summaryrefslogtreecommitdiff
path: root/src/pkg/math/acosh.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/math/acosh.go')
-rw-r--r--src/pkg/math/acosh.go60
1 files changed, 0 insertions, 60 deletions
diff --git a/src/pkg/math/acosh.go b/src/pkg/math/acosh.go
deleted file mode 100644
index e394008b0..000000000
--- a/src/pkg/math/acosh.go
+++ /dev/null
@@ -1,60 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-// The original C code, the long comment, and the constants
-// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
-// and came with this notice. The go code is a simplified
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
-//
-// Developed at SunPro, a Sun Microsystems, Inc. business.
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-//
-// __ieee754_acosh(x)
-// Method :
-// Based on
-// acosh(x) = log [ x + sqrt(x*x-1) ]
-// we have
-// acosh(x) := log(x)+ln2, if x is large; else
-// acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
-// acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
-//
-// Special cases:
-// acosh(x) is NaN with signal if x<1.
-// acosh(NaN) is NaN without signal.
-//
-
-// Acosh returns the inverse hyperbolic cosine of x.
-//
-// Special cases are:
-// Acosh(+Inf) = +Inf
-// Acosh(x) = NaN if x < 1
-// Acosh(NaN) = NaN
-func Acosh(x float64) float64 {
- const (
- Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
- Large = 1 << 28 // 2**28
- )
- // first case is special case
- switch {
- case x < 1 || IsNaN(x):
- return NaN()
- case x == 1:
- return 0
- case x >= Large:
- return Log(x) + Ln2 // x > 2**28
- case x > 2:
- return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2**28 > x > 2
- }
- t := x - 1
- return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
-}