/*
* Copyright (C) 2003-2012 Free Software Foundation, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GnuTLS.
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/**
* gnutls_x509_privkey_init:
* @key: The structure to be initialized
*
* This function will initialize an private key structure.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_init (gnutls_x509_privkey_t * key)
{
*key = gnutls_calloc (1, sizeof (gnutls_x509_privkey_int));
if (*key)
{
(*key)->key = ASN1_TYPE_EMPTY;
(*key)->pk_algorithm = GNUTLS_PK_UNKNOWN;
return 0; /* success */
}
return GNUTLS_E_MEMORY_ERROR;
}
/**
* gnutls_x509_privkey_deinit:
* @key: The structure to be deinitialized
*
* This function will deinitialize a private key structure.
**/
void
gnutls_x509_privkey_deinit (gnutls_x509_privkey_t key)
{
if (!key)
return;
gnutls_pk_params_release(&key->params);
asn1_delete_structure (&key->key);
gnutls_free (key);
}
/**
* gnutls_x509_privkey_cpy:
* @dst: The destination key, which should be initialized.
* @src: The source key
*
* This function will copy a private key from source to destination
* key. Destination has to be initialized.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_cpy (gnutls_x509_privkey_t dst, gnutls_x509_privkey_t src)
{
unsigned int i;
int ret;
if (!src || !dst)
return GNUTLS_E_INVALID_REQUEST;
for (i = 0; i < src->params.params_nr; i++)
{
dst->params.params[i] = _gnutls_mpi_copy (src->params.params[i]);
if (dst->params.params[i] == NULL)
return GNUTLS_E_MEMORY_ERROR;
}
dst->params.params_nr = src->params.params_nr;
dst->params.flags = src->params.flags;
dst->pk_algorithm = src->pk_algorithm;
ret = _gnutls_asn1_encode_privkey (dst->pk_algorithm, &dst->key, &dst->params);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
return 0;
}
/* Converts an RSA PKCS#1 key to
* an internal structure (gnutls_private_key)
*/
ASN1_TYPE
_gnutls_privkey_decode_pkcs1_rsa_key (const gnutls_datum_t * raw_key,
gnutls_x509_privkey_t pkey)
{
int result;
ASN1_TYPE pkey_asn;
gnutls_pk_params_init(&pkey->params);
if ((result =
asn1_create_element (_gnutls_get_gnutls_asn (),
"GNUTLS.RSAPrivateKey",
&pkey_asn)) != ASN1_SUCCESS)
{
gnutls_assert ();
return NULL;
}
result = asn1_der_decoding (&pkey_asn, raw_key->data, raw_key->size, NULL);
if (result != ASN1_SUCCESS)
{
gnutls_assert ();
goto error;
}
if ((result = _gnutls_x509_read_int (pkey_asn, "modulus",
&pkey->params.params[0])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result =
_gnutls_x509_read_int (pkey_asn, "publicExponent",
&pkey->params.params[1])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result =
_gnutls_x509_read_int (pkey_asn, "privateExponent",
&pkey->params.params[2])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (pkey_asn, "prime1",
&pkey->params.params[3])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (pkey_asn, "prime2",
&pkey->params.params[4])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (pkey_asn, "coefficient",
&pkey->params.params[5])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (pkey_asn, "exponent1",
&pkey->params.params[6])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (pkey_asn, "exponent2",
&pkey->params.params[7])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
result = _gnutls_pk_fixup (GNUTLS_PK_RSA, GNUTLS_IMPORT, &pkey->params);
if (result < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr = RSA_PRIVATE_PARAMS;
return pkey_asn;
error:
asn1_delete_structure (&pkey_asn);
gnutls_pk_params_release (&pkey->params);
