/* * Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation * * Author: Nikos Mavroyanopoulos * * This file is part of GNUTLS. * * The GNUTLS library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 of * the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA * */ #include "gnutls_int.h" #include "gnutls_algorithms.h" #include "gnutls_errors.h" #include "gnutls_cert.h" #include /* Cred type mappings to KX algorithms * FIXME: The mappings are not 1-1. Some KX such as SRP_RSA require * more than one credentials type. */ typedef struct { gnutls_kx_algorithm_t algorithm; gnutls_credentials_type_t client_type; gnutls_credentials_type_t server_type; /* The type of credentials a server * needs to set */ } gnutls_cred_map; static const gnutls_cred_map cred_mappings[] = { {GNUTLS_KX_ANON_DH, GNUTLS_CRD_ANON, GNUTLS_CRD_ANON}, {GNUTLS_KX_RSA, GNUTLS_CRD_CERTIFICATE, GNUTLS_CRD_CERTIFICATE}, {GNUTLS_KX_RSA_EXPORT, GNUTLS_CRD_CERTIFICATE, GNUTLS_CRD_CERTIFICATE}, {GNUTLS_KX_DHE_DSS, GNUTLS_CRD_CERTIFICATE, GNUTLS_CRD_CERTIFICATE}, {GNUTLS_KX_DHE_RSA, GNUTLS_CRD_CERTIFICATE, GNUTLS_CRD_CERTIFICATE}, {GNUTLS_KX_PSK, GNUTLS_CRD_PSK, GNUTLS_CRD_PSK}, {GNUTLS_KX_DHE_PSK, GNUTLS_CRD_PSK, GNUTLS_CRD_PSK}, {GNUTLS_KX_SRP, GNUTLS_CRD_SRP, GNUTLS_CRD_SRP}, {GNUTLS_KX_SRP_RSA, GNUTLS_CRD_SRP, GNUTLS_CRD_CERTIFICATE}, {GNUTLS_KX_SRP_DSS, GNUTLS_CRD_SRP, GNUTLS_CRD_CERTIFICATE}, {0, 0, 0} }; #define GNUTLS_KX_MAP_LOOP(b) \ const gnutls_cred_map *p; \ for(p = cred_mappings; p->algorithm != 0; p++) { b ; } #define GNUTLS_KX_MAP_ALG_LOOP_SERVER(a) \ GNUTLS_KX_MAP_LOOP( if(p->server_type == type) { a; break; }) #define GNUTLS_KX_MAP_ALG_LOOP_CLIENT(a) \ GNUTLS_KX_MAP_LOOP( if(p->client_type == type) { a; break; }) /* KX mappings to PK algorithms */ typedef struct { gnutls_kx_algorithm_t kx_algorithm; gnutls_pk_algorithm_t pk_algorithm; enum encipher_type encipher_type; /* CIPHER_ENCRYPT if this algorithm is to be used * for encryption, CIPHER_SIGN if signature only, * CIPHER_IGN if this does not apply at all. * * This is useful to certificate cipher suites, which check * against the certificate key usage bits. */ } gnutls_pk_map; /* This table maps the Key exchange algorithms to * the certificate algorithms. Eg. if we have * RSA algorithm in the certificate then we can * use GNUTLS_KX_RSA or GNUTLS_KX_DHE_RSA. */ static const gnutls_pk_map pk_mappings[] = { {GNUTLS_KX_RSA, GNUTLS_PK_RSA, CIPHER_ENCRYPT}, {GNUTLS_KX_RSA_EXPORT, GNUTLS_PK_RSA, CIPHER_SIGN}, {GNUTLS_KX_DHE_RSA, GNUTLS_PK_RSA, CIPHER_SIGN}, {GNUTLS_KX_SRP_RSA, GNUTLS_PK_RSA, CIPHER_SIGN}, {GNUTLS_KX_DHE_DSS, GNUTLS_PK_DSA, CIPHER_SIGN}, {GNUTLS_KX_SRP_DSS, GNUTLS_PK_DSA, CIPHER_SIGN}, {0, 0, 0} }; #define GNUTLS_PK_MAP_LOOP(b) \ const gnutls_pk_map *p; \ for(p = pk_mappings; p->kx_algorithm != 0; p++) { b } #define GNUTLS_PK_MAP_ALG_LOOP(a) \ GNUTLS_PK_MAP_LOOP( if(p->kx_algorithm == kx_algorithm) { a; break; }) /* TLS Versions */ typedef struct { const char *name; gnutls_protocol_t id; /* gnutls internal version number */ int major; /* defined by the protocol */ int minor; /* defined by the protocol */ int supported; /* 0 not supported, > 0 is supported */ } gnutls_version_entry; static const gnutls_version_entry sup_versions[] = { {"SSL 3.0", GNUTLS_SSL3, 3, 0, 1}, {"TLS 1.0", GNUTLS_TLS1, 3, 1, 1}, {"TLS 1.1", GNUTLS_TLS1_1, 3, 2, 1}, {"TLS 1.2", GNUTLS_TLS1_2, 3, 3, 1}, {0, 0, 0, 0, 0} }; /* Keep the contents of this struct the same as the previous one. */ static const gnutls_protocol_t supported_protocols[] = { GNUTLS_SSL3, GNUTLS_TLS1, GNUTLS_TLS1_1, GNUTLS_TLS1_2, 0 }; #define GNUTLS_VERSION_LOOP(b) \ const gnutls_version_entry *p; \ for(p = sup_versions; p->name != NULL; p++) { b ; } #define GNUTLS_VERSION_ALG_LOOP(a) \ GNUTLS_VERSION_LOOP( if(p->id == version) { a; break; }) struct gnutls_cipher_entry { const char *name; gnutls_cipher_algorithm_t id; uint16_t blocksize; uint16_t keysize; cipher_type_t block; uint16_t iv; int export_flag; /* 0 non export */ }; typedef struct gnutls_cipher_entry gnutls_cipher_entry; /* Note that all algorithms are in CBC or STREAM modes. * Do not add any algorithms in other modes (avoid modified algorithms). * View first: "The order of encryption and authentication for * protecting communications" by Hugo Krawczyk - CRYPTO 2001 */ static const gnutls_cipher_entry algorithms[] = { {"AES 256 CBC", GNUTLS_CIPHER_AES_256_CBC, 16, 32, CIPHER_BLOCK, 16, 0}, {"AES 128 CBC", GNUTLS_CIPHER_AES_128_CBC, 16, 16, CIPHER_BLOCK, 16, 0}, {"3DES 168 CBC", GNUTLS_CIPHER_3DES_CBC, 8, 24, CIPHER_BLOCK, 8, 0}, {"DES CBC", GNUTLS_CIPHER_DES_CBC, 8, 8, CIPHER_BLOCK, 8, 0}, {"ARCFOUR 128", GNUTLS_CIPHER_ARCFOUR_128, 1, 16, CIPHER_STREAM, 0, 0}, {"ARCFOUR 40", GNUTLS_CIPHER_ARCFOUR_40, 1, 5, CIPHER_STREAM, 0, 1}, {"RC2 40", GNUTLS_CIPHER_RC2_40_CBC, 8, 5, CIPHER_BLOCK, 8, 1}, {"NULL", GNUTLS_CIPHER_NULL, 1, 0, CIPHER_STREAM, 0, 0}, {0, 0, 0, 0, 0, 0, 0} }; /* Keep the contents of this struct the same as the previous one. */ static const gnutls_cipher_algorithm_t supported_ciphers[] = { GNUTLS_CIPHER_AES_256_CBC, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_CIPHER_3DES_CBC, GNUTLS_CIPHER_DES_CBC, GNUTLS_CIPHER_ARCFOUR_128, GNUTLS_CIPHER_ARCFOUR_40, GNUTLS_CIPHER_RC2_40_CBC, GNUTLS_CIPHER_NULL, 0 }; #define GNUTLS_LOOP(b) \ const gnutls_cipher_entry *p; \ for(p = algorithms; p->name != NULL; p++) { b ; } #define GNUTLS_ALG_LOOP(a) \ GNUTLS_LOOP( if(p->id == algorithm) { a; break; } ) struct gnutls_hash_entry { const char *name; const char *oid; gnutls_mac_algorithm_t