-in tokenizers, the FTS5 query 'first + place' will match instances
+** of "first place" within the document set, but not alternative forms
+** such as "1st place". In some applications, it would be better to match
+** all instances of "first place" or "1st place" regardless of which form
+** the user specified in the MATCH query text.
+**
+** There are several ways to approach this in FTS5:
+**
+** <ol><li> By mapping all synonyms to a single token. In this case, the
+** In the above example, this means that the tokenizer returns the
+** same token for inputs "first" and "1st". Say that token is in
+** fact "first", so that when the user inserts the document "I won
+** 1st place" entries are added to the index for tokens "i", "won",
+** "first" and "place". If the user then queries for '1st + place',
+** the tokenizer substitutes "first" for "1st" and the query works
+** as expected.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** In this case, when tokenizing query text, the tokenizer may
+** provide multiple synonyms for a single term within the document.
+** FTS5 then queries the index for each synonym individually. For
+** example, faced with the query:
+**
+** <codeblock>
+** ... MATCH 'first place'</codeblock>
+**
+** the tokenizer offers both "1st" and "first" as synonyms for the
+** first token in the MATCH query and FTS5 effectively runs a query
+** similar to:
+**
+** <codeblock>
+** ... MATCH '(first OR 1st) place'</codeblock>
+**
+** except that, for the purposes of auxiliary functions, the query
+** still appears to contain just two phrases - "(first OR 1st)"
+** being treated as a single phrase.
+**
+** <li> By adding multiple synonyms for a single term to the FTS index.
+** Using this method, when tokenizing document text, the tokenizer
+** provides multiple synonyms for each token. So that when a
+** document such as "I won first place" is tokenized, entries are
+** added to the FTS index for "i", "won", "first", "1st" and
+** "place".
+**
+** This way, even if the tokenizer does not provide synonyms
+** when tokenizing query text (it should not - to do would be
+** inefficient), it doesn't matter if the user queries for
+** 'first + place' or '1st + place', as there are entires in the
+** FTS index corresponding to both forms of the first token.
+** </ol>
+**
+** Whether it is parsing document or query text, any call to xToken that
+** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
+** is considered to supply a synonym for the previous token. For example,
+** when parsing the document "I won first place", a tokenizer that supports
+** synonyms would call xToken() 5 times, as follows:
+**
+** <codeblock>
+** xToken(pCtx, 0, "i", 1, 0, 1);
+** xToken(pCtx, 0, "won", 3, 2, 5);
+** xToken(pCtx, 0, "first", 5, 6, 11);
+** xToken(pCtx, FTS5_TOKEN_COLOCATED, "1st", 3, 6, 11);
+** xToken(pCtx, 0, "place", 5, 12, 17);
+**</codeblock>
+**
+** It is an error to specify the FTS5_TOKEN_COLOCATED flag the first time
+** xToken() is called. Multiple synonyms may be specified for a single token
+** by making multiple calls to xToken(FTS5_TOKEN_COLOCATED) in sequence.
+** There is no limit to the number of synonyms that may be provided for a
+** single token.
+**
+** In many cases, method (1) above is the best approach. It does not add
+** extra data to the FTS index or require FTS5 to query for multiple terms,
+** so it is efficient in terms of disk space and query speed. However, it
+** does not support prefix queries very well. If, as suggested above, the
+** token "first" is subsituted for "1st" by the tokenizer, then the query:
+**
+** <codeblock>
+** ... MATCH '1s*'</codeblock>
+**
+** will not match documents that contain the token "1st" (as the tokenizer
+** will probably not map "1s" to any prefix of "first").
+**
+** For full prefix support, method (3) may be preferred. In this case,
+** because the index contains entries for both "first" and "1st", prefix
+** queries such as 'fi*' or '1s*' will match correctly. However, because
+** extra entries are added to the FTS index, this method uses more space
+** within the database.
+**
+** Method (2) offers a midpoint between (1) and (3). Using this method,
+** a query such as '1s*' will match documents that contain the literal
+** token "1st", but not "first" (assuming the tokenizer is not able to
+** provide synonyms for prefixes). However, a non-prefix query like '1st'
+** will match against "1st" and "first". This method does not require
+** extra disk space, as no extra entries are added to the FTS index.
+** On the other hand, it may require more CPU cycles to run MATCH queries,
+** as separate queries of the FTS index are required for each synonym.
+**
+** When using methods (2) or (3), it is important that the tokenizer only
+** provide synonyms when tokenizing document text (method (2)) or query
+** text (method (3)), not both. Doing so will not cause any errors, but is
+** inefficient.