return NULL;
}
/* Converts an ECC key to
* an internal structure (gnutls_private_key)
*/
ASN1_TYPE
_gnutls_privkey_decode_ecc_key (const gnutls_datum_t * raw_key,
gnutls_x509_privkey_t pkey)
{
int ret;
ASN1_TYPE pkey_asn;
unsigned int version;
char oid[MAX_OID_SIZE];
int oid_size;
gnutls_datum out;
gnutls_pk_params_init(&pkey->params);
if ((ret =
asn1_create_element (_gnutls_get_gnutls_asn (),
"GNUTLS.ECPrivateKey",
&pkey_asn)) != ASN1_SUCCESS)
{
gnutls_assert ();
return NULL;
}
ret = asn1_der_decoding (&pkey_asn, raw_key->data, raw_key->size, NULL);
if (ret != ASN1_SUCCESS)
{
gnutls_assert ();
goto error;
}
ret = _gnutls_x509_read_uint (pkey_asn, "Version", &version);
if (ret < 0)
{
gnutls_assert();
goto error;
}
if (version != 1)
{
_gnutls_debug_log("ECC private key version %u is not supported\n", version);
gnutls_assert();
goto error;
}
/* read the curve */
oid_size = sizeof(oid);
ret = asn1_read_value(pkey_asn, "parameters.namedCurve", oid, &oid_size);
if (ret != ASN1_SUCCESS)
{
gnutls_assert ();
goto error;
}
pkey->params.flags = _gnutls_oid_to_ecc_curve(oid);
if (pkey->params.flags == GNUTLS_ECC_CURVE_INVALID)
{
_gnutls_debug_log("Curve %s is not supported\n", oid);
gnutls_assert();
goto error;
}
ret = _gnutls_ecc_curve_fill_params(pkey->params.flags, &pkey->params);
if (ret < 0)
{
gnutls_assert();
goto error;
}
/* read the public key */
ret = _gnutls_x509_read_value(pkey_asn, "publicKey", &out, 2);
if (ret < 0)
{
gnutls_assert();
goto error;
}
ret = _gnutls_ecc_ansi_x963_import (out.data, out.size, &pkey->params.params[ECC_X],
&pkey->params.params[ECC_Y]);
_gnutls_free_datum(&out);
if (ret < 0)
{
gnutls_assert();
goto error;
}
pkey->params.params_nr += 2;
/* read the private key */
ret = _gnutls_x509_read_int (pkey_asn, "privateKey", &pkey->params.params[ECC_K]);
if (ret < 0)
{
gnutls_assert();
goto error;
}
pkey->params.params_nr ++;
return pkey_asn;
error:
asn1_delete_structure (&pkey_asn);
gnutls_pk_params_release (&pkey->params);
return NULL;
}
static ASN1_TYPE
decode_dsa_key (const gnutls_datum_t * raw_key, gnutls_x509_privkey_t pkey)
{
int result;
ASN1_TYPE dsa_asn;
if ((result =
asn1_create_element (_gnutls_get_gnutls_asn (),
"GNUTLS.DSAPrivateKey",
&dsa_asn)) != ASN1_SUCCESS)
{
gnutls_assert ();
return NULL;
}
pkey->params.params_nr = 0;
result = asn1_der_decoding (&dsa_asn, raw_key->data, raw_key->size, NULL);
if (result != ASN1_SUCCESS)
{
gnutls_assert ();
goto error;
}
if ((result = _gnutls_x509_read_int (dsa_asn, "p", &pkey->params.params[0])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (dsa_asn, "q", &pkey->params.params[1])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (dsa_asn, "g", &pkey->params.params[2])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (dsa_asn, "Y", &pkey->params.params[3])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
if ((result = _gnutls_x509_read_int (dsa_asn, "priv",
&pkey->params.params[4])) < 0)
{
gnutls_assert ();
goto error;
}
pkey->params.params_nr++;
return dsa_asn;
error:
asn1_delete_structure (&dsa_asn);
gnutls_pk_params_release(&pkey->params);
return NULL;
}
#define PEM_KEY_DSA "DSA PRIVATE KEY"
#define PEM_KEY_RSA "RSA PRIVATE KEY"
#define PEM_KEY_ECC "EC PRIVATE KEY"
/**
* gnutls_x509_privkey_import:
* @key: The structure to store the parsed key
* @data: The DER or PEM encoded certificate.
* @format: One of DER or PEM
*
* This function will convert the given DER or PEM encoded key to the
* native #gnutls_x509_privkey_t format. The output will be stored in
* @key .