id; }; typedef struct gnutls_hash_entry gnutls_hash_entry; static const gnutls_hash_entry hash_algorithms[] = { {"SHA", HASH_OID_SHA1, GNUTLS_MAC_SHA1}, {"MD5", HASH_OID_MD5, GNUTLS_MAC_MD5}, {"SHA256", HASH_OID_SHA256, GNUTLS_MAC_SHA256}, {"SHA384", HASH_OID_SHA384, GNUTLS_MAC_SHA384}, {"SHA512", HASH_OID_SHA512, GNUTLS_MAC_SHA512}, {"MD2", HASH_OID_MD2, GNUTLS_MAC_MD2}, {"RIPEMD160", HASH_OID_RMD160, GNUTLS_MAC_RMD160}, {"NULL", NULL, GNUTLS_MAC_NULL}, {0, 0, 0} }; /* Keep the contents of this struct the same as the previous one. */ static const gnutls_mac_algorithm_t supported_macs[] = { GNUTLS_MAC_SHA1, GNUTLS_MAC_MD5, GNUTLS_MAC_SHA256, GNUTLS_MAC_SHA384, GNUTLS_MAC_SHA512, GNUTLS_MAC_MD2, GNUTLS_MAC_RMD160, GNUTLS_MAC_NULL, 0 }; #define GNUTLS_HASH_LOOP(b) \ const gnutls_hash_entry *p; \ for(p = hash_algorithms; p->name != NULL; p++) { b ; } #define GNUTLS_HASH_ALG_LOOP(a) \ GNUTLS_HASH_LOOP( if(p->id == algorithm) { a; break; } ) /* Compression Section */ #define GNUTLS_COMPRESSION_ENTRY(name, id, wb, ml, cl) \ { #name, name, id, wb, ml, cl} #define MAX_COMP_METHODS 5 const int _gnutls_comp_algorithms_size = MAX_COMP_METHODS; /* the compression entry is defined in gnutls_algorithms.h */ gnutls_compression_entry _gnutls_compression_algorithms[MAX_COMP_METHODS] = { GNUTLS_COMPRESSION_ENTRY (GNUTLS_COMP_NULL, 0x00, 0, 0, 0), #ifdef HAVE_LIBZ /* draft-ietf-tls-compression-02 */ GNUTLS_COMPRESSION_ENTRY (GNUTLS_COMP_DEFLATE, 0x01, 15, 8, 3), #endif {0, 0, 0, 0, 0, 0} }; static const gnutls_compression_method_t supported_compressions[] = { #ifdef USE_LZO GNUTLS_COMP_LZO, #endif #ifdef HAVE_LIBZ GNUTLS_COMP_DEFLATE, #endif GNUTLS_COMP_NULL, 0 }; #define GNUTLS_COMPRESSION_LOOP(b) \ const gnutls_compression_entry *p; \ for(p = _gnutls_compression_algorithms; p->name != NULL; p++) { b ; } #define GNUTLS_COMPRESSION_ALG_LOOP(a) \ GNUTLS_COMPRESSION_LOOP( if(p->id == algorithm) { a; break; } ) #define GNUTLS_COMPRESSION_ALG_LOOP_NUM(a) \ GNUTLS_COMPRESSION_LOOP( if(p->num == num) { a; break; } ) /* Key Exchange Section */ extern mod_auth_st rsa_auth_struct; extern mod_auth_st rsa_export_auth_struct; extern mod_auth_st dhe_rsa_auth_struct; extern mod_auth_st dhe_dss_auth_struct; extern mod_auth_st anon_auth_struct; extern mod_auth_st srp_auth_struct; extern mod_auth_st psk_auth_struct; extern mod_auth_st dhe_psk_auth_struct; extern mod_auth_st srp_rsa_auth_struct; extern mod_auth_st srp_dss_auth_struct; struct gnutls_kx_algo_entry { const char *name; gnutls_kx_algorithm_t algorithm; mod_auth_st *auth_struct; int needs_dh_params; int needs_rsa_params; }; typedef struct gnutls_kx_algo_entry gnutls_kx_algo_entry; static const gnutls_kx_algo_entry _gnutls_kx_algorithms[] = { #ifdef ENABLE_ANON {"Anon DH", GNUTLS_KX_ANON_DH, &anon_auth_struct, 1, 0}, #endif {"RSA", GNUTLS_KX_RSA, &rsa_auth_struct, 0, 0}, {"RSA EXPORT", GNUTLS_KX_RSA_EXPORT, &rsa_export_auth_struct, 0, 1 /* needs RSA params */ }, {"DHE RSA", GNUTLS_KX_DHE_RSA, &dhe_rsa_auth_struct, 1, 0}, {"DHE DSS", GNUTLS_KX_DHE_DSS, &dhe_dss_auth_struct, 1, 0}, #ifdef ENABLE_SRP {"SRP DSS", GNUTLS_KX_SRP_DSS, &srp_dss_auth_struct, 0, 0}, {"SRP RSA", GNUTLS_KX_SRP_RSA, &srp_rsa_auth_struct, 0, 0}, {"SRP", GNUTLS_KX_SRP, &srp_auth_struct, 0, 0}, #endif #ifdef ENABLE_PSK {"PSK", GNUTLS_KX_PSK, &psk_auth_struct, 0, 0}, {"DHE PSK", GNUTLS_KX_DHE_PSK, &dhe_psk_auth_struct, 1 /* needs DHE params */ , 0}, #endif {0, 0, 0, 0, 0} }; /* Keep the contents of this struct the same as the previous one. */ static const gnutls_kx_algorithm_t supported_kxs[] = { #ifdef ENABLE_ANON GNUTLS_KX_ANON_DH, #endif GNUTLS_KX_RSA, GNUTLS_KX_RSA_EXPORT, GNUTLS_KX_DHE_RSA, GNUTLS_KX_DHE_DSS, #ifdef ENABLE_SRP GNUTLS_KX_SRP_DSS, GNUTLS_KX_SRP_RSA, GNUTLS_KX_SRP, #endif #ifdef ENABLE_PSK GNUTLS_KX_PSK, GNUTLS_KX_DHE_PSK, #endif 0 }; #define GNUTLS_KX_LOOP(b) \ const gnutls_kx_algo_entry *p; \ for(p = _gnutls_kx_algorithms; p->name != NULL; p++) { b ; } #define GNUTLS_KX_ALG_LOOP(a) \ GNUTLS_KX_LOOP( if(p->algorithm == algorithm) { a; break; } ) /* Cipher SUITES */ #define GNUTLS_CIPHER_SUITE_ENTRY( name, block_algorithm, kx_algorithm, mac_algorithm, version ) \ { #name, {name}, block_algorithm, kx_algorithm, mac_algorithm, version } typedef struct { const char *name; cipher_suite_st id; gnutls_cipher_algorithm_t block_algorithm; gnutls_kx_algorithm_t kx_algorithm; gnutls_mac_algorithm_t mac_algorithm; gnutls_protocol_t version; /* this cipher suite is supported * from 'version' and above; */ } gnutls_cipher_suite_entry; /* RSA with NULL cipher and MD5 MAC * for test purposes. */ #define GNUTLS_RSA_NULL_MD5 { 0x00, 0x01 } /* ANONymous cipher suites. */ #define GNUTLS_ANON_DH_3DES_EDE_CBC_SHA1 { 0x00, 0x1B } #define GNUTLS_ANON_DH_ARCFOUR_MD5 { 0x00, 0x18 } /* rfc3268: */ #define GNUTLS_ANON_DH_AES_128_CBC_SHA1 { 0x00, 0x34 } #define GNUTLS_ANON_DH_AES_256_CBC_SHA1 { 0x00, 0x3A } /* PSK (not in TLS 1.0) * draft-ietf-tls-psk: */ #define GNUTLS_PSK_SHA_ARCFOUR_SHA1 { 0x00, 0x8A } #define GNUTLS_PSK_SHA_3DES_EDE_CBC_SHA1 { 0x00, 0x8B } #define GNUTLS_PSK_SHA_AES_128_CBC_SHA1 { 0x00, 0x8C } #define GNUTLS_PSK_SHA_AES_256_CBC_SHA1 { 0x00, 0x8D } #define GNUTLS_DHE_PSK_SHA_ARCFOUR_SHA1 { 0x00, 0x8E } #define GNUTLS_DHE_PSK_SHA_3DES_EDE_CBC_SHA1 { 0x00, 0x8F } #define GNUTLS_DHE_PSK_SHA_AES_128_CBC_SHA1 { 0x00, 0x90 } #define GNUTLS_DHE_PSK_SHA_AES_256_CBC_SHA1 { 0x00, 0x91 } /* SRP (not in TLS 1.0) * draft-ietf-tls-srp-02: */ #define GNUTLS_SRP_SHA_3DES_EDE_CBC_SHA1 { 0x00, 0x50 } #define GNUTLS_SRP_SHA_AES_128_CBC_SHA1 { 0x00, 0x53 } #define GNUTLS_SRP_SHA_AES_256_CBC_SHA1 { 0x00, 0x56 } #define GNUTLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA1 { 0x00, 0x51 } #define GNUTLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA1 { 0x00, 0x52 } #define GNUTLS_SRP_SHA_RSA_AES_128_CBC_SHA1 { 0x00, 0x54 } #define GNUTLS_SRP_SHA_DSS_AES_128_CBC_SHA1 { 0x00, 0x55 } #define GNUTLS_SRP_SHA_RSA_AES_256_CBC_SHA1 { 0x00, 0x57 } #define GNUTLS_SRP_SHA_DSS_AES_256_CBC_SHA1 { 0x00, 0x58 } /* RSA */ #define GNUTLS_RSA_ARCFOUR_SHA1 { 0x00, 0x05 } #define GNUTLS_RSA_ARCFOUR_MD5 { 0x00, 0x04 } #define GNUTLS_RSA_3DES_EDE_CBC_SHA1 { 0x00, 0x0A } #define GNUTLS_RSA_EXPORT_ARCFOUR_40_MD5 { 0x00, 0x03 } /* rfc3268: */ #define GNUTLS_RSA_AES_128_CBC_SHA1 { 0x00, 0x2F } #define GNUTLS_RSA_AES_256_CBC_SHA1 { 0x00, 0x35 } /* DHE DSS */ #define GNUTLS_DHE_DSS_3DES_EDE_CBC_SHA1 { 0x00, 0x13 } /* draft-ietf-tls-56-bit-ciphersuites-01: */ #define GNUTLS_DHE_DSS_ARCFOUR_SHA1 { 0x00, 0x66 } /* rfc3268: */ #define GNUTLS_DHE_DSS_AES_256_CBC_SHA1 { 0x00, 0x38 } #define GNUTLS_DHE_DSS_AES_128_CBC_SHA1 { 0x00, 0x32 } /* DHE RSA */ #define GNUTLS_DHE_RSA_3DES_EDE_CBC_SHA1 { 0x00, 0x16 } /* rfc3268: */ #define GNUTLS_DHE_RSA_AES_128_CBC_SHA1 { 0x00, 0x33 } #define GNUTLS_DHE_RSA_AES_256_CBC_SHA1 { 0x00, 0x39 } #define CIPHER_SUITES_COUNT sizeof(cs_algorithms)/sizeof(gnutls_cipher_suite_entry)-1 static const gnutls_cipher_suite_entry cs_algorithms[] = { /* ANON_DH */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_ANON_DH_ARCFOUR_MD5, GNUTLS_CIPHER_ARCFOUR_128, GNUTLS_KX_ANON_DH, GNUTLS_MAC_MD5, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_ANON_DH_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_ANON_DH, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_ANON_DH_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_ANON_DH, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_ANON_DH_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_ANON_DH, GNUTLS_MAC_SHA1, GNUTLS_SSL3), /* PSK */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_PSK_SHA_ARCFOUR_SHA1, GNUTLS_CIPHER_ARCFOUR, GNUTLS_KX_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_PSK_SHA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_PSK_SHA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_PSK_SHA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), /* DHE-PSK */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_PSK_SHA_ARCFOUR_SHA1, GNUTLS_CIPHER_ARCFOUR, GNUTLS_KX_DHE_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_PSK_SHA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_DHE_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_PSK_SHA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_DHE_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_PSK_SHA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_DHE_PSK, GNUTLS_MAC_SHA1, GNUTLS_TLS1), /* SRP */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_SRP, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_SRP, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_SRP, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_SRP_DSS, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_SRP_RSA, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_DSS_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_SRP_DSS, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_RSA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_SRP_RSA, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_DSS_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_SRP_DSS, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_SRP_SHA_RSA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_SRP_RSA, GNUTLS_MAC_SHA1, GNUTLS_TLS1), /* DHE_DSS */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_DSS_ARCFOUR_SHA1, GNUTLS_CIPHER_ARCFOUR_128, GNUTLS_KX_DHE_DSS, GNUTLS_MAC_SHA1, GNUTLS_TLS1), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_DSS_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_DHE_DSS, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_DSS_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_DHE_DSS, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_DSS_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_DHE_DSS, GNUTLS_MAC_SHA1, GNUTLS_SSL3), /* DHE_RSA */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_RSA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_DHE_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_RSA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_DHE_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_DHE_RSA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_DHE_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), /* RSA */ GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_NULL_MD5, GNUTLS_CIPHER_NULL, GNUTLS_KX_RSA, GNUTLS_MAC_MD5, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_EXPORT_ARCFOUR_40_MD5, GNUTLS_CIPHER_ARCFOUR_40, GNUTLS_KX_RSA_EXPORT, GNUTLS_MAC_MD5, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_ARCFOUR_SHA1, GNUTLS_CIPHER_ARCFOUR_128, GNUTLS_KX_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_ARCFOUR_MD5, GNUTLS_CIPHER_ARCFOUR_128, GNUTLS_KX_RSA, GNUTLS_MAC_MD5, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_3DES_EDE_CBC_SHA1, GNUTLS_CIPHER_3DES_CBC, GNUTLS_KX_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_AES_128_CBC_SHA1, GNUTLS_CIPHER_AES_128_CBC, GNUTLS_KX_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), GNUTLS_CIPHER_SUITE_ENTRY (GNUTLS_RSA_AES_256_CBC_SHA1, GNUTLS_CIPHER_AES_256_CBC, GNUTLS_KX_RSA, GNUTLS_MAC_SHA1, GNUTLS_SSL3), {0, {{0, 