summaryrefslogtreecommitdiff
path: root/src/runtime/mgc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mgc.go')
-rw-r--r--src/runtime/mgc.go2422
1 files changed, 2422 insertions, 0 deletions
diff --git a/src/runtime/mgc.go b/src/runtime/mgc.go
new file mode 100644
index 000000000..57bd8b356
--- /dev/null
+++ b/src/runtime/mgc.go
@@ -0,0 +1,2422 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// TODO(rsc): The code having to do with the heap bitmap needs very serious cleanup.
+// It has gotten completely out of control.
+
+// Garbage collector (GC).
+//
+// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple GC
+// thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
+// non-generational and non-compacting. Allocation is done using size segregated per P allocation
+// areas to minimize fragmentation while eliminating locks in the common case.
+//
+// The algorithm decomposes into several steps.
+// This is a high level description of the algorithm being used. For an overview of GC a good
+// place to start is Richard Jones' gchandbook.org.
+//
+// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
+// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
+// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978), 966-975.
+// For journal quality proofs that these steps are complete, correct, and terminate see
+// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
+// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
+//
+// 0. Set phase = GCscan from GCoff.
+// 1. Wait for all P's to acknowledge phase change.
+// At this point all goroutines have passed through a GC safepoint and
+// know we are in the GCscan phase.
+// 2. GC scans all goroutine stacks, mark and enqueues all encountered pointers
+// (marking avoids most duplicate enqueuing but races may produce duplication which is benign).
+// Preempted goroutines are scanned before P schedules next goroutine.
+// 3. Set phase = GCmark.
+// 4. Wait for all P's to acknowledge phase change.
+// 5. Now write barrier marks and enqueues black, grey, or white to white pointers.
+// Malloc still allocates white (non-marked) objects.
+// 6. Meanwhile GC transitively walks the heap marking reachable objects.
+// 7. When GC finishes marking heap, it preempts P's one-by-one and
+// retakes partial wbufs (filled by write barrier or during a stack scan of the goroutine
+// currently scheduled on the P).
+// 8. Once the GC has exhausted all available marking work it sets phase = marktermination.
+// 9. Wait for all P's to acknowledge phase change.
+// 10. Malloc now allocates black objects, so number of unmarked reachable objects
+// monotonically decreases.
+// 11. GC preempts P's one-by-one taking partial wbufs and marks all unmarked yet reachable objects.
+// 12. When GC completes a full cycle over P's and discovers no new grey
+// objects, (which means all reachable objects are marked) set phase = GCsweep.
+// 13. Wait for all P's to acknowledge phase change.
+// 14. Now malloc allocates white (but sweeps spans before use).
+// Write barrier becomes nop.
+// 15. GC does background sweeping, see description below.
+// 16. When sweeping is complete set phase to GCoff.
+// 17. When sufficient allocation has taken place replay the sequence starting at 0 above,
+// see discussion of GC rate below.
+
+// Changing phases.
+// Phases are changed by setting the gcphase to the next phase and possibly calling ackgcphase.
+// All phase action must be benign in the presence of a change.
+// Starting with GCoff
+// GCoff to GCscan
+// GSscan scans stacks and globals greying them and never marks an object black.
+// Once all the P's are aware of the new phase they will scan gs on preemption.
+// This means that the scanning of preempted gs can't start until all the Ps
+// have acknowledged.
+// GCscan to GCmark
+// GCMark turns on the write barrier which also only greys objects. No scanning
+// of objects (making them black) can happen until all the Ps have acknowledged
+// the phase change.
+// GCmark to GCmarktermination
+// The only change here is that we start allocating black so the Ps must acknowledge
+// the change before we begin the termination algorithm
+// GCmarktermination to GSsweep
+// Object currently on the freelist must be marked black for this to work.
+// Are things on the free lists black or white? How does the sweep phase work?
+
+// Concurrent sweep.
+// The sweep phase proceeds concurrently with normal program execution.
+// The heap is swept span-by-span both lazily (when a goroutine needs another span)
+// and concurrently in a background goroutine (this helps programs that are not CPU bound).
+// However, at the end of the stop-the-world GC phase we don't know the size of the live heap,
+// and so next_gc calculation is tricky and happens as follows.
+// At the end of the stop-the-world phase next_gc is conservatively set based on total
+// heap size; all spans are marked as "needs sweeping".
+// Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory.
+// The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc
+// closer to the target value. However, this is not enough to avoid over-allocating memory.
+// Consider that a goroutine wants to allocate a new span for a large object and
+// there are no free swept spans, but there are small-object unswept spans.
+// If the goroutine naively allocates a new span, it can surpass the yet-unknown
+// target next_gc value. In order to prevent such cases (1) when a goroutine needs
+// to allocate a new small-object span, it sweeps small-object spans for the same
+// object size until it frees at least one object; (2) when a goroutine needs to
+// allocate large-object span from heap, it sweeps spans until it frees at least
+// that many pages into heap. Together these two measures ensure that we don't surpass
+// target next_gc value by a large margin. There is an exception: if a goroutine sweeps
+// and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span,
+// but there can still be other one-page unswept spans which could be combined into a two-page span.
+// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
+// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
+// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
+// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
+// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
+// The finalizer goroutine is kicked off only when all spans are swept.
+// When the next GC starts, it sweeps all not-yet-swept spans (if any).
+
+// GC rate.
+// Next GC is after we've allocated an extra amount of memory proportional to
+// the amount already in use. The proportion is controlled by GOGC environment variable
+// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
+// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
+// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
+// (and also the amount of extra memory used).
+
+package runtime
+
+import "unsafe"
+
+const (
+ _DebugGC = 0
+ _DebugGCPtrs = false // if true, print trace of every pointer load during GC
+ _ConcurrentSweep = true
+
+ _WorkbufSize = 4 * 1024
+ _FinBlockSize = 4 * 1024
+ _RootData = 0
+ _RootBss = 1
+ _RootFinalizers = 2
+ _RootSpans = 3
+ _RootFlushCaches = 4
+ _RootCount = 5
+)
+
+// ptrmask for an allocation containing a single pointer.
+var oneptr = [...]uint8{bitsPointer}
+
+// Initialized from $GOGC. GOGC=off means no GC.
+var gcpercent int32
+
+// Holding worldsema grants an M the right to try to stop the world.
+// The procedure is:
+//
+// semacquire(&worldsema);
+// m.gcing = 1;
+// stoptheworld();
+//
+// ... do stuff ...
+//
+// m.gcing = 0;
+// semrelease(&worldsema);
+// starttheworld();
+//
+var worldsema uint32 = 1
+
+// It is a bug if bits does not have bitBoundary set but
+// there are still some cases where this happens related
+// to stack spans.
+type markbits struct {
+ bitp *byte // pointer to the byte holding xbits
+ shift uintptr // bits xbits needs to be shifted to get bits
+ xbits byte // byte holding all the bits from *bitp
+ bits byte // mark and boundary bits relevant to corresponding slot.
+ tbits byte // pointer||scalar bits relevant to corresponding slot.
+}
+
+type workbuf struct {
+ node lfnode // must be first
+ nobj uintptr
+ obj [(_WorkbufSize - unsafe.Sizeof(lfnode{}) - ptrSize) / ptrSize]uintptr
+}
+
+var data, edata, bss, ebss, gcdata, gcbss struct{}
+
+var finlock mutex // protects the following variables
+var fing *g // goroutine that runs finalizers
+var finq *finblock // list of finalizers that are to be executed
+var finc *finblock // cache of free blocks
+var finptrmask [_FinBlockSize / ptrSize / pointersPerByte]byte
+var fingwait bool
+var fingwake bool
+var allfin *finblock // list of all blocks
+
+var gcdatamask bitvector
+var gcbssmask bitvector
+
+var gclock mutex
+
+var badblock [1024]uintptr
+var nbadblock int32
+
+type workdata struct {
+ full uint64 // lock-free list of full blocks
+ empty uint64 // lock-free list of empty blocks
+ partial uint64 // lock-free list of partially filled blocks
+ pad0 [_CacheLineSize]uint8 // prevents false-sharing between full/empty and nproc/nwait
+ nproc uint32
+ tstart int64
+ nwait uint32
+ ndone uint32
+ alldone note
+ markfor *parfor
+
+ // Copy of mheap.allspans for marker or sweeper.
+ spans []*mspan
+}
+
+var work workdata
+
+//go:linkname weak_cgo_allocate go.weak.runtime._cgo_allocate_internal
+var weak_cgo_allocate byte
+
+// Is _cgo_allocate linked into the binary?
