/* * GnuTLS PKCS#11 support * Copyright (C) 2010 Free Software Foundation * * Author: Nikos Mavrogiannopoulos * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct gnutls_privkey_st { gnutls_privkey_type_t type; gnutls_pk_algorithm_t pk_algorithm; union { gnutls_x509_privkey_t x509; gnutls_pkcs11_privkey_t pkcs11; #ifdef ENABLE_OPENPGP gnutls_openpgp_privkey_t openpgp; #endif } key; unsigned int flags; }; /** * gnutls_privkey_get_type: * @key: should contain a #gnutls_privkey_t structure * * This function will return the type of the private key. This is * actually the type of the subsystem used to set this private key. * * Returns: a member of the #gnutls_privkey_type_t enumeration on * success, or a negative value on error. **/ gnutls_privkey_type_t gnutls_privkey_get_type (gnutls_privkey_t key) { return key->type; } /** * gnutls_privkey_get_pk_algorithm: * @key: should contain a #gnutls_privkey_t structure * @bits: If set will return the number of bits of the parameters (may be NULL) * * This function will return the public key algorithm of a private * key and if possible will return a number of bits that indicates * the security parameter of the key. * * Returns: a member of the #gnutls_pk_algorithm_t enumeration on * success, or a negative value on error. **/ int gnutls_privkey_get_pk_algorithm (gnutls_privkey_t key, unsigned int *bits) { switch (key->type) { #ifdef ENABLE_OPENPGP case GNUTLS_PRIVKEY_OPENPGP: return gnutls_openpgp_privkey_get_pk_algorithm (key->key.openpgp, bits); #endif case GNUTLS_PRIVKEY_PKCS11: return gnutls_pkcs11_privkey_get_pk_algorithm (key->key.pkcs11, bits); case GNUTLS_PRIVKEY_X509: if (bits) *bits = _gnutls_mpi_get_nbits (key->key.x509->params[0]); return gnutls_x509_privkey_get_pk_algorithm (key->key.x509); default: gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } } static int privkey_to_pubkey (gnutls_pk_algorithm_t pk, const bigint_t * params, int params_size, bigint_t * new_params, int *new_params_size) { int ret, i; switch (pk) { case GNUTLS_PK_RSA: if (*new_params_size < RSA_PUBLIC_PARAMS || params_size < RSA_PRIVATE_PARAMS) { gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } new_params[0] = _gnutls_mpi_copy (params[0]); new_params[1] = _gnutls_mpi_copy (params[1]); *new_params_size = RSA_PUBLIC_PARAMS; if (new_params[0] == NULL || new_params[1] == NULL) { gnutls_assert (); ret = GNUTLS_E_MEMORY_ERROR; goto cleanup; } break; case GNUTLS_PK_DSA: if (*new_params_size < DSA_PUBLIC_PARAMS || params_size < DSA_PRIVATE_PARAMS) { gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } new_params[0] = _gnutls_mpi_copy (params[0]); new_params[1] = _gnutls_mpi_copy (params[1]); new_params[2] = _gnutls_mpi_copy (params[2]); new_params[3] = _gnutls_mpi_copy (params[3]); *new_params_size = DSA_PUBLIC_PARAMS; if (new_params[0] == NULL || new_params[1] == NULL || new_params[2] == NULL || new_params[3] == NULL) { gnutls_assert (); ret = GNUTLS_E_MEMORY_ERROR; goto cleanup; } break; default: gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } return 0; cleanup: for (i = 0; i < *new_params_size; i++) _gnutls_mpi_release (new_params[i]); return ret; } /* Returns the public key of the private key (if possible) */ int _gnutls_privkey_get_public_mpis (gnutls_privkey_t key, bigint_t * params, int *params_size) { int ret; gnutls_pk_algorithm_t pk = gnutls_privkey_get_pk_algorithm (key, NULL); switch (key->type) { #ifdef ENABLE_OPENPGP case GNUTLS_PRIVKEY_OPENPGP: { bigint_t tmp_params[MAX_PRIV_PARAMS_SIZE]; int tmp_params_size = MAX_PRIV_PARAMS_SIZE; uint32_t kid[2], i; gnutls_openpgp_keyid_t keyid; ret = gnutls_openpgp_privkey_get_preferred_key_id (key->key.openpgp, keyid); if (ret == 0) { KEYID_IMPORT (kid, keyid); ret = _gnutls_openpgp_privkey_get_mpis (key->key.openpgp, kid, tmp_params, &tmp_params_size); } else ret = _gnutls_openpgp_privkey_get_mpis (key->key.openpgp, NULL, tmp_params, &tmp_params_size); if (ret < 0) { gnutls_assert (); return ret; } ret = privkey_to_pubkey (pk, tmp_params, tmp_params_size, params, params_size); for (i = 0; i < tmp_params_size; i++) _gnutls_mpi_release (&tmp_params[i]); } break; #endif case GNUTLS_PRIVKEY_X509: ret = privkey_to_pubkey (pk, key->key.x509->params, key->key.x509->params_size, params, params_size); break; default: gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } return ret; } /** * gnutls_privkey_init: * @key: The structure to be initialized * * This function will initialize an private key structure. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. **/ int gnutls_privkey_init (gnutls_privkey_t * key) { *key = gnutls_calloc (1, sizeof (struct gnutls_privkey_st)); if (*key == NULL) { gnutls_assert (); return GNUTLS_E_MEMORY_ERROR; } return 0; } /** * gnutls_privkey_deinit: * @key: The structure to be deinitialized * * This function will deinitialize a private key structure. **/ void gnutls_privkey_deinit (gnutls_privkey_t key) { if (key->flags & GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE) switch (key->type) { #ifdef ENABLE_OPENPGP case GNUTLS_PRIVKEY_OPENPGP: gnutls_openpgp_privkey_deinit (key->key.openpgp); break; #endif case GNUTLS_PRIVKEY_PKCS11: gnutls_pkcs11_privkey_deinit (key->key.pkcs11); break; case GNUTLS_PRIVKEY_X509: gnutls_x509_privkey_deinit (key->key.x509); break; } gnutls_free (key); } /* will fail if the private key contains an actual key. */ static int check_if_clean(gnutls_privkey_t key) { if (key->type != 0) return GNUTLS_E_INVALID_REQUEST; return 0; } /** * gnutls_privkey_import_pkcs11: * @pkey: The private key * @key: The private key to be imported * @flags: should be zero * * This function will import the given private key to the abstract * #gnutls_privkey_t structure. * * The #gnutls_pkcs11_privkey_t object must not be deallocated * during the lifetime of this structure. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. **/ int gnutls_privkey_import_pkcs11 (gnutls_privkey_t pkey, gnutls_pkcs11_privkey_t key, unsigned int flags) { int ret; ret = check_if_clean(pkey); if (ret < 0) { gnutls_assert(); return ret; } pkey->key.pkcs11 = key; pkey->type = GNUTLS_PRIVKEY_PKCS11; pkey->pk_algorithm = gnutls_pkcs11_privkey_get_pk_algorithm (key, NULL); pkey->flags = flags; return 0; } /** * gnutls_privkey_import_x509: * @pkey: The private key * @key: The private key to be imported * @flags: should be zero * * This function will import the given private key to the abstract * #gnutls_privkey_t structure. * * The #gnutls_x509_privkey_t object must not be deallocated * during the lifetime of this structure. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. **/ int gnutls_privkey_import_x509 (gnutls_privkey_t pkey, gnutls_x509_privkey_t key, unsigned int flags) { int ret; ret = check_if_clean(pkey); if (ret < 0) { gnutls_assert(); return ret; } pkey->key.x509 = key; pkey->type = GNUTLS_PRIVKEY_X509; pkey->pk_algorithm = gnutls_x509_privkey_get_pk_algorithm (key); pkey->flags = flags; return 0; } #ifdef ENABLE_OPENPGP /** * gnutls_privkey_import_openpgp: * @pkey: The private key * @key: The private key to be imported * @flags: should be zero * * This function will import the given private key to the abstract * #gnutls_privkey_t structure. * * The #gnutls_openpgp_privkey_t object must not be deallocated * during the lifetime of this structure. The subkey set as * preferred will be used, or the master key otherwise. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. **/ int gnutls_privkey_import_openpgp (gnutls_privkey_t pkey, gnutls_openpgp_privkey_t key, unsigned int flags) { int ret, idx; gnutls_openpgp_keyid_t keyid; ret = check_if_clean(pkey); if (ret < 0) { gnutls_assert(); return ret; } pkey->key.openpgp = key; pkey->type = GNUTLS_PRIVKEY_OPENPGP; ret = gnutls_openpgp_privkey_get_preferred_key_id (key, keyid); if (ret == GNUTLS_E_OPENPGP_PREFERRED_KEY_ERROR) { pkey->pk_algorithm = gnutls_openpgp_privkey_get_pk_algorithm(key, NULL); } else { if (ret < 0) return gnutls_assert_val(ret); idx = gnutls_openpgp_privkey_get_subkey_idx (key, keyid); pkey->pk_algorithm = gnutls_openpgp_privkey_get_subkey_pk_algorithm (key, idx, NULL); } pkey->flags = flags; return 0; } #endif /** * gnutls_privkey_sign_data: * @signer: Holds the key * @hash: should be a digest algorithm * @flags: should be 0 for now * @data: holds the data to be signed * @signature: will contain the signature allocate with gnutls_malloc() * * This function will sign the given data using a signature algorithm * supported by the private key. Signature algorithms are always used * together with a hash functions. Different hash functions may be * used for the RSA algorithm, but only SHA-1 for the DSA keys. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. * * Since: 2.12.0 **/ int gnutls_privkey_sign_data (gnutls_privkey_t signer, gnutls_digest_algorithm_t hash, unsigned int flags, const gnutls_datum_t * data, gnutls_datum_t * signature) { int ret; gnutls_datum_t digest; ret = pk_hash_data (signer->pk_algorithm, hash, NULL, data, &digest); if (ret < 0) { gnutls_assert (); return ret; } ret = pk_prepare_hash (signer->pk_algorithm, hash, &digest); if (ret < 0) { gnutls_assert (); goto cleanup; } ret = _gnutls_privkey_sign_hash (signer, &digest, signature); _gnutls_free_datum (&digest); if (ret < 0) { gnutls_assert (); return ret; } return 0; cleanup: _gnutls_free_datum (&digest); return ret; } /** * gnutls_privkey_sign_hash: * @signer: Holds the signer's key * @hash_algo: The hash algorithm used * @flags: zero for now * @hash_data: holds the data to be signed * @signature: will contain newly allocated signature * * This function will sign the given hashed data using a signature algorithm * supported by the private key. Signature algorithms are always used * together with a hash functions. Different hash functions may be * used for the RSA algorithm, but only SHA-XXX for the DSA keys. * * Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine * the hash algorithm. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. * * Since: 2.12.0 **/ int gnutls_privkey_sign_hash (gnutls_privkey_t signer, gnutls_digest_algorithm_t hash_algo, unsigned int flags, const gnutls_datum_t * hash_data, gnutls_datum_t * signature) { int ret; gnutls_datum_t digest; digest.data = gnutls_malloc (hash_data->size); if (digest.data == NULL) { gnutls_assert (); return GNUTLS_E_MEMORY_ERROR; } digest.size = hash_data->size; memcpy (digest.data, hash_data->data, digest.size); ret = pk_prepare_hash (signer->pk_algorithm, hash_algo, &digest); if (ret < 0) { gnutls_assert (); goto cleanup; } ret = _gnutls_privkey_sign_hash (signer, &digest, signature); if (ret < 0) { gnutls_assert (); goto cleanup; } ret = 0; cleanup: _gnutls_free_datum (&digest); return ret; } /*- * _gnutls_privkey_sign_hash: * @key: Holds the key * @data: holds the data to be signed * @signature: will contain the signature allocate with gnutls_malloc() * * This function will sign the given data using a signature algorithm * supported by the private key. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. -*/ int _gnutls_privkey_sign_hash (gnutls_privkey_t key, const gnutls_datum_t * hash, gnutls_datum_t * signature) { switch (key->type) { #ifdef ENABLE_OPENPGP case GNUTLS_PRIVKEY_OPENPGP: return gnutls_openpgp_privkey_sign_hash (key->key.openpgp, hash, signature); #endif case GNUTLS_PRIVKEY_PKCS11: return _gnutls_pkcs11_privkey_sign_hash (key->key.pkcs11, hash, signature); case GNUTLS_PRIVKEY_X509: return _gnutls_soft_sign (key->key.x509->pk_algorithm, key->key.x509->params, key->key.x509->params_size, hash, signature); default: gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } } /** * gnutls_privkey_decrypt_data: * @key: Holds the key * @flags: zero for now * @ciphertext: holds the data to be decrypted * @plaintext: will contain the decrypted data, allocated with gnutls_malloc() * * This function will decrypt the given data using the algorithm * supported by the private key. * * Returns: On success, %GNUTLS_E_SUCCESS is returned, otherwise a * negative error value. **/ int gnutls_privkey_decrypt_data (gnutls_privkey_t key, unsigned int flags, const gnutls_datum_t * ciphertext, gnutls_datum_t * plaintext) { if (key->pk_algorithm != GNUTLS_PK_RSA) { gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } switch (key->type) { #ifdef ENABLE_OPENPGP case GNUTLS_PRIVKEY_OPENPGP: return _gnutls_openpgp_privkey_decrypt_data (key->key.openpgp, flags, ciphertext, plaintext); #endif case GNUTLS_PRIVKEY_X509: return _gnutls_pkcs1_rsa_decrypt (plaintext, ciphertext, key->key.x509->params, key->key.x509->params_size, 2); case GNUTLS_PRIVKEY_PKCS11: return _gnutls_pkcs11_privkey_decrypt_data (key->key.pkcs11, flags, ciphertext, plaintext); default: gnutls_assert (); return GNUTLS_E_INVALID_REQUEST; } }