+*/
+typedef struct Fts5Tokenizer Fts5Tokenizer;
+typedef struct fts5_tokenizer fts5_tokenizer;
+struct fts5_tokenizer {
+ int (*xCreate)(void*, const char **azArg, int nArg, Fts5Tokenizer **ppOut);
+ void (*xDelete)(Fts5Tokenizer*);
+ int (*xTokenize)(Fts5Tokenizer*,
+ void *pCtx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *pText, int nText,
+ int (*xToken)(
+ void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int tflags, /* Mask of FTS5_TOKEN_* flags */
+ const char *pToken, /* Pointer to buffer containing token */
+ int nToken, /* Size of token in bytes */
+ int iStart, /* Byte offset of token within input text */
+ int iEnd /* Byte offset of end of token within input text */
+ )
+ );
+};
+
+/* Flags that may be passed as the third argument to xTokenize() */
+#define FTS5_TOKENIZE_QUERY 0x0001
+#define FTS5_TOKENIZE_PREFIX 0x0002
+#define FTS5_TOKENIZE_DOCUMENT 0x0004
+#define FTS5_TOKENIZE_AUX 0x0008
+
+/* Flags that may be passed by the tokenizer implementation back to FTS5
+** as the third argument to the supplied xToken callback. */
+#define FTS5_TOKEN_COLOCATED 0x0001 /* Same position as prev. token */
+
+/*
+** END OF CUSTOM TOKENIZERS
+*************************************************************************/
+
+/*************************************************************************
+** FTS5 EXTENSION REGISTRATION API
+*/
+typedef struct fts5_api fts5_api;
+struct fts5_api {
+ int iVersion; /* Currently always set to 2 */
+
+ /* Create a new tokenizer */
+ int (*xCreateTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_tokenizer *pTokenizer,
+ void (*xDestroy)(void*)
+ );
+
+ /* Find an existing tokenizer */
+ int (*xFindTokenizer)(
+ fts5_api *pApi,
+ const char *zName,
+ void **ppContext,
+ fts5_tokenizer *pTokenizer
+ );
+
+ /* Create a new auxiliary function */
+ int (*xCreateFunction)(
+ fts5_api *pApi,
+ const char *zName,
+ void *pContext,
+ fts5_extension_function xFunction,
+ void (*xDestroy)(void*)
+ );
+};
+
+/*
+** END OF REGISTRATION API
+*************************************************************************/
+
+#ifdef __cplusplus
+} /* end of the 'extern "C"' block */
+#endif
+
+#endif /* _FTS5_H */
+
diff --git a/src/libtracker-fts/tracker-fts-tokenizer.c b/src/libtracker-fts/tracker-fts-tokenizer.c
index c45d73d9a..26764aaf3 100644
--- a/src/libtracker-fts/tracker-fts-tokenizer.c
+++ b/src/libtracker-fts/tracker-fts-tokenizer.c
@@ -19,7 +19,7 @@
* 02110-1301 USA
*/
-/* FTS3/4 Tokenizer using TrackerParser */
+/* FTS5 Tokenizer using TrackerParser */
#include "config.h"
@@ -27,209 +27,392 @@
#include <string.h>
#include <libtracker-common/tracker-parser.h>
+#include <libtracker-data/tracker-ontologies.h>
#include "tracker-fts-tokenizer.h"
#include "tracker-fts-config.h"
-#include "fts3_tokenizer.h"
+#include "fts5.h"
+typedef struct TrackerTokenizerData TrackerTokenizerData;
typedef struct TrackerTokenizer TrackerTokenizer;
-typedef struct TrackerCursor TrackerCursor;
+
+struct TrackerTokenizerData {
+ TrackerLanguage *language;
+ int max_word_length;
+ int max_words;
+ gboolean enable_stemmer;
+ gboolean enable_unaccent;
+ gboolean ignore_numbers;
+ gboolean ignore_stop_words;
+};
struct TrackerTokenizer {
- sqlite3_tokenizer base;
- TrackerLanguage *language;
- int max_word_length;
- int max_words;
- gboolean enable_stemmer;
- gboolean enable_unaccent;
- gboolean ignore_numbers;
- gboolean ignore_stop_words;
+ TrackerTokenizerData *data;
+ TrackerParser *parser;
};
-struct TrackerCursor {
- sqlite3_tokenizer_cursor base;
+static int
+tracker_tokenizer_create (void *data,
+ const char **argv,
+ int argc,
+ Fts5Tokenizer **tokenizer_out)
+{
+ TrackerTokenizer *tokenizer;
+
+ tokenizer = g_new0 (TrackerTokenizer, 1);
+ tokenizer->data = data;
+ tokenizer->parser = tracker_parser_new (tokenizer->data->language);
+
+ *tokenizer_out = (Fts5Tokenizer *) tokenizer;
+
+ return SQLITE_OK;
+}
+
+static void
+tracker_tokenizer_destroy (Fts5Tokenizer *fts5_tokenizer)
+{
+ TrackerTokenizer *tokenizer = (TrackerTokenizer *) fts5_tokenizer;
+
+ tracker_parser_free (tokenizer->parser);
+ g_free (tokenizer);
+}
- TrackerTokenizer *tokenizer;
- TrackerParser *parser;
- guint n_words;
+typedef int (*TokenFunc) (void *pCtx, /* Copy of 2nd argument to xTokenize() */
