summaryrefslogtreecommitdiff
path: root/test/chan/powser1.go
diff options
context:
space:
mode:
authorRob Pike <r@golang.org>2008-07-18 14:18:07 -0700
committerRob Pike <r@golang.org>2008-07-18 14:18:07 -0700
commitc44f9897dacaf98c7cafaedd0f7f410fc2040aa5 (patch)
tree54738e412b8385a08c13929768399715e9dfc03b /test/chan/powser1.go
parent6be0ffdaa5061ff6821405802c460c0774b7088c (diff)
downloadgo-c44f9897dacaf98c7cafaedd0f7f410fc2040aa5.tar.gz
add doug's power series package
SVN=128063
Diffstat (limited to 'test/chan/powser1.go')
-rw-r--r--test/chan/powser1.go748
1 files changed, 748 insertions, 0 deletions
diff --git a/test/chan/powser1.go b/test/chan/powser1.go
new file mode 100644
index 000000000..1b25d7eef
--- /dev/null
+++ b/test/chan/powser1.go
@@ -0,0 +1,748 @@
+// $G $D/$F.go && $L $F.$A && ./$A.out
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Power series package
+// A power series is a channel, along which flow rational
+// coefficients. A denominator of zero signifies the end.
+// Original code in Newsqueak by Doug McIlroy.
+// See Squinting at Power Series by Doug McIlroy,
+// http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf
+
+package main
+
+type rat struct {
+ num, den int64; // numerator, denominator
+}
+
+func (u *rat) pr(){
+ if u.den==1 { print u.num }
+ else { print u.num, "/", u.den }
+ print(" ")
+}
+
+func (u *rat) eq(c *rat) bool {
+ return u.num == c.num && u.den == c.den
+}
+
+type item *rat;
+
+type dch struct {
+ req *chan int;
+ dat *chan item;
+ nam int;
+}
+
+type dch2 [2] *dch
+
+var chnames string
+var chnameserial int
+var seqno int
+
+func Init();
+
+func mkdch() *dch {
+ c := chnameserial % len(chnames);
+ chnameserial++;
+ d := new(dch);
+ d.req = new(chan int);
+ d.dat = new(chan item);
+ d.nam = c;
+ return d;
+}
+
+func mkdch2() *dch2 {
+ d2 := new(dch2);
+ d2[0] = mkdch();
+ d2[1] = mkdch();
+ return d2;
+}
+
+// split reads a single demand channel and replicates its
+// output onto two, which may be read at different rates.
+// A process is created at first demand for an item and dies
+// after the item has been sent to both outputs.
+
+// When multiple generations of split exist, the newest
+// will service requests on one channel, which is
+// always renamed to be out[0]; the oldest will service
+// requests on the other channel, out[1]. All generations but the
+// newest hold queued data that has already been sent to
+// out[0]. When data has finally been sent to out[1],
+// a signal on the release-wait channel tells the next newer
+// generation to begin servicing out[1].
+
+func dosplit(in *dch, out *dch2, wait *chan int ){
+//print "dosplit ", wait, "\n";
+ var t *dch;
+ both := false; // do not service both channels
+/*
+ select {
+ case <-out[0].req:
+ ;
+ case <-wait:
+ both = 1;
+ select {
+ case <-out[0].req:
+ ;
+ case <-out[1].req:
+ t=out[0]; out[0]=out[1]; out[1]=t;
+ };
+ }
+*/
+// select simulation
+ for {
+ var ok bool;
+ var dummy int;
+ dummy, ok = <-out[0].req;
+ if ok { goto OUT1 }
+ dummy, ok = <-wait;
+ if ok {
+ both = true;
+ // select simulation
+ for {
+ dummy, ok = <-out[0].req;
+ if ok { goto OUT1 }
+ dummy, ok = <-out[1].req;
+ if ok {
+ out[0], out[1] = out[1], out[0];
+ goto OUT1
+ }
+ sys.gosched();
+ }
+ }
+ sys.gosched();
+ }
+
+OUT1: //BUG
+
+ seqno++;
+ in.req -< seqno;
+ release := new(chan int);
+ go dosplit(in, out, release);
+ dat := <-in.dat;
+ out[0].dat -< dat;
+ if !both {
+ <-wait
+ }
+ <-out[1].req;
+ out[1].dat -< dat;
+ release -< 0;
+}
+
+func split(in *dch, out *dch2){
+ release := new(chan int);
