/* vsprintf with automatic memory allocation. Copyright (C) 1999, 2002-2007 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Tell glibc's to provide a prototype for snprintf(). This must come before because may include , and once has been included, it's too late. */ #ifndef _GNU_SOURCE # define _GNU_SOURCE 1 #endif #include #ifndef IN_LIBINTL # include #endif /* Specification. */ #if WIDE_CHAR_VERSION # include "vasnwprintf.h" #else # include "vasnprintf.h" #endif #include /* localeconv() */ #include /* snprintf(), sprintf() */ #include /* abort(), malloc(), realloc(), free() */ #include /* memcpy(), strlen() */ #include /* errno */ #include /* CHAR_BIT */ #include /* DBL_MAX_EXP, LDBL_MAX_EXP */ #if HAVE_NL_LANGINFO # include #endif #if WIDE_CHAR_VERSION # include "wprintf-parse.h" #else # include "printf-parse.h" #endif /* Checked size_t computations. */ #include "xsize.h" #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL # include "float+.h" # include "isnan.h" # include "printf-frexp.h" # if HAVE_LONG_DOUBLE # include "isnanl-nolibm.h" # include "printf-frexpl.h" # include "fpucw.h" # endif #endif /* Some systems, like OSF/1 4.0 and Woe32, don't have EOVERFLOW. */ #ifndef EOVERFLOW # define EOVERFLOW E2BIG #endif #if HAVE_WCHAR_T # if HAVE_WCSLEN # define local_wcslen wcslen # else /* Solaris 2.5.1 has wcslen() in a separate library libw.so. To avoid a dependency towards this library, here is a local substitute. Define this substitute only once, even if this file is included twice in the same compilation unit. */ # ifndef local_wcslen_defined # define local_wcslen_defined 1 static size_t local_wcslen (const wchar_t *s) { const wchar_t *ptr; for (ptr = s; *ptr != (wchar_t) 0; ptr++) ; return ptr - s; } # endif # endif #endif #if WIDE_CHAR_VERSION # define VASNPRINTF vasnwprintf # define CHAR_T wchar_t # define DIRECTIVE wchar_t_directive # define DIRECTIVES wchar_t_directives # define PRINTF_PARSE wprintf_parse # define USE_SNPRINTF 1 # if HAVE_DECL__SNWPRINTF /* On Windows, the function swprintf() has a different signature than on Unix; we use the _snwprintf() function instead. */ # define SNPRINTF _snwprintf # else /* Unix. */ # define SNPRINTF swprintf # endif #else # define VASNPRINTF vasnprintf # define CHAR_T char # define DIRECTIVE char_directive # define DIRECTIVES char_directives # define PRINTF_PARSE printf_parse # define USE_SNPRINTF (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) # if HAVE_DECL__SNPRINTF /* Windows. */ # define SNPRINTF _snprintf # else /* Unix. */ # define SNPRINTF snprintf /* Here we need to call the native snprintf, not rpl_snprintf. */ # undef snprintf # endif #endif /* Here we need to call the native sprintf, not rpl_sprintf. */ #undef sprintf #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL /* Determine the decimal-point character according to the current locale. */ # ifndef decimal_point_char_defined # define decimal_point_char_defined 1 static char decimal_point_char () { const char *point; /* Determine it in a multithread-safe way. We know nl_langinfo is multithread-safe on glibc systems, but is not required to be multithread- safe by POSIX. sprintf(), however, is multithread-safe. localeconv() is rarely multithread-safe. */ # if HAVE_NL_LANGINFO && __GLIBC__ point = nl_langinfo (RADIXCHAR); # elif 1 char pointbuf[5]; sprintf (pointbuf, "%#.0f", 1.0); point = &pointbuf[1]; # else point = localeconv () -> decimal_point; # endif /* The decimal point is always a single byte: either '.' or ','. */ return (point[0] != '\0' ? point[0] : '.'); } # endif #endif CHAR_T * VASNPRINTF (CHAR_T *resultbuf, size_t *lengthp, const CHAR_T *format, va_list args) { DIRECTIVES d; arguments a; if (PRINTF_PARSE (format, &d, &a) < 0) { errno = EINVAL; return NULL; } #define CLEANUP() \ free (d.dir); \ if (a.arg) \ free (a.arg); if (printf_fetchargs (args, &a) < 0) { CLEANUP (); errno = EINVAL; return NULL; } { size_t buf_neededlength; CHAR_T *buf; CHAR_T *buf_malloced; const CHAR_T *cp; size_t i; DIRECTIVE *dp; /* Output string accumulator. */ CHAR_T *result; size_t allocated; size_t length; /* Allocate a small buffer that will hold a directive passed to sprintf or snprintf. */ buf_neededlength = xsum4 (7, d.max_width_length, d.max_precision_length, 6); #if HAVE_ALLOCA if (buf_neededlength < 4000 / sizeof (CHAR_T)) { buf = (CHAR_T *) alloca (buf_neededlength * sizeof (CHAR_T)); buf_malloced = NULL; } else #endif { size_t buf_memsize = xtimes (buf_neededlength, sizeof (CHAR_T)); if (size_overflow_p (buf_memsize)) goto out_of_memory_1; buf = (CHAR_T *) malloc (buf_memsize); if (buf == NULL) goto out_of_memory_1; buf_malloced = buf; } if (resultbuf != NULL) { result = resultbuf; allocated = *lengthp; } else { result = NULL; allocated = 0; } length = 0; /* Invariants: result is either == resultbuf or == NULL or malloc-allocated. If length > 0, then result != NULL. */ /* Ensures that allocated >= needed. Aborts through a jump to out_of_memory if needed is SIZE_MAX or otherwise too big. */ #define ENSURE_ALLOCATION(needed) \ if ((needed) > allocated) \ { \ size_t memory_size; \ CHAR_T *memory; \ \ allocated = (allocated > 0 ? xtimes (allocated, 2) : 12); \ if ((needed) > allocated) \ allocated = (needed); \ memory_size = xtimes (allocated, sizeof (CHAR_T)); \ if (size_overflow_p (memory_size)) \ goto out_of_memory; \ if (result == resultbuf || result == NULL) \ memory = (CHAR_T *) malloc (memory_size); \ else \ memory = (CHAR_T *) realloc (result, memory_size); \ if (memory == NULL) \ goto out_of_memory; \ if (result == resultbuf && length > 0) \ memcpy (memory, result, length * sizeof (CHAR_T)); \ result = memory; \ } for (cp = format, i = 0, dp = &d.dir[0]; ; cp = dp->dir_end, i++, dp++) { if (cp != dp->dir_start) { size_t n = dp->dir_start - cp; size_t augmented_length = xsum (length, n); ENSURE_ALLOCATION (augmented_length); memcpy (result + length, cp, n * sizeof (CHAR_T)); length = augmented_length; } if (i == d.count) break; /* Execute a single directive. */ if (dp->conversion == '%') { size_t augmented_length; if (!(dp->arg_index == ARG_NONE)) abort (); augmented_length = xsum (length, 1); ENSURE_ALLOCATION (augmented_length); result[length] = '%'; length = augmented_length; } else { if (!(dp->arg_index != ARG_NONE)) abort (); if (dp->conversion == 'n') { switch (a.arg[dp->arg_index].type) { case TYPE_COUNT_SCHAR_POINTER: *a.arg[dp->arg_index].a.a_count_schar_pointer = length; break; case TYPE_COUNT_SHORT_POINTER: *a.arg[dp->arg_index].a.a_count_short_pointer = length; break; case TYPE_COUNT_INT_POINTER: *a.arg[dp->arg_index].a.a_count_int_pointer = length; break; case TYPE_COUNT_LONGINT_POINTER: *a.arg[dp->arg_index].a.a_count_longint_pointer = length; break; #if HAVE_LONG_LONG_INT case TYPE_COUNT_LONGLONGINT_POINTER: *a.arg[dp->arg_index].a.a_count_longlongint_pointer = length; break; #endif