+ int flags, /* Mask of FTS5_TOKEN_* flags */
+ const char *token, /* Pointer to buffer containing token */
+ int n_token, /* Size of token in bytes */
+ int start, /* Byte offset of token within input text */
+ int end); /* Byte offset of end of token within input text */
+
+static int
+tracker_tokenizer_tokenize (Fts5Tokenizer *fts5_tokenizer,
+ void *ctx,
+ int flags, /* Mask of FTS5_TOKENIZE_* flags */
+ const char *text,
+ int length,
+ TokenFunc token_func)
+{
+ TrackerTokenizer *tokenizer = (TrackerTokenizer *) fts5_tokenizer;
+ TrackerTokenizerData *data = tokenizer->data;
+ const gchar *token;
+ gboolean stop_word;
+ int n_tokens = 0, pos, start, end, len;
+ int rc = SQLITE_OK;
+
+ if (length <= 0)
+ return rc;
+
+ tracker_parser_reset (tokenizer->parser, text, length,
+ data->max_word_length,
+ data->enable_stemmer,
+ data->enable_unaccent,
+ data->ignore_stop_words,
+ TRUE,
+ data->ignore_numbers);
+
+ while (n_tokens < data->max_words) {
+ token = tracker_parser_next (tokenizer->parser,
+ &pos,
+ &start, &end,
+ &stop_word,
+ &len);
+
+ if (!token)
+ break;
+
+ if (stop_word && data->ignore_stop_words)
+ continue;
+
+ rc = token_func (ctx, 0, token, len, start, end);
+
+ if (rc != SQLITE_OK)
+ break;
+
+ n_tokens++;
+ }
+
+ return rc;
+}
+
+/* Our custom tokenizer: */
+static const fts5_tokenizer tracker_tokenizer_module = {
+ tracker_tokenizer_create, /* xCreate */
+ tracker_tokenizer_destroy, /* xDelete */
+ tracker_tokenizer_tokenize, /* xTokenize */
};
-/*
-** Create a new tokenizer instance.
-*/
-static int trackerCreate(
- int argc, /* Number of entries in argv[] */
- const char * const *argv, /* Tokenizer creation arguments */
- sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */
-){
- TrackerTokenizer *p;
- TrackerFTSConfig *config;
-
- p = (TrackerTokenizer *)sqlite3_malloc(sizeof(TrackerTokenizer));
- if( !p ){
- return SQLITE_NOMEM;
- }
- memset(p, 0, sizeof(TrackerTokenizer));
- p->language = tracker_language_new (NULL);
-
- config = tracker_fts_config_new ();
-
- p->max_word_length = tracker_fts_config_get_max_word_length (config);
- p->enable_stemmer = tracker_fts_config_get_enable_stemmer (config);
- p->enable_unaccent = tracker_fts_config_get_enable_unaccent (config);
- p->ignore_numbers = tracker_fts_config_get_ignore_numbers (config);
-
- /* disable stop words if TRACKER_FTS_STOP_WORDS is set to 0 - used by tests
- * otherwise, get value from the conf file */
- p->ignore_stop_words = (g_strcmp0 (g_getenv ("TRACKER_FTS_STOP_WORDS"), "0") == 0 ?
- FALSE : tracker_fts_config_get_ignore_stop_words (config));
-
- p->max_words = tracker_fts_config_get_max_words_to_index (config);
-
- g_object_unref (config);
-
- *ppTokenizer = (sqlite3_tokenizer *)p;
-
- return SQLITE_OK;
+static TrackerTokenizerData *
+tracker_tokenizer_data_new (void)
+{
+ TrackerTokenizerData *p;
+ TrackerFTSConfig *config;
+
+ config = tracker_fts_config_new ();
+
+ p = g_new0 (TrackerTokenizerData, 1);
+ p->language = tracker_language_new (NULL);
+ p->max_word_length = tracker_fts_config_get_max_word_length (config);
+ p->enable_stemmer = tracker_fts_config_get_enable_stemmer (config);
+ p->enable_unaccent = tracker_fts_config_get_enable_unaccent (config);
+ p->ignore_numbers = tracker_fts_config_get_ignore_numbers (config);
+ p->max_words = tracker_fts_config_get_max_words_to_index (config);
+
+ /* disable stop words if TRACKER_FTS_STOP_WORDS is set to 0 - used by tests
+ * otherwise, get value from the conf file */
+ p->ignore_stop_words = (g_strcmp0 (g_getenv ("TRACKER_FTS_STOP_WORDS"), "0") == 0 ?
+ FALSE : tracker_fts_config_get_ignore_stop_words (config));
+
+ g_object_unref (config);
+
+ return p;
}
-/*
-** Destroy a tokenizer
-*/
-static int trackerDestroy(sqlite3_tokenizer *pTokenizer){
- TrackerTokenizer *p = (TrackerTokenizer *)pTokenizer;
- g_object_unref (p->language);
- sqlite3_free(p);
- return SQLITE_OK;
+static void
+tracker_tokenizer_data_free (gpointer user_data)
+{
+ TrackerTokenizerData *data = user_data;
+
+ g_object_unref (data->language);
+ g_free (data);
}
-/*
-** Prepare to begin tokenizing a particular string. The input
-** string to be tokenized is pInput[0..nBytes-1]. A cursor
-** used to incrementally tokenize this string is returned in
-** *ppCursor.