*
* If the key is PEM encoded it should have a header that contains "PRIVATE
* KEY". Note that this function falls back to PKCS #8 decoding without
* password, if the default format fails to import.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_import (gnutls_x509_privkey_t key,
const gnutls_datum_t * data,
gnutls_x509_crt_fmt_t format)
{
int result = 0, need_free = 0;
gnutls_datum_t _data;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
_data.data = data->data;
_data.size = data->size;
key->pk_algorithm = GNUTLS_PK_UNKNOWN;
/* If the Certificate is in PEM format then decode it
*/
if (format == GNUTLS_X509_FMT_PEM)
{
/* Try the first header */
result =
_gnutls_fbase64_decode (PEM_KEY_RSA, data->data, data->size, &_data);
if (result >= 0)
key->pk_algorithm = GNUTLS_PK_RSA;
if (result == GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR)
{
/* try for the second header */
result =
_gnutls_fbase64_decode (PEM_KEY_DSA, data->data, data->size,
&_data);
if (result >= 0)
key->pk_algorithm = GNUTLS_PK_DSA;
if (result == GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR)
{
/* try for the second header */
result =
_gnutls_fbase64_decode (PEM_KEY_ECC, data->data, data->size,
&_data);
if (result >= 0)
key->pk_algorithm = GNUTLS_PK_EC;
}
}
if (result < 0)
{
gnutls_assert ();
goto failover;
}
need_free = 1;
}
if (key->pk_algorithm == GNUTLS_PK_RSA)
{
key->key = _gnutls_privkey_decode_pkcs1_rsa_key (&_data, key);
if (key->key == NULL)
gnutls_assert ();
}
else if (key->pk_algorithm == GNUTLS_PK_DSA)
{
key->key = decode_dsa_key (&_data, key);
if (key->key == NULL)
gnutls_assert ();
}
else if (key->pk_algorithm == GNUTLS_PK_EC)
{
key->key = _gnutls_privkey_decode_ecc_key (&_data, key);
if (key->key == NULL)
gnutls_assert ();
}
else
{
/* Try decoding with both, and accept the one that
* succeeds.
*/
key->pk_algorithm = GNUTLS_PK_RSA;
key->key = _gnutls_privkey_decode_pkcs1_rsa_key (&_data, key);
if (key->key == NULL)
{
key->pk_algorithm = GNUTLS_PK_DSA;
key->key = decode_dsa_key (&_data, key);
if (key->key == NULL)
{
key->pk_algorithm = GNUTLS_PK_EC;
key->key = _gnutls_privkey_decode_ecc_key (&_data, key);
if (key->key == NULL)
gnutls_assert ();
}
}
}
if (key->key == NULL)
{
gnutls_assert ();
result = GNUTLS_E_ASN1_DER_ERROR;
goto failover;
}
if (need_free)
_gnutls_free_datum (&_data);
/* The key has now been decoded.
*/
return 0;
failover:
/* Try PKCS #8 */
if (result == GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR)
{
_gnutls_debug_log ("Falling back to PKCS #8 key decoding\n");
result = gnutls_x509_privkey_import_pkcs8 (key, data, format,
NULL, GNUTLS_PKCS_PLAIN);
}
if (need_free)
_gnutls_free_datum (&_data);
return result;
}
/**
* gnutls_x509_privkey_import2:
* @key: The structure to store the parsed key
* @data: The DER or PEM encoded certificate.
* @format: One of DER or PEM
* @password: A password (optional)
* @flags: an ORed sequence of gnutls_pkcs_encrypt_flags_t
*
* This function will import the given DER or PEM encoded key, to
* the native #gnutls_x509_privkey_t format, irrespective of the
* input format. The input format is auto-detected.
*
* The supported formats are typical X.509, PKCS #8 and the openssl
* format.
*
* If the provided key is encrypted but no password was given, then
* %GNUTLS_E_DECRYPTION_FAILED is returned.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_import2 (gnutls_x509_privkey_t key,
const gnutls_datum_t * data,
gnutls_x509_crt_fmt_t format,
const char* password, unsigned int flags)
{
int ret = 0;
if (password == NULL && !(flags & GNUTLS_PKCS_NULL_PASSWORD))
{
ret = gnutls_x509_privkey_import(key, data, format);
if (ret < 0)
{
gnutls_assert();
}
}
if ((password != NULL || (flags & GNUTLS_PKCS_NULL_PASSWORD)) || ret < 0)
{
ret = gnutls_x509_privkey_import_pkcs8(key, data, format, password, flags);
if (ret < 0)
{
if (format == GNUTLS_X509_FMT_PEM)
{
int err;
err = gnutls_x509_privkey_import_openssl(key, data, password);
if (err < 0)
{
if (err == GNUTLS_E_DECRYPTION_FAILED) ret = err;
gnutls_assert();
goto cleanup;
}
}
else
{
gnutls_assert();
goto cleanup;
}
}
}
ret = 0;
cleanup:
return ret;
}
/**
* gnutls_x509_privkey_import_rsa_raw:
* @key: The structure to store the parsed key
* @m: holds the modulus
* @e: holds the public exponent
* @d: holds the private exponent
* @p: holds the first prime (p)
* @q: holds the second prime (q)
* @u: holds the coefficient
*
* This function will convert the given RSA raw parameters to the
* native #gnutls_x509_privkey_t format. The output will be stored in
* @key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_import_rsa_raw (gnutls_x509_privkey_t key,
const gnutls_datum_t * m,
const gnutls_datum_t * e,
const gnutls_datum_t * d,
const gnutls_datum_t * p,
const gnutls_datum_t * q,
const gnutls_datum_t * u)
{
return gnutls_x509_privkey_import_rsa_raw2 (key, m, e, d, p, q, u, NULL,
NULL);
}
/**
* gnutls_x509_privkey_import_rsa_raw2:
* @key: The structure to store the parsed key
* @m: holds the modulus
* @e: holds the public exponent
* @d: holds the private exponent
