summaryrefslogtreecommitdiff
path: root/doc/gnutls.texi
blob: 1ec39069f4da1352145109bfd9651af60dec2b1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
\input texinfo   @c -*-texinfo-*-
@comment $Id$
@comment %**start of header
@setfilename gnutls.info
@include version.texi
@settitle GNU TLS @value{VERSION}

@include my-bib-macros.texi
@mybibusetable{Bibliography}

@c Unify some of the indices.
@syncodeindex tp fn
@syncodeindex pg cp

@comment %**end of header
@finalout
@copying
This manual is last updated @value{UPDATED} for version
@value{VERSION} of GNU TLS.

Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.


@quotation
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
@end quotation
@end copying

@dircategory GNU Libraries
@direntry
* libgnutls: (gnutls).		A Transport Layer Security Library.
@end direntry

@dircategory Network Applications
@direntry
* GnuTLS: (gnutls).			Package for Transport Layer Security.
* certtool: (gnutls)Invoking certtool.	Manipulate certificates and keys.
* srptool: (gnutls)Invoking srptool.	Simple SRP password tool.
* gnutls-serv: (gnutls)Invoking gnutls-serv.	GNU TLS test server.
* gnutls-cli: (gnutls)Invoking gnutls-cli.	GNU TLS test client.
* gnutls-cli-debug: (gnutls)Invoking gnutls-cli-debug.	GNU TLS debug client.
@end direntry

@titlepage
@title GNU TLS
@subtitle Transport Layer Security Library for the GNU system
@subtitle for version @value{VERSION}, @value{UPDATED}
@sp 7
@image{gnutls-logo,6cm,6cm}
@author Nikos Mavroyanopoulos
@author Simon Josefsson (@email{bug-gnutls@@gnu.org})
@page
@vskip 0pt plus 1filll
@insertcopying
@end titlepage

@contents

@ifnottex
@node Top
@top GNU TLS

@insertcopying
@end ifnottex

@menu
* Preface::
* The Library::
* Introduction to TLS::
* Authentication methods::
* More on certificate authentication::
* How to use TLS in application protocols::
* How to use GnuTLS in applications::
* Included programs::
* Function reference::
* Certificate to XML convertion functions::
* All the supported ciphersuites in GnuTLS::
* Copying This Manual::
* Concept Index::
* Function and Data Index::
@c * @mybibnode{}::
* Bibliography::
@end menu


@node Preface
@chapter Preface

This document tries to demonstrate and explain the @acronym{GnuTLS}
library API.  A brief introduction to the protocols and the technology
involved, is also included so that an application programmer can
better understand the @acronym{GnuTLS} purpose and actual offerings.
Even if @acronym{GnuTLS} is a typical library software, it operates
over several security and cryptographic protocols, which require the
programmer to make careful and correct usage of them, otherwise he
risks to offer just a false sense of security. Security and the
network security terms are very general terms even for computer
software thus cannot be easily restricted to a single cryptographic
library.  For that reason, do not consider a program secure just
because it uses @acronym{GnuTLS}; there are several ways to compromise
a program or a communication line and @acronym{GnuTLS} only helps with
some of them.

This document tries to be self contained, although basic network
programming and PKI knowlegde is assumed in most of it. A good introduction
to Public Key Infrastructure can be found in @mybibcite{GUTPKI}.

@anchor{Availability}

Updated versions of the @acronym{GnuTLS} software and this document
will be available from @url{http://www.gnutls.org/} and
@url{http://www.gnu.org/software/gnutls/}.

@node The Library
@chapter The Library

In brief @acronym{GnuTLS} can be described as a library which offers an API
to access secure communication protocols. These protocols provide
privacy over insecure lines, and were designed to prevent
eavesdropping, tampering, or message forgery.

Technically @acronym{GnuTLS} is a portable ANSI C based library which
implements the TLS 1.1 and SSL 3.0 protocols (@xref{Introduction to
TLS}, for a more detailed description of the protocols), accompanied
with the required framework for authentication and public key
infrastructure.  The library is available under the GNU Lesser GPL
license@footnote{A copy of the license is included in the
distribution}.  Important features of the @acronym{GnuTLS} library
include:

@itemize

@item Support for TLS 1.0, TLS 1.1, and SSL 3.0 protocols.

@item Support for both @acronym{X.509} and @acronym{OpenPGP} certificates.

@item Support for handling and verification of certificates.

@item Support for @acronym{SRP} for TLS authentication.

@item Support for TLS Extension mechanism.

@item Support for TLS Compression Methods.

@end itemize

Additionally @acronym{GnuTLS} provides a limited emulation API for the
widely used OpenSSL@footnote{@url{http://www.openssl.org/}} library,
to ease integration with existing applications.

@acronym{GnuTLS} consists of three independent parts, namely the ``TLS
protocol part'', the ``Certificate part'', and the ``Crypto backend''
part.  The `TLS protocol part' is the actual protocol implementation,
and is entirely implemented within the @acronym{GnuTLS} library.  The
`Certificate part' consists of the certificate parsing, and
verification functions which is partially implemented in the
@acronym{GnuTLS} library.  The
@acronym{Libtasn1}@footnote{@url{ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/libtasn1/}},
a library which offers @acronym{ASN.1} parsing capabilities, is used
for the @acronym{X.509} certificate parsing functions, and
@acronym{Opencdk}@footnote{@url{ftp://ftp.gnupg.org/gcrypt/alpha/gnutls/opencdk/}}
is used for the @acronym{OpenPGP} key support in @acronym{GnuTLS}.
The ``Crypto backend'' is provided by the
@acronym{Libgcrypt}@footnote{@url{ftp://ftp.gnupg.org/gcrypt/alpha/libgcrypt/}}
library.

In order to ease integration in embedded systems, parts of the
@acronym{GnuTLS} library can be disabled at compile time. That way a
small library, with the required features, can be generated.

@menu
* General Idea::
* Error handling::
* Memory handling::
* Callback functions::
@end menu

@node General Idea
@section General Idea

A brief description of how @acronym{GnuTLS} works internally is shown
at the figure below. This section may be easier to understand after
having seen the examples (@pxref{examples}).

@image{internals,12cm,8cm}

As shown in the figure, there is a read-only global state that is
initialized once by the global initialization function.  This global
structure, among others, contains the memory allocation functions
used, and some structures needed for the @acronym{ASN.1} parser.  This structure
is never modified by any @acronym{GnuTLS} function, except for the
deinitialization function which frees all memory allocated in the
global structure and is called after the program has permanently
finished using @acronym{GnuTLS}.

The credentials structure is used by some authentication methods, such
as certificate authentication (@pxref{Certificate Authentication}).  A
credentials structure may contain certificates, private keys,
temporary parameters for diffie hellman or RSA key exchange, and other
stuff that may be shared between several TLS sessions.

This structure should be initialized using the appropriate
initialization functions. For example an application which uses
certificate authentication would probably initialize the credentials,
using the appropriate functions, and put its trusted certificates in
this structure. The next step is to associate the credentials
structure with each @acronym{TLS} session.

A @acronym{GnuTLS} session contains all the required stuff for a
session to handle one secure connection. This session calls directly
to the transport layer functions, in order to communicate with the
peer.  Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers would probably need a
database backend to hold the session's parameters.  Every
@acronym{GnuTLS} session after a successful handshake calls the
appropriate backend function (@xref{resume}, for information on
initialization) to store the newly negotiated session. The session
database is examined by the server just after having received the
client hello@footnote{The first message in a @acronym{TLS} handshake},
and if the session ID sent by the client, matches a stored session,
the stored session will be retrieved, and the new session will be a
resumed one, and will share the same session ID with the previous one.

@node Error handling
@section Error handling

In @acronym{GnuTLS} most functions return an integer type as a result.  In
almost all cases a zero or a positive number means success, and a
negative number indicates failure, or a situation that some action has
to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends
and receives will be disallowed. An example of a fatal error code is
@code{GNUTLS_E_DECRYPTION_FAILED}. Non-fatal errors may warn about
something, ie a warning alert was received, or indicate the some
action has to be taken. This is the case with the error code
@code{GNUTLS_E_REHANDSHAKE} returned by @ref{gnutls_record_recv}.
This error code indicates that the server requests a re-handshake. The
client may ignore this request, or may reply with an alert.  You can
test if an error code is a fatal one by using the
@ref{gnutls_error_is_fatal}.

If any non fatal errors, that require an action, are to be returned by
a function, these error codes will be documented in the function's
reference.  @xref{Error Codes}, for all the error codes.

@node Memory handling
@section Memory handling

@acronym{GnuTLS} internally handles heap allocated objects
differently, depending on the sensitivity of the data they
contain. However for performance reasons, the default memory functions
do not overwrite sensitive data from memory, nor protect such objects
from being written to the swap.  In order to change the default
behavior the @ref{gnutls_global_set_mem_functions} function is
available which can be used to set other memory handlers than the
defaults.

The @acronym{Libgcrypt} library on which @acronym{GnuTLS} depends, has such
secure memory allocation functions available. These should be used in
cases where even the system's swap memory is not considered
secure. See the documentation of @acronym{Libgcrypt} for more
information.

@node Callback functions
@section Callback functions
@cindex Callback functions

There are several cases where @acronym{GnuTLS} may need some out of
band input from your program. This is now implemented using some
callback functions, which your program is expected to register.

An example of this type of functions are the push and pull callbacks
which are used to specify the functions that will retrieve and send
data to the transport layer.

@itemize

@item @ref{gnutls_transport_set_push_function}

@item @ref{gnutls_transport_set_pull_function}

@end itemize

Other callback functions such as the one set by
@ref{gnutls_srp_set_server_credentials_function}, may require more
complicated input, including data to be allocated.  These callbacks
should allocate and free memory using the functions shown below.

@itemize

@item @ref{gnutls_malloc}

@item @ref{gnutls_free}

@end itemize

@node Introduction to TLS
@chapter Introduction to @acronym{TLS}

@acronym{TLS} stands for ``Transport Layer Security'' and is the
successor of SSL, the Secure Sockets Layer protocol @mybibcite{SSL3} designed by Netscape.  @acronym{TLS} is an Internet
protocol, defined by @acronym{IETF}@footnote{IETF, or Internet
Engineering Task Force, is a large open international community of
network designers, operators, vendors, and researchers concerned with
the evolution of the Internet architecture and the smooth operation of
the Internet.  It is open to any interested individual.}, described in
@acronym{RFC} 2246 and also in @mybibcite{RESCOLA}. The protocol provides
confidentiality, and authentication layers over any reliable transport
layer. The description, below, refers to @acronym{TLS} 1.0 but also
applies to @acronym{TLS} 1.1 and @acronym{SSL} 3.0, since the
differences of these protocols are minor. Older protocols such as
@acronym{SSL} 2.0 are not discussed nor implemented in
@acronym{GnuTLS} since they are not considered secure today.

@menu
* TLS layers::
* The transport layer::
* The TLS record protocol::
* The TLS Alert Protocol::
* The TLS Handshake Protocol::
* TLS Extensions::
* On SSL 2 and older protocols::
@end menu

@node TLS layers
@section TLS layers
@cindex TLS Layers

@acronym{TLS} is a layered protocol, and consists of the Record
Protocol, the Handshake Protocol and the Alert Protocol. The Record
Protocol is to serve all other protocols and is above the transport
layer.  The Record protocol offers symmetric encryption, data
authenticity, and optionally compression.

The Alert protocol offers some signaling to the other protocols. It
can help informing the peer for the cause of failures and other error
conditions.  @xref{The Alert Protocol}, for more information.  The
alert protocol is above the record protocol.

The Handshake protocol is responsible for the security parameters'
negotiation, the initial key exchange and authentication.  @xref{The
Handshake Protocol}, for more information about the handshake
protocol.  The protocol layering in TLS is shown in the figure below.

