
The
Go

Programming Language

Part 1

Rob Pike
r@google.com

(updated June 2011)

1Friday, June 10, 2011

mailto:r@google.com
mailto:r@google.com

Who

Work done by a small team at Google, plus
lots of contributors from around the world.

Contact:
http://golang.org: web site
golang-nuts@golang.org: user discussion

golang-dev@golang.org: developers

2Friday, June 10, 2011

mailto:nuts@golang.org?subject=
mailto:nuts@golang.org?subject=
mailto:dev@golang.org
mailto:dev@golang.org

Course Outline

Day 1
Basics

Day 2
Types, methods, and interfaces

Day 3
Concurrency and communication

This course is about programming in Go, not
about programming language design. That is
the topic of a separate talk, not yet on line.

3Friday, June 10, 2011

Today’s Outline

Motivation

Basics
the easy, mostly familiar stuff

Packages and program construction

4Friday, June 10, 2011

Motivation

5Friday, June 10, 2011

Why a new language?

In the current world, languages don't help enough:

 Computers fast but software construction slow.

 Dependency analysis necessary for speed, safety.

 Types get in the way too much.

 Garbage collection, concurrency poorly supported.

 Multi-core seen as crisis not opportunity.

6Friday, June 10, 2011

To put it in a positive way

Our goal is to make programming fun again.

- the feel of a dynamic language with the safety of
a static type system

- compile to machine language so it runs fast

- real run-time that supports GC, concurrency

- lightweight, flexible type system

- has methods but not a conventional OO language

7Friday, June 10, 2011

Resources

For more background, etc. see the documentation:

http://golang.org/

Includes:

- language specification
- tutorial
- "Effective Go"
- library documentation
- setup and how-to docs
- FAQs
- a playground (run Go from the browser)
- more

8Friday, June 10, 2011

Status: Compilers
gc (Ken Thompson), a.k.a. 6g, 8g, 5g

 derived from the Plan 9 compiler model
 generates OK code very quickly
 not directly gcc-linkable

gccgo (Ian Taylor)
 more familiar architecture
 generates good code not as quickly
 gcc-linkable

Available for 32-bit and 64-bit x86 (amd64,
x86-64) and ARM.

Garbage collector, concurrency etc. implemented.
Good and improving libraries.

9Friday, June 10, 2011

Basics

10Friday, June 10, 2011

Time for some code

package main

import "fmt"

func main() {

 fmt.Print("Hello, 世界\n")
}

11Friday, June 10, 2011

Language basics

Assuming familiarity with other C-like languages,
here comes a quick tour of the basics.

This will be mostly easy, familiar and therefore dull.
Apologies for that.

The next two lectures contain the fun stuff but we
need to lay down the groundwork first.

12Friday, June 10, 2011

Lexical structure

Mostly traditional with modern details.

Source is UTF-8. White space: blank, tab,
newline, carriage return.

Identifiers are letters and numbers (plus '_')
with "letter" and "number" defined by Unicode.

Comments:

/* This is a comment; no nesting */

// So is this.

13Friday, June 10, 2011

Literals
C-like but numbers require no signedness or size
markings (more about this soon):

23

0x0FF

1.234e7

C-like strings, but Unicode/UTF-8. Also \xNN

always 2 digits; \012 always 3; both are bytes:

"Hello, world\n"

"\xFF" // 1 byte

"\u00FF" // 1 Unicode char, 2 bytes of UTF-8

Raw strings:

`\n\.abc\t\` == "\\n\\.abc\\t\\"

14Friday, June 10, 2011

Syntax overview

Basically C-like with reversed types and declarations,
plus keywords to introduce each type of declaration.

var a int

var b, c *int // note difference from C

var d []int

type S struct { a, b int }

Basic control structures are familiar:

if a == b { return true } else { return false }

for i = 0; i < 10; i++ { ... }

Note: no parentheses, but braces required.