+func have_cgo_allocate() bool {
+ return &weak_cgo_allocate != nil
+}
+
+// To help debug the concurrent GC we remark with the world
+// stopped ensuring that any object encountered has their normal
+// mark bit set. To do this we use an orthogonal bit
+// pattern to indicate the object is marked. The following pattern
+// uses the upper two bits in the object's bounday nibble.
+// 01: scalar not marked
+// 10: pointer not marked
+// 11: pointer marked
+// 00: scalar marked
+// Xoring with 01 will flip the pattern from marked to unmarked and vica versa.
+// The higher bit is 1 for pointers and 0 for scalars, whether the object
+// is marked or not.
+// The first nibble no longer holds the bitsDead pattern indicating that the
+// there are no more pointers in the object. This information is held
+// in the second nibble.
+
+// When marking an object if the bool checkmark is true one uses the above
+// encoding, otherwise one uses the bitMarked bit in the lower two bits
+// of the nibble.
+var (
+ checkmark = false
+ gccheckmarkenable = true
+)
+
+// Is address b in the known heap. If it doesn't have a valid gcmap
+// returns false. For example pointers into stacks will return false.
+func inheap(b uintptr) bool {
+ if b == 0 || b < mheap_.arena_start || b >= mheap_.arena_used {
+ return false
+ }
+ // Not a beginning of a block, consult span table to find the block beginning.
+ k := b >> _PageShift
+ x := k
+ x -= mheap_.arena_start >> _PageShift
+ s := h_spans[x]
+ if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
+ return false
+ }
+ return true
+}
+
+// Given an address in the heap return the relevant byte from the gcmap. This routine
+// can be used on addresses to the start of an object or to the interior of the an object.
+func slottombits(obj uintptr, mbits *markbits) {
+ off := (obj&^(ptrSize-1) - mheap_.arena_start) / ptrSize
+ mbits.bitp = (*byte)(unsafe.Pointer(mheap_.arena_start - off/wordsPerBitmapByte - 1))
+ mbits.shift = off % wordsPerBitmapByte * gcBits
+ mbits.xbits = *mbits.bitp
+ mbits.bits = (mbits.xbits >> mbits.shift) & bitMask
+ mbits.tbits = ((mbits.xbits >> mbits.shift) & bitPtrMask) >> 2
+}
+
+// b is a pointer into the heap.
+// Find the start of the object refered to by b.
+// Set mbits to the associated bits from the bit map.
+// If b is not a valid heap object return nil and
+// undefined values in mbits.
+func objectstart(b uintptr, mbits *markbits) uintptr {
+ obj := b &^ (ptrSize - 1)
+ for {
+ slottombits(obj, mbits)
+ if mbits.bits&bitBoundary == bitBoundary {
+ break
+ }
+
+ // Not a beginning of a block, consult span table to find the block beginning.
+ k := b >> _PageShift
+ x := k
+ x -= mheap_.arena_start >> _PageShift
+ s := h_spans[x]
+ if s == nil || pageID(k) < s.start || b >= s.limit || s.state != mSpanInUse {
+ if s != nil && s.state == _MSpanStack {
+ return 0 // This is legit.
+ }
+
+ // The following ensures that we are rigorous about what data
+ // structures hold valid pointers
+ if false {
+ // Still happens sometimes. We don't know why.
+ printlock()
+ print("runtime:objectstart Span weird: obj=", hex(obj), " k=", hex(k))
+ if s == nil {
+ print(" s=nil\n")
+ } else {
+ print(" s.start=", hex(s.start<<_PageShift), " s.limit=", hex(s.limit), " s.state=", s.state, "\n")
+ }
+ printunlock()
+ gothrow("objectstart: bad pointer in unexpected span")
+ }
+ return 0
+ }
+
+ p := uintptr(s.start) << _PageShift
+ if s.sizeclass != 0 {
+ size := s.elemsize
+ idx := (obj - p) / size
+ p = p + idx*size
+ }
+ if p == obj {
+ print("runtime: failed to find block beginning for ", hex(p), " s=", hex(s.start*_PageSize), " s.limit=", s.limit, "\n")
+ gothrow("failed to find block beginning")
+ }
+ obj = p
+ }
+
+ // if size(obj.firstfield) < PtrSize, the &obj.secondfield could map to the boundary bit
+ // Clear any low bits to get to the start of the object.