+ go dosplit(in, out, release);
+ release -< 0;
+}
+
+func put(dat item, out *dch){
+ <-out.req;
+ out.dat -< dat;
+}
+
+func get(in *dch) item{
+ seqno++;
+ in.req -< seqno;
+ return <-in.dat;
+}
+
+// Get one item from each of n demand channels
+
+func getn(in *[]*dch, n int) *[]item {
+ // BUG n:=len(in);
+ if n != 2 { panic "bad n in getn" };
+ req := new([2] *chan int);
+ dat := new([2] *chan item);
+ out := new([2] item);
+ var i int;
+ var it item;
+ for i=0; i<n; i++ {
+ req[i] = in[i].req;
+ dat[i] = nil;
+ }
+ for n=2*n; n>0; n-- {
+ seqno++
+/*
+ select{
+ case req[i=] <-= seqno:
+ dat[i] = in[i].dat;
+ req[i] = nil;
+ case it = <-dat[i=]:
+ out[i] = it;
+ dat[i] = nil;
+ }
+*/
+
+ // simulation of select
+ sel:
+ for c1:=0; ; c1++ {
+ for i := 0; i < 2; i++ {
+ ok := false;
+ if req[i] != nil { ok = req[i] -< seqno }
+ if ok {
+ dat[i] = in[i].dat;
+ req[i] = nil;
+ goto OUT; // BUG
+ break sel;
+ }
+ ok = false;
+ if dat[i] != nil { it, ok = <-dat[i] }
+ if ok {
+ out[i] = it;
+ dat[i] = nil;
+ goto OUT; // BUG
+ break sel;
+ }
+ sys.gosched();
+ }
+ sys.gosched();
+ }
+OUT:
+ }
+ return out;
+}
+
+// Get one item from each of 2 demand channels
+
+func get2(in0 *dch, in1 *dch) *[]item {
+ x := new([2] *dch);
+ x[0] = in0;
+ x[1] = in1;
+ return getn(x, 2);
+}
+
+func copy(in *dch, out *dch){
+ for {
+ <-out.req;
+ out.dat -< get(in);
+ }
+}
+
+func repeat(dat item, out *dch){
+ for {
+ put(dat, out)
+ }
+}
+
+type PS *dch; // power series
+type PS2 *[2] PS; // pair of power series
+
+var Ones PS
+var Twos PS
+
+func mkPS() *dch {
+ return mkdch()
+}
+
+func mkPS2() *dch2 {
+ return mkdch2()
+}
+
+// Conventions
+// Upper-case for power series.
+// Lower-case for rationals.
+// Input variables: U,V,...
+// Output variables: ...,Y,Z
+
+// Integer gcd; needed for rational arithmetic
+
+func gcd (u, v int64) int64{
+ if u < 0 { return gcd(-u, v) }
+ if u > v { return gcd(v, u) }
+ if u == 0 { return v }
+ return gcd(v%u, u)
+}
+
+// Make a rational from two ints and from one int
+
+func i2tor(u, v int64) *rat{
+ g := gcd(u,v);
+ r := new(rat);
+ if v > 0 {
+ r.num = u/g;
+ r.den = v/g;
+ } else {
+ r.num = -u/g;
+ r.den = -v/g;
+ }
+ return r;
+}
+
+func itor(u int64) *rat{
+ return i2tor(u, 1);
+}
+
+var zero *rat;
+var one *rat;
+
+
+// End mark and end test
+
+var finis *rat;
+
+func end(u *rat) int64 {
+ if u.den==0 { return 1 }
+ return 0
+}
+
+// Operations on rationals
+
+func add(u, v *rat) *rat {
+ g := gcd(u.den,v.den);
+ return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g));
+}
+
+func mul(u, v *rat) *rat{
+ g1 := gcd(u.num,v.den);
+ g2 := gcd(u.den,v.num);
+ r := new(rat);
+ r.num =(u.num/g1)*(v.num/g2);
+ r.den = (u.den/g2)*(v.den/g1);
+ return r;
+}
+
+func neg(u *rat) *rat{
+ return i2tor(-u.num, u.den);
+}
+
+func sub(u, v *rat) *rat{
+ return add(u, neg(v));
+}
+
+func inv(u *rat) *rat{ // invert a rat
+ if u.num == 0 { panic "zero divide in inv" }
+ return i2tor(u.den, u.num);
+}
+
+// Print n terms of a power series
+
+func Printn(U PS, n int){
+ done := false;
+ for ; !done && n>0; n-- {
+ u := get(U);
+ if end(u) != 0 { done = true }
+ else { u.pr() }
+ }
+ print ("\n");
+}
+
+func Print(U PS){
+ Printn(U,1000000000);
+}
+
+// Evaluate n terms of power series U at x=c
+
+func eval(c *rat, U PS, n int) *rat{
+ if n==0 { return zero }
+ y := get(U);
+ if end(y) != 0 { return zero }
+ return add(y,mul(c,eval(c,U,n-1)));
+}
+
+// Power-series constructors return channels on which power
+// series flow. They start an encapsulated generator that
+// puts the terms of the series on the channel.