* @p: holds the first prime (p)
* @q: holds the second prime (q)
* @u: holds the coefficient
* @e1: holds e1 = d mod (p-1)
* @e2: holds e2 = d mod (q-1)
*
* This function will convert the given RSA raw parameters to the
* native #gnutls_x509_privkey_t format. The output will be stored in
* @key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_import_rsa_raw2 (gnutls_x509_privkey_t key,
const gnutls_datum_t * m,
const gnutls_datum_t * e,
const gnutls_datum_t * d,
const gnutls_datum_t * p,
const gnutls_datum_t * q,
const gnutls_datum_t * u,
const gnutls_datum_t * e1,
const gnutls_datum_t * e2)
{
int ret;
size_t siz = 0;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
gnutls_pk_params_init(&key->params);
siz = m->size;
if (_gnutls_mpi_scan_nz (&key->params.params[0], m->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = e->size;
if (_gnutls_mpi_scan_nz (&key->params.params[1], e->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = d->size;
if (_gnutls_mpi_scan_nz (&key->params.params[2], d->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = p->size;
if (_gnutls_mpi_scan_nz (&key->params.params[3], p->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = q->size;
if (_gnutls_mpi_scan_nz (&key->params.params[4], q->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = u->size;
if (_gnutls_mpi_scan_nz (&key->params.params[5], u->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
if (e1 && e2)
{
siz = e1->size;
if (_gnutls_mpi_scan_nz (&key->params.params[6], e1->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
siz = e2->size;
if (_gnutls_mpi_scan_nz (&key->params.params[7], e2->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
}
ret = _gnutls_pk_fixup (GNUTLS_PK_RSA, GNUTLS_IMPORT, &key->params);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
ret = _gnutls_asn1_encode_privkey (GNUTLS_PK_RSA, &key->key, &key->params);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
key->params.params_nr = RSA_PRIVATE_PARAMS;
key->pk_algorithm = GNUTLS_PK_RSA;
return 0;
cleanup:
gnutls_pk_params_release(&key->params);
return ret;
}
/**
* gnutls_x509_privkey_import_dsa_raw:
* @key: The structure to store the parsed key
* @p: holds the p
* @q: holds the q
* @g: holds the g
* @y: holds the y
* @x: holds the x
*
* This function will convert the given DSA raw parameters to the
* native #gnutls_x509_privkey_t format. The output will be stored
* in @key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_import_dsa_raw (gnutls_x509_privkey_t key,
const gnutls_datum_t * p,
const gnutls_datum_t * q,
const gnutls_datum_t * g,
const gnutls_datum_t * y,
const gnutls_datum_t * x)
{
int ret;
size_t siz = 0;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
siz = p->size;
if (_gnutls_mpi_scan_nz (&key->params.params[0], p->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
siz = q->size;
if (_gnutls_mpi_scan_nz (&key->params.params[1], q->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
siz = g->size;
if (_gnutls_mpi_scan_nz (&key->params.params[2], g->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
siz = y->size;
if (_gnutls_mpi_scan_nz (&key->params.params[3], y->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
siz = x->size;
if (_gnutls_mpi_scan_nz (&key->params.params[4], x->data, siz))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
ret = _gnutls_asn1_encode_privkey (GNUTLS_PK_DSA, &key->key, &key->params);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
key->params.params_nr = DSA_PRIVATE_PARAMS;
key->pk_algorithm = GNUTLS_PK_DSA;
return 0;
cleanup:
gnutls_pk_params_release(&key->params);
return ret;
}
/**
* gnutls_x509_privkey_import_ecc_raw:
* @key: The structure to store the parsed key
* @curve: holds the curve
* @x: holds the x
* @y: holds the y
* @k: holds the k
*
* This function will convert the given elliptic curve parameters to the
* native #gnutls_x509_privkey_t format. The output will be stored
* in @key.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.0
**/
int
gnutls_x509_privkey_import_ecc_raw (gnutls_x509_privkey_t key,
gnutls_ecc_curve_t curve,
const gnutls_datum_t * x,
const gnutls_datum_t * y,
const gnutls_datum_t * k)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
key->params.flags = curve;
ret = _gnutls_ecc_curve_fill_params(curve, &key->params);
if (ret < 0)
return gnutls_assert_val(ret);
if (_gnutls_mpi_scan_nz (&key->params.params[ECC_X], x->data, x->size))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
if (_gnutls_mpi_scan_nz (&key->params.params[ECC_Y], y->data, y->size))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
if (_gnutls_mpi_scan_nz (&key->params.params[ECC_K], k->data, k->size))
{
gnutls_assert ();
ret = GNUTLS_E_MPI_SCAN_FAILED;
goto cleanup;
}
key->params.params_nr++;
key->pk_algorithm = GNUTLS_PK_EC;
return 0;
cleanup:
gnutls_pk_params_release(&key->params);
return ret;
}
/**
* gnutls_x509_privkey_get_pk_algorithm:
* @key: should contain a #gnutls_x509_privkey_t structure
*
* This function will return the public key algorithm of a private
* key.