More about all this later.
15Friday, June 10, 2011

Semicolons

Semicolons terminate statements but:

- lexer inserts them automatically at end of line if
 the previous token could end a statement.
- Note: much cleaner, simpler than JavaScript rule!

Thus no semis needed in this program:

package main

const three = 3

var i int = three

func main() { fmt.Printf("%d\n", i) }

In practice, Go code almost never has semicolons
outside for and if clauses.

16Friday, June 10, 2011

Numeric types

Numeric types are built in, will be familiar:

int uint

int8 uint8 = byte

int16 uint16

int32 uint32 float32 complex64

int64 uint64 float64 complex128

Also uintptr, an integer big enough to store a pointer.

These are all distinct types; int is not int32 even on

a 32-bit machine.

No implicit conversions (but don't panic).

17Friday, June 10, 2011

Bool

The usual boolean type, bool, with values true and

false (predefined constants).

The if statement etc. use boolean expressions.

Pointers and integers are not booleans.†

† Consider (not Go): const bool False = "false";

18Friday, June 10, 2011

String

The built-in type string represents immutable arrays

of bytes - that is, text. Strings are length-delimited
not NUL-terminated.

String literals have type string.

Immutable, just like ints. Can reassign variables but

not edit values.

Just as 3 is always 3, "hello" is always "hello".

Language has good support for string manipulation.

19Friday, June 10, 2011

Expressions

Mostly C-like operators.
Binary operators:

Prec. operators comments

6 * / % << >> & &^ &^ is "bit clear"

5 + - | ^ ^ is "xor"

4 == != < <= > >=

3 <- communication

2 &&

1 ||

Operators that are also unary: & ! * + - ^ <-

Unary ^ is complement.

20Friday, June 10, 2011

Go vs. C expressions

Surprises for the C programmer:

fewer precedence levels (should be easy)
^ instead of ~ (it's binary "exclusive or" made unary)

++ and -- are not expression operators

(x++ is a statement, not an expression;

*p++ is (*p)++ not *(p++))

&^ is new; handy in constant expressions

<< >> etc. require an unsigned shift count

Non-surprises:
assignment ops work as expected: += <<= &^= etc.

expressions generally look the same (indexing,
 function call, etc.)

21Friday, June 10, 2011

Examples

+x

23 + 3*x[i]

x <= f()

^a >> b

f() || g()

x == y + 1 && <-ch > 0

x &^ 7 // x with the low 3 bits cleared

fmt.Printf("%5.2g\n", 2*math.Sin(PI/8))

7.234/x + 2.3i

"hello, " + "world" // concatenation

 // no C-like "a" "b"

22Friday, June 10, 2011

Numeric conversions

Converting a numeric value from one type to another
is a conversion, with syntax like a function call:

uint8(intVar) // truncate to size

int(float64Var) // truncate fraction

float64(intVar) // convert to float64

Also some conversions to and from string:

string(0x1234) // == "\u1234"

string(sliceOfBytes) // bytes -> bytes

string(sliceOfInts) // ints -> Unicode/UTF-8

[]byte("abc") // bytes -> bytes

[]int("日本語") // Unicode/UTF-8 -> ints

(Slices are related to arrays - more later.)

23Friday, June 10, 2011

Constants

Numeric constants are "ideal numbers": no size or
sign, hence no L or U or UL endings.

077 // octal

0xFEEDBEEEEEEEEEEEEEEEEEEEEF // hexadecimal

1 << 100

There are integer and floating-point ideal numbers;
syntax of literal determines type:

1.234e5 // floating-point

1e2 // floating-point

3.2i // imaginary floating-point

100 // integer

24Friday, June 10, 2011

Constant Expressions
Floating point and integer constants can be
combined at will, with the type of the resulting
expression determined by the type of the constants.
The operations themselves also depend on the type.