+
+// Make a pair of power series identical to a given power series
+
+func Split(U PS) *dch2{
+ UU := mkdch2();
+ go split(U,UU);
+ return UU;
+}
+
+// Add two power series
+func Add(U, V PS) PS{
+ Z := mkPS();
+ go func(U, V, Z PS){
+ var uv *[2] *rat;
+ for {
+ <-Z.req;
+ uv = get2(U,V);
+ switch end(uv[0])+2*end(uv[1]) {
+ case 0:
+ Z.dat -< add(uv[0], uv[1]);
+ case 1:
+ Z.dat -< uv[1];
+ copy(V,Z);
+ case 2:
+ Z.dat -< uv[0];
+ copy(U,Z)
+ case 3:
+ Z.dat -< finis;
+ }
+ }
+ }(U, V, Z);
+ return Z;
+}
+
+// Multiply a power series by a constant
+func Cmul(c *rat,U PS) PS{
+ Z := mkPS();
+ go func(c *rat, U, Z PS){
+ done := false;
+ for !done {
+ <-Z.req;
+ u := get(U);
+ if end(u) != 0 { done = true }
+ else { Z.dat -< mul(c,u) }
+ }
+ Z.dat -< finis;
+ }(c, U, Z);
+ return Z;
+}
+
+// Subtract
+
+func Sub(U, V PS) PS{
+ return Add(U, Cmul(neg(one), V));
+}
+
+// Multiply a power series by the monomial x^n
+
+func Monmul(U PS, n int) PS{
+ Z := mkPS();
+ go func(n int, U PS, Z PS){
+ for ; n>0; n-- { put(zero,Z) }
+ copy(U,Z);
+ }(n, U, Z);
+ return Z;
+}
+
+// Multiply by x
+
+func Xmul(U PS) PS{
+ Monmul(U,1);
+}
+
+func Rep(c *rat) PS{
+ Z := mkPS();
+ go repeat(c,Z);
+ return Z;
+}
+
+// Monomial c*x^n
+
+func Mon(c *rat, n int) PS{
+ Z:=mkPS();
+ go func(c *rat, n int, Z PS){
+ if(c.num!=0) {
+ for ; n>0; n=n-1 { put(zero,Z) }
+ put(c,Z);
+ }
+ put(finis,Z);
+ }(c, n, Z);
+ return Z;
+}
+
+func Shift(c *rat, U PS) PS{
+ Z := mkPS();
+ go func(c *rat, U, Z PS){
+ put(c,Z);
+ copy(U,Z);
+ }(c, U, Z);
+ return Z;
+}
+
+// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
+
+// Convert array of coefficients, constant term first
+// to a (finite) power series
+
+func Poly(a [] *rat) PS{
+ Z:=mkPS();
+/* BUG: NEED LEN OF ARRAY
+ begin func(a [] *rat, Z PS){
+ j:=0;
+ done:=0;
+ for j=len(a); !done&&j>0; j=j-1)
+ if(a[j-1].num!=0) done=1;
+ i:=0;
+ for(; i<j; i=i+1) put(a[i],Z);
+ put(finis,Z);
+ }();
+*/
+ return Z;
+}
+
+// Multiply. The algorithm is
+// let U = u + x*UU
+// let V = v + x*VV
+// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
+
+func Mul(U, V PS) PS{
+ Z:=mkPS();
+ go func(U, V, Z PS){
+ <-Z.req;
+ uv := get2(U,V);
+ if end(uv[0])!=0 || end(uv[1]) != 0 {
+ Z.dat -< finis;
+ } else {
+ Z.dat -< mul(uv[0],uv[1]);
+ UU := Split(U);
+ VV := Split(V);
+ W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]));
+ <-Z.req;
+ Z.dat -< get(W);
+ copy(Add(W,Mul(UU[1],VV[1])),Z);
+ }
+ }(U, V, Z);
+ return Z;
+}
+
+// Differentiate
+
+func Diff(U PS) PS{
+ Z:=mkPS();
+ go func(U, Z PS){
+ <-Z.req;
+ u := get(U);
+ if end(u) == 0 {
+ done:=false;
+ for i:=1; !done; i++ {
+ u = get(U);
