/* Test of locking in multithreaded situations. Copyright (C) 2005, 2008-2023 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ #include /* Whether to enable locking. Uncomment this to get a test program without locking, to verify that it crashes. */ #define ENABLE_LOCKING 1 /* Which tests to perform. Uncomment some of these, to verify that all tests crash if no locking is enabled. */ #define DO_TEST_LOCK 1 #define DO_TEST_RECURSIVE_LOCK 1 #define DO_TEST_ONCE 1 /* Whether to help the scheduler through explicit thrd_yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of operations performed in each thread. This is quite high, because with a smaller count, say 5000, we often get an "OK" result even without ENABLE_LOCKING (on Linux/x86). */ #define REPEAT_COUNT 50000 #include #include #include #include #include #include "glthread/lock.h" #if HAVE_DECL_ALARM # include # include #endif #include "macros.h" #include "atomic-int-isoc.h" #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() thrd_yield () #else # define yield() #endif /* Returns a reference to the current thread as a pointer, for debugging. */ #if defined __MVS__ /* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field. The first three bytes of this field appear to uniquely identify a pthread_t, though not necessarily representing a pointer. */ # define thrd_current_pointer() (*((void **) thrd_current ().__)) #elif defined __sun /* On Solaris, thrd_t is merely an 'unsigned int'. */ # define thrd_current_pointer() ((void *) (uintptr_t) thrd_current ()) #else # define thrd_current_pointer() ((void *) thrd_current ()) #endif #define ACCOUNT_COUNT 4 static int account[ACCOUNT_COUNT]; static int random_account (void) { return ((unsigned int) rand () >> 3) % ACCOUNT_COUNT; } static void check_accounts (void) { int i, sum; sum = 0; for (i = 0; i < ACCOUNT_COUNT; i++) sum += account[i]; if (sum != ACCOUNT_COUNT * 1000) abort (); } /* ------------------- Test normal (non-recursive) locks ------------------- */ /* Test normal locks by having several bank accounts and several threads which shuffle around money between the accounts and another thread checking that all the money is still there. */ static mtx_t my_lock; static int lock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_lock) == thrd_success); dbgprintf ("Mutator %p after lock\n", thrd_current_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; dbgprintf ("Mutator %p before unlock\n", thrd_current_pointer ()); ASSERT (mtx_unlock (&my_lock) == thrd_success); dbgprintf ("Mutator %p after unlock\n", thrd_current_pointer ()); dbgprintf ("Mutator %p before check lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_lock) == thrd_success); check_accounts (); ASSERT (mtx_unlock (&my_lock) == thrd_success); dbgprintf ("Mutator %p after check unlock\n", thrd_current_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", thrd_current_pointer ()); return 0; } static struct atomic_int lock_checker_done; static int lock_checker_thread (void *arg) { while (get_atomic_int_value (&lock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_lock) == thrd_success); check_accounts (); ASSERT (mtx_unlock (&my_lock) == thrd_success); dbgprintf ("Checker %p after check unlock\n", thrd_current_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", thrd_current_pointer ()); return 0; } static void test_mtx_plain (void) { int i; thrd_t checkerthread; thrd_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&lock_checker_done); set_atomic_int_value (&lock_checker_done, 0); /* Spawn the threads. */ ASSERT (thrd_create (&checkerthread, lock_checker_thread, NULL) == thrd_success); for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_create (&threads[i], lock_mutator_thread, NULL) == thrd_success); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_join (threads[i], NULL) == thrd_success); set_atomic_int_value (&lock_checker_done, 1); ASSERT (thrd_join (checkerthread, NULL) == thrd_success); check_accounts (); } /* -------------------------- Test recursive locks -------------------------- */ /* Test recursive locks by having several bank accounts and several threads which shuffle around money between the accounts (recursively) and another thread checking that all the money is still there. */ static mtx_t my_reclock; static void recshuffle (void) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_reclock) == thrd_success); dbgprintf ("Mutator %p after lock\n", thrd_current_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; /* Recursive with probability 0.5. */ if (((unsigned int) rand () >> 3) % 2) recshuffle (); dbgprintf ("Mutator %p before unlock\n", thrd_current_pointer ()); ASSERT (mtx_unlock (&my_reclock) == thrd_success); dbgprintf ("Mutator %p after unlock\n", thrd_current_pointer ()); } static int reclock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { recshuffle (); dbgprintf ("Mutator %p before check lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_reclock) == thrd_success); check_accounts (); ASSERT (mtx_unlock (&my_reclock) == thrd_success); dbgprintf ("Mutator %p after check unlock\n", thrd_current_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", thrd_current_pointer ()); return 0; } static struct atomic_int reclock_checker_done; static int reclock_checker_thread (void *arg) { while (get_atomic_int_value (&reclock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", thrd_current_pointer ()); ASSERT (mtx_lock (&my_reclock) == thrd_success); check_accounts (); ASSERT (mtx_unlock (&my_reclock) == thrd_success); dbgprintf ("Checker %p after check unlock\n", thrd_current_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", thrd_current_pointer ()); return 0; } static void test_mtx_recursive (void) { int i; thrd_t checkerthread; thrd_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&reclock_checker_done); set_atomic_int_value (&reclock_checker_done, 0); /* Spawn the threads. */ ASSERT (thrd_create (&checkerthread, reclock_checker_thread, NULL) == thrd_success); for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_create (&threads[i], reclock_mutator_thread, NULL) == thrd_success); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_join (threads[i], NULL) == thrd_success); set_atomic_int_value (&reclock_checker_done, 1); ASSERT (thrd_join (checkerthread, NULL) == thrd_success); check_accounts (); } /* ------------------------ Test once-only execution ------------------------ */ /* Test once-only execution by having several threads attempt to grab a once-only task simultaneously (triggered by releasing a read-write lock). */ static once_flag fresh_once = ONCE_FLAG_INIT; static int ready[THREAD_COUNT]; static mtx_t ready_lock[THREAD_COUNT]; #if ENABLE_LOCKING static gl_rwlock_t fire_signal[REPEAT_COUNT]; #else static volatile int fire_signal_state; #endif static once_flag once_control; static int performed; static mtx_t performed_lock; static void once_execute (void) { ASSERT (mtx_lock (&performed_lock) == thrd_success); performed++; ASSERT (mtx_unlock (&performed_lock) == thrd_success); } static int once_contender_thread (void *arg) { int id = (int) (intptr_t) arg; int repeat; for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Tell the main thread that we're ready. */ ASSERT (mtx_lock (&ready_lock[id]) == thrd_success); ready[id] = 1; ASSERT (mtx_unlock (&ready_lock[id]) == thrd_success); if (repeat == REPEAT_COUNT) break; dbgprintf ("Contender %p waiting for signal for round %d\n", thrd_current_pointer (), repeat); #if ENABLE_LOCKING /* Wait for the signal to go. */ gl_rwlock_rdlock (fire_signal[repeat]); /* And don't hinder the others (if the scheduler is unfair). */ gl_rwlock_unlock (fire_signal[repeat]); #else /* Wait for the signal to go. */ while (fire_signal_state <= repeat) yield (); #endif dbgprintf ("Contender %p got the signal for round %d\n", thrd_current_pointer (), repeat); /* Contend for execution. */ call_once (&once_control, once_execute); } return 0; } static void test_once (void) { int i, repeat; thrd_t threads[THREAD_COUNT]; /* Initialize all variables. */ for (i = 0; i < THREAD_COUNT; i++) { ready[i] = 0; ASSERT (mtx_init (&ready_lock[i], mtx_plain) == thrd_success); } #if ENABLE_LOCKING for (i = 0; i < REPEAT_COUNT; i++) gl_rwlock_init (fire_signal[i]); #else fire_signal_state = 0; #endif #if ENABLE_LOCKING /* Block all fire_signals. */ for (i = REPEAT_COUNT-1; i >= 0; i--) gl_rwlock_wrlock (fire_signal[i]); #endif /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_create (&threads[i], once_contender_thread, (void *) (intptr_t) i) == thrd_success); for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Wait until every thread is ready. */ dbgprintf ("Main thread before synchronizing for round %d\n", repeat); for (;;) { int ready_count = 0; for (i = 0; i < THREAD_COUNT; i++) { ASSERT (mtx_lock (&ready_lock[i]) == thrd_success); ready_count += ready[i]; ASSERT (mtx_unlock (&ready_lock[i]) == thrd_success); } if (ready_count == THREAD_COUNT) break; yield (); } dbgprintf ("Main thread after synchronizing for round %d\n", repeat); if (repeat > 0) { /* Check that exactly one thread executed the once_execute() function. */ if (performed != 1) abort (); } if (repeat == REPEAT_COUNT) break; /* Preparation for the next round: Initialize once_control. */ memcpy (&once_control, &fresh_once, sizeof (once_flag)); /* Preparation for the next round: Reset the performed counter. */ performed = 0; /* Preparation for the next round: Reset the ready flags. */ for (i = 0; i < THREAD_COUNT; i++) { ASSERT (mtx_lock (&ready_lock[i]) == thrd_success); ready[i] = 0; ASSERT (mtx_unlock (&ready_lock[i]) == thrd_success); } /* Signal all threads simultaneously. */ dbgprintf ("Main thread giving signal for round %d\n", repeat); #if ENABLE_LOCKING gl_rwlock_unlock (fire_signal[repeat]); #else fire_signal_state = repeat + 1; #endif } /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (thrd_join (threads[i], NULL) == thrd_success); } /* -------------------------------------------------------------------------- */ int main () { #if HAVE_DECL_ALARM /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); #endif ASSERT (mtx_init (&my_lock, mtx_plain) == thrd_success); ASSERT (mtx_init (&my_reclock, mtx_plain | mtx_recursive) == thrd_success); ASSERT (mtx_init (&performed_lock, mtx_plain) == thrd_success); #if DO_TEST_LOCK printf ("Starting test_mtx_plain ..."); fflush (stdout); test_mtx_plain (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_RECURSIVE_LOCK printf ("Starting test_mtx_recursive ..."); fflush (stdout); test_mtx_recursive (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_ONCE printf ("Starting test_once ..."); fflush (stdout); test_once (); printf (" OK\n"); fflush (stdout); #endif return 0; }