2*3.14 // floating point: 6.28

3./2 // floating point: 1.5

3/2 // integer: 1

3+2i // complex: 3.0+2.0i

// high precision:

const Ln2 = 0.69314718055994530941723212145817656807

const Log2E = 1/Ln2 // accurate reciprocal

Representation is "big enough" (1024 bits now).

25Friday, June 10, 2011

Consequences of ideal numbers
The language permits the use of constants
without explicit conversion if the value can be
represented (there's no conversion necessary; the
value is OK):

 var million int = 1e6 // float syntax OK here

 math.Sin(1)

Constants must be representable in their type.
Example: ^0 is -1 which is not in range 0-255.

 uint8(^0) // bad: -1 can't be represented

 ^uint8(0) // OK

 uint8(350) // bad: 350 can't be represented

 uint8(35.0) // OK: 35

 uint8(3.5) // bad: 3.5 can't be represented

26Friday, June 10, 2011

Declarations
Declarations are introduced by a keyword (var,

const, type, func) and are reversed compared to C:

var i int

const PI = 22./7.

type Point struct { x, y int }

func sum(a, b int) int { return a + b }

Why are they reversed? Earlier example:

var p, q *int

Both p and q have type *int. Also functions read

better and are consistent with other declarations.
And there's another reason, coming up.

27Friday, June 10, 2011

Var

Variable declarations are introduced by var.

They may have a type or an initialization expression;
one or both must be present. Initializers must
match variables (and types!).

var i int

var j = 365.245

var k int = 0

var l, m uint64 = 1, 2

var nanoseconds int64 = 1e9 // float64 constant!

var inter, floater, stringer = 1, 2.0, "hi"

28Friday, June 10, 2011

Distributing var

Annoying to type var all the time. Group with

parens:

var (

 i int

 j = 356.245

 k int = 0

 l, m uint64 = 1, 2

 nanoseconds int64 = 1e9

 inter, floater, stringer = 1, 2.0, "hi"

)

Applies to const, type, var but not func.

29Friday, June 10, 2011

The := "short declaration"

Within functions (only), declarations of the form

var v = value

can be shortened to

v := value

(Another reason for the name/type reversal.)

The type is that of the value (for ideal numbers, get
int or float64 or complex128, accordingly.)

a, b, c, d, e := 1, 2.0, "three", FOUR, 5e0i

These are used a lot and are available in places such
as for loop initializers.

30Friday, June 10, 2011

Const

Constant declarations are introduced by const.

They must have a "constant expression", evaluated
at compile time, as initializer and may have an
optional type specifier.

const Pi = 22./7.

const AccuratePi float64 = 355./113

const beef, two, parsnip = "meat", 2, "veg"

const (

 Monday, Tuesday, Wednesday = 1, 2, 3

 Thursday, Friday, Saturday = 4, 5, 6

)

31Friday, June 10, 2011

Iota

Constant declarations can use the counter iota,

which starts at 0 in each const block and increments

at each implicit semicolon (end of line).

const (

 Monday = iota // 0

 Tuesday = iota // 1

)

Shorthand: Previous type and expressions repeat.

const (

 loc0, bit0 uint32 = iota, 1<<iota // 0, 1

 loc1, bit1 // 1, 2

 loc2, bit2 // 2, 4

)

32Friday, June 10, 2011

Type

Type declarations are introduced by type.

We'll learn more about types later but here are some
examples:

type Point struct {

 x, y, z float64

 name string

}

type Operator func(a, b int) int

type SliceOfIntPointers []*int

We'll come back to functions a little later.

33Friday, June 10, 2011

New

The built-in function new allocates memory.

Syntax is like a function call, with type as
argument, similar to C++. Returns a pointer
to the allocated object.

var p *Point = new(Point)

v := new(int) // v has type *int

Later we'll see how to build slices and such.

There is no delete or free; Go has garbage

collection.