*
* Returns: a member of the #gnutls_pk_algorithm_t enumeration on
* success, or a negative error code on error.
**/
int
gnutls_x509_privkey_get_pk_algorithm (gnutls_x509_privkey_t key)
{
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
return key->pk_algorithm;
}
/**
* gnutls_x509_privkey_get_pk_algorithm2:
* @key: should contain a #gnutls_x509_privkey_t structure
* @bits: The number of bits in the public key algorithm
*
* This function will return the public key algorithm of a private
* key.
*
* Returns: a member of the #gnutls_pk_algorithm_t enumeration on
* success, or a negative error code on error.
**/
int
gnutls_x509_privkey_get_pk_algorithm2 (gnutls_x509_privkey_t key, unsigned int *bits)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
if (bits)
{
ret = pubkey_to_bits(key->pk_algorithm, &key->params);
if (ret < 0) ret = 0;
*bits = ret;
}
return key->pk_algorithm;
}
static const char* set_msg(gnutls_x509_privkey_t key)
{
if (key->pk_algorithm == GNUTLS_PK_RSA)
return PEM_KEY_RSA;
else if (key->pk_algorithm == GNUTLS_PK_DSA)
return PEM_KEY_DSA;
else if (key->pk_algorithm == GNUTLS_PK_EC)
return PEM_KEY_ECC;
else
return "UNKNOWN";
}
/**
* gnutls_x509_privkey_export:
* @key: Holds the key
* @format: the format of output params. One of PEM or DER.
* @output_data: will contain a private key PEM or DER encoded
* @output_data_size: holds the size of output_data (and will be
* replaced by the actual size of parameters)
*
* This function will export the private key to a PKCS1 structure for
* RSA keys, or an integer sequence for DSA keys. The DSA keys are in
* the same format with the parameters used by openssl.
*
* If the buffer provided is not long enough to hold the output, then
* *@output_data_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER
* will be returned.
*
* If the structure is PEM encoded, it will have a header
* of "BEGIN RSA PRIVATE KEY".
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_export (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format, void *output_data,
size_t * output_data_size)
{
const char *msg;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
msg = set_msg(key);
return _gnutls_x509_export_int (key->key, format, msg,
output_data, output_data_size);
}
/**
* gnutls_x509_privkey_export2:
* @key: Holds the key
* @format: the format of output params. One of PEM or DER.
* @out: will contain a private key PEM or DER encoded
*
* This function will export the private key to a PKCS1 structure for
* RSA keys, or an integer sequence for DSA keys. The DSA keys are in
* the same format with the parameters used by openssl.
*
* The output buffer is allocated using gnutls_malloc().
*
* If the structure is PEM encoded, it will have a header
* of "BEGIN RSA PRIVATE KEY".
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since 3.1.3
**/
int
gnutls_x509_privkey_export2 (gnutls_x509_privkey_t key,
gnutls_x509_crt_fmt_t format,
gnutls_datum_t * out)
{
const char *msg;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
msg = set_msg(key);
return _gnutls_x509_export_int2 (key->key, format, msg, out);
}
/**
* gnutls_x509_privkey_sec_param:
* @key: a key structure
*
* This function will return the security parameter appropriate with
* this private key.
*
* Returns: On success, a valid security parameter is returned otherwise
* %GNUTLS_SEC_PARAM_UNKNOWN is returned.