0}}, 0, 0, 0, 0} }; #define GNUTLS_CIPHER_SUITE_LOOP(b) \ const gnutls_cipher_suite_entry *p; \ for(p = cs_algorithms; p->name != NULL; p++) { b ; } #define GNUTLS_CIPHER_SUITE_ALG_LOOP(a) \ GNUTLS_CIPHER_SUITE_LOOP( if( (p->id.suite[0] == suite->suite[0]) && (p->id.suite[1] == suite->suite[1])) { a; break; } ) /* Generic Functions */ inline int _gnutls_mac_priority (gnutls_session_t session, gnutls_mac_algorithm_t algorithm) { /* actually returns the priority */ unsigned int i; for (i = 0; i < session->internals.mac_algorithm_priority.algorithms; i++) { if (session->internals.mac_algorithm_priority.priority[i] == algorithm) return i; } return -1; } /** * gnutls_mac_get_name - Returns a string with the name of the specified mac algorithm * @algorithm: is a MAC algorithm * * Returns a string that contains the name * of the specified MAC algorithm or NULL. **/ const char * gnutls_mac_get_name (gnutls_mac_algorithm_t algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_HASH_ALG_LOOP (ret = p->name); return ret; } /** * gnutls_mac_list: * * Get a list of hash algorithms for use as MACs. Note that not * necessarily all MACs are supported in TLS cipher suites. For * example, MD2 is not supported as a cipher suite, but is supported * for other purposes (e.g., X.509 signature verification or similar). * * Returns: Return a zero-terminated list of %gnutls_mac_algorithm_t * integers indicating the available MACs. * **/ const gnutls_mac_algorithm_t * gnutls_mac_list (void) { return supported_macs; } const char * _gnutls_x509_mac_to_oid (gnutls_mac_algorithm_t algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_HASH_ALG_LOOP (ret = p->oid); return ret; } gnutls_mac_algorithm_t _gnutls_x509_oid2mac_algorithm (const char *oid) { gnutls_mac_algorithm_t ret = 0; GNUTLS_HASH_LOOP (if (p->oid && strcmp (oid, p->oid) == 0) { ret = p->id; break;} ); if (ret == 0) return GNUTLS_MAC_UNKNOWN; return ret; } int _gnutls_mac_is_ok (gnutls_mac_algorithm_t algorithm) { ssize_t ret = -1; GNUTLS_HASH_ALG_LOOP (ret = p->id); if (ret >= 0) ret = 0; else ret = 1; return ret; } /* Compression Functions */ inline int _gnutls_compression_priority (gnutls_session_t session, gnutls_compression_method_t algorithm) { /* actually returns the priority */ unsigned int i; for (i = 0; i < session->internals.compression_method_priority.algorithms; i++) { if (session->internals. compression_method_priority.priority[i] == algorithm) return i; } return -1; } /** * gnutls_compression_get_name - Returns a string with the name of the specified compression algorithm * @algorithm: is a Compression algorithm * * Returns a pointer to a string that contains the name * of the specified compression algorithm or NULL. **/ const char * gnutls_compression_get_name (gnutls_compression_method_t algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP (ret = p->name + sizeof ("GNUTLS_COMP_") - 1); return ret; } /** * gnutls_compression_list: * * Get a list of compression methods. Note that to be able to use LZO * compression, you must link to libgnutls-extra and call * gnutls_global_init_extra(). * * Returns: Return a zero-terminated list of * %gnutls_compression_method_t integers indicating the available * compression methods. **/ const gnutls_compression_method_t * gnutls_compression_list (void) { return supported_compressions; } /* return the tls number of the specified algorithm */ int _gnutls_compression_get_num (gnutls_compression_method_t algorithm) { int ret = -1; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP (ret = p->num); return ret; } int _gnutls_compression_get_wbits (gnutls_compression_method_t algorithm) { int ret = -1; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP (ret = p->window_bits); return ret; } int _gnutls_compression_get_mem_level (gnutls_compression_method_t algorithm) { int ret = -1; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP (ret = p->mem_level); return ret; } int _gnutls_compression_get_comp_level (gnutls_compression_method_t algorithm) { int ret = -1; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP (ret = p->comp_level); return ret; } /* returns the gnutls internal ID of the TLS compression * method num */ gnutls_compression_method_t _gnutls_compression_get_id (int num) { gnutls_compression_method_t ret = -1; /* avoid prefix */ GNUTLS_COMPRESSION_ALG_LOOP_NUM (ret = p->id); return ret; } int _gnutls_compression_is_ok (gnutls_compression_method_t algorithm) { ssize_t ret = -1; GNUTLS_COMPRESSION_ALG_LOOP (ret = p->id); if (ret >= 0) ret = 0; else ret = 1; return ret; } /* CIPHER functions */ int _gnutls_cipher_get_block_size (gnutls_cipher_algorithm_t algorithm) { size_t ret = 0; GNUTLS_ALG_LOOP (ret = p->blocksize); return ret; } /* returns the priority */ inline int _gnutls_cipher_priority (gnutls_session_t session, gnutls_cipher_algorithm_t algorithm) { unsigned int i; for (i = 0; i < session->internals.cipher_algorithm_priority.algorithms; i++) { if (session->internals. cipher_algorithm_priority.priority[i] == algorithm) return i; } return -1; } int _gnutls_cipher_is_block (gnutls_cipher_algorithm_t algorithm) { size_t ret = 0; GNUTLS_ALG_LOOP (ret = p->block); return ret; } /** * gnutls_cipher_get_key_size - Returns the length of the cipher's key size * @algorithm: is an encryption algorithm * * Returns the length (in bytes) of the given cipher's key size. * Returns 0 if the given cipher is invalid. * **/ size_t gnutls_cipher_get_key_size (gnutls_cipher_algorithm_t algorithm) { /* In bytes */ size_t ret = 