-*/
-static int trackerOpen(
- sqlite3_tokenizer *pTokenizer, /* The tokenizer */
- const char *zInput, /* Input string */
- int nInput, /* Length of zInput in bytes */
- sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
-){
- TrackerTokenizer *p = (TrackerTokenizer *)pTokenizer;
- TrackerParser *parser;
- TrackerCursor *pCsr;
-
- if ( nInput<0 ){
- nInput = strlen(zInput);
- }
-
- parser = tracker_parser_new (p->language);
- tracker_parser_reset (parser, zInput, nInput,
- p->max_word_length,
- p->enable_stemmer,
- p->enable_unaccent,
- p->ignore_stop_words,
- TRUE,
- p->ignore_numbers);
-
- pCsr = (TrackerCursor *)sqlite3_malloc(sizeof(TrackerCursor));
- memset(pCsr, 0, sizeof(TrackerCursor));
- pCsr->tokenizer = p;
- pCsr->parser = parser;
-
- *ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
- return SQLITE_OK;
+static int
+offsets_tokenizer_func (void *data,
+ int flags,
+ const char *token,
+ int n_token,
+ int start,
+ int end)
+{
+ GArray *offsets = data;
+ g_array_append_val (offsets, start);
+ return SQLITE_OK;
}
-/*
-** Close a tokenization cursor.
-*/
-static int trackerClose(sqlite3_tokenizer_cursor *pCursor){
- TrackerCursor *pCsr = (TrackerCursor *)pCursor;
-
- tracker_parser_free (pCsr->parser);
- sqlite3_free(pCsr);
- return SQLITE_OK;
+static void
+tracker_offsets_function (const Fts5ExtensionApi *api,
+ Fts5Context *fts_ctx,
+ sqlite3_context *ctx,
+ int n_args,
+ sqlite3_value **args)
+{
+ GString *str;
+ int rc, n_hits, i;
+ GArray *offsets = NULL;
+ const gchar * const *property_names;
+ gint cur_col = -1;
+
+ if (n_args > 0) {
+ sqlite3_result_error (ctx, "Invalid argument count", -1);
+ return;
+ }
+
+ property_names = api->xUserData (fts_ctx);
+ rc = api->xInstCount (fts_ctx, &n_hits);
+
+ if (rc != SQLITE_OK) {
+ sqlite3_result_null (ctx);
+ return;
+ }
+
+ str = g_string_new (NULL);
+
+ for (i = 0; i < n_hits; i++) {
+ int phrase, col, n_token;
+
+ rc = api->xInst (fts_ctx, i, &phrase, &col, &n_token);
+
+ if (cur_col != col) {
+ const char *text;
+ int length;
+
+ if (offsets)
+ g_array_free (offsets, TRUE);
+
+ offsets = g_array_new (FALSE, FALSE, sizeof (gint));
+ api->xColumnText (fts_ctx, col, &text, &length);
+ api->xTokenize (fts_ctx, text, length,
+ offsets, &offsets_tokenizer_func);
+ cur_col = col;
+ }
+
+ if (str->len != 0)
+ g_string_append_c (str, ',');
+
+ if (rc != SQLITE_OK)
+ break;
+
+ g_string_append_printf (str, "%s,%d",
+ property_names[col],
+ g_array_index (offsets, gint, n_token));
+ }
+
+ if (offsets)
+ g_array_free (offsets, TRUE);
+
+ if (rc == SQLITE_OK) {
+ sqlite3_result_text (ctx, str->str, str->len, g_free);
+ g_string_free (str, FALSE);
+ } else {
+ sqlite3_result_error_code (ctx, rc);
+ g_string_free (str, TRUE);
+ }
}
-/*
-** Extract the next token from a tokenization cursor.