default: abort (); } } #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL else if (dp->conversion == 'a' || dp->conversion == 'A') { arg_type type = a.arg[dp->arg_index].type; int flags = dp->flags; int has_width; size_t width; int has_precision; size_t precision; size_t tmp_length; CHAR_T tmpbuf[700]; CHAR_T *tmp; CHAR_T *pad_ptr; CHAR_T *p; has_width = 0; width = 0; if (dp->width_start != dp->width_end) { if (dp->width_arg_index != ARG_NONE) { int arg; if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) abort (); arg = a.arg[dp->width_arg_index].a.a_int; if (arg < 0) { /* "A negative field width is taken as a '-' flag followed by a positive field width." */ flags |= FLAG_LEFT; width = (unsigned int) (-arg); } else width = arg; } else { const CHAR_T *digitp = dp->width_start; do width = xsum (xtimes (width, 10), *digitp++ - '0'); while (digitp != dp->width_end); } has_width = 1; } has_precision = 0; precision = 0; if (dp->precision_start != dp->precision_end) { if (dp->precision_arg_index != ARG_NONE) { int arg; if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) abort (); arg = a.arg[dp->precision_arg_index].a.a_int; /* "A negative precision is taken as if the precision were omitted." */ if (arg >= 0) { precision = arg; has_precision = 1; } } else { const CHAR_T *digitp = dp->precision_start + 1; precision = 0; while (digitp != dp->precision_end) precision = xsum (xtimes (precision, 10), *digitp++ - '0'); has_precision = 1; } } /* Allocate a temporary buffer of sufficient size. */ # if HAVE_LONG_DOUBLE if (type == TYPE_LONGDOUBLE) tmp_length = (unsigned int) ((LDBL_DIG + 1) * 0.831 /* decimal -> hexadecimal */ ) + 1; /* turn floor into ceil */ else # endif tmp_length = (unsigned int) ((DBL_DIG + 1) * 0.831 /* decimal -> hexadecimal */ ) + 1; /* turn floor into ceil */ if (tmp_length < precision) tmp_length = precision; /* Account for sign, decimal point etc. */ tmp_length = xsum (tmp_length, 12); if (tmp_length < width) tmp_length = width; tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ if (tmp_length <= sizeof (tmpbuf) / sizeof (CHAR_T)) tmp = tmpbuf; else { size_t tmp_memsize = xtimes (tmp_length, sizeof (CHAR_T)); if (size_overflow_p (tmp_memsize)) /* Overflow, would lead to out of memory. */ goto out_of_memory; tmp = (CHAR_T *) malloc (tmp_memsize); if (tmp == NULL) /* Out of memory. */ goto out_of_memory; } pad_ptr = NULL; p = tmp; # if HAVE_LONG_DOUBLE if (type == TYPE_LONGDOUBLE) { long double arg = a.arg[dp->arg_index].a.a_longdouble; if (isnanl (arg)) { if (dp->conversion == 'A') { *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; } else { *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; } } else { int sign = 0; DECL_LONG_DOUBLE_ROUNDING BEGIN_LONG_DOUBLE_ROUNDING (); if (arg < 0.0L) { sign = -1; arg = -arg; } else if (arg == 0.0L) { /* Distinguish 0.0L and -0.0L. */ static long double plus_zero = 0.0L; long double arg_mem = arg; if (memcmp (&plus_zero, &arg_mem, SIZEOF_LDBL) != 0) { sign = -1; arg = -arg; } } if (sign < 0) *p++ = '-'; else if (flags & FLAG_SHOWSIGN) *p++ = '+'; else if (flags & FLAG_SPACE) *p++ = ' '; if (arg > 0.0L && arg + arg == arg) { if (dp->conversion == 'A') { *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; } else { *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; } } else { int exponent; long double mantissa; if (arg > 0.0L) mantissa = printf_frexpl (arg, &exponent); else { exponent = 0; mantissa = 0.0L; } if (has_precision && precision < (unsigned int) ((LDBL_DIG + 1) * 0.831) + 1) { /* Round the mantissa. */ long double tail = mantissa; size_t q; for (q = precision; ; q--) { int digit = (int) tail; tail -= digit; if (q == 0) { if (digit & 1 ? tail >= 0.5L : tail > 0.5L) tail = 1 - tail; else tail = - tail; break; } tail *= 16.0L; } if (tail != 0.0L) for (q = precision; q > 0; q--) tail *= 0.0625L; mantissa += tail; } *p++ = '0'; *p++ = dp->conversion - 'A' + 'X'; pad_ptr = p; { int digit; digit = (int) mantissa; mantissa -= digit; *p++ = '0' + digit; if ((flags & FLAG_ALT) || mantissa > 0.0L || precision > 0) { *p++ = decimal_point_char (); /* This loop terminates because we assume that FLT_RADIX is a power of 2. */ while (mantissa > 0.0L) { mantissa *= 16.0L; digit = (int) mantissa; mantissa -= digit; *p++ = digit + (digit < 10 ? '0' : dp->conversion - 10); if (precision > 0) precision--; } while (precision > 0) { *p++ = '0'; precision--; } } } *p++ = dp->conversion - 'A' + 'P'; # if WIDE_CHAR_VERSION { static const wchar_t decimal_format[] = { '%', '+', 'd', '\0' }; SNPRINTF (p, 6 + 1, decimal_format, exponent); } # else sprintf (p, "%+d", exponent); # endif while (*p != '\0') p++; } END_LONG_DOUBLE_ROUNDING (); } } else # endif { double arg = a.arg[dp->arg_index].a.a_double; if (isnan (arg)) { if (dp->conversion == 'A') { *p++ = 'N'; *p++ = 'A'; *p++ = 'N'; } else { *p++ = 'n'; *p++ = 'a'; *p++ = 'n'; } } else { int sign = 0; if (arg < 0.0) { sign = -1; arg = -arg; } else if (arg == 0.0) { /* Distinguish 0.0 and -0.0. */ static double plus_zero = 0.0; double arg_mem = arg; if (memcmp (&plus_zero, &arg_mem, SIZEOF_DBL) != 0) { sign = -1; arg = -arg; } } if (sign < 0) *p++ = '-'; else if (flags & FLAG_SHOWSIGN) *p++ = '+'; else if (flags & FLAG_SPACE) *p++ = ' '; if (arg > 0.0 && arg + arg == arg) { if (dp->conversion == 'A') { *p++ = 'I'; *p++ = 'N'; *p++ = 'F'; } else { *p++ = 'i'; *p++ = 'n'; *p++ = 'f'; } } else { int exponent; double mantissa; if (arg > 0.0) mantissa = printf_frexp (arg, &exponent); else { exponent = 0; mantissa = 0.0; } if (has_precision && precision < (unsigned int) ((DBL_DIG + 1) * 0.831) + 1) { /* Round the mantissa. */ double tail = mantissa; size_t q; for (q = precision; ; q--) { int digit = (int) tail; tail -= digit; if (q == 0) { if (digit & 1 ? tail >= 0.5 : tail > 0.5) tail = 1 - tail; else tail = - tail; break; } tail *= 16.0; } if (tail != 0.0) for (q = precision; q > 0; q--) tail *= 0.0625; mantissa += tail; } *p++ = '0'; *p++ = dp->conversion - 'A' + 'X'; pad_ptr = p; { int digit; digit = (int) mantissa; mantissa -= digit; *p++ = '0' + digit; if ((flags & FLAG_ALT) || mantissa > 0.0 || precision > 0) { *p++ = decimal_point_char (); /* This loop terminates because we assume that FLT_RADIX is a power of 2. */ while (mantissa > 0.0) { mantissa *= 16.0; digit = (int) mantissa; mantissa -= digit; *p++ = digit + (digit < 10 ? '0' : dp->conversion - 10); if (precision > 0) precision--; } while (precision > 0) { *p++ = '0'; precision--; } } } *p++ = dp->conversion - 'A' + 'P'; # if WIDE_CHAR_VERSION { static const wchar_t decimal_format[] = { '%', '+', 'd', '\0' }; SNPRINTF (p, 6 + 1, decimal_format, exponent); } # else sprintf (p, "%+d", exponent); # endif while (*p != '\0') p++; } } } /* The generated string now extends from tmp to p, with the zero padding insertion point being at pad_ptr. */ if (has_width && p - tmp < width) { size_t pad = width - (p - tmp); CHAR_T *end = p + pad; if (flags & FLAG_LEFT) { /* Pad with spaces on the right. */ for (; pad > 0; pad--) *p++ = ' '; } else if ((flags & FLAG_ZERO) && pad_ptr != NULL) { /* Pad with zeroes. */ CHAR_T *q = end; while (p > pad_ptr) *--q = *--p; for (; pad > 0; pad--) *p++ = '0'; } else { /* Pad with spaces on the left. */ CHAR_T *q = end; while (p > tmp) *--q = *--p; for (; pad > 0; pad--) *p++ = ' '; } p = end; } { size_t count = p - tmp; if (count >= tmp_length) /* tmp_length was incorrectly calculated - fix the code above! */ abort (); /* Make room for the result. */ if (count >= allocated - length) { size_t n = xsum (length, count); ENSURE_ALLOCATION (n); } /* Append the result. */ memcpy (result + length, tmp, count * sizeof (CHAR_T)); if (tmp != tmpbuf) free (tmp); length += count; } } #endif else { arg_type type = a.arg[dp->arg_index].type; CHAR_T *p; unsigned int prefix_count; int prefixes[2]; #if !USE_SNPRINTF size_t tmp_length; CHAR_T tmpbuf[700]; CHAR_T *tmp; /* Allocate a temporary buffer of sufficient size for calling sprintf. */ { size_t width; size_t precision; width = 0; if (dp->width_start != dp->width_end) { if (dp->width_arg_index != ARG_NONE) { int arg; if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) abort (); arg = a.arg[dp->width_arg_index].a.a_int; width = (arg < 0 ? (unsigned int) (-arg) : arg); } else { const CHAR_T *digitp = dp->width_start; do width = xsum (xtimes (width, 10), *digitp++ - '0'); while (digitp != dp->width_end); } } precision = 6; if (dp->precision_start != dp->precision_end) { if (dp->precision_arg_index != ARG_NONE) { int arg; if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) abort (); arg = a.arg[dp->precision_arg_index].a.a_int; precision = (arg < 0 ? 0 : arg); } else { const CHAR_T *digitp = dp->precision_start + 1; precision = 0; while (digitp != dp->precision_end) precision = xsum (xtimes (precision, 10), *digitp++ - '0'); } } switch (dp->conversion) { case 'd': case 'i': case 'u': # if HAVE_LONG_LONG_INT if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) tmp_length = (unsigned int) (sizeof (unsigned long long) * CHAR_BIT * 0.30103 /* binary -> decimal */ ) + 1; /* turn floor into ceil */ else # endif if (type == TYPE_LONGINT || type == TYPE_ULONGINT) tmp_length = (unsigned int) (sizeof (unsigned long) * CHAR_BIT * 0.30103 /* binary -> decimal */ ) + 1; /* turn floor into ceil */ else tmp_length = (unsigned int) (sizeof (unsigned int) * CHAR_BIT * 0.30103 /* binary -> decimal */ ) + 1; /* turn floor into ceil */ if (tmp_length < precision) tmp_length = precision; /* Multiply by 2, as an estimate for FLAG_GROUP. */ tmp_length = xsum (tmp_length, tmp_length); /* Add 1, to account for a leading sign. */ tmp_length = xsum (tmp_length, 1); break; case 'o': # if HAVE_LONG_LONG_INT if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) tmp_length = (unsigned int) (sizeof (unsigned long long) * CHAR_BIT * 0.333334 /* binary -> octal */ ) + 1; /* turn floor into ceil */ else # endif if (type == TYPE_LONGINT || type == TYPE_ULONGINT) tmp_length = (unsigned int) (sizeof (unsigned long) * CHAR_BIT * 0.333334 /* binary -> octal */ ) + 1; /* turn floor into ceil */ else tmp_length = (unsigned int) (sizeof (unsigned int) * CHAR_BIT * 0.333334 /* binary -> octal */ ) + 1; /* turn floor into ceil */ if (tmp_length < precision) tmp_length = precision; /* Add 1, to