*
* Since: 2.12.0
**/
gnutls_sec_param_t
gnutls_x509_privkey_sec_param (gnutls_x509_privkey_t key)
{
int bits;
bits = pubkey_to_bits(key->pk_algorithm, &key->params);
if (bits <= 0)
return GNUTLS_SEC_PARAM_UNKNOWN;
return gnutls_pk_bits_to_sec_param(key->pk_algorithm, bits);
}
/**
* gnutls_x509_privkey_export_ecc_raw:
* @key: a structure that holds the rsa parameters
* @curve: will hold the curve
* @x: will hold the x coordinate
* @y: will hold the y coordinate
* @k: will hold the private key
*
* This function will export the ECC private key's parameters found
* in the given structure. The new parameters will be allocated using
* gnutls_malloc() and will be stored in the appropriate datum.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 3.0
**/
int gnutls_x509_privkey_export_ecc_raw (gnutls_x509_privkey_t key,
gnutls_ecc_curve_t *curve,
gnutls_datum_t * x, gnutls_datum_t * y,
gnutls_datum_t* k)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
*curve = key->params.flags;
/* X */
ret = _gnutls_mpi_dprint_lz (key->params.params[ECC_X], x);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
/* Y */
ret = _gnutls_mpi_dprint_lz (key->params.params[ECC_Y], y);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (x);
return ret;
}
/* K */
ret = _gnutls_mpi_dprint_lz (key->params.params[ECC_K], k);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (x);
_gnutls_free_datum (y);
return ret;
}
return 0;
}
/**
* gnutls_x509_privkey_export_rsa_raw:
* @key: a structure that holds the rsa parameters
* @m: will hold the modulus
* @e: will hold the public exponent
* @d: will hold the private exponent
* @p: will hold the first prime (p)
* @q: will hold the second prime (q)
* @u: will hold the coefficient
*
* This function will export the RSA private key's parameters found
* in the given structure. The new parameters will be allocated using
* gnutls_malloc() and will be stored in the appropriate datum.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_export_rsa_raw (gnutls_x509_privkey_t key,
gnutls_datum_t * m, gnutls_datum_t * e,
gnutls_datum_t * d, gnutls_datum_t * p,
gnutls_datum_t * q, gnutls_datum_t * u)
{
return gnutls_x509_privkey_export_rsa_raw2 (key, m, e, d, p, q, u, NULL,
NULL);
}
/**
* gnutls_x509_privkey_export_rsa_raw2:
* @key: a structure that holds the rsa parameters
* @m: will hold the modulus
* @e: will hold the public exponent
* @d: will hold the private exponent
* @p: will hold the first prime (p)
* @q: will hold the second prime (q)
* @u: will hold the coefficient
* @e1: will hold e1 = d mod (p-1)
* @e2: will hold e2 = d mod (q-1)
*
* This function will export the RSA private key's parameters found
* in the given structure. The new parameters will be allocated using
* gnutls_malloc() and will be stored in the appropriate datum.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Since: 2.12.0
**/
int
gnutls_x509_privkey_export_rsa_raw2 (gnutls_x509_privkey_t key,
gnutls_datum_t * m, gnutls_datum_t * e,
gnutls_datum_t * d, gnutls_datum_t * p,
gnutls_datum_t * q, gnutls_datum_t * u,
gnutls_datum_t * e1, gnutls_datum_t * e2)
{
int ret;
gnutls_pk_params_st pk_params;
gnutls_pk_params_init(&pk_params);
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
m->data = e->data = d->data = p->data = q->data = u->data = NULL;
m->size = e->size = d->size = p->size = q->size = u->size = 0;
ret = _gnutls_pk_params_copy (&pk_params, &key->params);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
ret = _gnutls_pk_fixup (GNUTLS_PK_RSA, GNUTLS_EXPORT, &pk_params);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
ret = _gnutls_mpi_dprint_lz (pk_params.params[0], m);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* E */
ret = _gnutls_mpi_dprint_lz (pk_params.params[1], e);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* D */
ret = _gnutls_mpi_dprint_lz (pk_params.params[2], d);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* P */
ret = _gnutls_mpi_dprint_lz (pk_params.params[3], p);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* Q */
ret = _gnutls_mpi_dprint_lz (pk_params.params[4], q);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* U */
ret = _gnutls_mpi_dprint_lz (key->params.params[5], u);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
/* E1 */
if (e1)
{
ret = _gnutls_mpi_dprint_lz (key->params.params[6], e1);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
}
/* E2 */
if (e2)
{
ret = _gnutls_mpi_dprint_lz (key->params.params[7], e2);
if (ret < 0)
{
gnutls_assert ();
goto error;
}
}
gnutls_pk_params_release (&pk_params);
return 0;
error:
_gnutls_free_datum (m);
_gnutls_free_datum (d);
