/* Test of log2*() function family. Copyright (C) 2012 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ static void test_function (void) { int i; int j; const DOUBLE TWO_MANT_DIG = /* Assume MANT_DIG <= 5 * 31. Use the identity n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5). */ (DOUBLE) (1U << ((MANT_DIG - 1) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5)); /* Pole. */ ASSERT (LOG2 (L_(0.0)) == - HUGEVAL); ASSERT (LOG2 (MINUS_ZERO) == - HUGEVAL); /* Integral values. */ { DOUBLE x = L_(1.0); DOUBLE y = LOG2 (x); ASSERT (y == L_(0.0)); } { int e; DOUBLE x; DOUBLE y; for (e = 0, x = L_(0.0), y = L_(1.0); e <= MAX_EXP - 1; e++, x = x + L_(1.0), y = y * L_(2.0)) { /* Invariant: x = e, y = 2^e. */ DOUBLE z = LOG2 (y); ASSERT (z == x); } } { int e; DOUBLE x; DOUBLE y; for (e = 0, x = L_(0.0), y = L_(1.0); e >= MIN_EXP - 1; e--, x = x - L_(1.0), y = y * L_(0.5)) { /* Invariant: x = e, y = 2^e. */ DOUBLE z = LOG2 (y); ASSERT (z == x); } } /* Randomized tests. */ { /* Error bound, in ulps. */ const DOUBLE err_bound = (sizeof (DOUBLE) > sizeof (double) ? #if defined __i386__ && defined __FreeBSD__ /* On FreeBSD/x86 6.4, the 'long double' type really has only 53 bits of precision in the compiler but 64 bits of precision at runtime. See . The compiler has truncated all 'long double' literals in log2l.c to 53 bits of precision. */ L_(8193.0) #else L_(5.0) #endif : L_(5.0)); for (i = 0; i < SIZEOF (RANDOM); i++) { DOUBLE x = L_(16.0) * RANDOM[i] + L_(1.0); /* 1.0 <= x <= 17.0 */ DOUBLE y = LOG2 (x); DOUBLE z = LOG2 (L_(1.0) / x); DOUBLE err = y + z; ASSERT (y >= L_(0.0)); ASSERT (z <= L_(0.0)); ASSERT (err > - err_bound / TWO_MANT_DIG && err < err_bound / TWO_MANT_DIG); } } { /* Error bound, in ulps. */ const DOUBLE err_bound = (sizeof (DOUBLE) > sizeof (double) ? #if defined __i386__ && defined __FreeBSD__ /* On FreeBSD/x86 6.4, the 'long double' type really has only 53 bits of precision in the compiler but 64 bits of precision at runtime. See . The compiler has truncated all 'long double' literals in log2l.c to 53 bits of precision. */ L_(8193.0) #else L_(9.0) #endif : L_(9.0)); for (i = 0; i < SIZEOF (RANDOM) / 5; i++) for (j = 0; j < SIZEOF (RANDOM) / 5; j++) { DOUBLE x = L_(17.0) / (L_(16.0) - L_(15.0) * RANDOM[i]) - L_(1.0); DOUBLE y = L_(17.0) / (L_(16.0) - L_(15.0) * RANDOM[j]) - L_(1.0); /* 1/16 <= x,y <= 16 */ DOUBLE z = L_(1.0) / (x * y); /* Approximately x * y * z = 1. */ DOUBLE err = LOG2 (x) + LOG2 (y) + LOG2 (z); ASSERT (err > - err_bound / TWO_MANT_DIG && err < err_bound / TWO_MANT_DIG); } } } volatile DOUBLE x; DOUBLE y;