+ // greyobject depends on this.
+ return obj
+}
+
+// Slow for now as we serialize this, since this is on a debug path
+// speed is not critical at this point.
+var andlock mutex
+
+func atomicand8(src *byte, val byte) {
+ lock(&andlock)
+ *src &= val
+ unlock(&andlock)
+}
+
+// Mark using the checkmark scheme.
+func docheckmark(mbits *markbits) {
+ // xor 01 moves 01(scalar unmarked) to 00(scalar marked)
+ // and 10(pointer unmarked) to 11(pointer marked)
+ if mbits.tbits == _BitsScalar {
+ atomicand8(mbits.bitp, ^byte(_BitsCheckMarkXor<<mbits.shift<<2))
+ } else if mbits.tbits == _BitsPointer {
+ atomicor8(mbits.bitp, byte(_BitsCheckMarkXor<<mbits.shift<<2))
+ }
+
+ // reload bits for ischeckmarked
+ mbits.xbits = *mbits.bitp
+ mbits.bits = (mbits.xbits >> mbits.shift) & bitMask
+ mbits.tbits = ((mbits.xbits >> mbits.shift) & bitPtrMask) >> 2
+}
+
+// In the default scheme does mbits refer to a marked object.
+func ismarked(mbits *markbits) bool {
+ if mbits.bits&bitBoundary != bitBoundary {
+ gothrow("ismarked: bits should have boundary bit set")
+ }
+ return mbits.bits&bitMarked == bitMarked
+}
+
+// In the checkmark scheme does mbits refer to a marked object.
+func ischeckmarked(mbits *markbits) bool {
+ if mbits.bits&bitBoundary != bitBoundary {
+ gothrow("ischeckmarked: bits should have boundary bit set")
+ }
+ return mbits.tbits == _BitsScalarMarked || mbits.tbits == _BitsPointerMarked
+}
+
+// When in GCmarkterminate phase we allocate black.
+func gcmarknewobject_m(obj uintptr) {
+ if gcphase != _GCmarktermination {
+ gothrow("marking new object while not in mark termination phase")
+ }
+ if checkmark { // The world should be stopped so this should not happen.
+ gothrow("gcmarknewobject called while doing checkmark")
+ }
+
+ var mbits markbits
+ slottombits(obj, &mbits)
+ if mbits.bits&bitMarked != 0 {
+ return
+ }
+
+ // Each byte of GC bitmap holds info for two words.
+ // If the current object is larger than two words, or if the object is one word
+ // but the object it shares the byte with is already marked,
+ // then all the possible concurrent updates are trying to set the same bit,
+ // so we can use a non-atomic update.
+ if mbits.xbits&(bitMask|(bitMask<<gcBits)) != bitBoundary|bitBoundary<<gcBits || work.nproc == 1 {
+ *mbits.bitp = mbits.xbits | bitMarked<<mbits.shift
+ } else {
+ atomicor8(mbits.bitp, bitMarked<<mbits.shift)
+ }
+}
+
+// obj is the start of an object with mark mbits.
+// If it isn't already marked, mark it and enqueue into workbuf.
+// Return possibly new workbuf to use.
+func greyobject(obj uintptr, mbits *markbits, wbuf *workbuf) *workbuf {
+ // obj should be start of allocation, and so must be at least pointer-aligned.
+ if obj&(ptrSize-1) != 0 {
+ gothrow("greyobject: obj not pointer-aligned")
+ }
+
+ if checkmark {
+ if !ismarked(mbits) {
+ print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), ", mbits->bits=", hex(mbits.bits), " *mbits->bitp=", hex(*mbits.bitp), "\n")
+
+ k := obj >> _PageShift
+ x := k
+ x -= mheap_.arena_start >> _PageShift
+ s := h_spans[x]
+ printlock()
+ print("runtime:greyobject Span: obj=", hex(obj), " k=", hex(k))
+ if s == nil {
+ print(" s=nil\n")
+ } else {
+ print(" s.start=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n")
+ // NOTE(rsc): This code is using s.sizeclass as an approximation of the
+ // number of pointer-sized words in an object. Perhaps not what was intended.