@image{layers,12cm,8cm}

@node The transport layer
@section The transport layer
@cindex Transport protocol

@acronym{TLS} is not limited to one transport layer, it can be used
above any transport layer, as long as it is a reliable one.  A set of
functions is provided and their purpose is to load to @acronym{GnuTLS} the
required callbacks to access the transport layer.

@itemize
@item @ref{gnutls_transport_set_push_function}
@item @ref{gnutls_transport_set_pull_function}
@item @ref{gnutls_transport_set_ptr}
@item @ref{gnutls_transport_set_lowat}
@end itemize

These functions accept a callback function as a parameter.  The
callback functions should return the number of bytes written, or -1 on
error and should set @code{errno} appropriately.

@acronym{GnuTLS} currently only interprets the EINTR and EAGAIN errno
values and returns the corresponding @acronym{GnuTLS} error codes
@code{GNUTLS_E_INTERRUPTED} and @code{GNUTLS_E_AGAIN}.  These values
are usually returned by interrupted system calls, or when non blocking
IO is used. All @acronym{GnuTLS} functions can be resumed (called
again), if any of these error codes is returned.  The error codes
above refer to the system call, not the @acronym{GnuTLS} function,
since signals do not interrupt @acronym{GnuTLS}' functions.

For non blocking sockets or other custom made pull/push functions
the @ref{gnutls_transport_set_lowat} must be called, with a zero
low water mark value.

By default, if the transport functions are not set, @acronym{GnuTLS}
will use the Berkeley Sockets functions.  In this case
@acronym{GnuTLS} will use some hacks in order for @code{select} to
work, thus making it easy to add @acronym{TLS} support to existing
TCP/IP servers.

@node The TLS record protocol
@section The TLS record protocol
@cindex Record protocol

The Record protocol is the secure communications provider. Its purpose
is to encrypt, authenticate and ---optionally--- compress packets.
The following functions are available:

@table @asis

@item @ref{gnutls_record_send}:
To send a record packet (with application data).

@item @ref{gnutls_record_recv}:
To receive a record packet (with application data).

@item @ref{gnutls_record_get_direction}:
To get the direction of the last interrupted function call.
@end table

As you may have already noticed, the functions which access the Record
protocol, are quite limited, given the importance of this protocol in
@acronym{TLS}.  This is because the Record protocol's parameters are
all set by the Handshake protocol.

The Record protocol initially starts with NULL parameters, which means
no encryption, and no MAC is used. Encryption and authentication begin
just after the handshake protocol has finished.

@menu
* Encryption algorithms used in the record layer::
* Compression algorithms used in the record layer::
* Weaknesses and countermeasures::
@end menu

@node Encryption algorithms used in the record layer
@subsection Encryption algorithms used in the record layer
@cindex Symmetric encryption algorithms

Confidentiality in the record layer is achieved by using symmetric
block encryption algorithms like @code{3DES}, @code{AES}@footnote{AES,
or Advanced Encryption Standard, is actually the RIJNDAEL algorithm.
This is the algorithm that replaced DES.}, or stream algorithms like
@code{ARCFOUR_128}@footnote{@code{ARCFOUR_128} is a compatible
algorithm with RSA's RC4 algorithm, which is considered to be a trade
secret.}. Ciphers are encryption algorithms that use a single, secret,
key to encrypt and decrypt data. Block algorithms in TLS also provide
protection against statistical analysis of the data.  Thus, if you're
using the @acronym{TLS} protocol, a random number of blocks will be
appended to data, to prevent eavesdroppers from guessing the actual
data size.

Supported cipher algorithms:

@table @code
@item 3DES_CBC
@code{3DES_CBC} is the DES block cipher algorithm used with triple
encryption (EDE). Has 64 bits block size and is used in CBC mode.

@item ARCFOUR_128
ARCFOUR is a fast stream cipher.

@item ARCFOUR_40
This is the ARCFOUR cipher that is fed with a 40 bit key,
which is considered weak.

@item AES_CBC
AES or RIJNDAEL is the block cipher algorithm that replaces the old
DES algorithm.  Has 128 bits block size and is used in CBC mode. This
is not officially supported in TLS.
@end table

Supported MAC algorithms:

@table @code
@item MAC_MD5
MD5 is a cryptographic hash algorithm designed by Ron Rivest. Outputs
128 bits of data.

@item MAC_SHA
SHA is a cryptographic hash algorithm designed by NSA. Outputs 160
bits of data.

@item MAC_RMD160
RIPEMD is a cryptographic hash algorithm developed in the framework of
the EU project RIPE. Outputs 160 bits of data.

@end table

@node Compression algorithms used in the record layer
@subsection Compression algorithms used in the record layer
@cindex Compression algorithms

The TLS record layer also supports compression.  The algorithms
implemented in @acronym{GnuTLS} can be found in the table below.
All the algorithms except for DEFLATE which is
referenced in @mybibcite{TLSCOMP}, should be considered as
@acronym{GnuTLS}' extensions@footnote{You should use
@ref{gnutls_handshake_set_private_extensions} to enable private
extensions.}, and should be advertised only when the peer is known to
have a compliant client, to avoid interoperability problems.

The included algorithms perform really good when text, or other
compressible data are to be transfered, but offer nothing on already
compressed data, such as compressed images, zipped archives etc.
These compression algorithms, may be useful in high bandwidth TLS
tunnels, and in cases where network usage has to be minimized. As a
drawback, compression increases latency.

The record layer compression in @acronym{GnuTLS} is implemented based
on the paper @mybibcite{TLSCOMP}.
The supported compression algorithms are:

@table @code
@item DEFLATE
Zlib compression, using the deflate algorithm.

@item LZO
LZO is a very fast compression algorithm. This algorithm is only
available if the @acronym{GnuTLS-extra} library has been initialized
and the private extensions are enabled.

@end table

@node Weaknesses and countermeasures
@subsection Weaknesses and countermeasures

Some weaknesses that may affect the security of the Record layer have
been found in @acronym{TLS} 1.0 protocol. These weaknesses can be
exploited by active attackers, and exploit the facts that

@enumerate

@item
@acronym{TLS} has separate alerts for ``decryption_failed'' and
``bad_record_mac''

@item
The decryption failure reason can be detected by timing the response
time.

@item
The IV for CBC encrypted packets is the last block of the previous
encrypted packet.

@end enumerate

Those weaknesses were solved in @acronym{TLS} 1.1 which is implemented
in @acronym{GnuTLS}. For a detailed discussion see the archives of the
TLS Working Group mailing list and the paper @mybibcite{CBCATT}.

@node The TLS Alert Protocol
@section The TLS Alert Protocol
@anchor{The Alert Protocol}
@cindex Alert protocol

The Alert protocol is there to allow signals to be sent between peers.
These signals are mostly used to inform the peer about the cause of a
protocol failure. Some of these signals are used internally by the
protocol and the application protocol does not have to cope with them
(see @code{GNUTLS_A_CLOSE_NOTIFY}), and others refer to the
application protocol solely (see @code{GNUTLS_A_USER_CANCELLED}).  An
alert signal includes a level indication which may be either fatal or
warning. Fatal alerts always terminate the current connection, and
prevent future renegotiations using the current session ID.

The alert messages are protected by the record protocol, thus the
information that is included does not leak. You must take extreme care
for the alert information not to leak to a possible attacker, via
public log files etc.

@table @asis
@item @ref{gnutls_alert_send}:
To send an alert signal.

@item @ref{gnutls_error_to_alert}:
To map a gnutls error number to an alert signal.

@item @ref{gnutls_alert_get}:
Returns the last received alert.

@item @ref{gnutls_alert_get_name}:
Returns the name, in a character array, of the given alert.

@end table

@node The TLS Handshake Protocol
@section The TLS Handshake Protocol
@anchor{The Handshake Protocol}
@cindex Handshake protocol

The Handshake protocol is responsible for the ciphersuite negotiation,
the initial key exchange, and the authentication of the two peers.
This is fully controlled by the application layer, thus your program
has to set up the required parameters. Available functions to control
the handshake protocol include:

@table @asis
@item @ref{gnutls_cipher_set_priority}:
To set the priority of bulk cipher algorithms.

@item @ref{gnutls_mac_set_priority}:
To set the priority of MAC algorithms.

@item @ref{gnutls_kx_set_priority}:
To set the priority of key exchange algorithms.

@item @ref{gnutls_compression_set_priority}:
To set the priority of compression methods.

@item @ref{gnutls_certificate_type_set_priority}:
To set the priority of certificate types (e.g., @acronym{OpenPGP},
@acronym{X.509}).

@item @ref{gnutls_protocol_set_priority}:
To set the priority of protocol versions (e.g., @acronym{SSL} 3.0,
@acronym{TLS} 1.0).

@item @ref{gnutls_set_default_priority}:
To set some defaults in the current session.  That way you don't have
to call each priority function, independently, but you have to live
with the defaults.

@item @ref{gnutls_credentials_set}:
To set the appropriate credentials structures.

@item @ref{gnutls_certificate_server_set_request}:
To set whether client certificate is required or not.

@item @ref{gnutls_handshake}:
To initiate the handshake.
@end table

@subsection TLS cipher suites

The Handshake Protocol of @acronym{TLS} negotiates cipher suites of
the form @code{TLS_DHE_RSA_WITH_3DES_CBC_SHA}.  The usual cipher
suites contain these parameters:

@itemize

@item The key exchange algorithm.
@code{DHE_RSA} in the example.

@item The Symmetric encryption algorithm and mode
@code{3DES_CBC} in this example.

@item The MAC@footnote{MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.} algorithm used for authentication.
@code{MAC_SHA} is used in the above example.

@end itemize

The cipher suite negotiated in the handshake protocol will affect the
Record Protocol, by enabling encryption and data authentication.  Note
that you should not over rely on @acronym{TLS} to negotiate the
strongest available cipher suite. Do not enable ciphers and algorithms
that you consider weak.

The priority functions, dicussed above, allow the application layer to
enable and set priorities on the individual ciphers. It may imply that
all combinations of ciphersuites are allowed, but this is not
true. For several reasons, not discussed here, some combinations were
not defined in the @acronym{TLS} protocol.  The supported ciphersuites
are shown in @ref{ciphersuites}.

@subsection Client authentication
@cindex Client Certificate authentication

In the case of ciphersuites that use certificate authentication, the
authentication of the client is optional in @acronym{TLS}.  A server
may request a certificate from the client --- using the
@ref{gnutls_certificate_server_set_request} function. If a
certificate is to be requested from the client during the handshake,
the server will send a certificate request message that contains a
list of acceptable certificate signers. The client may then send a
certificate, signed by one of the server's acceptable signers. In
@acronym{GnuTLS} the server's acceptable signers list is constructed
using the trusted CA certificates in the credentials structure.

@subsection Resuming Sessions
@anchor{resume}
@cindex Resuming sessions

The @ref{gnutls_handshake} function, is expensive since a lot of
calculations are performed. In order to support many fast connections
to the same server a client may use session resuming. @strong{Session
resuming} is a feature of the @acronym{TLS} protocol which allows a
client to connect to a server, after a successful handshake, without
the expensive calculations.  This is achieved by using the previously
established keys. @acronym{GnuTLS} supports this feature, and the
example (@pxref{ex:resume-client}) illustrates a typical use of it.

Keep in mind that sessions are expired after some time, for security
reasons, thus it may be normal for a server not to resume a session
even if you requested that.  Also note that you must enable, using the
priority functions, at least the algorithms used in the last session.

@subsection Resuming internals

The resuming capability, mostly in the server side, is one of the
problems of a thread-safe TLS implementations. The problem is that all
threads must share information in order to be able to resume
sessions. The gnutls approach is, in case of a client, to leave all
the burden of resuming to the client. Ie. copy and keep the necessary
parameters. See the functions:

@itemize

@item @ref{gnutls_session_get_data}

@item @ref{gnutls_session_get_id}

@item @ref{gnutls_session_set_data}

@end itemize

The server side is different. A server has to specify some callback
functions which store, retrieve and delete session data. These can be
registered with:

@itemize

@item @ref{gnutls_db_set_remove_function}

@item @ref{gnutls_db_set_store_function}

@item @ref{gnutls_db_set_retrieve_function}

@item @ref{gnutls_db_set_ptr}

@end itemize

It might also be useful to be able to check for expired sessions in
order to remove them, and save space. The function
@ref{gnutls_db_check_entry} is provided for that reason.