_gnutls_free_datum (e);
_gnutls_free_datum (p);
_gnutls_free_datum (q);
gnutls_pk_params_release (&pk_params);
return ret;
}
/**
* gnutls_x509_privkey_export_dsa_raw:
* @key: a structure that holds the DSA parameters
* @p: will hold the p
* @q: will hold the q
* @g: will hold the g
* @y: will hold the y
* @x: will hold the x
*
* This function will export the DSA private key's parameters found
* in the given structure. The new parameters will be allocated using
* gnutls_malloc() and will be stored in the appropriate datum.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_export_dsa_raw (gnutls_x509_privkey_t key,
gnutls_datum_t * p, gnutls_datum_t * q,
gnutls_datum_t * g, gnutls_datum_t * y,
gnutls_datum_t * x)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
/* P */
ret = _gnutls_mpi_dprint_lz (key->params.params[0], p);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
/* Q */
ret = _gnutls_mpi_dprint_lz (key->params.params[1], q);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (p);
return ret;
}
/* G */
ret = _gnutls_mpi_dprint_lz (key->params.params[2], g);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (p);
_gnutls_free_datum (q);
return ret;
}
/* Y */
ret = _gnutls_mpi_dprint_lz (key->params.params[3], y);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (p);
_gnutls_free_datum (g);
_gnutls_free_datum (q);
return ret;
}
/* X */
ret = _gnutls_mpi_dprint_lz (key->params.params[4], x);
if (ret < 0)
{
gnutls_assert ();
_gnutls_free_datum (y);
_gnutls_free_datum (p);
_gnutls_free_datum (g);
_gnutls_free_datum (q);
return ret;
}
return 0;
}
/**
* gnutls_x509_privkey_generate:
* @key: should contain a #gnutls_x509_privkey_t structure
* @algo: is one of the algorithms in #gnutls_pk_algorithm_t.
* @bits: the size of the modulus
* @flags: unused for now. Must be 0.
*
* This function will generate a random private key. Note that this
* function must be called on an empty private key.
*
* Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits().
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_generate (gnutls_x509_privkey_t key,
gnutls_pk_algorithm_t algo, unsigned int bits,
unsigned int flags)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
gnutls_pk_params_init(&key->params);
if (algo == GNUTLS_PK_EC)
bits = _gnutls_ecc_bits_to_curve(bits);
ret = _gnutls_pk_generate (algo, bits, &key->params);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
ret = _gnutls_asn1_encode_privkey (algo, &key->key, &key->params);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
key->pk_algorithm = algo;
return 0;
cleanup:
key->pk_algorithm = GNUTLS_PK_UNKNOWN;
gnutls_pk_params_release(&key->params);
return ret;
}
/**
* gnutls_x509_privkey_verify_params:
* @key: should contain a #gnutls_x509_privkey_t structure
*
* This function will verify the private key parameters.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_verify_params (gnutls_x509_privkey_t key)
{
int ret;
ret = _gnutls_pk_verify_params (key->pk_algorithm, &key->params);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
return 0;
}
/**
* gnutls_x509_privkey_get_key_id:
* @key: Holds the key
* @flags: should be 0 for now
* @output_data: will contain the key ID
* @output_data_size: holds the size of output_data (and will be
* replaced by the actual size of parameters)
*
* This function will return a unique ID that depends on the public key
* parameters. This ID can be used in checking whether a certificate
* corresponds to the given key.
*
* If the buffer provided is not long enough to hold the output, then
* *@output_data_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER will
* be returned. The output will normally be a SHA-1 hash output,
* which is 20 bytes.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_get_key_id (gnutls_x509_privkey_t key,
unsigned int flags,
unsigned char *output_data,
size_t * output_data_size)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
ret = _gnutls_get_key_id(key->pk_algorithm, &key->params, output_data, output_data_size);
if (ret < 0)
{
gnutls_assert ();
}
return ret;
}
/*-
* _gnutls_x509_privkey_sign_hash2:
* @signer: Holds the signer's key
* @hash_algo: The hash algorithm used
* @hash_data: holds the data to be signed
* @signature: will contain newly allocated signature
* @flags: (0) for now
*
* This function will sign the given hashed data using a signature algorithm
* supported by the private key. Signature algorithms are always used
* together with a hash functions. Different hash functions may be
* used for the RSA algorithm, but only SHA-1,SHA-224 and SHA-256
* for the DSA keys, depending on their bit size.
