/* Test of read-write locks in multithreaded situations. Copyright (C) 2005, 2008-2022 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ #include #if USE_ISOC_THREADS || USE_POSIX_THREADS || USE_ISOC_AND_POSIX_THREADS || USE_WINDOWS_THREADS /* Whether to enable locking. Uncomment this to get a test program without locking, to verify that it crashes. */ #define ENABLE_LOCKING 1 /* Whether to help the scheduler through explicit sched_yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of operations performed in each thread. This is quite high, because with a smaller count, say 5000, we often get an "OK" result even without ENABLE_LOCKING (on Linux/x86). */ #define REPEAT_COUNT 50000 #include #include #include #include #include #if EXPLICIT_YIELD # include #endif #if HAVE_DECL_ALARM # include # include #endif #include "macros.h" #include "atomic-int-posix.h" #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() sched_yield () #else # define yield() #endif /* Returns a reference to the current thread as a pointer, for debugging. */ #if defined __MVS__ /* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field. The first three bytes of this field appear to uniquely identify a pthread_t, though not necessarily representing a pointer. */ # define pthread_self_pointer() (*((void **) pthread_self ().__)) #else # define pthread_self_pointer() ((void *) (uintptr_t) pthread_self ()) #endif #define ACCOUNT_COUNT 4 static int account[ACCOUNT_COUNT]; static int random_account (void) { return ((unsigned int) rand () >> 3) % ACCOUNT_COUNT; } static void check_accounts (void) { int i, sum; sum = 0; for (i = 0; i < ACCOUNT_COUNT; i++) sum += account[i]; if (sum != ACCOUNT_COUNT * 1000) abort (); } /* ----------------- Test read-write (non-recursive) locks ----------------- */ /* Test read-write locks by having several bank accounts and several threads which shuffle around money between the accounts and several other threads that check that all the money is still there. */ static pthread_rwlock_t my_rwlock = PTHREAD_RWLOCK_INITIALIZER; static void * rwlock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { int i1, i2, value; dbgprintf ("Mutator %p before wrlock\n", pthread_self_pointer ()); ASSERT (pthread_rwlock_wrlock (&my_rwlock) == 0); dbgprintf ("Mutator %p after wrlock\n", pthread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; dbgprintf ("Mutator %p before unlock\n", pthread_self_pointer ()); ASSERT (pthread_rwlock_unlock (&my_rwlock) == 0); dbgprintf ("Mutator %p after unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", pthread_self_pointer ()); return NULL; } static struct atomic_int rwlock_checker_done; static void * rwlock_checker_thread (void *arg) { while (get_atomic_int_value (&rwlock_checker_done) == 0) { dbgprintf ("Checker %p before check rdlock\n", pthread_self_pointer ()); ASSERT (pthread_rwlock_rdlock (&my_rwlock) == 0); check_accounts (); ASSERT (pthread_rwlock_unlock (&my_rwlock) == 0); dbgprintf ("Checker %p after check unlock\n", pthread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", pthread_self_pointer ()); return NULL; } static void test_rwlock (void) { int i; pthread_t checkerthreads[THREAD_COUNT]; pthread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&rwlock_checker_done); set_atomic_int_value (&rwlock_checker_done, 0); /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&checkerthreads[i], NULL, rwlock_checker_thread, NULL) == 0); for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&threads[i], NULL, rwlock_mutator_thread, NULL) == 0); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (threads[i], NULL) == 0); set_atomic_int_value (&rwlock_checker_done, 1); for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (checkerthreads[i], NULL) == 0); check_accounts (); } /* -------------------------------------------------------------------------- */ int main () { #if HAVE_DECL_ALARM /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); #endif printf ("Starting test_rwlock ..."); fflush (stdout); test_rwlock (); printf (" OK\n"); fflush (stdout); return 0; } #else /* No multithreading available. */ #include int main () { fputs ("Skipping test: multithreading not enabled\n", stderr); return 77; } #endif