0; GNUTLS_ALG_LOOP (ret = p->keysize); return ret; } int _gnutls_cipher_get_iv_size (gnutls_cipher_algorithm_t algorithm) { /* In bytes */ size_t ret = 0; GNUTLS_ALG_LOOP (ret = p->iv); return ret; } int _gnutls_cipher_get_export_flag (gnutls_cipher_algorithm_t algorithm) { /* In bytes */ size_t ret = 0; GNUTLS_ALG_LOOP (ret = p->export_flag); return ret; } /** * gnutls_cipher_get_name - Returns a string with the name of the specified cipher algorithm * @algorithm: is an encryption algorithm * * Returns a pointer to a string that contains the name * of the specified cipher or NULL. **/ const char * gnutls_cipher_get_name (gnutls_cipher_algorithm_t algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_ALG_LOOP (ret = p->name); return ret; } /** * gnutls_cipher_list: * * Get a list of supported cipher algorithms. Note that not * necessarily all ciphers are supported as TLS cipher suites. For * example, DES is not supported as a cipher suite, but is supported * for other purposes (e.g., PKCS#8 or similar). * * Returns: Return a zero-terminated list of * %gnutls_cipher_algorithm_t integers indicating the available * ciphers. * **/ const gnutls_cipher_algorithm_t * gnutls_cipher_list (void) { return supported_ciphers; } int _gnutls_cipher_is_ok (gnutls_cipher_algorithm_t algorithm) { ssize_t ret = -1; GNUTLS_ALG_LOOP (ret = p->id); if (ret >= 0) ret = 0; else ret = 1; return ret; } /* Key EXCHANGE functions */ mod_auth_st * _gnutls_kx_auth_struct (gnutls_kx_algorithm_t algorithm) { mod_auth_st *ret = NULL; GNUTLS_KX_ALG_LOOP (ret = p->auth_struct); return ret; } inline int _gnutls_kx_priority (gnutls_session_t session, gnutls_kx_algorithm_t algorithm) { unsigned int i; for (i = 0; i < session->internals.kx_algorithm_priority.algorithms; i++) { if (session->internals.kx_algorithm_priority.priority[i] == algorithm) return i; } return -1; } /** * gnutls_kx_get_name - Returns a string with the name of the specified key exchange algorithm * @algorithm: is a key exchange algorithm * * Returns a pointer to a string that contains the name * of the specified key exchange algorithm or NULL. **/ const char * gnutls_kx_get_name (gnutls_kx_algorithm_t algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_KX_ALG_LOOP (ret = p->name); return ret; } /** * gnutls_kx_list: * * Get a list of supported key exchange algorithms. * * Returns: Return a zero-terminated list of %gnutls_kx_algorithm_t * integers indicating the available key exchange algorithms. * **/ const gnutls_kx_algorithm_t * gnutls_kx_list (void) { return supported_kxs; } int _gnutls_kx_is_ok (gnutls_kx_algorithm_t algorithm) { ssize_t ret = -1; GNUTLS_KX_ALG_LOOP (ret = p->algorithm); if (ret >= 0) ret = 0; else ret = 1; return ret; } int _gnutls_kx_needs_rsa_params (gnutls_kx_algorithm_t algorithm) { ssize_t ret = 0; GNUTLS_KX_ALG_LOOP (ret = p->needs_rsa_params); return ret; } int _gnutls_kx_needs_dh_params (gnutls_kx_algorithm_t algorithm) { ssize_t ret = 0; GNUTLS_KX_ALG_LOOP (ret = p->needs_dh_params); return ret; } /* Version */ int _gnutls_version_priority (gnutls_session_t session, gnutls_protocol_t version) { /* actually returns the priority */ unsigned int i; if (session->internals.protocol_priority.priority == NULL) { gnutls_assert (); return -1; } for (i = 0; i < session->internals.protocol_priority.algorithms; i++) { if (session->internals.protocol_priority.priority[i] == version) return i; } return -1; } gnutls_protocol_t _gnutls_version_lowest (gnutls_session_t session) { /* returns the lowest version supported */ unsigned int i, min = 0xff; if (session->internals.protocol_priority.priority == NULL) { return GNUTLS_VERSION_UNKNOWN; } else for (i = 0; i < session->internals.protocol_priority.algorithms; i++) { if (session->internals.protocol_priority.priority[i] < min) min = session->internals.protocol_priority.priority[i]; } if (min == 0xff) return GNUTLS_VERSION_UNKNOWN; /* unknown version */ return min; } gnutls_protocol_t _gnutls_version_max (gnutls_session_t session) { /* returns the maximum version supported */ unsigned int i, max = 0x00; if (session->internals.protocol_priority.priority == NULL) { return GNUTLS_VERSION_UNKNOWN; } else for (i = 0; i < session->internals.protocol_priority.algorithms; i++) { if (session->internals.protocol_priority.priority[i] > max) max = session->internals.protocol_priority.priority[i]; } if (max == 0x00) return GNUTLS_VERSION_UNKNOWN; /* unknown version */ return max; } /** * gnutls_protocol_get_name - Returns a string with the name of the specified SSL/TLS version * @version: is a (gnutls) version number * * Returns a string that contains the name * of the specified TLS version or NULL. **/ const char * gnutls_protocol_get_name (gnutls_protocol_t version) { const char *ret = NULL; /* avoid prefix */ GNUTLS_VERSION_ALG_LOOP (ret = p->name); return ret; } /** * gnutls_protocol_list: * * Get a list of supported protocols, e.g. SSL 3.0, TLS 1.0 etc. * * Returns: Return a zero-terminated list of %gnutls_protocol_t * integers indicating the available protocols. * **/ const gnutls_protocol_t * gnutls_protocol_list (void) { return supported_protocols; } int _gnutls_version_get_minor (gnutls_protocol_t version) { int ret = -1; GNUTLS_VERSION_ALG_LOOP (ret = p->minor); return ret; } gnutls_protocol_t _gnutls_version_get (int major, int minor) { int ret = -1; GNUTLS_VERSION_LOOP (if ((p->major == major) && (p->minor == minor)) ret = p->id); return ret; } int _gnutls_version_get_major (gnutls_protocol_t version) { int ret = -1; GNUTLS_VERSION_ALG_LOOP (ret = p->major); return ret; } /* Version Functions */ int _gnutls_version_is_supported (gnutls_session_t session, const gnutls_protocol_t version) { int ret = 0; GNUTLS_VERSION_ALG_LOOP (ret = p->supported); if (ret == 0) return 0; if (_gnutls_version_priority (session, version) < 0) return 0; /* disabled by the user */ else return 1; } /* Type to KX mappings */ gnutls_kx_algorithm_t _gnutls_map_kx_get_kx (gnutls_credentials_type_t type, int server) { gnutls_kx_algorithm_t ret = -1; if (server) { GNUTLS_KX_MAP_ALG_LOOP_SERVER (ret = p->algorithm); } else { GNUTLS_KX_MAP_ALG_LOOP_SERVER (ret = p->algorithm); } return ret; } gnutls_credentials_type_t _gnutls_map_kx_get_cred (gnutls_kx_algorithm_t algorithm, int server) { gnutls_credentials_type_t ret = -1; if (server) { GNUTLS_KX_MAP_LOOP (if (p->algorithm == algorithm) ret = p->server_type); } else { GNUTLS_KX_MAP_LOOP (if (p->algorithm == algorithm) ret = p->client_type); } return ret; } /* Cipher Suite's functions */ gnutls_cipher_algorithm_t _gnutls_cipher_suite_get_cipher_algo (const cipher_suite_st * suite) { int ret = 0; GNUTLS_CIPHER_SUITE_ALG_LOOP (ret = p->block_algorithm); return ret; } gnutls_protocol_t _gnutls_cipher_suite_get_version (const cipher_suite_st * suite) { int ret = 0; GNUTLS_CIPHER_SUITE_ALG_LOOP (ret = p->version); return ret; } gnutls_kx_algorithm_t _gnutls_cipher_suite_get_kx_algo (const cipher_suite_st * suite) { int ret = 0; GNUTLS_CIPHER_SUITE_ALG_LOOP (ret = p->kx_algorithm); return ret; } gnutls_mac_algorithm_t _gnutls_cipher_suite_get_mac_algo (const cipher_suite_st * suite) { /* In bytes */ int ret = 0; GNUTLS_CIPHER_SUITE_ALG_LOOP (ret = p->mac_algorithm); return ret; } const char * _gnutls_cipher_suite_get_name (cipher_suite_st * suite) { const char *ret = NULL; /* avoid prefix */ GNUTLS_CIPHER_SUITE_ALG_LOOP (ret = p->name + sizeof ("GNUTLS_") - 1); return ret; } /** * gnutls_cipher_suite_get_name - Returns a string with the name of the specified cipher suite * @kx_algorithm: is a Key exchange algorithm * @cipher_algorithm: is a cipher algorithm * @mac_algorithm: is a MAC algorithm * * Returns a string that contains the name of a TLS * cipher suite, specified by the given algorithms, or NULL. * * Note that the full cipher suite name must be prepended * by TLS or SSL depending of the protocol in use. * **/ const char * gnutls_cipher_suite_get_name (gnutls_kx_algorithm_t kx_algorithm, gnutls_cipher_algorithm_t cipher_algorithm, gnutls_mac_algorithm_t mac_algorithm) { const char *ret = NULL; /* avoid prefix */ GNUTLS_CIPHER_SUITE_LOOP (if (kx_algorithm == p->kx_algorithm && cipher_algorithm == p->block_algorithm && mac_algorithm == p->mac_algorithm) ret = p->name + sizeof ("GNUTLS_") - 1); return ret; } /** * gnutls_cipher_suite_info: * @idx: index of cipher suite to get information about, starts on 0. * @cs_id: output buffer with room for 2 bytes, indicating cipher suite value * @kx: output variable indicating key exchange algorithm, or %NULL. * @cipher: output variable indicating cipher, or %NULL. * @mac: output variable indicating MAC algorithm, or %NULL. * @version: output variable indicating TLS protocol version, or %NULL. * * Get information about supported cipher suites. Use the function * iteratively to get information about all supported cipher suites. * Call with idx=0 to get information about first cipher suite, then * idx=1 and so on until the function returns NULL. * * Returns: Returns the name of @idx cipher suite, and set the * information about the cipher suite in the output variables. If * @idx is out of bounds, %NULL is returned. **/ const char * gnutls_cipher_suite_info (size_t idx, char *cs_id, gnutls_kx_algorithm_t *kx, gnutls_cipher_algorithm_t *cipher, gnutls_mac_algorithm_t *mac, gnutls_protocol_t *version) { if (idx >= CIPHER_SUITES_COUNT) return NULL; if (cs_id) memcpy (cs_id, cs_algorithms[idx].id.suite, 2); if (kx) *kx = cs_algorithms[idx].kx_algorithm; if (cipher) *cipher = cs_algorithms[idx].block_algorithm; if (mac) *mac = cs_algorithms[idx].mac_algorithm; if (version) *version = cs_algorithms[idx].version; return cs_algorithms[idx].name + sizeof ("GNU") - 1; } inline static int _gnutls_cipher_suite_is_ok (cipher_suite_st * suite) { size_t ret; const char *name = NULL; GNUTLS_CIPHER_SUITE_ALG_LOOP (name = p->name); if (name != NULL) ret = 0; else ret = 1; return ret; } #define SWAP(x, y) memcpy(tmp,x,size); \ memcpy(x,y,size); \ memcpy(y,tmp,size); #define MAX_ELEM_SIZE 4 inline static int _gnutls_partition (gnutls_session_t session, void *_base, size_t nmemb, size_t size, int (*compar) (gnutls_session_t, const void *, const void *)) { uint8_t *base = _base; uint8_t tmp[MAX_ELEM_SIZE]; uint8_t ptmp[MAX_ELEM_SIZE]; unsigned int pivot; unsigned int i, j; unsigned int full; i = pivot = 0; j = full = (nmemb - 1) * size; memcpy (ptmp, &base[0], size); /* set pivot item */ while (i < j) { while ((compar (session, &base[i], ptmp) <= 0) && (i < full)) { i += size; } while ((compar (session, &base[j], ptmp) >= 0) && (j > 0)) j -= size; if (i < j) { SWAP (&base[j], &base[i]); } } if (j > pivot) { SWAP (&base[pivot], &base[j]); pivot = j; } else if (i < pivot) { SWAP (&base[pivot], &base[i]); pivot = i; } return pivot / size; } static void _gnutls_qsort (gnutls_session_t session, void *_base, size_t nmemb, size_t size, int (*compar) (gnutls_session_t, const void *, const void *)) { unsigned int pivot; char *base = _base; size_t snmemb = nmemb; #ifdef DEBUG if (size > MAX_ELEM_SIZE) { gnutls_assert (); _gnutls_debug_log ("QSORT