-*/
-static int trackerNext(
- sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */
- const char **ppToken, /* OUT: *ppToken is the token text */
- int *pnBytes, /* OUT: Number of bytes in token */
- int *piStartOffset, /* OUT: Starting offset of token */
- int *piEndOffset, /* OUT: Ending offset of token */
- int *piPosition /* OUT: Position integer of token */
-){
- TrackerCursor *cursor = (TrackerCursor *) pCursor;
- TrackerTokenizer *p;
- const gchar *pToken;
- gboolean stop_word;
- int pos, start, end, len;
-
- p = cursor->tokenizer;
-
- if (cursor->n_words > p->max_words){
- return SQLITE_DONE;
- }
-
- do {
- pToken = tracker_parser_next (cursor->parser,
- &pos,
- &start, &end,
- &stop_word,
- &len);
-
- if (!pToken){
- return SQLITE_DONE;
- }
- } while (stop_word && p->ignore_stop_words);
-
- *ppToken = pToken;
- *piStartOffset = start;
- *piEndOffset = end;
- *piPosition = pos;
- *pnBytes = len;
-
- cursor->n_words++;
-
- return SQLITE_OK;
+static GHashTable *
+get_fts_weights (sqlite3_context *context)
+{
+ static GHashTable *weights = NULL;
+ static GMutex mutex;
+ int rc = SQLITE_DONE;
+
+ g_mutex_lock (&mutex);
+
+ if (G_UNLIKELY (weights == NULL)) {
+ sqlite3_stmt *stmt;
+ sqlite3 *db;
+ const gchar *uri;
+
+ weights = g_hash_table_new (g_str_hash, g_str_equal);
+ db = sqlite3_context_db_handle (context);
+ rc = sqlite3_prepare_v2 (db,
+ "SELECT \"rdf:Property\".\"tracker:weight\", "
+ "(SELECT Uri FROM Resource where Resource.ID=\"rdf:Property\".ID) "
+ "FROM \"rdf:Property\" "
+ "WHERE \"rdf:Property\".\"tracker:fulltextIndexed\" = 1 ",
+ -1, &stmt, NULL);
+
+ while ((rc = sqlite3_step (stmt)) != SQLITE_DONE) {
+ if (rc == SQLITE_ROW) {
+ TrackerProperty *property;
+ guint weight;
+
+ weight = sqlite3_column_int (stmt, 0);
+ uri = sqlite3_column_text (stmt, 1);
+
+ property = tracker_ontologies_get_property_by_uri (uri);
+ g_hash_table_insert (weights,
+ (gpointer) tracker_property_get_name (property),
+ GUINT_TO_POINTER (weight));
+ } else if (rc != SQLITE_BUSY) {
+ break;
+ }
+ }
+
+ sqlite3_finalize (stmt);
+
+ if (rc != SQLITE_DONE) {
+ g_hash_table_destroy (weights);
+ weights = NULL;
+ }
+ }
+
+ g_mutex_unlock (&mutex);
+
+ return weights;
}
-/*
-** The set of routines that implement the simple tokenizer
-*/
-static const sqlite3_tokenizer_module trackerTokenizerModule = {
- 0, /* iVersion */
- trackerCreate, /* xCreate */
- trackerDestroy, /* xDestroy */
- trackerOpen, /* xOpen */
- trackerClose, /* xClose */
- trackerNext, /* xNext */
-};
+static void
+tracker_rank_function (const Fts5ExtensionApi *api,
+ Fts5Context *fts_ctx,
+ sqlite3_context *ctx,
+ int n_args,
+ sqlite3_value **args)
+{
+ const gchar * const *property_names;
+ int i, rc, n_columns, n_tokens;
+ GHashTable *weights;
+ gdouble rank = 0;
+
+ if (n_args != 0) {
+ sqlite3_result_error (ctx, "Invalid argument count", -1);
+ return;
+ }
+
+ n_columns = api->xColumnCount (fts_ctx);
+ property_names = api->xUserData (fts_ctx);
+ weights = get_fts_weights (ctx);
+
+ if (!weights) {
+ sqlite3_result_error (ctx, "Could not read FTS weights", -1);
+ return;
+ }
+
+ for (i = 0; i < n_columns; i++) {
+ const gchar *property;
+ guint weight;
+
+ rc = api->xColumnSize (fts_ctx, i, &n_tokens);
+ if (rc != SQLITE_OK)
+ break;
+
+ if (n_tokens <= 0)
+ continue;
+
+ property = property_names[i];
+ weight = GPOINTER_TO_UINT (g_hash_table_lookup (weights, property));
+ rank += weight;
+ }
+
+ if (rc == SQLITE_OK) {
+ sqlite3_result_double (ctx, rank);
+ } else {
+ sqlite3_result_error_code (ctx, rc);
+ }
+}
-/*
-** Set *ppModule to point at the implementation of the tracker tokenizer.
-*/
-gboolean tracker_tokenizer_initialize (sqlite3 *db) {
- const sqlite3_tokenizer_module *pTokenizer;
- int rc = SQLITE_OK;
- sqlite3_stmt *stmt;
-
- pTokenizer = &trackerTokenizerModule;
- rc = sqlite3_prepare_v2(db, "SELECT fts3_tokenizer(?, ?)",
- -1, &stmt, 0);
-
- if (rc != SQLITE_OK) {
- return FALSE;
- }
-
- sqlite3_bind_text(stmt, 1, "TrackerTokenizer", -1, SQLITE_STATIC);
