/* Functions to compute MD4 message digest of files or memory blocks. according to the definition of MD4 in RFC 1320 from April 1992. Copyright (C) 1995-1997, 1999-2003, 2005-2006, 2008-2023 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ /* Adapted by Simon Josefsson from gnulib md5.? and Libgcrypt cipher/md4.c . */ #include /* Specification. */ #include "md4.h" #include #include #include #include #ifdef WORDS_BIGENDIAN # define SWAP(n) bswap_32 (n) #else # define SWAP(n) (n) #endif /* This array contains the bytes used to pad the buffer to the next 64-byte boundary. (RFC 1320, 3.1: Step 1) */ static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; /* Initialize structure containing state of computation. (RFC 1320, 3.3: Step 3) */ void md4_init_ctx (struct md4_ctx *ctx) { ctx->A = 0x67452301; ctx->B = 0xefcdab89; ctx->C = 0x98badcfe; ctx->D = 0x10325476; ctx->total[0] = ctx->total[1] = 0; ctx->buflen = 0; } /* Copy the 4 byte value from v into the memory location pointed to by *cp, If your architecture allows unaligned access this is equivalent to * (uint32_t *) cp = v */ static void set_uint32 (char *cp, uint32_t v) { memcpy (cp, &v, sizeof v); } /* Put result from CTX in first 16 bytes following RESBUF. The result must be in little endian byte order. */ void * md4_read_ctx (const struct md4_ctx *ctx, void *resbuf) { char *r = resbuf; set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); return resbuf; } /* Process the remaining bytes in the internal buffer and the usual prolog according to the standard and write the result to RESBUF. */ void * md4_finish_ctx (struct md4_ctx *ctx, void *resbuf) { /* Take yet unprocessed bytes into account. */ uint32_t bytes = ctx->buflen; size_t pad; /* Now count remaining bytes. */ ctx->total[0] += bytes; if (ctx->total[0] < bytes) ++ctx->total[1]; pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; memcpy (&((char*)ctx->buffer)[bytes], fillbuf, pad); /* Put the 64-bit file length in *bits* at the end of the buffer. */ ctx->buffer[(bytes + pad) / 4] = SWAP (ctx->total[0] << 3); ctx->buffer[(bytes + pad) / 4 + 1] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); /* Process last bytes. */ md4_process_block (ctx->buffer, bytes + pad + 8, ctx); return md4_read_ctx (ctx, resbuf); } /* Compute MD4 message digest for LEN bytes beginning at BUFFER. The result is always in little endian byte order, so that a byte-wise output yields to the wanted ASCII representation of the message digest. */ void * md4_buffer (const char *buffer, size_t len, void *resblock) { struct md4_ctx ctx; /* Initialize the computation context. */ md4_init_ctx (&ctx); /* Process whole buffer but last len % 64 bytes. */ md4_process_bytes (buffer, len, &ctx); /* Put result in desired memory area. */ return md4_finish_ctx (&ctx, resblock); } void md4_process_bytes (const void *buffer, size_t len, struct md4_ctx *ctx) { /* When we already have some bits in our internal buffer concatenate both inputs first. */ if (ctx->buflen != 0) { size_t left_over = ctx->buflen; size_t add = 128 - left_over > len ? len : 128 - left_over; memcpy (&((char*)ctx->buffer)[left_over], buffer, add); ctx->buflen += add; if (ctx->buflen > 64) { md4_process_block (ctx->buffer, ctx->buflen & ~63, ctx); ctx->buflen &= 63; /* The regions in the following copy operation cannot