account for a leading sign. */ tmp_length = xsum (tmp_length, 1); break; case 'x': case 'X': # if HAVE_LONG_LONG_INT if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT) tmp_length = (unsigned int) (sizeof (unsigned long long) * CHAR_BIT * 0.25 /* binary -> hexadecimal */ ) + 1; /* turn floor into ceil */ else # endif if (type == TYPE_LONGINT || type == TYPE_ULONGINT) tmp_length = (unsigned int) (sizeof (unsigned long) * CHAR_BIT * 0.25 /* binary -> hexadecimal */ ) + 1; /* turn floor into ceil */ else tmp_length = (unsigned int) (sizeof (unsigned int) * CHAR_BIT * 0.25 /* binary -> hexadecimal */ ) + 1; /* turn floor into ceil */ if (tmp_length < precision) tmp_length = precision; /* Add 2, to account for a leading sign or alternate form. */ tmp_length = xsum (tmp_length, 2); break; case 'f': case 'F': # if HAVE_LONG_DOUBLE if (type == TYPE_LONGDOUBLE) tmp_length = (unsigned int) (LDBL_MAX_EXP * 0.30103 /* binary -> decimal */ * 2 /* estimate for FLAG_GROUP */ ) + 1 /* turn floor into ceil */ + 10; /* sign, decimal point etc. */ else # endif tmp_length = (unsigned int) (DBL_MAX_EXP * 0.30103 /* binary -> decimal */ * 2 /* estimate for FLAG_GROUP */ ) + 1 /* turn floor into ceil */ + 10; /* sign, decimal point etc. */ tmp_length = xsum (tmp_length, precision); break; case 'e': case 'E': case 'g': case 'G': tmp_length = 12; /* sign, decimal point, exponent etc. */ tmp_length = xsum (tmp_length, precision); break; case 'a': case 'A': # if HAVE_LONG_DOUBLE if (type == TYPE_LONGDOUBLE) tmp_length = (unsigned int) (LDBL_DIG * 0.831 /* decimal -> hexadecimal */ ) + 1; /* turn floor into ceil */ else # endif tmp_length = (unsigned int) (DBL_DIG * 0.831 /* decimal -> hexadecimal */ ) + 1; /* turn floor into ceil */ if (tmp_length < precision) tmp_length = precision; /* Account for sign, decimal point etc. */ tmp_length = xsum (tmp_length, 12); break; case 'c': # if HAVE_WINT_T && !WIDE_CHAR_VERSION if (type == TYPE_WIDE_CHAR) tmp_length = MB_CUR_MAX; else # endif tmp_length = 1; break; case 's': # if HAVE_WCHAR_T if (type == TYPE_WIDE_STRING) { tmp_length = local_wcslen (a.arg[dp->arg_index].a.a_wide_string); # if !WIDE_CHAR_VERSION tmp_length = xtimes (tmp_length, MB_CUR_MAX); # endif } else # endif tmp_length = strlen (a.arg[dp->arg_index].a.a_string); break; case 'p': tmp_length = (unsigned int) (sizeof (void *) * CHAR_BIT * 0.25 /* binary -> hexadecimal */ ) + 1 /* turn floor into ceil */ + 2; /* account for leading 0x */ break; default: abort (); } if (tmp_length < width) tmp_length = width; tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */ } if (tmp_length <= sizeof (tmpbuf) / sizeof (CHAR_T)) tmp = tmpbuf; else { size_t tmp_memsize = xtimes (tmp_length, sizeof (CHAR_T)); if (size_overflow_p (tmp_memsize)) /* Overflow, would lead to out of memory. */ goto out_of_memory; tmp = (CHAR_T *) malloc (tmp_memsize); if (tmp == NULL) /* Out of memory. */ goto out_of_memory; } #endif /* Construct the format string for calling snprintf or sprintf. */ p = buf; *p++ = '%'; if (dp->flags & FLAG_GROUP) *p++ = '\''; if (dp->flags & FLAG_LEFT) *p++ = '-'; if (dp->flags & FLAG_SHOWSIGN) *p++ = '+'; if (dp->flags & FLAG_SPACE) *p++ = ' '; if (dp->flags & FLAG_ALT) *p++ = '#'; if (dp->flags & FLAG_ZERO) *p++ = '0'; if (dp->width_start != dp->width_end) { size_t n = dp->width_end - dp->width_start; memcpy (p, dp->width_start, n * sizeof (CHAR_T)); p += n; } if (dp->precision_start != dp->precision_end) { size_t n = dp->precision_end - dp->precision_start; memcpy (p, dp->precision_start, n * sizeof (CHAR_T)); p += n; } switch (type) { #if HAVE_LONG_LONG_INT case TYPE_LONGLONGINT: case TYPE_ULONGLONGINT: *p++ = 'l'; /*FALLTHROUGH*/ #endif case TYPE_LONGINT: case TYPE_ULONGINT: #if HAVE_WINT_T case TYPE_WIDE_CHAR: #endif #if HAVE_WCHAR_T case TYPE_WIDE_STRING: #endif *p++ = 'l'; break; #if HAVE_LONG_DOUBLE case TYPE_LONGDOUBLE: *p++ = 'L'; break; #endif default: break; } *p = dp->conversion; #if USE_SNPRINTF p[1] = '%'; p[2] = 'n'; p[3] = '\0'; #else p[1] = '\0'; #endif /* Construct the arguments for calling snprintf or sprintf. */ prefix_count = 0; if (dp->width_arg_index != ARG_NONE) { if (!(a.arg[dp->width_arg_index].type == TYPE_INT)) abort (); prefixes[prefix_count++] = a.arg[dp->width_arg_index].a.a_int; } if (dp->precision_arg_index != ARG_NONE) { if (!(a.arg[dp->precision_arg_index].type == TYPE_INT)) abort (); prefixes[prefix_count++] = a.arg[dp->precision_arg_index].a.a_int; } #if USE_SNPRINTF /* Prepare checking whether snprintf returns the count via %n. */ ENSURE_ALLOCATION (xsum (length, 1)); result[length] = '\0'; #endif for (;;) { size_t maxlen; int count; int retcount; maxlen = allocated - length; count = -1; retcount = 0; #if USE_SNPRINTF /* SNPRINTF can fail if maxlen > INT_MAX. */ if (maxlen > INT_MAX) goto overflow; # define SNPRINTF_BUF(arg) \ switch (prefix_count) \ { \ case 0: \ retcount = SNPRINTF (result + length, maxlen, buf, \ arg, &count); \ break; \ case 1: \ retcount = SNPRINTF (result + length, maxlen, buf, \ prefixes[0], arg, &count); \ break; \ case 2: \ retcount = SNPRINTF (result + length, maxlen, buf, \ prefixes[0], prefixes[1], arg, \ &count); \ break; \ default: \ abort (); \ } #else # define SNPRINTF_BUF(arg) \ switch (prefix_count) \ { \ case 0: \ count = sprintf (tmp, buf, arg); \ break; \ case 1: \ count = sprintf (tmp, buf, prefixes[0], arg); \ break; \ case 2: \ count = sprintf (tmp, buf, prefixes[0], prefixes[1],\ arg); \ break; \ default: \ abort (); \ } #endif switch (type) { case TYPE_SCHAR: { int arg = a.arg[dp->arg_index].a.a_schar; SNPRINTF_BUF (arg); } break; case TYPE_UCHAR: { unsigned int arg = a.arg[dp->arg_index].a.a_uchar; SNPRINTF_BUF (arg); } break; case TYPE_SHORT: { int arg = a.arg[dp->arg_index].a.a_short; SNPRINTF_BUF (arg); } break; case TYPE_USHORT: { unsigned int arg = a.arg[dp->arg_index].a.a_ushort; SNPRINTF_BUF (arg); } break; case TYPE_INT: { int arg = a.arg[dp->arg_index].a.a_int; SNPRINTF_BUF (arg); } break; case TYPE_UINT: { unsigned int arg = a.arg[dp->arg_index].a.a_uint; SNPRINTF_BUF (arg); } break; case TYPE_LONGINT: { long int arg = a.arg[dp->arg_index].a.a_longint; SNPRINTF_BUF (arg); } break; case TYPE_ULONGINT: { unsigned long int arg = a.arg[dp->arg_index].a.a_ulongint; SNPRINTF_BUF (arg); } break; #if HAVE_LONG_LONG_INT case TYPE_LONGLONGINT: { long long int arg = a.arg[dp->arg_index].a.a_longlongint; SNPRINTF_BUF (arg); } break; case TYPE_ULONGLONGINT: { unsigned long long int arg = a.arg[dp->arg_index].a.a_ulonglongint; SNPRINTF_BUF (arg); } break; #endif case TYPE_DOUBLE: { double arg = a.arg[dp->arg_index].a.a_double; SNPRINTF_BUF (arg); } break; #if HAVE_LONG_DOUBLE case TYPE_LONGDOUBLE: { long double arg = a.arg[dp->arg_index].a.a_longdouble; SNPRINTF_BUF (arg); } break; #endif case TYPE_CHAR: { int arg = a.arg[dp->arg_index].a.a_char; SNPRINTF_BUF (arg); } break; #if