+ for i := 0; i < int(s.sizeclass); i++ {
+ print(" *(obj+", i*ptrSize, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + uintptr(i)*ptrSize))), "\n")
+ }
+ }
+ gothrow("checkmark found unmarked object")
+ }
+ if ischeckmarked(mbits) {
+ return wbuf
+ }
+ docheckmark(mbits)
+ if !ischeckmarked(mbits) {
+ print("mbits xbits=", hex(mbits.xbits), " bits=", hex(mbits.bits), " tbits=", hex(mbits.tbits), " shift=", mbits.shift, "\n")
+ gothrow("docheckmark and ischeckmarked disagree")
+ }
+ } else {
+ // If marked we have nothing to do.
+ if mbits.bits&bitMarked != 0 {
+ return wbuf
+ }
+
+ // Each byte of GC bitmap holds info for two words.
+ // If the current object is larger than two words, or if the object is one word
+ // but the object it shares the byte with is already marked,
+ // then all the possible concurrent updates are trying to set the same bit,
+ // so we can use a non-atomic update.
+ if mbits.xbits&(bitMask|bitMask<<gcBits) != bitBoundary|bitBoundary<<gcBits || work.nproc == 1 {
+ *mbits.bitp = mbits.xbits | bitMarked<<mbits.shift
+ } else {
+ atomicor8(mbits.bitp, bitMarked<<mbits.shift)
+ }
+ }
+
+ if !checkmark && (mbits.xbits>>(mbits.shift+2))&_BitsMask == _BitsDead {
+ return wbuf // noscan object
+ }
+
+ // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but
+ // seems like a nice optimization that can be added back in.
+ // There needs to be time between the PREFETCH and the use.
+ // Previously we put the obj in an 8 element buffer that is drained at a rate
+ // to give the PREFETCH time to do its work.
+ // Use of PREFETCHNTA might be more appropriate than PREFETCH
+
+ // If workbuf is full, obtain an empty one.
+ if wbuf.nobj >= uintptr(len(wbuf.obj)) {
+ wbuf = getempty(wbuf)
+ }
+
+ wbuf.obj[wbuf.nobj] = obj
+ wbuf.nobj++
+ return wbuf
+}
+
+// Scan the object b of size n, adding pointers to wbuf.
+// Return possibly new wbuf to use.
+// If ptrmask != nil, it specifies where pointers are in b.
+// If ptrmask == nil, the GC bitmap should be consulted.
+// In this case, n may be an overestimate of the size; the GC bitmap
+// must also be used to make sure the scan stops at the end of b.
+func scanobject(b, n uintptr, ptrmask *uint8, wbuf *workbuf) *workbuf {
+ arena_start := mheap_.arena_start
+ arena_used := mheap_.arena_used
+
+ // Find bits of the beginning of the object.
+ var ptrbitp unsafe.Pointer
+ var mbits markbits
+ if ptrmask == nil {
+ b = objectstart(b, &mbits)
+ if b == 0 {
+ return wbuf
+ }
+ ptrbitp = unsafe.Pointer(mbits.bitp)
+ }
+ for i := uintptr(0); i < n; i += ptrSize {
+ // Find bits for this word.
+ var bits uintptr
+ if ptrmask != nil {
+ // dense mask (stack or data)
+ bits = (uintptr(*(*byte)(add(unsafe.Pointer(ptrmask), (i/ptrSize)/4))) >> (((i / ptrSize) % 4) * bitsPerPointer)) & bitsMask
+ } else {
+ // Check if we have reached end of span.
+ // n is an overestimate of the size of the object.
+ if (b+i)%_PageSize == 0 && h_spans[(b-arena_start)>>_PageShift] != h_spans[(b+i-arena_start)>>_PageShift] {
+ break
+ }
+
+ // Consult GC bitmap.
+ bits = uintptr(*(*byte)(ptrbitp))
+ if wordsPerBitmapByte != 2 {
+ gothrow("alg doesn't work for wordsPerBitmapByte != 2")
+ }
+ j := (uintptr(b) + i) / ptrSize & 1 // j indicates upper nibble or lower nibble
+ bits >>= gcBits * j
+ if i == 0 {
+ bits &^= bitBoundary
+ }
+ ptrbitp = add(ptrbitp, -j)
+
+ if bits&bitBoundary != 0 && i != 0 {
+ break // reached beginning of the next object
+ }
+ bits = (bits & bitPtrMask) >> 2 // bits refer to the type bits.