34Friday, June 10, 2011

Assignment

Assignment is easy and familiar:

a = b

But multiple assignment works too:

x, y, z = f1(), f2(), f3()

a, b = b, a // swap

Functions can return multiple values (details
later):

nbytes, error := Write(buf)

35Friday, June 10, 2011

Control structures

Similar to C, but different in significant ways.

Go has if, for and switch (plus one more to

appear later).

As stated before, no parentheses, but braces
mandatory.

They are quite regular when seen as a set.
For instance, if, for and switch all accept

initialization statements.

36Friday, June 10, 2011

Forms of control structures

Details follow but in general:

The if and switch statements come in 1- and

2-element forms, described below.

The for loop has 1- and 3-element forms:

single-element is C's while:
 for a {}

triple-element is C's for:
for a;b;c {}

In any of these forms, any element can be
empty.

37Friday, June 10, 2011

If
Basic form is familiar, but no dangling else problem:

if x < 5 { less() }

if x < 5 { less() } else if x == 5 { equal() }

Initialization statement allowed; requires semicolon.
if v := f(); v < 10 {

 fmt.Printf("%d less than 10\n", v)

} else {

 fmt.Printf("%d not less than 10\n", v)

}

Useful with multivariate functions:
if n, err = fd.Write(buf); err != nil { ... }

Missing condition means true, which is not too

useful in this context but handy in for, switch.

38Friday, June 10, 2011

For

Basic form is familiar:
for i := 0; i < 10; i++ { ... }

Missing condition means true:
for ;; { fmt.Printf("looping forever") }

But you can leave out the semis too:

for { fmt.Printf("Mine! ") }

Don't forget multivariate assigments:

for i,j := 0,N; i < j; i,j = i+1,j-1 {...}

(There's no comma operator as in C.)

39Friday, June 10, 2011

Switch details
Switches are somewhat similar to C's.

But there are important syntactic and semantic
differences:
- expressions need not be constant or even int.

- no automatic fall through
- instead, lexically last statement can be fallthrough

- multiple cases can be comma-separated

switch count%7 {

 case 4,5,6: error()

 case 3: a *= v; fallthrough

 case 2: a *= v; fallthrough

 case 1: a *= v; fallthrough

 case 0: return a*v

}

40Friday, June 10, 2011

Switch
Go's switch is more powerful than C's. Familiar form:

switch a {

 case 0: fmt.Printf("0")

 default: fmt.Printf("non-zero")

}

The expressions can be any type and a missing
switch expression means true. Result: if-else chain:

a, b := x[i], y[j]

switch {

 case a < b: return -1

 case a == b: return 0

 case a > b: return 1

}

or

 switch a, b := x[i], y[j]; { ... }

41Friday, June 10, 2011

Break, continue, etc.

The break and continue statements work as in C.

They may specify a label to affect an outer structure:

Loop: for i := 0; i < 10; i++ {

 switch f(i) {

 case 0, 1, 2: break Loop

 }

 g(i)

}

Yes Ken, there is a goto.

42Friday, June 10, 2011

Functions

Functions are introduced by the func keyword.

Return type, if any, comes after parameters. The
return does as you expect.

func square(f float64) float64 { return f*f }

A function can return multiple values. If so, the
return types are a parenthesized list.

func MySqrt(f float64) (float64, bool) {

 if f >= 0 { return math.Sqrt(f), true }

 return 0, false

}

43Friday, June 10, 2011

The blank identifier

What if you care only about the first value
returned by MySqrt? Still need to put the

second one somewhere.

Solution: the blank identifier, _ (underscore).

Predeclared, can always be assigned any
value, which is discarded.

// Don't care about boolean from MySqrt.

val, _ = MySqrt(foo())

Handy in other contexts still to be presented.