@node TLS Extensions
@section TLS Extensions
@cindex TLS Extensions

A number of extensions to the @acronym{TLS} protocol have been
proposed mainly in @acronym{RFC} 3546
(@url{http://www.ietf.org/rfc/rfc3546.txt}). The extensions supported
in @acronym{GnuTLS} are:

@itemize
@item Maximum fragment length negotiation
@item Server name indication
@end itemize

and they will be discussed in the subsections that follow.

@subsection Maximum fragment length negotiation
@cindex TLS Extensions
@cindex Maximum fragment length

This extension allows a @acronym{TLS} implementation to negotiate a
smaller value for record packet maximum length. This extension may be
useful to clients with constrained capabilities. See the
@ref{gnutls_record_set_max_size} and the
@ref{gnutls_record_get_max_size} functions.

@subsection Server name indication
@anchor{serverind}
@cindex TLS Extensions
@cindex Server name indication

A common problem in @acronym{HTTPS} servers is the fact that the
@acronym{TLS} protocol is not aware of the hostname that a client
connects to, when the handshake procedure begins. For that reason the
@acronym{TLS} server has no way to know which certificate to send.

This extension solves that problem within the @acronym{TLS} protocol,
and allows a client to send the HTTP hostname before the handshake
begins within the first handshake packet.  The functions
@ref{gnutls_server_name_set} and @ref{gnutls_server_name_get} can be
used to enable this extension, or to retrieve the name sent by a
client.

@node On SSL 2 and older protocols
@section On SSL 2 and older protocols
@cindex SSL 2

One of the initial decisions in the @acronym{GnuTLS} development was
to implement the security protocols for the transport layer.
Initially @acronym{TLS} 1.0 was implemented since it was the latest at
that time, and was considered to be the most advanced in security
properties.  Later the @acronym{SSL} 3.0 protocol was implemented
since it is still the only protocol supported by several servers and
there are no serious security vulnerabilities known.

One question that may arise is why we didn't implement @acronym{SSL}
2.0 in the library.  There are several reasons, most important being
that it has serious security flaws, unacceptable for a modern security
library.  Other than that, this protocol is barely used by anyone
these days (it has been deprecated since 1996).

@cindex PCT
Other protocols such as Microsoft's @acronym{PCT} 1 and @acronym{PCT}
2 were not implemented because they were also abandoned and deprecated
by @acronym{SSL} 3.0 and later @acronym{TLS} 1.0.

@node Authentication methods
@chapter Authentication methods

The @acronym{TLS} protocol provides confidentiality and encryption,
but also offers authentication, which is a prerequisite for a secure
connection. The available authentication methods in @acronym{GnuTLS}
are:

@itemize

@item Certificate authentication

@item Anonymous authentication

@item @acronym{SRP} authentication

@end itemize

@menu
* Certificate authentication::
* Anonymous authentication::
* Authentication using SRP::
* Authentication and credentials::
* Parameters stored in credentials::
@end menu

@node Certificate authentication
@section Certificate authentication

@subsection Authentication using @acronym{X.509} certificates
@cindex @acronym{X.509} certificates

@acronym{X.509} certificates contain the public parameters, of a
public key algorithm, and an authority's signature, which proves the
authenticity of the parameters.  @xref{The X.509 trust model}, for
more information on @acronym{X.509} protocols.

@subsection Authentication using @acronym{OpenPGP}keys
@cindex @acronym{OpenPGP} Keys

@acronym{OpenPGP} keys also contain public parameters of a public key
algorithm, and signatures from several other parties. Depending on
whether a signer is trusted the key is considered trusted or not.
@acronym{GnuTLS}'s @acronym{OpenPGP} authentication implementation is
based on the @mybibcite{TLSPGP} proposal.

@xref{The OpenPGP trust model}, for more information about the
@acronym{OpenPGP} trust model.  For a more detailed introduction to
@acronym{OpenPGP} and @acronym{GnuPG} see @mybibcite{GPGH}.

@subsection Using certificate authentication

In @acronym{GnuTLS} both the @acronym{OpenPGP} and @acronym{X.509}
certificates are part of the certificate authentication and thus are
handled using a common API.

When using certificates the server is required to have at least one
certificate and private key pair. A client may or may not have such a
pair. The certificate and key pair should be loaded, before any
@acronym{TLS} session is initialized, in a certificate credentials
structure. This should be done by using
@ref{gnutls_certificate_set_x509_key_file} or
@ref{gnutls_certificate_set_openpgp_key_file} depending on the
certificate type.  In the @acronym{X.509} case, the functions will
also accept and use a certificate list that leads to a trusted
authority. The certificate list must be ordered in such way that every
certificate certifies the one before it. The trusted authority's
certificate need not to be included, since the peer should possess it
already.

As an alternative, a callback may be used so the server or the client
specify the certificate and the key at the handshake time.  That
callback can be set using the functions:

@itemize

@item @ref{gnutls_certificate_server_set_retrieve_function}

@item @ref{gnutls_certificate_client_set_retrieve_function}

@end itemize

Certificate verification is possible by loading the trusted
authorities into the credentials structure by using
@ref{gnutls_certificate_set_x509_trust_file} or
@ref{gnutls_certificate_set_openpgp_keyring_file} for openpgp
keys. Note however that the peer's certificate is not automatically
verified, you should call @ref{gnutls_certificate_verify_peers2},
after a successful handshake, to verify the signatures of the
certificate.  An alternative way, which reports a more detailed
verification output, is to use @ref{gnutls_certificate_get_peers} to
obtain the raw certificate of the peer and verify it using the
functions discussed in @ref{The X.509 trust model}.

In a handshake, the negotiated cipher suite depends on the
certificate's parameters, so not all key exchange methods will be
available with some certificates. @acronym{GnuTLS} will disable
ciphersuites that are not compatible with the key, or the enabled
authentication methods.  For example keys marked as sign-only, will
not be able to access the plain RSA ciphersuites, but only the
@code{DHE_RSA} ones. It is recommended not to use RSA keys for both
signing and encryption. If possible use the same key for the
@code{DHE_RSA} and @code{RSA_EXPORT} ciphersuites, which use signing,
and a different key for the plain RSA ciphersuites, which use
encryption.  All the key exchange methods shown below are available in
certificate authentication.

Note that the DHE key exchange methods are generally
slower@footnote{It really depends on the group used.  Primes with
lesser bits are always faster, but also easier to break.  Values less
than 768 should not be used today} than plain RSA and require Diffie
Hellman parameters to be generated and associated with a credentials
structure, by the server.  The @code{RSA-EXPORT} method also requires 512 bit RSA
parameters, that should also be generated and associated with the
credentials structure.  See the functions:

@itemize

@item @ref{gnutls_dh_params_generate2}

@item @ref{gnutls_certificate_set_dh_params}

@item @ref{gnutls_rsa_params_generate2}

@item @ref{gnutls_certificate_set_rsa_export_params}

@end itemize

Sometimes in order to avoid bottlenecks in programs it is usefull to store
and read parameters from formats that can be generated by external programs such
as @code{certtool}. This is possible with @acronym{GnuTLS} by using the following
functions:

@itemize

@item @ref{gnutls_dh_params_import_pkcs3}

@item @ref{gnutls_rsa_params_import_pkcs1}

@item @ref{gnutls_dh_params_export_pkcs3}

@item @ref{gnutls_rsa_params_export_pkcs1}

@end itemize

Key exchange algorithms for @acronym{OpenPGP} and @acronym{X.509}
certificates:

@table @code

@item RSA:
The RSA algorithm is used to encrypt a key and send it to the peer.
The certificate must allow the key to be used for encryption.

@item RSA_EXPORT:
The RSA algorithm is used to encrypt a key and send it to the peer.
In the EXPORT algorithm, the server signs temporary RSA parameters of
512 bits --- which are considered weak --- and sends them to the client.

@item DHE_RSA:
The RSA algorithm is used to sign Ephemeral Diffie Hellman parameters
which are sent to the peer. The key in the certificate must allow the
key to be used for signing. Note that key exchange algorithms which
use Ephemeral Diffie Hellman parameters, offer perfect forward
secrecy. That means that even if the private key used for signing is
compromised, it cannot be used to reveal past session data.

@item DHE_DSS:
The DSS algorithm is used to sign Ephemeral Diffie Hellman parameters
which are sent to the peer. The certificate must contain DSA
parameters to use this key exchange algorithm. DSS stands for Digital
Signature Standard.

@end table

@node Anonymous authentication
@section Anonymous authentication
@cindex Anonymous authentication

The anonymous key exchange perform encryption but there is no
indication of the identity of the peer.  This kind of authentication
is vulnerable to a man in the middle attack, but this protocol can be
used even if there is no prior communication and trusted parties with
the peer, or when full anonymity is required.  Unless really required,
do not use anonymous authentication.  Available key exchange methods
are shown below.

Note that the key exchange methods for anonymous authentication
require Diffie Hellman parameters to be generated by the server and associated with
an anonymous credentials structure.

Supported anonymous key exchange algorithms:

@table @code

@item ANON_DH:
This algorithm exchanges Diffie Hellman parameters.

@end table

@node Authentication using SRP
@section Authentication using @acronym{SRP}
@cindex @acronym{SRP} authentication

Authentication via the Secure Remote Password protocol,
@acronym{SRP}@footnote{@acronym{SRP} is described in @mybibcite{RFC2945}},
is supported.  The @acronym{SRP} key exchange is an extension to the
@acronym{TLS} protocol, and it is a password based authentication
(unlike @acronym{X.509} or @acronym{OpenPGP} that uses certificates).
The two peers can be identified using a single password, or there can
be combinations where the client is authenticated using @acronym{SRP}
and the server using a certificate.

The advantage of @acronym{SRP} authentication, over other proposed
secure password authentication schemes, is that @acronym{SRP} does not
require the server to hold the user's password.  This kind of
protection is similar to the one used traditionally in the @emph{UNIX}
@file{/etc/passwd} file, where the contents of this file did not cause
harm to the system security if they were revealed.  The @acronym{SRP}
needs instead of the plain password something called a verifier, which
is calculated using the user's password, and if stolen cannot be used
to impersonate the user. Check @mybibcite{TOMSRP} for a detailed description
of the @acronym{SRP} protocol and the Stanford @acronym{SRP}
libraries, which includes a PAM module that synchronizes the system's
users passwords with the @acronym{SRP} password files. That way
@acronym{SRP} authentication could be used for all the system's users.

The implementation in @acronym{GnuTLS} is based on paper
@mybibcite{TLSSRP}.  The supported @acronym{SRP} key exchange methods are:

@table @code

@item SRP:
Authentication using the @acronym{SRP} protocol.

@item SRP_DSS:
Client authentication using the @acronym{SRP} protocol. Server is
authenticated using a certificate with DSA parameters.

@item SRP_RSA:
Client authentication using the @acronym{SRP} protocol. Server is
authenticated using a certificate with RSA parameters.

@end table

If clients supporting @acronym{SRP} know the username and password
before the connection, should initialize the client credentials and
call the function @ref{gnutls_srp_set_client_credentials}.
Alternatively they could specify a callback function by using the
function @ref{gnutls_srp_set_client_credentials_function}.  This has
the advantage that allows probing the server for @acronym{SRP}
support.  In that case the callback function will be called twice per
handshake.  The first time is before the ciphersuite is negotiated,
and if the callback returns a negative error code, the callback will
be called again if @acronym{SRP} has been negotiated.  This uses a
special @acronym{TLS}-@acronym{SRP} handshake idiom in order to avoid,
in interactive applications, to ask the user for @acronym{SRP}
password and username if the server does not negotiate an
@acronym{SRP} ciphersuite.