*
* Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine
* the hash algorithm.
*
* The RSA algorithm is used in PKCS #1 v1.5 mode.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
-*/
static int
_gnutls_x509_privkey_sign_hash2 (gnutls_x509_privkey_t signer,
gnutls_digest_algorithm_t hash_algo,
unsigned int flags,
const gnutls_datum_t * hash_data,
gnutls_datum_t * signature)
{
int ret;
gnutls_datum_t digest;
digest.data = gnutls_malloc (hash_data->size);
if (digest.data == NULL)
{
gnutls_assert ();
return GNUTLS_E_MEMORY_ERROR;
}
digest.size = hash_data->size;
memcpy (digest.data, hash_data->data, digest.size);
ret = pk_prepare_hash (signer->pk_algorithm, hash_algo, &digest);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
ret = _gnutls_pk_sign (signer->pk_algorithm, signature, &digest, &signer->params);
if (ret < 0)
{
gnutls_assert ();
goto cleanup;
}
ret = 0;
cleanup:
_gnutls_free_datum (&digest);
return ret;
}
/**
* gnutls_x509_privkey_sign_hash:
* @key: Holds the key
* @hash: holds the data to be signed
* @signature: will contain newly allocated signature
*
* This function will sign the given hash using the private key. Do not
* use this function directly unless you know what it is. Typical signing
* requires the data to be hashed and stored in special formats
* (e.g. BER Digest-Info for RSA).
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Deprecated in: 2.12.0
*/
int
gnutls_x509_privkey_sign_hash (gnutls_x509_privkey_t key,
const gnutls_datum_t * hash,
gnutls_datum_t * signature)
{
int result;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
result = _gnutls_pk_sign (key->pk_algorithm, signature, hash, &key->params);
if (result < 0)
{
gnutls_assert ();
return result;
}
return 0;
}
/**
* gnutls_x509_privkey_sign_data:
* @key: Holds the key
* @digest: should be MD5 or SHA1
* @flags: should be 0 for now
* @data: holds the data to be signed
* @signature: will contain the signature
* @signature_size: holds the size of signature (and will be replaced
* by the new size)
*
* This function will sign the given data using a signature algorithm
* supported by the private key. Signature algorithms are always used
* together with a hash functions. Different hash functions may be
* used for the RSA algorithm, but only SHA-1 for the DSA keys.
*
* If the buffer provided is not long enough to hold the output, then
* *@signature_size is updated and %GNUTLS_E_SHORT_MEMORY_BUFFER will
* be returned.
*
* Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine
* the hash algorithm.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
*
* Deprecated: Use gnutls_privkey_sign_data().
*/
int
gnutls_x509_privkey_sign_data (gnutls_x509_privkey_t key,
gnutls_digest_algorithm_t digest,
unsigned int flags,
const gnutls_datum_t * data,
void *signature, size_t * signature_size)
{
int result;
gnutls_datum_t sig = { NULL, 0 };
gnutls_datum_t hash;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
result =
pk_hash_data (key->pk_algorithm, digest, &key->params, data, &hash);
if (result < 0)
{
gnutls_assert ();
return result;
}
result =
_gnutls_x509_privkey_sign_hash2 (key, digest, flags, &hash, &sig);
_gnutls_free_datum(&hash);
if (result < 0)
{
gnutls_assert ();
return result;
}
if (*signature_size < sig.size)
{
*signature_size = sig.size;
_gnutls_free_datum (&sig);
return GNUTLS_E_SHORT_MEMORY_BUFFER;
}
*signature_size = sig.size;
memcpy (signature, sig.data, sig.size);
_gnutls_free_datum (&sig);
return 0;
}
/**
* gnutls_x509_privkey_fix:
* @key: Holds the key
*
* This function will recalculate the secondary parameters in a key.
* In RSA keys, this can be the coefficient and exponent1,2.
*
* Returns: On success, %GNUTLS_E_SUCCESS (0) is returned, otherwise a
* negative error value.
**/
int
gnutls_x509_privkey_fix (gnutls_x509_privkey_t key)
{
int ret;
if (key == NULL)
{
gnutls_assert ();
return GNUTLS_E_INVALID_REQUEST;
}
asn1_delete_structure (&key->key);
ret = _gnutls_asn1_encode_privkey (key->pk_algorithm, &key->key, &key->params);
if (ret < 0)
{
gnutls_assert ();
return ret;
}
return 0;
}