44Friday, June 10, 2011

Functions with result variables

The result "parameters" are actual variables you
can use if you name them.

func MySqrt(f float64) (v float64, ok bool) {

 if f >= 0 { v,ok = math.Sqrt(f), true }

 else { v,ok = 0,false }

 return v,ok

}

The result variables are initialized to "zero" (0,

0.0, false etc. according to type; more in a sec).

func MySqrt(f float64) (v float64, ok bool) {

 if f >= 0 { v,ok = math.Sqrt(f), true }

 return v,ok

}

45Friday, June 10, 2011

The empty return

Finally, a return with no expressions returns the

existing value of the result variables. Two more
versions of MySqrt:

func MySqrt(f float64) (v float64, ok bool) {

 if f >= 0 { v,ok = math.Sqrt(f), true }

 return // must be explicit

}

func MySqrt(f float64) (v float64, ok bool) {

 if f < 0 { return } // error case

 return math.Sqrt(f),true

}

46Friday, June 10, 2011

What was that about zero?

All memory in Go is initialized. All variables are
initialized upon execution of their declaration.
Without an initializing expression, the "zero
value" of the type is used. The loop

for i := 0; i < 5; i++ {

 var v int

 fmt.Printf("%d ", v)

 v = 5

}

will print 0 0 0 0 0.

The zero value depends on the type: numeric 0;

boolean false; empty string ""; nil pointer,

map, slice, channel; zeroed struct, etc.

47Friday, June 10, 2011

Defer

The defer statement executes a function (or method)

when the enclosing function returns. The arguments
are evaluated at the point of the defer; the function

call happens upon return.

func data(fileName string) string {

 f := os.Open(fileName)

 defer f.Close()

 contents := io.ReadAll(f)

 return contents

}

Useful for closing fds, unlocking mutexes, etc.

48Friday, June 10, 2011

One function invocation per defer

Each defer that executes queues a function call to

execute, in LIFO order, so

func f() {

 for i := 0; i < 5; i++ {

 defer fmt.Printf("%d ", i)

 }

}

prints 4 3 2 1 0. You can close all those fds or

unlock those mutexes at the end.

49Friday, June 10, 2011

Tracing with defer
func trace(s string) { fmt.Println("entering:", s) }

func untrace(s string) { fmt.Println("leaving:", s) }

func a() {

! trace("a")

 defer untrace("a")

 fmt.Println("in a")

}

func b() {

 trace("b")

 defer untrace("b")

 fmt.Println("in b")

 a()

}

func main() { b() }

But we can do it more neatly...

50Friday, June 10, 2011

Args evaluate now, defer later
func trace(s string) string {

! fmt.Println("entering:", s)

 return s

}

func un(s string) {

 fmt.Println("leaving:", s)

}

func a() {

! defer un(trace("a"))

 fmt.Println("in a")

}

func b() {

! defer un(trace("b"))

 fmt.Println("in b")

 a()

}

func main() { b() }

51Friday, June 10, 2011

Function literals

As in C, functions can't be declared inside functions -
but function literals can be assigned to variables.

func f() {

 for i := 0; i < 10; i++ {

 g := func(i int) { fmt.Printf("%d",i) }

 g(i)

 }

}

52Friday, June 10, 2011

Function literals are closures

Function literals are indeed closures.

func adder() (func(int) int) {

 var x int

 return func(delta int) int {

 x += delta

 return x

 }

}

f := adder()

fmt.Print(f(1))

fmt.Print(f(20))

fmt.Print(f(300))

Prints 1 21 321 - accumulating in f's x.

53Friday, June 10, 2011

Program construction

54Friday, June 10, 2011

Packages

A program is constructed as a "package", which
may use facilities from other packages.

A Go program is created by linking together a set
of packages.

A package may be built from multiple source files.

Names in imported packages are accessed through
a "qualified identifier": packagename.Itemname.

55Friday, June 10, 2011

Source file structure

Every source file contains:

- a package clause (which package it's in); that
name is the default name used by importers.
package fmt

- an optional set of import declarations
import "fmt" // use default name

import myFmt "fmt" // use the name myFmt

- zero or more global or "package-level"
declarations.