In server side the default behaviour of @acronym{GnuTLS} is to read
the usernames and @acronym{SRP} verifiers from password files. These
password files are the ones used by the @emph{Stanford srp libraries}
and can be specified using the
@ref{gnutls_srp_set_server_credentials_file}.  If a different
password file format is to be used, then the function
@ref{gnutls_srp_set_server_credentials_function}, should be called,
in order to set an appropriate callback.

Some helper functions such as:

@itemize

@item @ref{gnutls_srp_verifier}

@item @ref{gnutls_srp_base64_encode}

@item @ref{gnutls_srp_base64_decode}

@end itemize

Are included in @acronym{GnuTLS}, and may be used to generate, and
maintain @acronym{SRP} verifiers, and password files.  A program to
manipulate the required parameters for @acronym{SRP} authentication is
also included.  @xref{srptool}, for more information.

@node Authentication and credentials
@section Authentication and credentials

In @acronym{GnuTLS} every key exchange method is associated with a
credentials type. So in order to enable to enable a specific method,
the corresponding credentials type should be initialized and set using
@ref{gnutls_credentials_set}.  A mapping is shown below.

Key exchange algorithms and the corresponding credential types:

@multitable @columnfractions .3 .3 .3

@headitem Key exchange @tab Client credentials @tab Server credentials

@item @code{KX_RSA}
@item @code{KX_DHE_RSA}
@item @code{KX_DHE_DSS}
@item @code{KX_RSA_EXPORT}
@tab @code{CRD_CERTIFICATE}
@tab @code{CRD_CERTIFICATE}

@item @code{KX_SRP_RSA}
@tab @code{CRD_SRP}
@tab @code{CRD_SRP}
@item @code{KX_SRP_DSS}
@tab
@tab @code{CRD_CERTIFICATE}

@item @code{KX_SRP}
@tab @code{CRD_SRP}
@tab @code{CRD_SRP}

@item @code{KX_ANON_DH}
@tab @code{CRD_ANON}
@tab @code{CRD_ANON}

@end multitable

@node Parameters stored in credentials
@section Parameters stored in credentials

Several parameters such as the ones used for Diffie-Hellman
authentication are stored within the credentials structures, so all
sessions can access them. Those parameters are stored in structures
such as @code{gnutls_dh_params_t} and @code{gnutls_rsa_params_t}, and
functions like @ref{gnutls_certificate_set_dh_params} and
@ref{gnutls_certificate_set_rsa_export_params} can be used to
associate those parameters with the given credentials structure.

Since those parameters need to be renewed from time to time and a
global structure such as the credentials, may not be easy to modify
since it is accessible by all sessions, an alternative interface is
available using a callback function.  This can be set using the
@ref{gnutls_certificate_set_params_function}.  An example is shown
below.

@example
#include <gnutls.h>

gnutls_rsa_params_t rsa_params;
gnutls_dh_params_t dh_params;

/* This function will be called once a session requests DH
 * or RSA parameters. The parameters returned (if any) will
 * be used for the first handshake only.
 */
static int get_params( gnutls_session_t session,
        gnutls_params_type_t type,
        gnutls_params_st *st)
@{
   if (type == GNUTLS_PARAMS_RSA_EXPORT)
      st->params.rsa_export = rsa_params;
   else if (type == GNUTLS_PARAMS_DH)
      st->params.dh = dh_params;
   else return -1;

   st->type = type;
   /* do not deinitialize those parameters.
    */
   st->deinit = 0;

   return 0;
@}

int main()
@{
   gnutls_certificate_credentials_t cert_cred;

   initialize_params();

   /* ...
    */

   gnutls_certificate_set_params_function( cert_cred, get_params);
@}
@end example

@node More on certificate authentication
@chapter More on certificate authentication
@anchor{Certificate Authentication}
@cindex Certificate authentication

@menu
* The X.509 trust model::
* The OpenPGP trust model::
@end menu

@node The X.509 trust model
@section The @acronym{X.509} trust model
@cindex @acronym{X.509} certificates

The @acronym{X.509} protocols rely on a hierarchical trust model. In
this trust model Certification Authorities (CAs) are used to certify
entities.  Usually more than one certification authorities exist, and
certification authorities may certify other authorities to issue
certificates as well, following a hierarchical model.

@image{x509-1,7cm,9.5cm}

One needs to trust one or more CAs for his secure communications. In
that case only the certificates issued by the trusted authorities are
acceptable.  See the figure above for a typical example.  The API for
handling @acronym{X.509} certificates is described at section
@ref{sec:x509api}.  Some examples are listed below.

@menu
* X.509 certificates::
* Verifying X.509 certificate paths::
* PKCS #10 certificate requests::
* PKCS #12 structures::
@end menu

@node X.509 certificates
@subsection @acronym{X.509} certificates

An @acronym{X.509} certificate usually contains information about the
certificate holder, the signer, a unique serial number, expiration
dates and some other fields @mybibcite{RFC3280} as shown in the table
below.

@table @code

@item version:
The field that indicates the version of the certificate.

@item serialNumber:
This field holds a unique serial number per certificate.

@item issuer:
Holds the issuer's distinguished name.

@item validity:
The activation and expiration dates.

@item subject:
The subject's distinguished name of the certificate.

@item extensions:
The extensions are fields only present in version 3 certificates.

@end table

The certificate's @emph{subject or issuer name} is not just a single
string.  It is a Distinguished name and in the @acronym{ASN.1}
notation is a sequence of several object IDs with their corresponding
values. Some of available OIDs to be used in an @acronym{X.509}
distinguished name are defined in @file{gnutls/x509.h}.

The @emph{Version} field in a certificate has values either 1 or 3 for
version 3 certificates.  Version 1 certificates do not support the
extensions field so it is not possible to distinguish a CA from a
person, thus their usage should be avoided.

The @emph{validity} dates are there to indicate the date that the
specific certificate was activated and the date the certificate's key
would be considered invalid.

Certificate @emph{extensions} are there to include information about
the certificate's subject that did not fit in the typical certificate
fields. Those may be e-mail addresses, flags that indicate whether the
belongs to a CA etc.  All the supported @acronym{X.509} version 3
extensions are shown in the table below.

@table @code

@item subject key id (2.5.29.14):
An identifier of the key of the subject.

@item authority key id (2.5.29.35):
An identifier of the authority's key used to sign the certificate.

@item subject alternative name (2.5.29.17):
Alternative names to subject's distinguished name.

@item key usage (2.5.29.15):
Constraints the key's usage of the certificate.

@item extended key usage (2.5.29.37):
Constraints the purpose of the certificate.

@item basic constraints (2.5.29.19):
Indicates whether this is a CA certificate or not.

@item CRL distribution points (2.5.29.31):
This extension is set by the CA, in order to inform about the issued CRLs.

@end table

In @acronym{GnuTLS} the @acronym{X.509} certificate structures are handled using
the @code{gnutls_x509_crt_t} type and the corresponding private keys
with the @code{gnutls_x509_privkey_t} type.  All the available
functions for @acronym{X.509} certificate handling have their prototypes in
@file{gnutls/x509.h}. An example program to demonstrate the @acronym{X.509}
parsing capabilities can be found at section @ref{ex:x509-info}.

@node Verifying X.509 certificate paths
@subsection Verifying @acronym{X.509} certificate paths
@cindex Verifying certificate paths

Verifying certificate paths is important in @acronym{X.509} authentication. For
this purpose the function @ref{gnutls_x509_crt_verify} is
provided. The output of this function is the bitwise OR of the
elements of the @code{gnutls_certificate_status_t} enumeration.  A
detailed description of these elements can be found in figure below.
The function @ref{gnutls_certificate_verify_peers2} is equivalent to
the previous one, and will verify the peer's certificate in a TLS
session.

@table @code

@item CERT_INVALID:
The certificate is not signed by one of the known authorities, or
the signature is invalid.

@item CERT_REVOKED:
The certificate has been revoked by its CA.

@item CERT_SIGNER_NOT_FOUND:
The certificate's issuer is not known. This is the case when the
issuer is not in the trusted certificates list.

@item GNUTLS_CERT_SIGNER_NOT_CA:
The certificate's signer was not a CA. This may happen if
this was a version 1 certificate, which is common with some CAs, or
a version 3 certificate without the basic constrains extension.

@item GNUTLS_CERT_INSECURE_ALGORITHM:
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

@end table

There is also to possibility to pass some input to the verification functions in
the form of flags. For  @ref{gnutls_x509_crt_verify} the flags are passed straightforward, but
@ref{gnutls_certificate_verify_peers2} depends on the flags set by calling @code{gnutls_certificate_set_verify_flags}.
All the available flags are part of the enumeration @ref{gnutls_certificate_verify_flags} and
are explained in the table below.

@anchor{gnutls_certificate_verify_flags}
@tindex gnutls_certificate_verify_flags
@table @code
@item GNUTLS_VERIFY_DISABLE_CA_SIGN:
If set a signer does not have to be a certificate authority. This
flag should normaly be disabled, unless you know what this means.

@item GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT:
Allow only trusted CA certificates that have version 1.  This is
safer than GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT, and should be
used instead. That way only signers in your trusted list will be
allowed to have certificates of version 1.

@item GNUTLS_VERIFY_ALLOW_ANY_X509_V1_CA_CRT:
Allow CA certificates that have version 1 (both root and
intermediate). This is dangerous since those haven't the
basicConstraints extension. Must be used in combination with
GNUTLS_VERIFY_ALLOW_X509_V1_CA_CRT.

@item GNUTLS_VERIFY_DO_NOT_ALLOW_SAME:
If a certificate is not signed by anyone trusted but exists in
the trusted CA list do not treat it as trusted.

@item GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2:
Allow certificates to be signed using the broken MD2 algorithm.

@item GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5:
Allow certificates to be signed using the broken MD5 algorithm.
@end table

Although the verification of a certificate path indicates that the
certificate is signed by trusted authority, does not reveal anything
about the peer's identity. It is required to verify if the
certificate's owner is the one you expect. For more information consult @mybibcite{RFC2818} 
and section @ref{ex:verify} for an example.

@node PKCS #10 certificate requests
@subsection @acronym{PKCS} #10 certificate requests
@cindex Certificate requests
@cindex @acronym{PKCS} #10

A certificate request is a structure, which contain information about
an applicant of a certificate service.  It usually contains a private
key, a distinguished name and secondary data such as a challenge
password. @acronym{GnuTLS} supports the requests defined in
@acronym{PKCS} #10 @mybibcite{RFC2986}. Other certificate request's format
such as PKIX's @mybibcite{RFC2511} are not currently supported.

In @acronym{GnuTLS} the @acronym{PKCS} #10 structures are handled
using the @code{gnutls_x509_crq_t} type.  An example of a certificate
request generation can be found at section @ref{ex:crq}.

@node PKCS #12 structures
@subsection @acronym{PKCS} #12 structures
@cindex @acronym{PKCS} #12

A @acronym{PKCS} #12 structure @mybibcite{PKCS12} usually contains a user's
private keys and certificates. It is commonly used in browsers to
export and import the user's identities.

In @acronym{GnuTLS} the @acronym{PKCS} #12 structures are handled
using the @code{gnutls_pkcs12_t} type. This is an abstract type that
may hold several @code{gnutls_pkcs12_bag_t} types.  The Bag types are
the holders of the actual data, which may be certificates, private
keys or encrypted data.  An Bag of type encrypted should be decrypted
in order for its data to be accessed.

An example of a @acronym{PKCS} #12 structure generation can be found
at section @ref{ex:pkcs12}.