BUG\n"); exit (1); } #endif if (snmemb <= 1) return; pivot = _gnutls_partition (session, _base, nmemb, size, compar); _gnutls_qsort (session, base, pivot < nmemb ? pivot + 1 : pivot, size, compar); _gnutls_qsort (session, &base[(pivot + 1) * size], nmemb - pivot - 1, size, compar); } /* a compare function for KX algorithms (using priorities). * For use with qsort */ static int _gnutls_compare_algo (gnutls_session_t session, const void *i_A1, const void *i_A2) { gnutls_kx_algorithm_t kA1 = _gnutls_cipher_suite_get_kx_algo ((const cipher_suite_st *) i_A1); gnutls_kx_algorithm_t kA2 = _gnutls_cipher_suite_get_kx_algo ((const cipher_suite_st *) i_A2); gnutls_cipher_algorithm_t cA1 = _gnutls_cipher_suite_get_cipher_algo ((const cipher_suite_st *) i_A1); gnutls_cipher_algorithm_t cA2 = _gnutls_cipher_suite_get_cipher_algo ((const cipher_suite_st *) i_A2); gnutls_mac_algorithm_t mA1 = _gnutls_cipher_suite_get_mac_algo ((const cipher_suite_st *) i_A1); gnutls_mac_algorithm_t mA2 = _gnutls_cipher_suite_get_mac_algo ((const cipher_suite_st *) i_A2); int p1 = (_gnutls_kx_priority (session, kA1) + 1) * 64; int p2 = (_gnutls_kx_priority (session, kA2) + 1) * 64; p1 += (_gnutls_cipher_priority (session, cA1) + 1) * 8; p2 += (_gnutls_cipher_priority (session, cA2) + 1) * 8; p1 += _gnutls_mac_priority (session, mA1); p2 += _gnutls_mac_priority (session, mA2); if (p1 > p2) { return 1; } else { if (p1 == p2) { return 0; } return -1; } } #ifdef SORT_DEBUG static void _gnutls_bsort (gnutls_session_t session, void *_base, size_t nmemb, size_t size, int (*compar) (gnutls_session_t, const void *, const void *)) { unsigned int i, j; int full = nmemb * size; char *base = _base; char tmp[MAX_ELEM_SIZE]; for (i = 0; i < full; i += size) { for (j = 0; j < full; j += size) { if (compar (session, &base[i], &base[j]) < 0) { SWAP (&base[j], &base[i]); } } } } #endif int _gnutls_supported_ciphersuites_sorted (gnutls_session_t session, cipher_suite_st ** ciphers) { #ifdef SORT_DEBUG unsigned int i; #endif int count; count = _gnutls_supported_ciphersuites (session, ciphers); if (count <= 0) { gnutls_assert (); return count; } #ifdef SORT_DEBUG _gnutls_debug_log ("Unsorted: \n"); for (i = 0; i < count; i++) _gnutls_debug_log ("\t%d: %s\n", i, _gnutls_cipher_suite_get_name ((*ciphers)[i])); #endif _gnutls_qsort (session, *ciphers, count, sizeof (cipher_suite_st), _gnutls_compare_algo); #ifdef SORT_DEBUG _gnutls_debug_log ("Sorted: \n"); for (i = 0; i < count; i++) _gnutls_debug_log ("\t%d: %s\n", i, _gnutls_cipher_suite_get_name ((*ciphers)[i])); #endif return count; } int _gnutls_supported_ciphersuites (gnutls_session_t session, cipher_suite_st ** _ciphers) { unsigned int i, ret_count, j; unsigned int count = CIPHER_SUITES_COUNT; cipher_suite_st *tmp_ciphers; cipher_suite_st *ciphers; gnutls_protocol_t version; if (count == 0) { return 0; } tmp_ciphers = gnutls_alloca (count * sizeof (cipher_suite_st)); if (tmp_ciphers == NULL) return GNUTLS_E_MEMORY_ERROR; ciphers = gnutls_malloc (count * sizeof (cipher_suite_st)); if (ciphers == NULL) { gnutls_afree (tmp_ciphers); return GNUTLS_E_MEMORY_ERROR; } version = gnutls_protocol_get_version (session); for (i = 0; i < count; i++) { memcpy (&tmp_ciphers[i], &cs_algorithms[i].id, sizeof (cipher_suite_st)); } for (i = j = 0; i < count; i++) { /* remove private cipher suites, if requested. */ if (tmp_ciphers[i].suite[0] == 0xFF && session->internals.enable_private == 0) continue; /* remove cipher suites which do not support the * protocol version used. */ if (_gnutls_cipher_suite_get_version (&tmp_ciphers[i]) > version) continue; if (_gnutls_kx_priority (session, _gnutls_cipher_suite_get_kx_algo (&tmp_ciphers[i])) < 0) continue; if (_gnutls_mac_priority (session, _gnutls_cipher_suite_get_mac_algo (&tmp_ciphers[i])) < 0) continue; if (_gnutls_cipher_priority (session, _gnutls_cipher_suite_get_cipher_algo (&tmp_ciphers[i])) < 0) continue; memcpy (&ciphers[j], &tmp_ciphers[i], sizeof (cipher_suite_st)); j++; } ret_count = j; #if 0 /* expensive */ if (ret_count > 0 && ret_count != count) { ciphers = gnutls_realloc_fast (ciphers, ret_count * sizeof (cipher_suite_st)); } else { if (ret_count != count) { gnutls_free (ciphers); ciphers = NULL; } } #endif gnutls_afree (tmp_ciphers); /* This function can no longer return 0 cipher suites. * It returns an error code instead. */ if (ret_count == 0) { gnutls_assert (); gnutls_free (ciphers); return GNUTLS_E_NO_CIPHER_SUITES; } *_ciphers = ciphers; return ret_count; } /* For compression */ #define MIN_PRIVATE_COMP_ALGO 0xEF /* returns the TLS numbers of the compression methods we support */ #define SUPPORTED_COMPRESSION_METHODS session->internals.compression_method_priority.algorithms int _gnutls_supported_compression_methods (gnutls_session_t session, uint8_t ** comp) { unsigned int i, j; *comp = gnutls_malloc (sizeof (uint8_t) * SUPPORTED_COMPRESSION_METHODS); if (*comp == NULL) return GNUTLS_E_MEMORY_ERROR; for (i = j = 0; i < SUPPORTED_COMPRESSION_METHODS; i++) { int tmp = _gnutls_compression_get_num (session->internals. compression_method_priority. priority[i]); /* remove private compression algorithms, if requested. */ if (tmp == -1 || (tmp >= MIN_PRIVATE_COMP_ALGO && session->internals.enable_private == 0)) { gnutls_assert (); continue; } (*comp)[j] = (uint8_t) tmp; j++; } if (j == 0) { gnutls_assert (); gnutls_free (*comp); *comp = NULL; return GNUTLS_E_NO_COMPRESSION_ALGORITHMS; } return j; } /** * gnutls_certificate_type_get_name - Returns a string with the name of the specified