56Friday, June 10, 2011

A single-file package

package main // this file is part of package "main"

import "fmt" // this file uses package "fmt"

const hello = "Hello, 世界\n"

func main() {

 fmt.Print(hello) // fmt is imported pkg's name

}

57Friday, June 10, 2011

main and main.main

Each Go program contains a package called main

and its main function, after initialization, is where

execution starts, analogous with the global main()

in C, C++.

The main.main function takes no arguments and

returns no value. The program exits -
immediately and successfully - when main.main

returns.

58Friday, June 10, 2011

The os package

// A version of echo(1)

package main

import (

 "fmt"

 "os"

)

func main() {

 if len(os.Args) < 2 { // length of argument slice

 os.Exit(1)

 }

 for i := 1; i < len(os.Args); i++ {

 fmt.Printf("arg %d: %s\n", i, os.Args[i])

 }

} // falling off end == os.Exit(0)

Package os provides Exit and access to file I/O,

command-line arguments, etc.

59Friday, June 10, 2011

Global and package scope

Within a package, all global variables, functions,
types, and constants are visible from all the
package's source files.

For clients (importers) of the package, names must
be upper case to be visible: global variables,
functions, types, constants, plus methods and
structure fields for global variables and types.

const hello = "you smell" // package visible

const Hello = "you smell nice" // globally visible

const _Bye = "stinko!" // _ is not upper

Very different from C/C++: no extern, static,

private, public.

60Friday, June 10, 2011

Initialization

Two ways to initialize global variables before
execution of main.main:

1) A global declaration with an initializer
2) Inside an init() function, of which there may be

any number in each source file.

Package dependency guarantees correct execution
order.

Initialization is always single-threaded.

61Friday, June 10, 2011

Initialization example
package transcendental

import "math"

var Pi float64

func init() {

 Pi = 4*math.Atan(1) // init function computes Pi

}

====

package main

import (

 "fmt"

 "transcendental"

)

var twoPi = 2*transcendental.Pi // decl computes twoPi

func main() {

 fmt.Printf("2*Pi = %g\n", twoPi)

}

====

Output: 2*Pi = 6.283185307179586

62Friday, June 10, 2011

Package and program construction

To build a program, the packages, and the files
within them, must be compiled in the correct order.

Package dependencies determine the order in which
to build packages.

Within a package, the source files must all be
compiled together. The package is compiled as a
unit, and conventionally each directory contains one
package. Ignoring tests,

 cd mypackage

 6g *.go

Usually we use make; Go-specific tool is coming.

63Friday, June 10, 2011

Building the fmt package

% pwd

/Users/r/go/src/pkg/fmt

% ls

Makefile fmt_test.go format.go print.go # ...

% make # hand-written but trivial

% ls

Makefile _go_.6 _obj fmt_test.go format.go print.go # ...

% make clean; make

...

Objects are placed into the subdirectory _obj.

Makefiles are written using helpers called Make.pkg and

so on; see sources.

64Friday, June 10, 2011

Testing

To test a package, write a set of Go source files
within the same package; give the files names of the
form *_test.go.

Within those files, global functions with names
starting with Test[^a-z] will be run by the testing

tool, gotest. Those functions should have signature

 func TestXxx(t *testing.T)

The testing package provides support for logging,

benchmarking, error reporting.

65Friday, June 10, 2011

An example test
Interesting pieces from fmt_test.go:

package fmt // package is fmt, not main

import (

 "testing"

)

func TestFlagParser(t *testing.T) {

 var flagprinter flagPrinter

 for i := 0; i < len(flagtests); i++ {

 tt := flagtests[i]

 s := Sprintf(tt.in, &flagprinter)

 if s != tt.out {

 // method call coming up - obvious syntax.

 t.Errorf("Sprintf(%q, &flagprinter) => %q,"

 + " want %q", tt.in, s, tt.out)

 }

 }

}
66Friday, June 10, 2011

Testing: gotest

% ls

Makefile fmt.a fmt_test.go format.go print.go # ...

