/* Test of locking in multithreaded situations. Copyright (C) 2005, 2008-2020 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ #include #if USE_ISOC_THREADS || USE_POSIX_THREADS || USE_ISOC_AND_POSIX_THREADS || USE_WINDOWS_THREADS /* Whether to enable locking. Uncomment this to get a test program without locking, to verify that it crashes. */ #define ENABLE_LOCKING 1 /* Which tests to perform. Uncomment some of these, to verify that all tests crash if no locking is enabled. */ #define DO_TEST_LOCK 1 #define DO_TEST_RECURSIVE_LOCK 1 /* Whether to help the scheduler through explicit sched_yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to use 'volatile' on some variables that communicate information between threads. If set to 0, a semaphore or a lock is used to protect these variables. If set to 1, 'volatile' is used; this is theoretically equivalent but can lead to much slower execution (e.g. 30x slower total run time on a 40-core machine), because 'volatile' does not imply any synchronization/communication between different CPUs. */ #define USE_VOLATILE 0 #if USE_POSIX_THREADS && HAVE_SEMAPHORE_H /* Whether to use a semaphore to communicate information between threads. If set to 0, a lock is used. If set to 1, a semaphore is used. Uncomment this to reduce the dependencies of this test. */ # define USE_SEMAPHORE 1 /* Mac OS X provides only named semaphores (sem_open); its facility for unnamed semaphores (sem_init) does not work. */ # if defined __APPLE__ && defined __MACH__ # define USE_NAMED_SEMAPHORE 1 # else # define USE_UNNAMED_SEMAPHORE 1 # endif #endif /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of operations performed in each thread. This is quite high, because with a smaller count, say 5000, we often get an "OK" result even without ENABLE_LOCKING (on Linux/x86). */ #define REPEAT_COUNT 50000 #include #include #include #include #include #if EXPLICIT_YIELD # include #endif #if USE_SEMAPHORE # include # include # include # include #endif #if HAVE_DECL_ALARM # include # include #endif #include "macros.h" #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() sched_yield () #else # define yield() #endif #if USE_VOLATILE struct atomic_int { volatile int value; }; static void init_atomic_int (struct atomic_int *ai) { } static int get_atomic_int_value (struct atomic_int *ai) { return ai->value; } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { ai->value = new_value; } #elif USE_SEMAPHORE /* This atomic_int implementation can only support the values 0 and 1. It is initially 0 and can be set to 1 only once. */ # if USE_UNNAMED_SEMAPHORE struct atomic_int { sem_t semaphore; }; #define atomic_int_semaphore(ai) (&(ai)->semaphore) static void init_atomic_int (struct atomic_int *ai) { sem_init (&ai->semaphore, 0, 0); } # endif # if USE_NAMED_SEMAPHORE struct atomic_int { sem_t *semaphore; }; #define atomic_int_semaphore(ai) ((ai)->semaphore) static void init_atomic_int (struct atomic_int *ai) { sem_t *s; unsigned int count; for (count = 0; ; count++) { char name[80]; /* Use getpid() in the name, so that different processes running at the same time will not interfere. Use ai in the name, so that different atomic_int in the same process will not interfere. Use a count in the name, so that even in the (unlikely) case that a semaphore with the specified name already exists, we can try a different name. */ sprintf (name, "test-lock-%lu-%p-%u", (unsigned long) getpid (), ai, count); s = sem_open (name, O_CREAT | O_EXCL, 0600, 0); if (s == SEM_FAILED) { if (errno == EEXIST) /* Retry with a different name. */ continue; else { perror ("sem_open failed"); abort (); } } else { /* Try not to leave a semaphore hanging around on the file system eternally, if we can avoid it. */ sem_unlink (name); break; } } ai->semaphore = s; } # endif static int get_atomic_int_value (struct atomic_int *ai) { if (sem_trywait (atomic_int_semaphore (ai)) == 0) { if (sem_post (atomic_int_semaphore (ai))) abort (); return 1; } else if (errno == EAGAIN) return 0; else abort (); } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { if (new_value == 0) /* It's already initialized with 0. */ return; /* To set the value 1: */ if (sem_post (atomic_int_semaphore (ai))) abort (); } #else struct atomic_int { pthread_mutex_t lock; int value; }; static void init_atomic_int (struct atomic_int *ai) { pthread_mutexattr_t attr; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0); ASSERT (pthread_mutex_init (&ai->lock, &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } static int get_atomic_int_value (struct atomic_int *ai) { ASSERT (pthread_mutex_lock (&ai->lock) == 0); int ret = ai->value; ASSERT (pthread_mutex_unlock (&ai->lock) == 0); return ret; } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { ASSERT (pthread_mutex_lock (&ai->lock) == 0); ai->value = new_value; ASSERT (pthread_mutex_unlock (&ai->lock) == 0); } #endif /* Returns a reference to the current thread as a pointer, for debugging. */ #if defined __MVS__ /* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field. The first three bytes of this field appear to uniquely identify a pthread_t, though not necessarily representing a pointer. */ # define pthread_self_pointer() (*((void **) pthread_self ().