+
+ if i != 0 && bits == bitsDead { // BitsDead in first nibble not valid during checkmark
+ break // reached no-scan part of the object
+ }
+ }
+
+ if bits <= _BitsScalar { // _BitsScalar, _BitsDead, _BitsScalarMarked
+ continue
+ }
+
+ if bits&_BitsPointer != _BitsPointer {
+ print("gc checkmark=", checkmark, " b=", hex(b), " ptrmask=", ptrmask, " mbits.bitp=", mbits.bitp, " mbits.xbits=", hex(mbits.xbits), " bits=", hex(bits), "\n")
+ gothrow("unexpected garbage collection bits")
+ }
+
+ obj := *(*uintptr)(unsafe.Pointer(b + i))
+
+ // At this point we have extracted the next potential pointer.
+ // Check if it points into heap.
+ if obj == 0 || obj < arena_start || obj >= arena_used {
+ continue
+ }
+
+ // Mark the object. return some important bits.
+ // We we combine the following two rotines we don't have to pass mbits or obj around.
+ var mbits markbits
+ obj = objectstart(obj, &mbits)
+ if obj == 0 {
+ continue
+ }
+ wbuf = greyobject(obj, &mbits, wbuf)
+ }
+ return wbuf
+}
+
+// scanblock starts by scanning b as scanobject would.
+// If the gcphase is GCscan, that's all scanblock does.
+// Otherwise it traverses some fraction of the pointers it found in b, recursively.
+// As a special case, scanblock(nil, 0, nil) means to scan previously queued work,
+// stopping only when no work is left in the system.
+func scanblock(b, n uintptr, ptrmask *uint8) {
+ wbuf := getpartialorempty()
+ if b != 0 {
+ wbuf = scanobject(b, n, ptrmask, wbuf)
+ if gcphase == _GCscan {
+ if inheap(b) && ptrmask == nil {
+ // b is in heap, we are in GCscan so there should be a ptrmask.
+ gothrow("scanblock: In GCscan phase and inheap is true.")
+ }
+ // GCscan only goes one level deep since mark wb not turned on.
+ putpartial(wbuf)
+ return
+ }
+ }
+ if gcphase == _GCscan {
+ gothrow("scanblock: In GCscan phase but no b passed in.")
+ }
+
+ keepworking := b == 0
+
+ // ptrmask can have 2 possible values:
+ // 1. nil - obtain pointer mask from GC bitmap.
+ // 2. pointer to a compact mask (for stacks and data).
+ for {
+ if wbuf.nobj == 0 {
+ if !keepworking {
+ putempty(wbuf)
+ return
+ }
+ // Refill workbuf from global queue.
+ wbuf = getfull(wbuf)
+ if wbuf == nil { // nil means out of work barrier reached
+ return
+ }
+
+ if wbuf.nobj <= 0 {
+ gothrow("runtime:scanblock getfull returns empty buffer")
+ }
+ }
+
+ // If another proc wants a pointer, give it some.
+ if work.nwait > 0 && wbuf.nobj > 4 && work.full == 0 {
+ wbuf = handoff(wbuf)
+ }
+
+ // This might be a good place to add prefetch code...
+ // if(wbuf->nobj > 4) {
+ // PREFETCH(wbuf->obj[wbuf->nobj - 3];
+ // }
+ wbuf.nobj--
+ b = wbuf.obj[wbuf.nobj]
+ wbuf = scanobject(b, mheap_.arena_used-b, nil, wbuf)
+ }
+}
+
+func markroot(desc *parfor, i uint32) {
+ // Note: if you add a case here, please also update heapdump.c:dumproots.
+ switch i {
+ case _RootData:
+ scanblock(uintptr(unsafe.Pointer(&data)), uintptr(unsafe.Pointer(&edata))-uintptr(unsafe.Pointer(&data)), gcdatamask.bytedata)
+
+ case _RootBss:
+ scanblock(uintptr(unsafe.Pointer(&bss)), uintptr(unsafe.Pointer(&ebss))-uintptr(unsafe.Pointer(&bss)), gcbssmask.bytedata)
+
+ case _RootFinalizers:
+ for fb := allfin; fb != nil; fb = fb.alllink {
+ scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), uintptr(fb.cnt)*unsafe.Sizeof(fb.fin[0]), &finptrmask[0])
+ }
+
+ case _RootSpans:
+ // mark MSpan.specials
+ sg := mheap_.sweepgen
+ for spanidx := uint32(0); spanidx < uint32(len(work.spans)); spanidx++ {
+ s := work.spans[spanidx]
+ if s.state != mSpanInUse {
+ continue
+ }
+ if !checkmark && s.sweepgen != sg {
+ // sweepgen was updated (+2) during non-checkmark GC pass
+ print("sweep ", s.sweepgen, " ", sg, "\n")
+ gothrow("gc: unswept span")
+ }
+ for sp := s.specials; sp != nil; sp = sp.next {
+ if sp.kind != _KindSpecialFinalizer {
+ continue
+ }
+ // don't mark finalized object, but scan it so we
+ // retain everything it points to.