certificate type * @type: is a certificate type * * Returns a string (or NULL) that contains the name * of the specified certificate type. **/ const char * gnutls_certificate_type_get_name (gnutls_certificate_type_t type) { const char *ret = NULL; if (type == GNUTLS_CRT_X509) ret = "X.509"; if (type == GNUTLS_CRT_OPENPGP) ret = "OPENPGP"; return ret; } static const gnutls_certificate_type_t supported_certificate_types[] = { GNUTLS_CRT_X509, GNUTLS_CRT_OPENPGP, 0 }; /** * gnutls_certificate_type_list: * * Get a list of certificate types. Note that to be able to use * OpenPGP certificates, you must link to libgnutls-extra and call * gnutls_global_init_extra(). * * Returns: Return a zero-terminated list of * %gnutls_certificate_type_t integers indicating the available * certificate types. * **/ const gnutls_certificate_type_t * gnutls_certificate_type_list (void) { return supported_certificate_types; } /* returns the gnutls_pk_algorithm_t which is compatible with * the given gnutls_kx_algorithm_t. */ gnutls_pk_algorithm_t _gnutls_map_pk_get_pk (gnutls_kx_algorithm_t kx_algorithm) { gnutls_pk_algorithm_t ret = -1; GNUTLS_PK_MAP_ALG_LOOP (ret = p->pk_algorithm) return ret; } /* Returns the encipher type for the given key exchange algorithm. * That one of CIPHER_ENCRYPT, CIPHER_SIGN, CIPHER_IGN. * * ex. GNUTLS_KX_RSA requires a certificate able to encrypt... so returns CIPHER_ENCRYPT. */ enum encipher_type _gnutls_kx_encipher_type (gnutls_kx_algorithm_t kx_algorithm) { int ret = CIPHER_IGN; GNUTLS_PK_MAP_ALG_LOOP (ret = p->encipher_type) return ret; } /* signature algorithms; */ struct gnutls_sign_entry { const char *name; const char *oid; gnutls_sign_algorithm_t id; gnutls_pk_algorithm_t pk; gnutls_mac_algorithm_t mac; }; typedef struct gnutls_sign_entry gnutls_sign_entry; static const gnutls_sign_entry sign_algorithms[] = { {"RSA-SHA", SIG_RSA_SHA1_OID, GNUTLS_SIGN_RSA_SHA1, GNUTLS_PK_RSA, GNUTLS_MAC_SHA1}, {"RSA-SHA256", SIG_RSA_SHA256_OID, GNUTLS_SIGN_RSA_SHA256, GNUTLS_PK_RSA, GNUTLS_MAC_SHA256}, {"RSA-SHA384", SIG_RSA_SHA384_OID, GNUTLS_SIGN_RSA_SHA384, GNUTLS_PK_RSA, GNUTLS_MAC_SHA384}, {"RSA-SHA512", SIG_RSA_SHA512_OID, GNUTLS_SIGN_RSA_SHA512, GNUTLS_PK_RSA, GNUTLS_MAC_SHA512}, {"RSA-RMD160", SIG_RSA_RMD160_OID, GNUTLS_SIGN_RSA_RMD160, GNUTLS_PK_RSA, GNUTLS_MAC_RMD160}, {"DSA-SHA", SIG_DSA_SHA1_OID, GNUTLS_SIGN_DSA_SHA1, GNUTLS_PK_DSA, GNUTLS_MAC_SHA1}, {"RSA-MD5", SIG_RSA_MD5_OID, GNUTLS_SIGN_RSA_MD5, GNUTLS_PK_RSA, GNUTLS_MAC_MD5}, {"RSA-MD2", SIG_RSA_MD2_OID, GNUTLS_SIGN_RSA_MD2, GNUTLS_PK_RSA, GNUTLS_MAC_MD2}, {"GOST R 34.10-2001", SIG_GOST_R3410_2001_OID, 0, 0, 0}, {"GOST R 34.10-94", SIG_GOST_R3410_94_OID, 0, 0, 0}, {0, 0, 0, 0, 0} }; #define GNUTLS_SIGN_LOOP(b) \ do { \ const gnutls_sign_entry *p; \ for(p = sign_algorithms; p->name != NULL; p++) { b ; } \ } while (0) #define GNUTLS_SIGN_ALG_LOOP(a) \ GNUTLS_SIGN_LOOP( if(p->id && p->id == sign) { a; break; } ) /** * gnutls_sign_algorithm_get_name - Returns a string with the name of the specified sign algorithm * @algorithm: is a sign algorithm * * Returns a string that contains the name * of the specified sign algorithm or NULL. **/ const char * gnutls_sign_algorithm_get_name (gnutls_sign_algorithm_t sign) { const char *ret = NULL; /* avoid prefix */ GNUTLS_SIGN_ALG_LOOP (ret = p->name); return ret; } gnutls_sign_algorithm_t _gnutls_x509_oid2sign_algorithm (const char *oid) { gnutls_sign_algorithm_t ret = 0; GNUTLS_SIGN_LOOP (if (strcmp (oid, p->oid) == 0) { ret = p->id; break;} ); if (ret == 0) { _gnutls_x509_log ("Unknown SIGN OID: '%s'\n", oid); return GNUTLS_SIGN_UNKNOWN; } return ret; } gnutls_sign_algorithm_t _gnutls_x509_pk_to_sign (gnutls_pk_algorithm_t pk, gnutls_mac_algorithm_t mac) { gnutls_sign_algorithm_t ret = 0; GNUTLS_SIGN_LOOP (if (pk == p->pk && mac == p->mac) { ret = p->id; break;} ); if (ret == 0) return GNUTLS_SIGN_UNKNOWN; return ret; } const char * _gnutls_x509_sign_to_oid (gnutls_pk_algorithm_t pk, gnutls_mac_algorithm_t mac) { gnutls_sign_algorithm_t sign; const char *ret = NULL; sign = _gnutls_x509_pk_to_sign (pk, mac); if (sign == GNUTLS_SIGN_UNKNOWN) return NULL; GNUTLS_SIGN_ALG_LOOP (ret = p->oid); return ret; } /* pk algorithms; */ struct gnutls_pk_entry { const char *name; const char *oid; gnutls_pk_algorithm_t id; }; typedef struct gnutls_pk_entry gnutls_pk_entry; static const gnutls_pk_entry pk_algorithms[] = { {"RSA", PK_PKIX1_RSA_OID, GNUTLS_PK_RSA}, {"DSA", PK_DSA_OID, GNUTLS_PK_DSA}, {"GOST R 34.10-2001", PK_GOST_R3410_2001_OID, 0}, {"GOST R 34.10-94", PK_GOST_R3410_94_OID, 0}, {0, 0, 0} }; /** * gnutls_pk_algorithm_get_name - Returns a string with the name of the specified public key algorithm * @algorithm: is a pk algorithm * * Returns a string that contains the name * of the specified public key algorithm or NULL. **/ const char * gnutls_pk_algorithm_get_name (gnutls_pk_algorithm_t algorithm) { const char *ret = NULL; const gnutls_pk_entry *p; for (p = pk_algorithms; p->name != NULL; p++) if (p->id && p->id == algorithm) { ret = p->name; break; } return ret; } gnutls_pk_algorithm_t _gnutls_x509_oid2pk_algorithm (const char *oid) { gnutls_pk_algorithm_t ret = GNUTLS_PK_UNKNOWN; const gnutls_pk_entry *p; for (p = pk_algorithms; p->name != NULL; p++) if (strcmp (p->oid, oid) == 0) { ret = p->id; break; } return ret; } const char * _gnutls_x509_pk_to_oid (gnutls_pk_algorithm_t algorithm) { const char *ret = NULL; const gnutls_pk_entry *p; for (p = pk_algorithms; p->name != NULL; p++) if (p->id == algorithm) { ret = p->oid; break; } return ret; }