@node The OpenPGP trust model
@section The @acronym{OpenPGP} trust model
@cindex @acronym{OpenPGP} Keys

The @acronym{OpenPGP} key authentication relies on a distributed trust
model, called the ``web of trust''. The ``web of trust'' uses a
decentralized system of trusted introducers, which are the same as a
CA. @acronym{OpenPGP} allows anyone to sign anyone's else public
key. When Alice signs Bob's key, she is introducing Bob's key to
anyone who trusts Alice. If someone trusts Alice to introduce keys,
then Alice is a trusted introducer in the mind of that observer.

@image{pgp1,11cm,9cm}

For example: If David trusts Alice to be an introducer, and Alice
signed Bob's key, Dave also trusts Bob's key to be the real one.

There are some key points that are important in that model. In the
example Alice has to sign Bob's key, only if she is sure that the key
belongs to Bob. Otherwise she may also make Dave falsely believe that
this is Bob's key. Dave has also the responsibility to know who to
trust.  This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has
signed Bob's key - because he knows, somehow, that it belongs to Bob -
he does not trust Bob to be an introducer. Charlie decided to trust
only Kevin, for some reason. A reason could be that Bob is lazy
enough, and signs other people's keys without being sure that they
belong to the actual owner.

@subsection @acronym{OpenPGP} keys

In @acronym{GnuTLS} the @acronym{OpenPGP} key structures
@mybibcite{RFC2440} are handled using the @code{gnutls_openpgp_key_t} type
and the corresponding private keys with the
@code{gnutls_openpgp_privkey_t} type. All the prototypes for the key
handling functions can be found at @file{gnutls/openpgp.h}.

@subsection Verifying an @acronym{OpenPGP} key

The verification functions of @acronym{OpenPGP} keys, included in
@acronym{GnuTLS}, are simple ones, and do not use the features of the
``web of trust''.  For that reason, if the verification needs are
complex, the assistance of external tools like @acronym{GnuPG} and
GPGME (@url{http://www.gnupg.org/related_software/gpgme/}) is
recommended.

There are two verification functions in @acronym{GnuTLS}, The
@ref{gnutls_openpgp_key_verify_ring} and the
@ref{gnutls_openpgp_key_verify_trustdb}.  The first one checks an
@acronym{OpenPGP} key against a given set of public keys (keyring) and
returns the key status. The key verification status is the same as in
@acronym{X.509} certificates, although the meaning and interpretation are
different. For example an @acronym{OpenPGP} key may be valid, if the
self signature is ok, even if no signers were found.  The meaning of
verification status is shown in the figure below.  The latter function
checks a @acronym{GnuPG} trust database for the given key. This
function does not check the key signatures, only checks for disabled
and revoked keys.

@table @code

@item CERT_INVALID:
A signature on the key is invalid. That means that the key was
modified by somebody, or corrupted during transport.

@item CERT_REVOKED:
The key has been revoked by its owner.

@item CERT_SIGNER_NOT_FOUND:
The key was not signed by a known signer.

@item GNUTLS_CERT_INSECURE_ALGORITHM:
The certificate was signed using an insecure algorithm such as MD2 or MD5.
These algorithms have been broken and should not be trusted.

@end table

@node How to use TLS in application protocols
@chapter How to use @acronym{TLS} in application protocols

This chapter is intended to provide some hints on how to use the
@acronym{TLS} over simple custom made application protocols.  The
discussion below mainly refers to the @emph{TCP/IP} transport layer
but may be extended to other ones too.

@menu
* Separate ports::
* Upward negotiation::
@end menu

@node Separate ports
@section Separate ports

Traditionally @acronym{SSL} was used in application protocols by
assigning a new port number for the secure services. That way two
separate ports were assigned, one for the non secure sessions, and one
for the secured ones. This has the benefit that if a user requests a
secure session then the client will try to connect to the secure port
and fail otherwise. The only possible attack with this method is a
denial of service one. The most famous example of this method is the
famous ``HTTP over TLS'' or @acronym{HTTPS} protocol @mybibcite{RFC2818}.

Despite its wide use, this method is not as good as it seems.  This
approach starts the @acronym{TLS} Handshake procedure just after the
client connects on the ---so called--- secure port.  That way the
@acronym{TLS} protocol does not know anything about the client, and
popular methods like the host advertising in HTTP do not
work@footnote{See also the Server Name Indication extension on
@ref{serverind}.}.  There is no way for the client to say ``I
connected to YYY server'' before the Handshake starts, so the server
cannot possibly know which certificate to use.

Other than that it requires two separate ports to run a single
service, which is unnecessary complication. Due to the fact that there
is a limitation on the available privileged ports, this approach was
soon obsoleted.

@node Upward negotiation
@section Upward negotiation

Other application protocols@footnote{See LDAP, IMAP etc.}  use a
different approach to enable the secure layer.  They use something
called the ``TLS upgrade'' method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to
have a ``STARTTLS'' request, whose purpose it to start the TLS
protocols just after the client requests it.  This is a really neat
idea and does not require an extra port.

This method is used by almost all modern protocols and there is even
the @mybibcite{RFC2817} paper which proposes extensions to HTTP to support
it.

The tricky part, in this method, is that the ``STARTTLS'' request is
sent in the clear, thus is vulnerable to modifications.  A typical
attack is to modify the messages in a way that the client is fooled
and thinks that the server does not have the ``STARTTLS'' capability.
See a typical conversation of a hypothetical protocol:

@quotation
(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

*** TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
@end quotation

And see an example of a conversation where someone is acting
in between:

@quotation
(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA
@end quotation

As you can see above the client was fooled, and was dummy enough to
send the confidential data in the clear.

How to avoid the above attack? As you may have already thought this
one is easy to avoid. The client has to ask the user before it
connects whether the user requests @acronym{TLS} or not. If the user
answered that he certainly wants the secure layer the last
conversation should be:

@quotation
(client connects to the server)

CLIENT: HELLO I'M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON'T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)
@end quotation

This method, if implemented properly, is far better than the
traditional method, and the security properties remain the same, since
only denial of service is possible. The benefit is that the server may
request additional data before the @acronym{TLS} Handshake protocol
starts, in order to send the correct certificate, use the correct
password file@footnote{in @acronym{SRP} authentication}, or anything
else!

@node How to use GnuTLS in applications
@chapter How to use @acronym{GnuTLS} in applications
@anchor{examples}
@cindex Example programs

@menu
* Preparation::
* Multi-threaded applications::
* Client examples::
* Server examples::
* Miscellaneous examples::
* Compatibility with the OpenSSL library::
@end menu

@node Preparation
@section Preparation

To use @acronym{GnuTLS}, you have to perform some changes to your
sources and your build system. The necessary changes are explained in
the following subsections.

@menu
* Headers::
* Version check::
* Building the source::
@end menu

@node Headers
@subsection Headers

All the data types and functions of the @acronym{GnuTLS} library are
defined in the header file @file{gnutls/gnutls.h}.  This must be
included in all programs that make use of the @acronym{GnuTLS}
library.

The extra functionality of the @acronym{GnuTLS-extra} library is
available by including the header file @file{gnutls/extra.h} in your
programs.

@node Version check
@subsection Version check

It is often desirable to check that the version of `gnutls' used is
indeed one which fits all requirements.  Even with binary
compatibility new features may have been introduced but due to problem
with the dynamic linker an old version is actually used.  So you may
want to check that the version is okay right after program startup.
See the function @ref{gnutls_check_version}.

@node Building the source
@subsection Building the source

If you want to compile a source file including the `gnutls/gnutls.h'
header file, you must make sure that the compiler can find it in the
directory hierarchy.  This is accomplished by adding the path to the
directory in which the header file is located to the compilers include
file search path (via the -I option).

However, the path to the include file is determined at the time the
source is configured.  To solve this problem, @acronym{GnuTLS} ships
with two small helper programs @command{libgnutls-config} and
@command{libgnutls-extra-config} that knows about the path to the
include file and other configuration options.  The options that need
to be added to the compiler invocation at compile time are output by
the @code{--cflags} option to @command{libgnutls-config}.  The
following example shows how it can be used at the command line:

@example
gcc -c foo.c `libgnutls-config --cflags`
@end example

Adding the output of @command{libgnutls-config --cflags} to the
compilers command line will ensure that the compiler can find the
@acronym{GnuTLS} header file.

A similar problem occurs when linking the program with the library.
Again, the compiler has to find the library files.  For this to work,
the path to the library files has to be added to the library search
path (via the -L option).  For this, the option @code{--libs} to
@command{libgnutls-config} can be used.  For convenience, this option
also outputs all other options that are required to link the program
with the @acronym{GnuTLS} libararies.  The example shows how to link
`foo.o' with the @acronym{GnuTLS} libraries to a program @emph{foo}.

@example
gcc -o foo foo.o `libgnutls-config --libs`
@end example

Of course you can also combine both examples to a single command by
specifying both options to `libgnutls-config':

@example
gcc -o foo foo.c `libgnutls-config --cflags --libs`
@end example

@node Multi-threaded applications
@section Multi-threaded applications

Although the @acronym{GnuTLS} library is thread safe by design, some
parts of the crypto backend, such as the random generator, are
not. Since @emph{libgcrypt 1.1.92} there was an automatic detection of
the thread library used by the application, so most applications
wouldn't need to do any changes to ensure thread-safety. Due to the
unportability of the automatic thread detection, this was removed from
later releases of @emph{libgcrypt}, so applications have now to
register callback functions to ensure proper locking in sensitive
parts of @emph{libgcrypt}.

There are helper macros to help you properly initialize the libraries.
Examples are shown below.

@itemize

@item POSIX threads
@example
#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pthread.h>
GCRY_THREAD_OPTION_PTHREAD_IMPL;

int main() 
@{
   /* The order matters.
    */
   gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pthread);
   gnutls_global_init();
@}
@end example

@item GNU PTH threads
@example
#include <gnutls.h>
#include <gcrypt.h>
#include <errno.h>
#include <pth.h>
GCRY_THREAD_OPTION_PTH_IMPL;

int main() 
@{
   gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pth);
   gnutls_global_init();
@}
@end example

@item Other thread packages
@example
/* The gcry_thread_cbs structure must have been
 * initialized.
 */
static struct gcry_thread_cbs gcry_threads_other = @{ ... @};

int main()
@{
   gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_other);
@}
@end example
@end itemize

@node Client examples
@section Client examples

This section contains examples of @acronym{TLS} and @acronym{SSL}
clients, using @acronym{GnuTLS}.  Note that these examples contain
little or no error checking.

@menu
* Simple client example with anonymous authentication::
* Simple client example with X.509 certificate support::
* Obtaining session information::
* Verifying peer's certificate::
* Using a callback to select the certificate to use::
* Client with Resume capability example::
* Simple client example with SRP authentication::
@end menu

@node Simple client example with anonymous authentication
@subsection Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn't do any
authentication.  This means no external certificates or passwords are
needed to set up the connection.  As could be expected, the connection
is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data is integrity and privacy protected.

@verbatiminclude examples/ex-client1.c

@node Simple client example with X.509 certificate support
@subsection Simple client example with @acronym{X.509} certificate support

Let's assume now that we want to create a TCP client which
communicates with servers that use @acronym{X.509} or
@acronym{OpenPGP} certificate authentication. The following client is
a very simple @acronym{TLS} client, it does not support session
resuming, not even certificate verification. The TCP functions defined
in this example are used in most of the other examples below, without
redefining them.

@verbatiminclude examples/ex-client2.c

@node Obtaining session information
@subsection Obtaining session information

Most of the times it is desirable to know the security properties of
the current established session.  This includes the underlying ciphers
and the protocols involved.  That is the purpose of the following
function.  Note that this function will print meaningful values only
if called after a successful @ref{gnutls_handshake}.

@verbatiminclude examples/ex-session-info.c

@node Verifying peer's certificate
@subsection Verifying peer's certificate
@anchor{ex:verify}

A @acronym{TLS} session is not secure just after the handshake
procedure has finished.  It must be considered secure, only after the
peer's certificate and identity have been verified. That is, you have
to verify the signature in peer's certificate, the hostname in the
certificate, and expiration dates.  Just after this step you should
treat the connection as being a secure one.