+ if end(u) != 0 { done=true }
+ else {
+ Z.dat -< mul(itor(int64(i)),u);
+ <-Z.req;
+ }
+ }
+ }
+ Z.dat -< finis;
+ }(U, Z);
+ return Z;
+}
+
+// Integrate, with const of integration
+func Integ(c *rat,U PS) PS{
+ Z:=mkPS();
+ go func(c *rat, U, Z PS){
+ put(c,Z);
+ done:=false;
+ for i:=1; !done; i++ {
+ <-Z.req;
+ u := get(U);
+ if end(u) != 0 { done= true }
+ Z.dat -< mul(i2tor(1,int64(i)),u);
+ }
+ Z.dat -< finis;
+ }(c, U, Z);
+ return Z;
+}
+
+// Binomial theorem (1+x)^c
+
+func Binom(c *rat) PS{
+ Z:=mkPS();
+ go func(c *rat, Z PS){
+ n := 1;
+ t := itor(1);
+ for c.num!=0 {
+ put(t,Z);
+ t = mul(mul(t,c),i2tor(1,int64(n)));
+ c = sub(c,one);
+ n++;
+ }
+ put(finis,Z);
+ }(c, Z);
+ return Z;
+}
+
+// Reciprocal of a power series
+// let U = u + x*UU
+// let Z = z + x*ZZ
+// (u+x*UU)*(z+x*ZZ) = 1
+// z = 1/u
+// u*ZZ + z*UU +x*UU*ZZ = 0
+// ZZ = -UU*(z+x*ZZ)/u;
+
+func Recip(U PS) PS{
+ Z:=mkPS();
+ go func(U, Z PS){
+ ZZ:=mkPS2();
+ <-Z.req;
+ z := inv(get(U));
+ Z.dat -< z;
+ split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ);
+ copy(ZZ[1],Z);
+ }(U, Z);
+ return Z;
+}
+
+// Exponential of a power series with constant term 0
+// (nonzero constant term would make nonrational coefficients)
+// bug: the constant term is simply ignored
+// Z = exp(U)
+// DZ = Z*DU
+// integrate to get Z
+
+func Exp(U PS) PS{
+ ZZ := mkPS2();
+ split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ);
+ return ZZ[1];
+}
+
+// Substitute V for x in U, where the leading term of V is zero
+// let U = u + x*UU
+// let V = v + x*VV
+// then S(U,V) = u + VV*S(V,UU)
+// bug: a nonzero constant term is ignored
+
+func Subst(U, V PS) PS {
+ Z:= mkPS();
+ go func(U, V, Z PS) {
+ VV := Split(V);
+ <-Z.req;
+ u := get(U);
+ Z.dat -< u;
+ if end(u) == 0 {
+ if end(get(VV[0])) != 0 { put(finis,Z); }
+ else { copy(Mul(VV[0],Subst(U,VV[1])),Z); }
+ }
+ }(U, V, Z);
+ return Z;
+}
+
+// Monomial Substition: U(c x^n)
+// Each Ui is multiplied by c^i and followed by n-1 zeros
+
+func MonSubst(U PS, c0 *rat, n int) PS {
+ Z:= mkPS();
+ go func(U, Z PS, c0 *rat, n int) {
+ c := one;
+ for {
+ <-Z.req;
+ u := get(U);
+ Z.dat -< mul(u, c);
+ c = mul(c, c0);
+ if end(u) != 0 {
+ Z.dat -< finis;
+ break;
+ }
+ for i := 1; i < n; i++ {
+ <-Z.req;
+ Z.dat -< zero;
+ }
+ }
+ }(U, Z, c0, n);
+ return Z;
+}
+
+
+func Init() {
+ chnameserial = -1;
+ seqno = 0;
+ chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+ zero = itor(0);
+ one = itor(1);
+ finis = i2tor(1,0);
+ Ones = Rep(one);
+ Twos = Rep(itor(2));
+}
+
+func check(U PS, c *rat, count int, str string) {
+ for i := 0; i < count; i++ {
+ r := get(U)
+ if !r.eq(c) {
+ print "got: ";
+ r.pr();
