summaryrefslogtreecommitdiff
path: root/lib/accelerated/x86/aes-x86.c
blob: 59e2b1328099ea9c21d9db2116807dc00a3e556c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 * Copyright (C) 2011-2012 Free Software Foundation, Inc.
 *
 * Author: Nikos Mavrogiannopoulos
 *
 * This file is part of GnuTLS.
 *
 * The GnuTLS is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>
 *
 */

/*
 * The following code is an implementation of the AES-128-CBC cipher
 * using intel's AES instruction set. 
 */

#include <gnutls_errors.h>
#include <gnutls_int.h>
#include <gnutls/crypto.h>
#include <gnutls_errors.h>
#include <aes-x86.h>
#include <x86.h>

struct aes_ctx {
	AES_KEY expanded_key;
	uint8_t iv[16];
	int enc;
};

static int
aes_cipher_init(gnutls_cipher_algorithm_t algorithm, void **_ctx, int enc)
{
	/* we use key size to distinguish */
	if (algorithm != GNUTLS_CIPHER_AES_128_CBC
	    && algorithm != GNUTLS_CIPHER_AES_192_CBC
	    && algorithm != GNUTLS_CIPHER_AES_256_CBC)
		return GNUTLS_E_INVALID_REQUEST;

	*_ctx = gnutls_calloc(1, sizeof(struct aes_ctx));
	if (*_ctx == NULL) {
		gnutls_assert();
		return GNUTLS_E_MEMORY_ERROR;
	}

	((struct aes_ctx *) (*_ctx))->enc = enc;

	return 0;
}

static int
aes_cipher_setkey(void *_ctx, const void *userkey, size_t keysize)
{
	struct aes_ctx *ctx = _ctx;
	int ret;

	if (ctx->enc)
		ret =
		    aesni_set_encrypt_key(userkey, keysize * 8,
					  ALIGN16(&ctx->expanded_key));
	else
		ret =
		    aesni_set_decrypt_key(userkey, keysize * 8,
					  ALIGN16(&ctx->expanded_key));

	if (ret != 0)
		return gnutls_assert_val(GNUTLS_E_ENCRYPTION_FAILED);

	return 0;
}

static int aes_setiv(void *_ctx, const void *iv, size_t iv_size)
{
	struct aes_ctx *ctx = _ctx;

	memcpy(ctx->iv, iv, 16);
	return 0;
}

static int
aes_encrypt(void *_ctx, const void *src, size_t src_size,
	    void *dst, size_t dst_size)
{
	struct aes_ctx *ctx = _ctx;

	aesni_cbc_encrypt(src, dst, src_size, ALIGN16(&ctx->expanded_key),
			  ctx->iv, 1);
	return 0;
}

static int
aes_decrypt(void *_ctx, const void *src, size_t src_size,
	    void *dst, size_t dst_size)
{
	struct aes_ctx *ctx = _ctx;

	aesni_cbc_encrypt(src, dst, src_size, ALIGN16(&ctx->expanded_key),
			  ctx->iv, 0);

	return 0;
}

static void aes_deinit(void *_ctx)
{
	gnutls_free(_ctx);
}

static const gnutls_crypto_cipher_st cipher_struct = {
	.init = aes_cipher_init,
	.setkey = aes_cipher_setkey,
	.setiv = aes_setiv,
	.encrypt = aes_encrypt,
	.decrypt = aes_decrypt,
	.deinit = aes_deinit,
};

static unsigned check_optimized_aes(void)
{
	unsigned int a, b, c, d;
	gnutls_cpuid(1, &a, &b, &c, &d);

	return (c & 0x2000000);
}

#ifdef ASM_X86_64
static unsigned check_pclmul(void)
{
	unsigned int a, b, c, d;
	gnutls_cpuid(1, &a, &b, &c, &d);

	return (c & 0x2);
}
#endif

static unsigned check_intel_or_amd(void)
{
	unsigned int a, b, c, d;
	gnutls_cpuid(0, &a, &b, &c, &d);

	if ((memcmp(&b, "Genu", 4) == 0 &&
	     memcmp(&d, "ineI", 4) == 0 &&
	     memcmp(&c, "ntel", 4) == 0) ||
	    (memcmp(&b, "Auth", 4) == 0 &&
	     memcmp(&d, "enti", 4) == 0 && memcmp(&c, "cAMD", 4) == 0)) {
		return 1;
	}

	return 0;
}

void register_x86_crypto(void)
{
	int ret;

	if (check_intel_or_amd() == 0)
		return;

	if (check_optimized_aes()) {
		_gnutls_debug_log("Intel AES accelerator was detected\n");
		ret =
		    gnutls_crypto_single_cipher_register
		    (GNUTLS_CIPHER_AES_128_CBC, 80, &cipher_struct);
		if (ret < 0) {
			gnutls_assert();
		}

		ret =
		    gnutls_crypto_single_cipher_register
		    (GNUTLS_CIPHER_AES_192_CBC, 80, &cipher_struct);
		if (ret < 0) {
			gnutls_assert();
		}

		ret =
		    gnutls_crypto_single_cipher_register
		    (GNUTLS_CIPHER_AES_256_CBC, 80, &cipher_struct);
		if (ret < 0) {
			gnutls_assert();
		}
#ifdef ASM_X86_64
		if (check_pclmul()) {
			/* register GCM ciphers */
			_gnutls_debug_log
			    ("Intel GCM accelerator was detected\n");
			ret =
			    gnutls_crypto_single_cipher_register
			    (GNUTLS_CIPHER_AES_128_GCM, 80,
			     &aes_gcm_struct);
			if (ret < 0) {
				gnutls_assert();
			}

			ret =
			    gnutls_crypto_single_cipher_register
			    (GNUTLS_CIPHER_AES_256_GCM, 80,
			     &aes_gcm_struct);
			if (ret < 0) {
				gnutls_assert();
			}
		}
#endif
	}

	return;
}