@verbatiminclude examples/ex-rfc2818.c

An other example is listed below which provides a more detailed
verification output.

@verbatiminclude examples/ex-verify.c

@node Using a callback to select the certificate to use
@subsection Using a callback to select the certificate to use

There are cases where a client holds several certificate and key
pairs, and may not want to load all of them in the credentials
structure.  The following example demonstrates the use of the
certificate selection callback.

@verbatiminclude examples/ex-cert-select.c

@node Client with Resume capability example
@subsection Client with Resume capability example
@anchor{ex:resume-client}

This is a modification of the simple client example. Here we
demonstrate the use of session resumption. The client tries to connect
once using @acronym{TLS}, close the connection and then try to
establish a new connection using the previously negotiated data.

@verbatiminclude examples/ex-client-resume.c

@node Simple client example with SRP authentication
@subsection Simple client example with @acronym{SRP} authentication

The following client is a very simple @acronym{SRP} @acronym{TLS}
client which connects to a server and authenticates using a
@emph{username} and a @emph{password}. The server may authenticate
itself using a certificate, and in that case it has to be verified.

@verbatiminclude examples/ex-client-srp.c

@node Server examples
@section Server examples

This section contains examples of @acronym{TLS} and @acronym{SSL}
servers, using @acronym{GnuTLS}.

@menu
* Echo Server with X.509 authentication::
* Echo Server with X.509 authentication II::
* Echo Server with OpenPGP authentication::
* Echo Server with SRP authentication::
* Echo Server with anonymous authentication::
@end menu

@node Echo Server with X.509 authentication
@subsection Echo Server with @acronym{X.509} authentication

This example is a very simple echo server which supports
@acronym{X.509} authentication, using the RSA ciphersuites.

@verbatiminclude examples/ex-serv1.c

@node Echo Server with X.509 authentication II
@subsection Echo Server with @acronym{X.509} authentication II

The following example is a server which supports @acronym{X.509}
authentication.  This server supports the export-grade cipher suites,
the DHE ciphersuites and session resuming.

@verbatiminclude examples/ex-serv-export.c

@node Echo Server with OpenPGP authentication
@subsection Echo Server with @acronym{OpenPGP} authentication
@cindex @acronym{OpenPGP} Server

The following example is an echo server which supports
@acronym{@acronym{OpenPGP}} key authentication. You can easily combine
this functionality ---that is have a server that supports both
@acronym{X.509} and @acronym{OpenPGP} certificates--- but we separated
them to keep these examples as simple as possible.

@verbatiminclude examples/ex-serv-pgp.c

@node Echo Server with SRP authentication
@subsection Echo Server with @acronym{SRP} authentication

This is a server which supports @acronym{SRP} authentication. It is
also possible to combine this functionality with a certificate
server. Here it is separate for simplicity.

@verbatiminclude examples/ex-serv-srp.c

@node Echo Server with anonymous authentication
@subsection Echo Server with anonymous authentication

This example server support anonymous authentication, and could be
used to serve the example client for anonymous authentication.

@verbatiminclude examples/ex-serv-anon.c

@node Miscellaneous examples
@section Miscellaneous examples

@menu
* Checking for an alert::
* X.509 certificate parsing example::
* Certificate request generation::
* PKCS #12 structure generation::
@end menu

@node Checking for an alert
@subsection Checking for an alert

This is a function that checks if an alert has been received in the
current session.

@verbatiminclude examples/ex-alert.c

@node X.509 certificate parsing example
@subsection @acronym{X.509} certificate parsing example
@anchor{ex:x509-info}

To demonstrate the @acronym{X.509} parsing capabilities an example program is
listed below.  That program reads the peer's certificate, and prints
information about it.

@verbatiminclude examples/ex-x509-info.c

@node Certificate request generation
@subsection Certificate request generation
@anchor{ex:crq}

The following example is about generating a certificate request, and a
private key. A certificate request can be later be processed by a CA,
which should return a signed certificate.

@verbatiminclude examples/ex-crq.c

@node PKCS #12 structure generation
@subsection @acronym{PKCS} #12 structure generation
@anchor{ex:pkcs12}

The following example is about generating a @acronym{PKCS} #12
structure.

@verbatiminclude examples/ex-pkcs12.c

@node Compatibility with the OpenSSL library
@section Compatibility with the OpenSSL library
@cindex OpenSSL

To ease @acronym{GnuTLS}' integration with existing applications, a
compatibility layer with the widely used OpenSSL library is included
in the @code{gnutls-openssl} library. This compatibility layer is not
complete and it is not intended to completely reimplement the OpenSSL
API with @acronym{GnuTLS}.  It only provides source-level
compatibility. There is currently no attempt to make it
binary-compatible with OpenSSL.

The prototypes for the compatibility functions are in the
@file{gnutls/openssl.h} header file.

Current limitations imposed by the compatibility layer include:

@itemize

@item Error handling is not thread safe.

@end itemize

@node Included programs
@chapter Included programs

Included with @acronym{GnuTLS} are also a few command line tools that
let you use the library for common tasks without writing an
application.  The applications are discussed in this chapter.

@menu
* Invoking srptool::
* Invoking gnutls-cli::
* Invoking gnutls-cli-debug::
* Invoking gnutls-serv::
* Invoking certtool::
@end menu

@node Invoking srptool
@section Invoking srptool
@anchor{srptool}
@cindex srptool

The @file{srptool} is a very simple program that emulates the programs
in the @emph{Stanford SRP libraries}.  It is intended for use in
places where you don't expect @acronym{SRP} authentication to be the
used for system users.  Traditionally @emph{libsrp} used two
files. One called 'tpasswd' which holds usernames and verifiers, and
'tpasswd.conf' which holds generators and primes.

How to use srptool:

@itemize

@item
To create tpasswd.conf which holds the g and n values for
@acronym{SRP} protocol (generator and a large prime), run:

@example
$ srptool --create-conf /etc/tpasswd.conf
@end example

@item
This command will create /etc/tpasswd and will add user 'test' (you
will also be prompted for a password). Verifiers are stored by default
in the way libsrp expects.

@example
$ srptool --passwd /etc/tpasswd \
    --passwd-conf /etc/tpasswd.conf -u test
@end example

@item
This command will check against a password. If the password matches
the one in /etc/tpasswd you will get an ok.

@example
$ srptool --passwd /etc/tpasswd \
    --passwd-conf /etc/tpasswd.conf --verify -u test
@end example

@end itemize

@node Invoking gnutls-cli
@section Invoking gnutls-cli
@cindex gnutls-cli

Simple client program to set up a TLS connection to some other
computer.  It sets up a TLS connection and forwards data from the
standard input to the secured socket and vice versa.

@verbatim
GNU TLS test client
Usage:  gnutls-cli [options] hostname

     -d, --debug integer      Enable debugging
     -r, --resume             Connect, establish a session. Connect
                              again and resume this session.
     -s, --starttls           Connect, establish a plain session and
                              start TLS when EOF or a SIGALRM is
                              received.
     --crlf                   Send CR LF instead of LF.
     --x509fmtder             Use DER format for certificates to read
                              from.
     -f, --fingerprint        Send the openpgp fingerprint, instead
                              of the key.
     --disable-extensions     Disable all the TLS extensions.
     --xml                    Print the certificate information in
                              XML format.
     --print-cert             Print the certificate in PEM format.
     -p, --port integer       The port to connect to.
     --recordsize integer     The maximum record size to advertize.
     -V, --verbose            More verbose output.
     --ciphers cipher1 cipher2...
                              Ciphers to enable.
     --protocols protocol1 protocol2...
                              Protocols to enable.
     --comp comp1 comp2...    Compression methods to enable.
     --macs mac1 mac2...      MACs to enable.
     --kx kx1 kx2...          Key exchange methods to enable.
     --ctypes certType1 certType2...
                              Certificate types to enable.
     --x509cafile FILE        Certificate file to use.
     --x509crlfile FILE       CRL file to use.
     --pgpkeyfile FILE        PGP Key file to use.
     --pgpkeyring FILE        PGP Key ring file to use.
     --pgptrustdb FILE        PGP trustdb file to use.
     --pgpcertfile FILE       PGP Public Key (certificate) file to
                              use.
     --x509keyfile FILE       X.509 key file to use.
     --x509certfile FILE      X.509 Certificate file to use.
     --srpusername NAME       SRP username to use.
     --srppasswd PASSWD       SRP password to use.
     --insecure               Don't abort program if server
                              certificate can't be validated.
     -l, --list               Print a list of the supported
                              algorithms  and modes.
     -h, --help               prints this help
     -v, --version            prints the program's version number
     --copyright              prints the program's license
@end verbatim

@node Invoking gnutls-cli-debug
@section Invoking gnutls-cli-debug
@cindex gnutls-cli-debug

This program was created to assist in debugging @acronym{GnuTLS}, but
it might be useful to extract a @acronym{TLS} server's capabilities.
It's purpose is to connect onto a @acronym{TLS} server, perform some
tests and print the server's capabilities. If called with the `-v'
parameter a more checks will be performed. An example output is:

@smallexample
crystal:/cvs/gnutls/src$ ./gnutls-cli-debug localhost -p 5556
Resolving 'localhost'...
Connecting to '127.0.0.1:5556'...
Checking for TLS 1.1 support... yes
Checking fallback from TLS 1.1 to... N/A
Checking for TLS 1.0 support... yes
Checking for SSL 3.0 support... yes
Checking for version rollback bug in RSA PMS... no
Checking for version rollback bug in Client Hello... no
Checking whether we need to disable TLS 1.0... N/A
Checking whether the server ignores the RSA PMS version... no
Checking whether the server can accept Hello Extensions... yes
Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes
Checking whether the server can accept a bogus TLS record version in the client hello... yes
Checking for certificate information... N/A
Checking for trusted CAs... N/A
Checking whether the server understands TLS closure alerts... yes
Checking whether the server supports session resumption... yes
Checking for export-grade ciphersuite support... no
Checking RSA-export ciphersuite info... N/A
Checking for anonymous authentication support... no
Checking anonymous Diffie Hellman group info... N/A
Checking for ephemeral Diffie Hellman support... no
Checking ephemeral Diffie Hellman group info... N/A
Checking for AES cipher support (TLS extension)... yes
Checking for 3DES cipher support... yes
Checking for ARCFOUR 128 cipher support... yes
Checking for ARCFOUR 40 cipher support... no
Checking for MD5 MAC support... yes
Checking for SHA1 MAC support... yes
Checking for RIPEMD160 MAC support (TLS extension)... yes
Checking for ZLIB compression support (TLS extension)... yes
Checking for LZO compression support (GnuTLS extension)... yes
Checking for max record size (TLS extension)... yes
Checking for SRP authentication support (TLS extension)... yes
Checking for OpenPGP authentication support (TLS extension)... no
@end smallexample

@node Invoking gnutls-serv
@section Invoking gnutls-serv
@cindex gnutls-serv

Simple server program that listens to incoming TLS connections.

