/* Compute cubic root of long double value. Copyright (C) 2012-2023 Free Software Foundation, Inc. Cephes Math Library Release 2.2: January, 1991 Copyright 1984, 1991 by Stephen L. Moshier Adapted for glibc October, 2001. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include /* Specification. */ #include #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE long double cbrtl (long double x) { return cbrt (x); } #else /* Code based on glibc/sysdeps/ieee754/ldbl-128/s_cbrtl.c. */ /* cbrtl.c * * Cube root, long double precision * * * * SYNOPSIS: * * long double x, y, cbrtl(); * * y = cbrtl( x ); * * * * DESCRIPTION: * * Returns the cube root of the argument, which may be negative. * * Range reduction involves determining the power of 2 of * the argument. A polynomial of degree 2 applied to the * mantissa, and multiplication by the cube root of 1, 2, or 4 * approximates the root to within about 0.1%. Then Newton's * iteration is used three times to converge to an accurate * result. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -8,8 100000 1.3e-34 3.9e-35 * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 * */ static const long double CBRT2 = 1.259921049894873164767210607278228350570251L; static const long double CBRT4 = 1.587401051968199474751705639272308260391493L; static const long double CBRT2I = 0.7937005259840997373758528196361541301957467L; static const long double CBRT4I = 0.6299605249474365823836053036391141752851257L; long double cbrtl (long double x) { if (isfinite (x) && x != 0.0L) { int e, rem, sign; long double z; if (x > 0) sign = 1; else { sign = -1; x = -x; } z = x; /* extract power of 2, leaving mantissa between 0.5 and 1 */ x = frexpl (x, &e); /* Approximate cube root of number between .5 and 1, peak relative error = 1.2e-6 */ x = ((((1.3584464340920900529734e-1L * x - 6.3986917220457538402318e-1L) * x + 1.2875551670318751538055e0L) * x - 1.4897083391357284957891e0L) * x + 1.3304961236013647092521e0L) * x + 3.7568280825958912391243e-1L; /* exponent divided by 3 */ if (e >= 0) { rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2; else if (rem == 2) x *= CBRT4; } else { /* argument less than 1 */ e = -e; rem = e; e /= 3; rem -= 3 * e; if (rem == 1) x *= CBRT2I; else if (rem == 2) x *= CBRT4I; e = -e; } /* multiply by power of 2 */ x = ldexpl (x, e); /* Newton iteration */ x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333L; if (sign < 0) x = -x; return x; } else { # ifdef __sgi /* so that when x == -0.0L, the result is -0.0L not +0.0L */ return x; # else return x + x; # endif } } #endif