overlap. */ memcpy (ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63], ctx->buflen); } buffer = (const char *) buffer + add; len -= add; } /* Process available complete blocks. */ if (len >= 64) { #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) if (UNALIGNED_P (buffer)) while (len > 64) { md4_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); buffer = (const char *) buffer + 64; len -= 64; } else #endif { md4_process_block (buffer, len & ~63, ctx); buffer = (const char *) buffer + (len & ~63); len &= 63; } } /* Move remaining bytes in internal buffer. */ if (len > 0) { size_t left_over = ctx->buflen; memcpy (&((char*)ctx->buffer)[left_over], buffer, len); left_over += len; if (left_over >= 64) { md4_process_block (ctx->buffer, 64, ctx); left_over -= 64; memcpy (ctx->buffer, &ctx->buffer[16], left_over); } ctx->buflen = left_over; } } /* --- Code below is the primary difference between md5.c and md4.c --- */ /* MD4 round constants */ #define K1 0x5a827999 #define K2 0x6ed9eba1 /* Round functions. */ #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) #define R1(a,b,c,d,k,s) a=rol(a+F(b,c,d)+x[k],s); #define R2(a,b,c,d,k,s) a=rol(a+G(b,c,d)+x[k]+K1,s); #define R3(a,b,c,d,k,s) a=rol(a+H(b,c,d)+x[k]+K2,s); /* Process LEN bytes of BUFFER, accumulating context into CTX. It is assumed that LEN % 64 == 0. */ void md4_process_block (const void *buffer, size_t len, struct md4_ctx *ctx) { const uint32_t *words = buffer; size_t nwords = len / sizeof (uint32_t); const uint32_t *endp = words + nwords; uint32_t x[16]; uint32_t A = ctx->A; uint32_t B = ctx->B; uint32_t C = ctx->C; uint32_t D = ctx->D; uint32_t lolen = len; /* First increment the byte count. RFC 1320 specifies the possible length of the file up to 2^64 bits. Here we only compute the number of bytes. Do a double word increment. */ ctx->total[0] += lolen; ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); /* Process all bytes in the buffer with 64 bytes in each round of the loop. */ while (words < endp) { int t; for (t = 0; t < 16; t++) { x[t] = SWAP (*words); words++; } /* Round 1. */ R1 (A, B, C, D, 0, 3); R1 (D, A, B, C, 1, 7); R1 (C, D, A, B, 2, 11); R1 (B, C, D, A, 3, 19); R1 (A, B, C, D, 4, 3); R1 (D, A, B, C, 5, 7); R1 (C, D, A, B, 6, 11); R1 (B, C, D, A, 7, 19); R1 (A, B, C, D, 8, 3); R1 (D, A, B, C, 9, 7); R1 (C, D, A, B, 10, 11); R1 (B, C, D, A, 11, 19); R1 (A, B, C, D, 12, 3); R1 (D, A, B, C, 13, 7); R1 (C, D, A, B, 14, 11); R1 (B, C, D, A, 15, 19); /* Round 2. */ R2 (A, B, C, D, 0, 3); R2 (D, A, B, C, 4, 5); R2 (C, D, A, B, 8, 9); R2 (B, C, D, A, 12, 13); R2 (A, B, C, D, 1, 3); R2 (D, A, B, C, 5, 5); R2 (C, D, A, B, 9, 9); R2 (B, C, D, A, 13, 13); R2 (A, B, C, D, 2, 3); R2 (D, A, B, C, 6, 5); R2 (C, D, A, B, 10, 9); R2 (B, C, D, A, 14, 13); R2 (A, B, C, D, 3, 3); R2 (D, A, B, C, 7, 5); R2 (C, D, A, B, 11, 9); R2 (B, C, D, A, 15, 13); /* Round 3. */ R3 (A, B, C, D, 0, 3); R3 (D, A, B, C, 8, 9); R3 (C, D, A, B, 4, 11); R3 (B, C, D, A, 12, 15); R3 (A, B, C, D, 2, 3); R3 (D, A, B, C, 10, 9); R3 (C, D, A, B, 6, 11); R3 (B, C, D, A, 14, 15); R3 (A, B, C, D, 1, 3); R3 (D, A, B, C, 9, 9); R3 (C, D, A, B, 5, 11); R3 (B, C, D, A, 13, 15); R3 (A, B, C, D, 3, 3); R3 (D, A, B, C, 11, 9); R3 (C, D, A, B, 7, 11); R3 (B, C, D, A, 15, 15); A = ctx->A += A; B = ctx->B += B; C = ctx->C += C; D = ctx->D += D; } }