+ spf := (*specialfinalizer)(unsafe.Pointer(sp))
+ // A finalizer can be set for an inner byte of an object, find object beginning.
+ p := uintptr(s.start<<_PageShift) + uintptr(spf.special.offset)/s.elemsize*s.elemsize
+ if gcphase != _GCscan {
+ scanblock(p, s.elemsize, nil) // scanned during mark phase
+ }
+ scanblock(uintptr(unsafe.Pointer(&spf.fn)), ptrSize, &oneptr[0])
+ }
+ }
+
+ case _RootFlushCaches:
+ if gcphase != _GCscan { // Do not flush mcaches during GCscan phase.
+ flushallmcaches()
+ }
+
+ default:
+ // the rest is scanning goroutine stacks
+ if uintptr(i-_RootCount) >= allglen {
+ gothrow("markroot: bad index")
+ }
+ gp := allgs[i-_RootCount]
+
+ // remember when we've first observed the G blocked
+ // needed only to output in traceback
+ status := readgstatus(gp) // We are not in a scan state
+ if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 {
+ gp.waitsince = work.tstart
+ }
+
+ // Shrink a stack if not much of it is being used but not in the scan phase.
+ if gcphase != _GCscan { // Do not shrink during GCscan phase.
+ shrinkstack(gp)
+ }
+ if readgstatus(gp) == _Gdead {
+ gp.gcworkdone = true
+ } else {
+ gp.gcworkdone = false
+ }
+ restart := stopg(gp)
+
+ // goroutine will scan its own stack when it stops running.
+ // Wait until it has.
+ for readgstatus(gp) == _Grunning && !gp.gcworkdone {
+ }
+
+ // scanstack(gp) is done as part of gcphasework
+ // But to make sure we finished we need to make sure that
+ // the stack traps have all responded so drop into
+ // this while loop until they respond.
+ for !gp.gcworkdone {
+ status = readgstatus(gp)
+ if status == _Gdead {
+ gp.gcworkdone = true // scan is a noop
+ break
+ }
+ if status == _Gwaiting || status == _Grunnable {
+ restart = stopg(gp)
+ }
+ }
+ if restart {
+ restartg(gp)
+ }
+ }
+}
+
+// Get an empty work buffer off the work.empty list,
+// allocating new buffers as needed.
+func getempty(b *workbuf) *workbuf {
+ if b != nil {
+ putfull(b)
+ b = nil
+ }
+ if work.empty != 0 {
+ b = (*workbuf)(lfstackpop(&work.empty))
+ }
+ if b != nil && b.nobj != 0 {
+ _g_ := getg()
+ print("m", _g_.m.id, ": getempty: popped b=", b, " with non-zero b.nobj=", b.nobj, "\n")
+ gothrow("getempty: workbuffer not empty, b->nobj not 0")
+ }
+ if b == nil {
+ b = (*workbuf)(persistentalloc(unsafe.Sizeof(*b), _CacheLineSize, &memstats.gc_sys))
+ b.nobj = 0
+ }
+ return b
+}
+
+func putempty(b *workbuf) {
+ if b.nobj != 0 {
+ gothrow("putempty: b->nobj not 0")
+ }
+ lfstackpush(&work.empty, &b.node)
+}
+
+func putfull(b *workbuf) {
+ if b.nobj <= 0 {
+ gothrow("putfull: b->nobj <= 0")
+ }
+ lfstackpush(&work.full, &b.node)
+}
+
+// Get an partially empty work buffer
+// if none are available get an empty one.