+ print "should get ";
+ c.pr();
+ print "\n";
+ panic str
+ }
+ }
+}
+
+func checka(U PS, a *[]*rat, str string) {
+ for i := 0; i < len(a); i++ {
+ check(U, a[i], 1, str);
+ }
+}
+
+func main() {
+ Init();
+ if sys.argc() > 1 { // print
+ print "Ones: "; Printn(Ones, 10);
+ print "Twos: "; Printn(Twos, 10);
+ print "Add: "; Printn(Add(Ones, Twos), 10);
+ print "Diff: "; Printn(Diff(Ones), 10);
+ print "Integ: "; Printn(Integ(zero, Ones), 10);
+ print "CMul: "; Printn(Cmul(neg(one), Ones), 10);
+ print "Sub: "; Printn(Sub(Ones, Twos), 10);
+ print "Mul: "; Printn(Mul(Ones, Ones), 10);
+ print "Exp: "; Printn(Exp(Ones), 15);
+ print "MonSubst: "; Printn(MonSubst(Ones, neg(one), 2), 10);
+ print "ATan: "; Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10);
+ } else { // test
+ check(Ones, one, 5, "Ones");
+ check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones"); // 1 1 1 1 1
+ check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos"); // 3 3 3 3 3
+ const N = 5;
+ a := new([10] *rat);
+ d := Diff(Ones);
+ // BUG: want array initializer
+ for i:=0; i < N; i++ {
+ a[i] = itor(int64(i+1))
+ }
+ checka(d, a, "Diff"); // 1 2 3 4 5
+ in := Integ(zero, Ones);
+ // BUG: want array initializer
+ a[0] = zero; // integration constant
+ for i:=1; i < N; i++ {
+ a[i] = i2tor(1, int64(i))
+ }
+ checka(in, a, "Integ"); // 0 1 1/2 1/3 1/4 1/5
+ check(Cmul(neg(one), Twos), itor(-2), 10, "CMul"); // -1 -1 -1 -1 -1
+ check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos"); // -1 -1 -1 -1 -1
+ m := Mul(Ones, Ones)
+ // BUG: want array initializer
+ for i:=0; i < N; i++ {
+ a[i] = itor(int64(i+1))
+ }
+ checka(m, a, "Mul"); // 1 2 3 4 5
+ e := Exp(Ones);
+ // BUG: want array initializer
+ a[0] = itor(1);
+ a[1] = itor(1);
+ a[2] = i2tor(3,2);
+ a[3] = i2tor(13,6);
+ a[4] = i2tor(73,24);
+ a[5] = i2tor(167,40);
+ a[6] = i2tor(4051,720);
+ a[7] = i2tor(37633,5040);
+ a[8] = i2tor(43817,4480);
+ a[9] = i2tor(4596553,362880);
+ checka(e, a, "Exp"); // 1 1 3/2 13/6 73/24
+ at := Integ(zero, MonSubst(Ones, neg(one), 2));
+ // BUG: want array initializer
+ for c, i := 1, 0; i < N; i++ {
+ if i%2 == 0 {
+ a[i] = zero
+ } else {
+ a[i] = i2tor(int64(c), int64(i));
+ c *= -1
+ }
+ }
+ checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5
+/*
+ t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)));
+ // BUG: want array initializer
+ a[0] = zero;
+ a[1] = itor(1);
+ a[2] = zero;
+ a[3] = i2tor(1,3);
+ a[4] = zero;
+ a[5] = i2tor(2,15);
+ a[6] = zero;
+ a[7] = i2tor(17,315);
+ a[8] = zero;
+ a[9] = i2tor(62,2835);
+ checka(t, a, "Tan"); // 0 1 0 1/3 0 2/15
+*/
+ }
+ sys.exit(0); // BUG: force waiting goroutines to exit
+}