__)) #else # define pthread_self_pointer() ((void *) (uintptr_t) pthread_self ()) #endif #define ACCOUNT_COUNT 4 static int account[ACCOUNT_COUNT]; static int random_account (void) { return ((unsigned int) rand () >> 3) % ACCOUNT_COUNT; } static void check_accounts (void) { int i, sum; sum = 0; for (i = 0; i < ACCOUNT_COUNT; i++) sum += account[i]; if (sum != ACCOUNT_COUNT * 1000) abort (); } /* ------------------- Test normal (non-recursive) locks ------------------- */ /* Test normal locks by having several bank accounts and several threads which shuffle around money between the accounts and another thread checking that all the money is still there. */ static pthread_mutex_t my_lock; static void * lock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_lock) == 0); dbgprintf ("Mutator %p after lock\n", pthread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; dbgprintf ("Mutator %p before unlock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_unlock (&my_lock) == 0); dbgprintf ("Mutator %p after unlock\n", pthread_self_pointer ()); dbgprintf ("Mutator %p before check lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_lock) == 0); check_accounts (); ASSERT (pthread_mutex_unlock (&my_lock) == 0); dbgprintf ("Mutator %p after check unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", pthread_self_pointer ()); return NULL; } static struct atomic_int lock_checker_done; static void * lock_checker_thread (void *arg) { while (get_atomic_int_value (&lock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_lock) == 0); check_accounts (); ASSERT (pthread_mutex_unlock (&my_lock) == 0); dbgprintf ("Checker %p after check unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", pthread_self_pointer ()); return NULL; } static void test_pthread_mutex_normal (void) { int i; pthread_t checkerthread; pthread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&lock_checker_done); set_atomic_int_value (&lock_checker_done, 0); /* Spawn the threads. */ ASSERT (pthread_create (&checkerthread, NULL, lock_checker_thread, NULL) == 0); for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&threads[i], NULL, lock_mutator_thread, NULL) == 0); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (threads[i], NULL) == 0); set_atomic_int_value (&lock_checker_done, 1); ASSERT (pthread_join (checkerthread, NULL) == 0); check_accounts (); } /* -------------------------- Test recursive locks -------------------------- */ /* Test recursive locks by having several bank accounts and several threads which shuffle around money between the accounts (recursively) and another thread checking that all the money is still there. */ static pthread_mutex_t my_reclock; static void recshuffle (void) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_reclock) == 0); dbgprintf ("Mutator %p after lock\n", pthread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; /* Recursive with probability 0.5. */ if (((unsigned int) rand () >> 3) % 2) recshuffle (); dbgprintf ("Mutator %p before unlock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_unlock (&my_reclock) == 0); dbgprintf ("Mutator %p after unlock\n", pthread_self_pointer ()); } static void * reclock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { recshuffle (); dbgprintf ("Mutator %p before check lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_reclock) == 0); check_accounts (); ASSERT (pthread_mutex_unlock (&my_reclock) == 0); dbgprintf ("Mutator %p after check unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", pthread_self_pointer ()); return NULL; } static struct atomic_int reclock_checker_done; static void * reclock_checker_thread (void *arg) { while (get_atomic_int_value (&reclock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", pthread_self_pointer ()); ASSERT (pthread_mutex_lock (&my_reclock) == 0); check_accounts (); ASSERT (pthread_mutex_unlock (&my_reclock) == 0); dbgprintf ("Checker %p after check unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", pthread_self_pointer ()); return NULL; } static void test_pthread_mutex_recursive (void) { int i; pthread_t checkerthread; pthread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&reclock_checker_done); set_atomic_int_value (&reclock_checker_done, 0); /* Spawn the threads. */ ASSERT (pthread_create (&checkerthread, NULL, reclock_checker_thread, NULL) == 0); for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&threads[i], NULL, reclock_mutator_thread, NULL) == 0); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (threads[i], NULL) == 0); set_atomic_int_value (&reclock_checker_done, 1); ASSERT (pthread_join (checkerthread, NULL) == 0); check_accounts (); } /* -------------------------------------------------------------------------- */ int main () { #if HAVE_DECL_ALARM /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); #endif { pthread_mutexattr_t attr; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0); ASSERT (pthread_mutex_init (&my_lock, &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } { pthread_mutexattr_t attr; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE) == 0); ASSERT (pthread_mutex_init (&my_reclock, &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } #if DO_TEST_LOCK printf ("Starting test_pthread_mutex_normal ..."); fflush (stdout); test_pthread_mutex_normal (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_RECURSIVE_LOCK printf ("Starting test_pthread_mutex_recursive ..."); fflush (stdout); test_pthread_mutex_recursive (); printf (" OK\n"); fflush (stdout); #endif return 0; } #else /* No multithreading available. */ #include int main () { fputs ("Skipping test: multithreading not enabled\n", stderr); return 77; } #endif