- sqlite3_bind_blob(stmt, 2, &pTokenizer, sizeof(pTokenizer), SQLITE_STATIC);
- sqlite3_step(stmt);
- rc = sqlite3_finalize(stmt);
-
- return (rc == SQLITE_OK);
+static fts5_api *
+get_fts5_api (sqlite3 *db) {
+ int rc = SQLITE_OK;
+ sqlite3_stmt *stmt;
+ fts5_api *api;
+
+ rc = sqlite3_prepare_v2(db, "SELECT fts5()",
+ -1, &stmt, 0);
+
+ if (rc != SQLITE_OK) {
+ return NULL;
+ }
+
+ if (sqlite3_step (stmt) != SQLITE_ROW) {
+ return NULL;
+ }
+
+ memcpy (&api, sqlite3_column_blob (stmt, 0), sizeof (api));
+ sqlite3_finalize (stmt);
+
+ return api;
+}
+
+gboolean
+tracker_tokenizer_initialize (sqlite3 *db,
+ const gchar **property_names)
+{
+ TrackerTokenizerData *data;
+ fts5_tokenizer *tokenizer;
+ fts5_api *api;
+
+ api = get_fts5_api (db);
+
+ if (!api)
+ return FALSE;
+
+ data = tracker_tokenizer_data_new ();
+ tokenizer = (fts5_tokenizer *) &tracker_tokenizer_module;
+ api->xCreateTokenizer (api, "TrackerTokenizer", data, tokenizer,
+ tracker_tokenizer_data_free);
+
+ /* Offsets */
+ api->xCreateFunction (api, "tracker_offsets",
+ g_strdupv ((gchar **) property_names),
+ &tracker_offsets_function,
+ (GDestroyNotify) g_strfreev);
+
+ /* Rank */
+ api->xCreateFunction (api, "tracker_rank",
+ g_strdupv ((gchar **) property_names),
+ &tracker_rank_function,
+ (GDestroyNotify) g_strfreev);
+
+ return TRUE;
}
diff --git a/src/libtracker-fts/tracker-fts-tokenizer.h b/src/libtracker-fts/tracker-fts-tokenizer.h
index 3e86295a5..30843d23e 100644
--- a/src/libtracker-fts/tracker-fts-tokenizer.h
+++ b/src/libtracker-fts/tracker-fts-tokenizer.h
@@ -21,11 +21,11 @@
#include <sqlite3.h>
#include <glib.h>
-#include "fts3_tokenizer.h"
#ifndef __TRACKER_FTS_TOKENIZER_H__
#define __TRACKER_FTS_TOKENIZER_H__
-gboolean tracker_tokenizer_initialize (sqlite3 *db);
+gboolean tracker_tokenizer_initialize (sqlite3 *db,
+ const gchar **property_names);
#endif /* __TRACKER_FTS_TOKENIZER_H__ */
diff --git a/src/libtracker-fts/tracker-fts.c b/src/libtracker-fts/tracker-fts.c
index 0571fb0f4..deb951a23 100644
--- a/src/libtracker-fts/tracker-fts.c
+++ b/src/libtracker-fts/tracker-fts.c
@@ -28,13 +28,16 @@
#ifndef HAVE_BUILTIN_FTS
-#include "fts3.h"
+#include "sqlite3.h"
+#include "fts5.h"
+
static gsize module_initialized = 0;
+int sqlite3_fts5_init ();
+
#endif
static gboolean initialized = FALSE;
-static GPrivate property_names_key = G_PRIVATE_INIT ((GDestroyNotify) g_strfreev);
gboolean
@@ -47,13 +50,13 @@ tracker_fts_init (void)
#ifdef HAVE_BUILTIN_FTS
initialized = TRUE;
- /* SQLite has all needed FTS4 features compiled in */
+ /* SQLite has all needed FTS5 features compiled in */
return TRUE;
#else
int rc = SQLITE_OK;
if (g_once_init_enter (&module_initialized)) {
- rc = sqlite3_auto_extension ((void (*) (void)) fts4_extension_init);
+ rc = sqlite3_auto_extension ((void (*) (void)) sqlite3_fts5_init);
g_once_init_leave (&module_initialized, (rc == SQLITE_OK));
}
@@ -70,202 +73,45 @@ tracker_fts_shutdown (void)
return TRUE;
}
- /* Nothing to do, there is no fts4_extension_shutdown() */
initialized = FALSE;
return TRUE;
}
-static void
-function_rank (sqlite3_context *context,
- int argc,
- sqlite3_value *argv[])
-{
- guint *matchinfo, *weights;
- gdouble rank = 0;
- gint i, n_columns;
-
- if (argc != 2) {
- sqlite3_result_error(context,
- "wrong number of arguments to function rank()",
- -1);
- return;
- }
-
- matchinfo = (unsigned int *) sqlite3_value_blob (argv[0]);
- weights = (unsigned int *) sqlite3_value_blob (argv[1]);
- n_columns = matchinfo[0];
-
- for (i = 0; i < n_columns; i++) {
- if (matchinfo[i + 1] != 0) {
- rank += (gdouble) weights[i];
- }
- }
-
- sqlite3_result_double(context, rank);
-}
-
-static void
-function_offsets (sqlite3_context *context,
- int argc,
- sqlite3_value *argv[])
+static gchar **
+get_fts_properties (GHashTable *tables)
{
- gchar *offsets;
- const gchar * const * names;
- gint offset_values[4];
- GString *result = NULL;
- gint i = 0;
-
- if (argc != 2) {
- sqlite3_result_error(context,
- "wrong number of arguments to function tracker_offsets()",