% gotest # by default, does all *_test.go

PASS

wally=% gotest -v fmt_test.go

=== RUN fmt.TestFlagParser

--- PASS: fmt.TestFlagParser (0.00 seconds)

=== RUN fmt.TestArrayPrinter

--- PASS: fmt.TestArrayPrinter (0.00 seconds)

=== RUN fmt.TestFmtInterface

--- PASS: fmt.TestFmtInterface (0.00 seconds)

=== RUN fmt.TestStructPrinter

--- PASS: fmt.TestStructPrinter (0.00 seconds)

=== RUN fmt.TestSprintf

--- PASS: fmt.TestSprintf (0.00 seconds) # plus lots more

PASS

%

67Friday, June 10, 2011

An example benchmark

Benchmarks have signature

 func BenchmarkXxxx(b *testing.B)

and loop over b.N; testing package does the rest.

Here is a benchmark example from fmt_test.go:

package fmt // package is fmt, not main

import (

 "testing"

)

func BenchmarkSprintfInt(b *testing.B) {

 for i := 0; i < b.N; i++ {

 Sprintf("%d", 5)

 }

}

68Friday, June 10, 2011

Benchmarking: gotest

% gotest -bench="." # regular expression identifies which

fmt_test.BenchmarkSprintfEmpty! 5000000! 310 ns/op

fmt_test.BenchmarkSprintfString! 2000000! 774 ns/op

fmt_test.BenchmarkSprintfInt! 5000000! 663 ns/op

fmt_test.BenchmarkSprintfIntInt! 2000000! 969 ns/op

...

%

69Friday, June 10, 2011

Libraries

Libraries are just packages.
The set of libraries is modest but growing.
Some examples:

Package Purpose Examples
fmt formatted I/O Printf, Scanf

os OS interface Open, Read, Write

strconv numbers <-> strings Atoi, Atof, Itoa

io generic I/O Copy, Pipe

flag flags: --help etc. Bool, String

log event logging Logger, Printf

regexp regular expressions Compile, Match

template HTML, etc. Parse, Execute

bytes byte arrays Compare, Buffer

70Friday, June 10, 2011

A little more about fmt

The fmt package contains familiar names in initial caps:

Printf - print to standard output

Sprintf - returns a string

Fprintf - writes to os.Stderr etc. (tomorrow)

but also

Print, Sprint, Fprint - no format

Println, Sprintln, Fprintln - no format, adds

 spaces, final \n

fmt.Printf("%d %d %g\n", 1, 2, 3.5)

fmt.Print(1, " ", 2, " ", 3.5, "\n")

fmt.Println(1, 2, 3.5)

Each produces the same result: "1 2 3.5\n"
71Friday, June 10, 2011

Library documentation

Source code contains comments.
Command line or web tool pulls them out.
Link:

 http://golang.org/pkg/

Command:

 % godoc fmt

 % godoc fmt Printf

72Friday, June 10, 2011

http://golang.org/pkg/
http://golang.org/pkg/

Exercise

73Friday, June 10, 2011

Exercise: Day 1

Set up a Go environment - see
 http://golang.org/doc/install.html

You all know what the Fibonacci series is.
Write a package to implement it. There
should be a function to get the next value.
(You don't have structs yet; can you find a
way to save state without globals?) But
instead of addition, make the operation
settable by a function provided by the user.
Integers? Floats? Strings? Up to you.

Write a gotest test for your package.

74Friday, June 10, 2011

Next lesson

Composite types

Methods

Interfaces

75Friday, June 10, 2011

The
Go

Programming Language

Part 1

Rob Pike
r@google.com

(updated June 2011)

76Friday, June 10, 2011

mailto:r@google.com
mailto:r@google.com

