/* Test of remainder*() function family. Copyright (C) 2012-2023 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ static DOUBLE my_ldexp (DOUBLE x, int d) { for (; d > 0; d--) x *= L_(2.0); for (; d < 0; d++) x *= L_(0.5); return x; } static void test_function (void) { int i; int j; const DOUBLE TWO_MANT_DIG = /* Assume MANT_DIG <= 5 * 31. Use the identity n = floor(n/5) + floor((n+1)/5) + ... + floor((n+4)/5). */ (DOUBLE) (1U << ((MANT_DIG - 1) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 1) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 2) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 3) / 5)) * (DOUBLE) (1U << ((MANT_DIG - 1 + 4) / 5)); /* Randomized tests. */ for (i = 0; i < SIZEOF (RANDOM) / 5; i++) for (j = 0; j < SIZEOF (RANDOM) / 5; j++) { DOUBLE x = L_(16.0) * RANDOM[i]; /* 0.0 <= x <= 16.0 */ DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */ if (y > L_(0.0)) { DOUBLE z = REMAINDER (x, y); ASSERT (z >= - L_(0.5) * y); ASSERT (z <= L_(0.5) * y); z -= x - (int) ((L_(2.0) * x + y) / (L_(2.0) * y)) * y; ASSERT (/* The common case. */ (z > - L_(2.0) * L_(16.0) / TWO_MANT_DIG && z < L_(2.0) * L_(16.0) / TWO_MANT_DIG) || /* rounding error: 2x+y / 2y computed too large */ (z > y - L_(2.0) * L_(16.0) / TWO_MANT_DIG && z < y + L_(2.0) * L_(16.0) / TWO_MANT_DIG) || /* rounding error: 2x+y / 2y computed too small */ (z > - y - L_(2.0) * L_(16.0) / TWO_MANT_DIG && z < - y + L_(2.0) * L_(16.0) / TWO_MANT_DIG)); } } for (i = 0; i < SIZEOF (RANDOM) / 5; i++) for (j = 0; j < SIZEOF (RANDOM) / 5; j++) { DOUBLE x = L_(1.0e9) * RANDOM[i]; /* 0.0 <= x <= 10^9 */ DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */ if (y > L_(0.0)) { DOUBLE z = REMAINDER (x, y); DOUBLE r; ASSERT (z >= - L_(0.5) * y); ASSERT (z <= L_(0.5) * y); { /* Determine the quotient 2x+y / 2y in two steps, because it may be > 2^31. */ int q1 = (int) (x / y / L_(65536.0)); int q2 = (int) ((L_(2.0) * (x - q1 * L_(65536.0) * y) + y) / (L_(2.0) * y)); DOUBLE q = (DOUBLE) q1 * L_(65536.0) + (DOUBLE) q2; r = x - q * y; } /* The absolute error of z can be up to 1e9/2^MANT_DIG. The absolute error of r can also be up to 1e9/2^MANT_DIG. Therefore the error of z - r can be twice as large. */ z -= r; ASSERT (/* The common case. */ (z > - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG && z < L_(2.0) * L_(1.0e9) / TWO_MANT_DIG) || /* rounding error: 2x+y / 2y computed too large */ (z > y - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG && z < y + L_(2.0) * L_(1.0e9) / TWO_MANT_DIG) || /* rounding error: 2x+y / 2y computed too small */ (z > - y - L_(2.0) * L_(1.0e9) / TWO_MANT_DIG && z < - y + L_(2.0) * L_(1.0e9) / TWO_MANT_DIG)); } } { int large_exp = (MAX_EXP - 1 < 1000 ? MAX_EXP - 1 : 1000); DOUBLE large = my_ldexp (L_(1.0), large_exp); /* = 2^large_exp */ for (i = 0; i < SIZEOF (RANDOM) / 10; i++) for (j = 0; j < SIZEOF (RANDOM) / 10; j++) { DOUBLE x = large * RANDOM[i]; /* 0.0 <= x <= 2^large_exp */ DOUBLE y = RANDOM[j]; /* 0.0 <= y < 1.0 */ if (y > L_(0.0)) { DOUBLE z = REMAINDER (x, y); /* Regardless how large the rounding errors are, the result must be >= -y/2, <= y/2. */ ASSERT (z >= - L_(0.5) * y); ASSERT (z <= L_(0.5) * y); } } } } volatile DOUBLE x; volatile DOUBLE y; DOUBLE z;