- -1);
- return;
- }
-
- offsets = (gchar *) sqlite3_value_text (argv[0]);
- names = sqlite3_value_blob (argv[1]);
-
- while (offsets && *offsets) {
- offset_values[i] = g_strtod (offsets, &offsets);
-
- /* All 4 values from the quartet have been gathered */
- if (i == 3) {
- if (!result) {
- result = g_string_new ("");
- } else {
- g_string_append_c (result, ',');
- }
-
- g_string_append_printf (result,
- "%s,%d",
- names[offset_values[0]],
- offset_values[2]);
-
- }
-
- i = (i + 1) % 4;
- }
-
- sqlite3_result_text (context,
- (result) ? g_string_free (result, FALSE) : NULL,
- -1, g_free);
-}
-
-static void
-function_weights (sqlite3_context *context,
- int argc,
- sqlite3_value *argv[])
-{
- static guint *weights = NULL;
- static GMutex mutex;
- static gint length;
- int rc = SQLITE_DONE;
-
- g_mutex_lock (&mutex);
-
- if (G_UNLIKELY (weights == NULL)) {
- GArray *weight_array;
- sqlite3_stmt *stmt;
- sqlite3 *db;
-
- weight_array = g_array_new (FALSE, FALSE, sizeof (guint));
- db = sqlite3_context_db_handle (context);
- rc = sqlite3_prepare_v2 (db,
- "SELECT \"rdf:Property\".\"tracker:weight\" "
- "FROM \"rdf:Property\" "
- "WHERE \"rdf:Property\".\"tracker:fulltextIndexed\" = 1 "
- "ORDER BY \"rdf:Property\".ID ",
- -1, &stmt, NULL);
-
- while ((rc = sqlite3_step (stmt)) != SQLITE_DONE) {
- if (rc == SQLITE_ROW) {
- guint weight;
- weight = sqlite3_column_int (stmt, 0);
- g_array_append_val (weight_array, weight);
- } else if (rc != SQLITE_BUSY) {
- break;
- }
- }
+ GList *table_columns, *columns;
+ gchar **property_names;
+ GHashTableIter iter;
- sqlite3_finalize (stmt);
+ columns = NULL;
+ g_hash_table_iter_init (&iter, tables);
- if (rc == SQLITE_DONE) {
- length = weight_array->len * g_array_get_element_size (weight_array);
- weights = (guint *) g_array_free (weight_array, FALSE);
- } else {
- g_array_free (weight_array, TRUE);
- }
+ while (g_hash_table_iter_next (&iter, NULL, (gpointer *) &table_columns)) {
+ columns = g_list_concat (columns, g_list_copy (table_columns));
}
- g_mutex_unlock (&mutex);
-
- if (rc == SQLITE_DONE)
- sqlite3_result_blob (context, weights, length, NULL);
- else
- sqlite3_result_error_code (context, rc);
-}
-
-static void
-function_property_names (sqlite3_context *context,
- int argc,
- sqlite3_value *argv[])
-{
- gchar **property_names;
- gint length;
-
- property_names = g_private_get (&property_names_key);
- length = g_strv_length (property_names) * sizeof (gchar *);
- sqlite3_result_blob (context, property_names, length, NULL);
-}
+ property_names = tracker_glist_to_string_list (columns);
+ g_list_free (columns);
-static void
-fts_register_functions (sqlite3 *db)
-{
- sqlite3_create_function (db, "tracker_rank", 2, SQLITE_ANY,
- NULL, &function_rank,
- NULL, NULL);
- sqlite3_create_function (db, "tracker_offsets", 2, SQLITE_ANY,
- NULL, &function_offsets,
- NULL, NULL);
- sqlite3_create_function (db, "fts_column_weights", 0, SQLITE_ANY,
- NULL, &function_weights,
- NULL, NULL);
- sqlite3_create_function (db, "fts_property_names", 0, SQLITE_ANY,
- NULL, &function_property_names,
- NULL, NULL);
+ return property_names;
}
gboolean
tracker_fts_init_db (sqlite3 *db,
GHashTable *tables)
{
- GHashTableIter iter;
- GList *columns;
- GList *table_columns;
gchar **property_names;
+ gboolean retval;
g_return_val_if_fail (initialized == TRUE, FALSE);
- if (!tracker_tokenizer_initialize (db)) {
- return FALSE;
- }
-
- /* Set up GStrv 'property_names' */
- columns = NULL;
- g_hash_table_iter_init (&iter, tables);
- while (g_hash_table_iter_next (&iter, NULL, (gpointer *) &table_columns)) {
- columns = g_list_concat (columns, g_list_copy (table_columns));
- }
-
- property_names = tracker_glist_to_string_list (columns);
- g_private_replace (&property_names_key, property_names);
- g_list_free (columns);
-
- /* Register functions with the database, including one to get property names */
- fts_register_functions (db);
+ property_names = get_fts_properties (tables);
+ retval = tracker_tokenizer_initialize (db, (const gchar **) property_names);