@verbatim
GNU TLS test server
Usage: gnutls-serv [options]

     -d, --debug integer      Enable debugging
     -g, --generate           Generate Diffie Hellman Parameters.
     -p, --port integer       The port to connect to.
     -q, --quiet              Suppress some messages.
     --nodb                   Does not use the resume database.
     --http                   Act as an HTTP Server.
     --echo                   Act as an Echo Server.
     --dhparams FILE          DH params file to use.
     --x509fmtder             Use DER format for certificates
     --x509cafile FILE        Certificate file to use.
     --x509crlfile FILE       CRL file to use.
     --pgpkeyring FILE        PGP Key ring file to use.
     --pgptrustdb FILE        PGP trustdb file to use.
     --pgpkeyfile FILE        PGP Key file to use.
     --pgpcertfile FILE       PGP Public Key (certificate) file to
                              use.
     --x509keyfile FILE       X.509 key file to use.
     --x509certfile FILE      X.509 Certificate file to use.
     --x509dsakeyfile FILE    Alternative X.509 key file to use.
     --x509dsacertfile FILE   Alternative X.509 certificate file to
                              use.
     --srppasswd FILE         SRP password file to use.
     --srppasswdconf FILE     SRP password conf file to use.
     --ciphers cipher1 cipher2...
                              Ciphers to enable.
     --protocols protocol1 protocol2...
                              Protocols to enable.
     --comp comp1 comp2...    Compression methods to enable.
     --macs mac1 mac2...      MACs to enable.
     --kx kx1 kx2...          Key exchange methods to enable.
     --ctypes certType1 certType2...
                              Certificate types to enable.
     -l, --list               Print a list of the supported
                              algorithms  and modes.
     -h, --help               prints this help
     -v, --version            prints the program's version number
     --copyright              prints the program's license
@end verbatim

@node Invoking certtool
@section Invoking certtool
@cindex certtool

This is a program to generate @acronym{X.509} certificates, certificate
requests, CRLs and private keys. The program can be used interactively
or non interactively by specifying the @code{--template} command line
option. See below for an example of a template file.

How to use certtool interactively:

@itemize
@item
To generate parameters for Diffie Hellman key exchange, use the command:
@example
$ certtool --generate-dh-params --outfile dh.pem
@end example

@item
To generate parameters for the RSA-EXPORT key exchange, use the command:
@example
$ certtool --generate-privkey --bits 512 --outfile rsa.pem
@end example

@end itemize

@itemize

@item
To create a self signed certificate, use the command:
@example
$ certtool --generate-privkey --outfile ca-key.pem
$ certtool --generate-self-signed --load-privkey ca-key.pem \
   --outfile ca-cert.pem
@end example

Note that a self-signed certificate usually belongs to a certificate
authority, that signs other certificates.

@item
To create a private key, run:

@example
$ certtool --generate-privkey --outfile key.pem
@end example

@item
To create a certificate request, run:

@example
$ certtool --generate-request --load-privkey key.pem \
  --outfile request.pem
@end example

@item
To generate a certificate using the previous request, use the command:

@example
$ certtool --generate-certificate --load-request request.pem \
   --outfile cert.pem \
   --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
@end example

@item
To view the certificate information, use:

@example
$ certtool --certificate-info --infile cert.pem
@end example

@item
To generate a @acronym{PKCS} #12 structure using the previous key and
certificate, use the command:

@example
$ certtool --load-certificate cert.pem --load-privkey key.pem \
  --to-p12 --outder --outfile key.p12
@end example

@end itemize

Certtool's template file format:

@itemize

@item
Firstly create a file named 'cert.cfg' that contains the information
about the certificate. An example file is listed below.

@item
Then execute:

@example
$ certtool --generate-certificate cert.pem --load-privkey key.pem  \
   --template cert.cfg \
   --load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem
@end example

@end itemize

An example certtool template file:

@example
# X.509 Certificate options
#
# DN options

# The organization of the subject.
organization = "Koko inc."

# The organizational unit of the subject.
unit = "sleeping dept."

# The locality of the subject.
# locality =

# The state of the certificate owner.
state = "Attiki"

# The country of the subject. Two letter code.
country = GR

# The common name of the certificate owner.
cn = "Cindy Lauper"

# A user id of the certificate owner.
#uid = "clauper"

# If the supported DN OIDs are not adequate you can set
# any OID here.
# For example set the X.520 Title and the X.520 Pseudonym
# by using OID and string pairs.
#dn_oid = "2.5.4.12" "Dr." "2.5.4.65" "jackal"

# This is deprecated and should not be used in new
# certificates.
# pkcs9_email = "none@@none.org"

# The serial number of the certificate
serial = 007

# In how many days, counting from today, this certificate will expire.
expiration_days = 700

# X.509 v3 extensions

# A dnsname in case of a WWW server.
#dns_name = "www.none.org"

# An IP address in case of a server.
#ip_address = "192.168.1.1"

# An email in case of a person
email = "none@@none.org"

# An URL that has CRLs (certificate revocation lists)
# available. Needed in CA certificates.
#crl_dist_points = "http://www.getcrl.crl/getcrl/"

# Whether this is a CA certificate or not
#ca

# Whether this certificate will be used for a TLS client
#tls_www_client

# Whether this certificate will be used for a TLS server
#tls_www_server

# Whether this certificate will be used to sign data (needed
# in TLS DHE ciphersuites).
signing_key

# Whether this certificate will be used to encrypt data (needed
# in TLS RSA ciphersuites). Note that it is prefered to use different
# keys for encryption and signing.
#encryption_key

# Whether this key will be used to sign other certificates.
#cert_signing_key

# Whether this key will be used to sign CRLs.
#crl_signing_key

# Whether this key will be used to sign code.
#code_signing_key

# Whether this key will be used to sign OCSP data.
#ocsp_signing_key

# Whether this key will be used for time stamping.
#time_stamping_key
@end example

@node Function reference
@chapter Function reference
@cindex Function reference

@menu
* Core functions::
* X.509 certificate functions::
* GnuTLS-extra functions::
* OpenPGP functions::
* Error codes and descriptions::
@end menu

@node Core functions
@section Core functions

The prototypes for the following functions lie in
@file{gnutls/gnutls.h}.

@include gnutls-api.texi

@node X.509 certificate functions
@section @acronym{X.509} certificate functions
@anchor{sec:x509api}
@cindex @acronym{X.509} Functions

The following functions are to be used for @acronym{X.509} certificate handling.
Their prototypes lie in @file{gnutls/x509.h}.

@include x509-api.texi

@node GnuTLS-extra functions
@section @acronym{GnuTLS-extra} functions
@cindex @acronym{GnuTLS-extra} functions

These functions are only available in the GPL version of the library
called @code{gnutls-extra}. The prototypes for this library lie in
@file{gnutls/extra.h}.

@include gnutls-extra-api.texi

@node OpenPGP functions
@section @acronym{OpenPGP} functions
@cindex @acronym{OpenPGP} functions
@anchor{sec:openpgpapi}

The following functions are to be used for @acronym{OpenPGP} certificate
handling.  Their prototypes lie in @file{gnutls/openpgp.h}.

@include pgp-api.texi

@node Error codes and descriptions
@section Error codes and descriptions
@anchor{Error Codes}
@cindex Error codes

The error codes used throughout the library are described below.  The
return code @code{GNUTLS_E_SUCCESS} indicate successful operation, and
is guaranteed to have the value 0, so you can use it in logical
expressions.

@include error_codes.texi

@node Certificate to XML convertion functions
@chapter Certificate to @acronym{XML} convertion functions
@cindex Certificate to XML convertion

This appendix contains some example output of the XML convertion
functions:

@itemize

@item @ref{gnutls_x509_crt_to_xml}

@item @ref{gnutls_openpgp_key_to_xml}

@end itemize

@menu
* An X.509 certificate::
* An OpenPGP key::
@end menu

@node An X.509 certificate
@section An @acronym{X.509} certificate

@smallexample
<?xml version="1.0" encoding="UTF-8"?>

<gnutls:x509:certificate version="1.1">
 <certificate type="SEQUENCE">
  <tbsCertificate type="SEQUENCE">
    <version type="INTEGER" encoding="HEX">02</version>
    <serialNumber type="INTEGER" encoding="HEX">01</serialNumber>
    <signature type="SEQUENCE">
      <algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>
      <parameters type="ANY">
        <md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>
      </parameters>
    </signature>
    <issuer type="CHOICE">
      <rdnSequence type="SEQUENCE OF">
        <unnamed1 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.6</type>
            <value type="ANY">
              <X520countryName>GR</X520countryName>
            </value>
          </unnamed1>
        </unnamed1>
        <unnamed2 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.8</type>
            <value type="ANY">
              <X520StateOrProvinceName>Attiki</X520StateOrProvinceName>
            </value>
          </unnamed1>
        </unnamed2>
        <unnamed3 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.7</type>
            <value type="ANY">
              <X520LocalityName>Athina</X520LocalityName>
            </value>
          </unnamed1>
        </unnamed3>
        <unnamed4 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.10</type>
            <value type="ANY">
              <X520OrganizationName>GNUTLS</X520OrganizationName>
            </value>
          </unnamed1>
        </unnamed4>
        <unnamed5 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.11</type>
            <value type="ANY">
              <X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>
            </value>
          </unnamed1>
        </unnamed5>
        <unnamed6 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.3</type>
            <value type="ANY">
              <X520CommonName>GNUTLS TEST CA</X520CommonName>
            </value>
          </unnamed1>
        </unnamed6>
        <unnamed7 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">1.2.840.113549.1.9.1</type>
            <value type="ANY">
              <Pkcs9email>gnutls-dev@@gnupg.org</Pkcs9email>
            </value>
          </unnamed1>
        </unnamed7>
      </rdnSequence>
    </issuer>
    <validity type="SEQUENCE">
      <notBefore type="CHOICE">
        <utcTime type="TIME">010707101845Z</utcTime>
      </notBefore>
      <notAfter type="CHOICE">
        <utcTime type="TIME">020707101845Z</utcTime>
      </notAfter>
    </validity>
    <subject type="CHOICE">
      <rdnSequence type="SEQUENCE OF">
        <unnamed1 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.6</type>
            <value type="ANY">
              <X520countryName>GR</X520countryName>
            </value>
          </unnamed1>
        </unnamed1>
        <unnamed2 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.8</type>
            <value type="ANY">
              <X520StateOrProvinceName>Attiki</X520StateOrProvinceName>
            </value>
          </unnamed1>
        </unnamed2>
        <unnamed3 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.7</type>
            <value type="ANY">
              <X520LocalityName>Athina</X520LocalityName>
            </value>
          </unnamed1>
        </unnamed3>
        <unnamed4 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.10</type>
            <value type="ANY">
              <X520OrganizationName>GNUTLS</X520OrganizationName>
            </value>
          </unnamed1>
        </unnamed4>
        <unnamed5 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.11</type>
            <value type="ANY">
              <X520OrganizationalUnitName>GNUTLS dev.</X520OrganizationalUnitName>
            </value>
          </unnamed1>
        </unnamed5>
        <unnamed6 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">2.5.4.3</type>
            <value type="ANY">
              <X520CommonName>localhost</X520CommonName>
            </value>
          </unnamed1>
        </unnamed6>
        <unnamed7 type="SET OF">
          <unnamed1 type="SEQUENCE">
            <type type="OBJECT ID">1.2.840.113549.1.9.1</type>
            <value type="ANY">
              <Pkcs9email>root@@localhost</Pkcs9email>
            </value>
          </unnamed1>
        </unnamed7>
      </rdnSequence>
    </subject>
    <subjectPublicKeyInfo type="SEQUENCE">
      <algorithm type="SEQUENCE">
        <algorithm type="OBJECT ID">1.2.840.113549.1.1.1</algorithm>
        <parameters type="ANY">
          <rsaEncryption encoding="HEX">0500</rsaEncryption>
        </parameters>
      </algorithm>
      <subjectPublicKey type="BIT STRING" encoding="HEX" length="1120">
      30818902818100D00B49EBB226D951F5CC57072199DDF287683D2DA1A0E
      FCC96BFF73164777C78C3991E92EDA66584E7B97BAB4BE68D595D225557
      E01E7E57B5C35C04B491948C5C427AD588D8C6989764996D6D44E17B65C
      CFC86F3B4842DE559B730C1DE3AEF1CE1A328AFF8A357EBA911E1F7E8FC
      1598E21E4BF721748C587F50CF46157D950203010001</subjectPublicKey>
    </subjectPublicKeyInfo>
    <extensions type="SEQUENCE OF">
      <unnamed1 type="SEQUENCE">
        <extnID type="OBJECT ID">2.5.29.35</extnID>
        <critical type="BOOLEAN">FALSE</critical>
        <extnValue type="SEQUENCE">
          <keyIdentifier type="OCTET STRING" encoding="HEX">
          EFEE94ABC8CA577F5313DB76DC1A950093BAF3C9</keyIdentifier>
        </extnValue>
      </unnamed1>
      <unnamed2 type="SEQUENCE">
        <extnID type="OBJECT ID">2.5.29.37</extnID>
        <critical type="BOOLEAN">FALSE</critical>
        <extnValue type="SEQUENCE OF">
          <unnamed1 type="OBJECT ID">1.3.6.1.5.5.7.3.1</unnamed1>
          <unnamed2 type="OBJECT ID">1.3.6.1.5.5.7.3.2</unnamed2>
          <unnamed3 type="OBJECT ID">1.3.6.1.4.1.311.10.3.3</unnamed3>
          <unnamed4 type="OBJECT ID">2.16.840.1.113730.4.1</unnamed4>
        </extnValue>
      </unnamed2>
      <unnamed3 type="SEQUENCE">
        <extnID type="OBJECT ID">2.5.29.19</extnID>
        <critical type="BOOLEAN">TRUE</critical>
        <extnValue type="SEQUENCE">
          <cA type="BOOLEAN">FALSE</cA>
        </extnValue>
      </unnamed3>
    </extensions>
  </tbsCertificate>
  <signatureAlgorithm type="SEQUENCE">
    <algorithm type="OBJECT ID">1.2.840.113549.1.1.4</algorithm>
    <parameters type="ANY">
      <md5WithRSAEncryption encoding="HEX">0500</md5WithRSAEncryption>
    </parameters>
  </signatureAlgorithm>
  <signature type="BIT STRING" encoding="HEX" length="1024">
  B73945273AF2A395EC54BF5DC669D953885A9D811A3B92909D24792D36A44EC
  27E1C463AF8738BEFD29B311CCE8C6D9661BEC30911DAABB39B8813382B32D2
  E259581EBCD26C495C083984763966FF35D1DEFE432891E610C85072578DA74
  23244A8F5997B41A1F44E61F4F22C94375775055A5E72F25D5E4557467A91BD
  4251</signature>
 </certificate>
</gnutls:x509:certificate>
@end smallexample

