1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/* $OpenBSD: key.c,v 1.98 2011/10/18 04:58:26 djm Exp $ */
/*
* Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
* Copyright (c) 2008 Alexander von Gernler. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <gnutls_int.h>
#include <gnutls_errors.h>
#include <randomart.h>
/*
* Draw an ASCII-Art representing the fingerprint so human brain can
* profit from its built-in pattern recognition ability.
* This technique is called "random art" and can be found in some
* scientific publications like this original paper:
*
* "Hash Visualization: a New Technique to improve Real-World Security",
* Perrig A. and Song D., 1999, International Workshop on Cryptographic
* Techniques and E-Commerce (CrypTEC '99)
* sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf
*
* The subject came up in a talk by Dan Kaminsky, too.
*
* If you see the picture is different, the key is different.
* If the picture looks the same, you still know nothing.
*
* The algorithm used here is a worm crawling over a discrete plane,
* leaving a trace (augmenting the field) everywhere it goes.
* Movement is taken from dgst_raw 2bit-wise. Bumping into walls
* makes the respective movement vector be ignored for this turn.
* Graphs are not unambiguous, because circles in graphs can be
* walked in either direction.
*/
/*
* Field sizes for the random art. Have to be odd, so the starting point
* can be in the exact middle of the picture, and FLDBASE should be >=8 .
* Else pictures would be too dense, and drawing the frame would
* fail, too, because the key type would not fit in anymore.
*/
#define FLDBASE 8
#define FLDSIZE_Y (FLDBASE + 1)
#define FLDSIZE_X (FLDBASE * 2 + 1)
char *
key_fingerprint_randomart (uint8_t * dgst_raw, u_int dgst_raw_len,
const char *key_type, unsigned int key_size)
{
/*
* Chars to be used after each other every time the worm
* intersects with itself. Matter of taste.
*/
const char augmentation_string[] = " .o+=*BOX@%&#/^SE";
char *retval, *p;
uint8_t field[FLDSIZE_X][FLDSIZE_Y];
u_int i, b;
int x, y;
const size_t len = sizeof(augmentation_string) - 1;
retval = gnutls_calloc (1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2));
if (retval == NULL)
{
gnutls_assert();
return NULL;
}
/* initialize field */
memset (field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof (char));
x = FLDSIZE_X / 2;
y = FLDSIZE_Y / 2;
/* process raw key */
for (i = 0; i < dgst_raw_len; i++)
{
int input;
/* each byte conveys four 2-bit move commands */
input = dgst_raw[i];
for (b = 0; b < 4; b++)
{
/* evaluate 2 bit, rest is shifted later */
x += (input & 0x1) ? 1 : -1;
y += (input & 0x2) ? 1 : -1;
/* assure we are still in bounds */
x = MAX (x, 0);
y = MAX (y, 0);
x = MIN (x, FLDSIZE_X - 1);
y = MIN (y, FLDSIZE_Y - 1);
/* augment the field */
if (field[x][y] < len - 2)
field[x][y]++;
input = input >> 2;
}
}
/* mark starting point and end point */
field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1;
field[x][y] = len;
/* fill in retval */
snprintf (retval, FLDSIZE_X, "+--[%4s %4u]", key_type, key_size);
p = strchr (retval, '\0');
/* output upper border */
for (i = p - retval - 1; i < FLDSIZE_X; i++)
*p++ = '-';
*p++ = '+';
*p++ = '\n';
/* output content */
for (y = 0; y < FLDSIZE_Y; y++)
{
*p++ = '|';
for (x = 0; x < FLDSIZE_X; x++)
*p++ = augmentation_string[MIN (field[x][y], len)];
*p++ = '|';
*p++ = '\n';
}
/* output lower border */
*p++ = '+';
for (i = 0; i < FLDSIZE_X; i++)
*p++ = '-';
*p++ = '+';
return retval;
}
|