+ g_strfreev (property_names);
- return TRUE;
+ return retval;
}
gboolean
@@ -282,13 +128,16 @@ tracker_fts_create_table (sqlite3 *db,
g_return_val_if_fail (initialized == TRUE, FALSE);
+ if (g_hash_table_size (tables) == 0)
+ return TRUE;
+
/* Create view on tables/columns marked as FTS-indexed */
g_hash_table_iter_init (&iter, tables);
str = g_string_new ("CREATE VIEW fts_view AS SELECT Resource.ID as rowid ");
from = g_string_new ("FROM Resource ");
fts = g_string_new ("CREATE VIRTUAL TABLE ");
- g_string_append_printf (fts, "%s USING fts4(content=\"fts_view\", ",
+ g_string_append_printf (fts, "%s USING fts5(content=\"fts_view\", ",
table_name);
while (g_hash_table_iter_next (&iter, (gpointer *) &index_table,
@@ -321,17 +170,28 @@ tracker_fts_create_table (sqlite3 *db,
g_string_append (str, from->str);
g_string_free (from, TRUE);
- rc = sqlite3_exec(db, str->str, NULL, 0, NULL);
+ rc = sqlite3_exec(db, str->str, NULL, NULL, NULL);
g_string_free (str, TRUE);
if (rc != SQLITE_OK) {
+ g_assert_not_reached();
return FALSE;
}
g_string_append (fts, "tokenize=TrackerTokenizer)");
- rc = sqlite3_exec(db, fts->str, NULL, 0, NULL);
+ rc = sqlite3_exec(db, fts->str, NULL, NULL, NULL);
g_string_free (fts, TRUE);
+ if (rc != SQLITE_OK)
+ return FALSE;
+
+ str = g_string_new (NULL);
+ g_string_append_printf (str,
+ "INSERT INTO %s(%s, rank) VALUES('rank', 'tracker_rank()')",
+ table_name, table_name);
+ rc = sqlite3_exec (db, str->str, NULL, NULL, NULL);
+ g_string_free (str, TRUE);
+
return (rc == SQLITE_OK);
}
@@ -349,17 +209,21 @@ tracker_fts_alter_table (sqlite3 *db,
tmp_name = g_strdup_printf ("%s_TMP", table_name);
query = g_strdup_printf ("DROP VIEW fts_view");
- rc = sqlite3_prepare_v2 (db, query, -1, NULL, NULL);
+ rc = sqlite3_exec (db, query, NULL, NULL, NULL);
+ g_free (query);
+
+ query = g_strdup_printf ("DROP TABLE fts5");
+ rc = sqlite3_exec (db, query, NULL, NULL, NULL);
+ g_free (query);
if (!tracker_fts_create_table (db, tmp_name, tables, grouped_columns)) {
g_free (tmp_name);
- g_free (query);
return FALSE;
}
- query = g_strdup_printf ("INSERT INTO %s (docid) SELECT docid FROM %s",
- tmp_name, table_name);
- rc = sqlite3_prepare_v2 (db, query, -1, NULL, NULL);
+ query = g_strdup_printf ("INSERT INTO %s (rowid) SELECT rowid FROM fts_view",
+ tmp_name);
+ rc = sqlite3_exec (db, query, NULL, NULL, NULL);
g_free (query);
if (rc != SQLITE_OK) {
@@ -369,7 +233,7 @@ tracker_fts_alter_table (sqlite3 *db,
query = g_strdup_printf ("INSERT INTO %s(%s) VALUES('rebuild')",
tmp_name, tmp_name);
- rc = sqlite3_prepare_v2 (db, query, -1, NULL, NULL);
+ rc = sqlite3_exec (db, query, NULL, NULL, NULL);
g_free (query);
if (rc != SQLITE_OK) {
@@ -379,17 +243,11 @@ tracker_fts_alter_table (sqlite3 *db,
query = g_strdup_printf ("ALTER TABLE %s RENAME TO %s",
tmp_name, table_name);
- rc = sqlite3_prepare_v2 (db, query, -1, NULL, NULL);
+ rc = sqlite3_exec (db, query, NULL, NULL, NULL);
g_free (query);
g_free (tmp_name);
-
- if (rc != SQLITE_OK) {
- g_free (tmp_name);
- return FALSE;
- }
-
- return TRUE;
+ return rc == SQLITE_OK;
}
void
@@ -401,6 +259,6 @@ tracker_fts_rebuild_tokens (sqlite3 *db,
/* This special query rebuilds the tokens in the given FTS table */
query = g_strdup_printf ("INSERT INTO %s(%s) VALUES('rebuild')",
table_name, table_name);
- sqlite3_exec(db, query, NULL, 0, NULL);
+ sqlite3_exec(db, query, NULL, NULL, NULL);
g_free (query);
}
diff --git a/src/ontologies/32-nco.ontology b/src/ontologies/32-nco.ontology
index a7c80f5ba..6e7abb5a9 100644
--- a/src/ontologies/32-nco.ontology
+++ b/src/ontologies/32-nco.ontology
@@ -11,7 +11,7 @@
nco: a tracker:Namespace, tracker:Ontology ;
tracker:prefix "nco" ;
- nao:lastModified "2011-09-29T12:20:00Z" .
+ nao:lastModified "2016-02-28T21:30:00Z" .
nco:Role a rdfs:Class ;
rdfs:label "Role" ;
@@ -599,7 +599,6 @@ nco:hobby a rdf:Property ;
nrl:maxCardinality 1 ;
rdfs:domain nco:PersonContact ;
rdfs:range xsd:string ;
- tracker:fulltextIndexed true ;
tracker:weight 2 .
# Same remarks as in url