@node An OpenPGP key
@section An @acronym{OpenPGP} key

@smallexample
<?xml version="1.0"?>

<gnutls:openpgp:key version="1.0">
 <OPENPGPKEY>
  <MAINKEY>
    <KEYID>BD572CDCCCC07C3</KEYID>
    <FINGERPRINT>BE615E88D6CFF27225B8A2E7BD572CDCCCC07C35</FINGERPRINT>
    <PKALGO>DSA</PKALGO>
    <KEYLEN>1024</KEYLEN>
    <CREATED>1011533164</CREATED>
    <REVOKED>0</REVOKED>
    <KEY ENCODING="HEX"/>
    <DSA-P>0400E72E76B62EEFA9A3BD594093292418050C02D7029D6CA2066E
    FC34C86038627C643EB1A652A7AF1D37CF46FC505AC1E0C699B37895B4BCB
    3E53541FFDA4766D6168C2B8AAFD6AB22466D06D18034D5DAC698E6993BA5
    B350FF822E1CD8702A75114E8B73A6B09CB3B93CE44DBB516C9BB5F95BB66
    6188602A0A1447236C0658F</DSA-P>
    <DSA-Q>00A08F5B5E78D85F792CC2072F9474645726FB4D9373</DSA-Q>
    <DSA-G>03FE3578D689D6606E9118E9F9A7042B963CF23F3D8F1377A273C0
    F0974DBF44B3CABCBE14DD64412555863E39A9C627662D77AC36662AE4497
    92C3262D3F12E9832A7565309D67BA0AE4DF25F5EDA0937056AD5BE89F406
    9EBD7EC76CE432441DF5D52FFFD06D39E5F61E36947B698A77CB62AB81E4A
    4122BF9050671D9946C865E</DSA-G>
    <DSA-Y>0400D061437A964DDE318818C2B24DE008E60096B60DB8A684B85A
    838D119FC930311889AD57A3B927F448F84EB253C623EDA73B42FF78BCE63
    A6A531D75A64CE8540513808E9F5B10CE075D3417B801164918B131D3544C
    8765A8ECB9971F61A09FC73D509806106B5977D211CB0E1D04D0ED96BCE89
    BAE8F73D800B052139CBF8D</DSA-Y>
  </MAINKEY>
  <USERID>
    <NAME>OpenCDK test key (Only intended for test purposes!)</NAME>
    <EMAIL>opencdk@@foo-bar.org</EMAIL>
    <PRIMARY>0</PRIMARY>
    <REVOKED>0</REVOKED>
  </USERID>
  <SIGNATURE>
    <VERSION>4</VERSION>
    <SIGCLASS>19</SIGCLASS>
    <EXPIRED>0</EXPIRED>
    <PKALGO>DSA</PKALGO>
    <MDALGO>SHA1</MDALGO>
    <CREATED>1011533164</CREATED>
    <KEYID>BD572CDCCCC07C3</KEYID>
  </SIGNATURE>
  <SUBKEY>
    <KEYID>FCB0CF3A5261E06</KEYID>
    <FINGERPRINT>297B48ACC09C0FF683CA1ED1FCB0CF3A5261E067</FINGERPRINT>
    <PKALGO>ELG</PKALGO>
    <KEYLEN>1024</KEYLEN>
    <CREATED>1011533167</CREATED>
    <REVOKED>0</REVOKED>
    <KEY ENCODING="HEX"/>
    <ELG-P>0400E20156526069D067D24F4D71E6D38658E08BE3BF246C1ADCE0
    8DB69CD8D459C1ED335738410798755AFDB79F1797CF022E70C7960F12CA6
    896D27CFD24A11CD316DDE1FBCC1EA615C5C31FEC656E467078C875FC509B
    1ECB99C8B56C2D875C50E2018B5B0FA378606EB6425A2533830F55FD21D64
    9015615D49A1D09E9510F5F</ELG-P>
    <ELG-G>000305</ELG-G>
    <ELG-Y>0400D0BDADE40432758675C87D0730C360981467BAE1BEB6CC105A
    3C1F366BFDBEA12E378456513238B8AD414E52A2A9661D1DF1DB6BB5F33F6
    906166107556C813224330B30932DB7C8CC8225672D7AE24AF2469750E539
    B661EA6475D2E03CD8D3838DC4A8AC4AFD213536FE3E96EC9D0AEA65164B5
    76E01B37A8DCA89F2B257D0</ELG-Y>
  </SUBKEY>
  <SIGNATURE>
    <VERSION>4</VERSION>
    <SIGCLASS>24</SIGCLASS>
    <EXPIRED>0</EXPIRED>
    <PKALGO>DSA</PKALGO>
    <MDALGO>SHA1</MDALGO>
    <CREATED>1011533167</CREATED>
    <KEYID>BD572CDCCCC07C3</KEYID>
  </SIGNATURE>
 </OPENPGPKEY>
</gnutls:openpgp:key>
@end smallexample

@node All the supported ciphersuites in GnuTLS
@chapter All the supported ciphersuites in @acronym{GnuTLS}
@anchor{ciphersuites}
@cindex Ciphersuites

@multitable @columnfractions .45 .20 .35

@item @code{TLS_RSA_NULL_MD5} 
@tab 0x00 0x01
@tab RFC 2246

@item @code{TLS_ANON_DH_3DES_EDE_CBC_SHA} 
@tab 0x00 0x1B
@tab RFC 2246

@item @code{TLS_ANON_DH_ARCFOUR_MD5}
@tab 0x00 0x18
@tab RFC 2246

@item @code{TLS_ANON_DH_AES_128_CBC_SHA}
@tab 0x00 0x34
@tab RFC 2246

@item @code{TLS_ANON_DH_AES_256_CBC_SHA}
@tab 0x00 0x3A
@tab RFC 2246

@item @code{TLS_RSA_ARCFOUR_SHA}
@tab 0x00 0x05
@tab  RFC 2246

@item @code{TLS_RSA_ARCFOUR_MD5}
@tab 0x00 0x04
@tab RFC 2246

@item @code{TLS_RSA_3DES_EDE_CBC_SHA}
@tab 0x00 0x0A
@tab RFC 2246

@item @code{TLS_RSA_EXPORT_ARCFOUR_40_MD5}
@tab 0x00 0x03
@tab RFC 2246

@item @code{TLS_DHE_DSS_3DES_EDE_CBC_SHA}
@tab 0x00 0x13
@tab RFC 2246

@item @code{TLS_DHE_RSA_3DES_EDE_CBC_SHA}
@tab 0x00 0x16
@tab RFC 2246

@item @code{TLS_RSA_AES_128_CBC_SHA}
@tab 0x00 0x2F
@tab RFC 3268

@item @code{TLS_RSA_AES_128_CBC_SHA}
@tab 0x00 0x35
@tab RFC 3268

@item @code{TLS_DHE_DSS_AES_256_CBC_SHA}
@tab 0x00 0x38
@tab RFC 3268

@item @code{TLS_DHE_DSS_AES_128_CBC_SHA}
@tab 0x00 0x32
@tab RFC 3268

@item @code{TLS_DHE_RSA_AES_256_CBC_SHA}
@tab 0x00 0x39
@tab RFC 3268

@item @code{TLS_DHE_RSA_AES_128_CBC_SHA}
@tab 0x00 0x33
@tab RFC 3268

@item @code{TLS_SRP_SHA_3DES_EDE_CBC_SHA}
@tab 0x00 0x50
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_AES_128_CBC_SHA}
@tab 0x00 0x53
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_AES_256_CBC_SHA}
@tab 0x00 0x56
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_RSA_3DES_EDE_CBC_SHA}
@tab 0x00 0x51
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_DSS_3DES_EDE_CBC_SHA}
@tab 0x00 0x52
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_RSA_AES_128_CBC_SHA}
@tab 0x00 0x54
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_DSS_AES_128_CBC_SHA}
@tab 0x00 0x55
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_RSA_AES_256_CBC_SHA}
@tab 0x00 0x57
@tab draft-ietf-tls-srp

@item @code{TLS_SRP_SHA_DSS_AES_256_CBC_SHA}
@tab 0x00 0x58
@tab draft-ietf-tls-srp

@item @code{TLS_DHE_DSS_3DES_EDE_CBC_RMD}
@tab 0x00 0x72
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_RSA_3DES_EDE_CBC_RMD}
@tab 0x00 0x77
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_DSS_AES_256_CBC_RMD}
@tab 0x00 0x73
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_DSS_AES_128_CBC_RMD}
@tab 0x00 0x74
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_RSA_AES_128_CBC_RMD}
@tab 0x00 0x78
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_RSA_AES_256_CBC_RMD}
@tab 0x00 0x79
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_RSA_3DES_EDE_CBC_RMD}
@tab 0x00 0x7C
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_RSA_AES_128_CBC_RMD}
@tab 0x00 0x7D
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_RSA_AES_256_CBC_RMD}
@tab 0x00 0x7E
@tab draft-ietf-tls-openpgp-keys

@item @code{TLS_DHE_DSS_ARCFOUR_SHA}
@tab 0x00 0x66
@tab draft-ietf-tls-56-bit-ciphersuites

@end multitable


@node Copying This Manual
@appendix Copying This Manual

@menu
* GNU Free Documentation License::  License for copying this manual.
@end menu

@include fdl.texi

@node Concept Index
@unnumbered Concept Index

@printindex cp

@node Function and Data Index
@unnumbered Function and Data Index

@printindex fn

@c texi2dvi has problem if unnumbered is put there. However makeinfo works great.
@c STUPID texinfo.

@c @node @mybibnode{}
@c @unnumbered @mybibnode{}
@node Bibliography
@unnumbered Bibliography
@include bibliography.texi


@bye