HAVE_WINT_T case TYPE_WIDE_CHAR: { wint_t arg = a.arg[dp->arg_index].a.a_wide_char; SNPRINTF_BUF (arg); } break; #endif case TYPE_STRING: { const char *arg = a.arg[dp->arg_index].a.a_string; SNPRINTF_BUF (arg); } break; #if HAVE_WCHAR_T case TYPE_WIDE_STRING: { const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string; SNPRINTF_BUF (arg); } break; #endif case TYPE_POINTER: { void *arg = a.arg[dp->arg_index].a.a_pointer; SNPRINTF_BUF (arg); } break; default: abort (); } #if USE_SNPRINTF /* Portability: Not all implementations of snprintf() are ISO C 99 compliant. Determine the number of bytes that snprintf() has produced or would have produced. */ if (count >= 0) { /* Verify that snprintf() has NUL-terminated its result. */ if (count < maxlen && result[length + count] != '\0') abort (); /* Portability hack. */ if (retcount > count) count = retcount; } else { /* snprintf() doesn't understand the '%n' directive. */ if (p[1] != '\0') { /* Don't use the '%n' directive; instead, look at the snprintf() return value. */ p[1] = '\0'; continue; } else { /* Look at the snprintf() return value. */ if (retcount < 0) { /* HP-UX 10.20 snprintf() is doubly deficient: It doesn't understand the '%n' directive, *and* it returns -1 (rather than the length that would have been required) when the buffer is too small. */ size_t bigger_need = xsum (xtimes (allocated, 2), 12); ENSURE_ALLOCATION (bigger_need); continue; } else count = retcount; } } #endif /* Attempt to handle failure. */ if (count < 0) { if (!(result == resultbuf || result == NULL)) free (result); if (buf_malloced != NULL) free (buf_malloced); CLEANUP (); errno = EINVAL; return NULL; } #if !USE_SNPRINTF if (count >= tmp_length) /* tmp_length was incorrectly calculated - fix the code above! */ abort (); #endif /* Make room for the result. */ if (count >= maxlen) { /* Need at least count bytes. But allocate proportionally, to avoid looping eternally if snprintf() reports a too small count. */ size_t n = xmax (xsum (length, count), xtimes (allocated, 2)); ENSURE_ALLOCATION (n); #if USE_SNPRINTF continue; #endif } #if USE_SNPRINTF /* The snprintf() result did fit. */ #else /* Append the sprintf() result. */ memcpy (result + length, tmp, count * sizeof (CHAR_T)); if (tmp != tmpbuf) free (tmp); #endif length += count; break; } } } } /* Add the final NUL. */ ENSURE_ALLOCATION (xsum (length, 1)); result[length] = '\0'; if (result != resultbuf && length + 1 < allocated) { /* Shrink the allocated memory if possible. */ CHAR_T *memory; memory = (CHAR_T *) realloc (result, (length + 1) * sizeof (CHAR_T)); if (memory != NULL) result = memory; } if (buf_malloced != NULL) free (buf_malloced); CLEANUP (); *lengthp = length; /* Note that we can produce a big string of a length > INT_MAX. POSIX says that snprintf() fails with errno = EOVERFLOW in this case, but that's only because snprintf() returns an 'int'. This function does not have this limitation. */ return result; overflow: if (!(result == resultbuf || result == NULL)) free (result); if (buf_malloced != NULL) free (buf_malloced); CLEANUP (); errno = EOVERFLOW; return NULL; out_of_memory: if (!(result == resultbuf || result == NULL)) free (result); if (buf_malloced != NULL) free (buf_malloced); out_of_memory_1: CLEANUP (); errno = ENOMEM; return NULL; } } #undef SNPRINTF #undef USE_SNPRINTF #undef PRINTF_PARSE #undef DIRECTIVES #undef DIRECTIVE #undef CHAR_T #undef VASNPRINTF