+func getpartialorempty() *workbuf {
+ b := (*workbuf)(lfstackpop(&work.partial))
+ if b == nil {
+ b = getempty(nil)
+ }
+ return b
+}
+
+func putpartial(b *workbuf) {
+ if b.nobj == 0 {
+ lfstackpush(&work.empty, &b.node)
+ } else if b.nobj < uintptr(len(b.obj)) {
+ lfstackpush(&work.partial, &b.node)
+ } else if b.nobj == uintptr(len(b.obj)) {
+ lfstackpush(&work.full, &b.node)
+ } else {
+ print("b=", b, " b.nobj=", b.nobj, " len(b.obj)=", len(b.obj), "\n")
+ gothrow("putpartial: bad Workbuf b.nobj")
+ }
+}
+
+// Get a full work buffer off the work.full or a partially
+// filled one off the work.partial list. If nothing is available
+// wait until all the other gc helpers have finished and then
+// return nil.
+// getfull acts as a barrier for work.nproc helpers. As long as one
+// gchelper is actively marking objects it
+// may create a workbuffer that the other helpers can work on.
+// The for loop either exits when a work buffer is found
+// or when _all_ of the work.nproc GC helpers are in the loop
+// looking for work and thus not capable of creating new work.
+// This is in fact the termination condition for the STW mark
+// phase.
+func getfull(b *workbuf) *workbuf {
+ if b != nil {
+ putempty(b)
+ }
+
+ b = (*workbuf)(lfstackpop(&work.full))
+ if b == nil {
+ b = (*workbuf)(lfstackpop(&work.partial))
+ }
+ if b != nil || work.nproc == 1 {
+ return b
+ }
+
+ xadd(&work.nwait, +1)
+ for i := 0; ; i++ {
+ if work.full != 0 {
+ xadd(&work.nwait, -1)
+ b = (*workbuf)(lfstackpop(&work.full))
+ if b == nil {
+ b = (*workbuf)(lfstackpop(&work.partial))
+ }
+ if b != nil {
+ return b
+ }
+ xadd(&work.nwait, +1)
+ }
+ if work.nwait == work.nproc {
+ return nil
+ }
+ _g_ := getg()
+ if i < 10 {
+ _g_.m.gcstats.nprocyield++
+ procyield(20)
+ } else if i < 20 {
+ _g_.m.gcstats.nosyield++
+ osyield()
+ } else {
+ _g_.m.gcstats.nsleep++
+ usleep(100)
+ }
+ }
+}
+
+func handoff(b *workbuf) *workbuf {
+ // Make new buffer with half of b's pointers.
+ b1 := getempty(nil)
+ n := b.nobj / 2
+ b.nobj -= n
+ b1.nobj = n
+ memmove(unsafe.Pointer(&b1.obj[0]), unsafe.Pointer(&b.obj[b.nobj]), n*unsafe.Sizeof(b1.obj[0]))
+ _g_ := getg()
+ _g_.m.gcstats.nhandoff++
+ _g_.m.gcstats.nhandoffcnt += uint64(n)
+
+ // Put b on full list - let first half of b get stolen.
+ lfstackpush(&work.full, &b.node)
+ return b1
+}
+
+func stackmapdata(stkmap *stackmap, n int32) bitvector {
+ if n < 0 || n >= stkmap.n {
+ gothrow("stackmapdata: index out of range")
+ }
+ return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+31)/32*4))))}
+}
+
+// Scan a stack frame: local variables and function arguments/results.
+func scanframe(frame *stkframe, unused unsafe.Pointer) bool {
+
+ f := frame.fn
+ targetpc := frame.continpc
+ if targetpc == 0 {
+ // Frame is dead.
+ return true
+ }
+ if _DebugGC > 1 {
+ print("scanframe ", gofuncname(f), "\n")
+ }
+ if targetpc != f.entry {
+ targetpc--
+ }
+ pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
+ if pcdata == -1 {
+ // We do not have a valid pcdata value but there might be a
+ // stackmap for this function. It is likely that we are looking
+ // at the function prologue, assume so and hope for the best.
+ pcdata = 0
+ }
+
+ // Scan local variables if stack frame has been allocated.
+ size := frame.varp - frame.sp
+ var minsize uintptr
+ if thechar != '6' && thechar != '8' {
+ minsize = ptrSize
+ } else {
+ minsize = 0
+ }
+ if size > minsize {
+ stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
+ if stkmap == nil || stkmap.n <= 0 {
+ print("runtime: frame ", gofuncname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
+ gothrow("missing stackmap")
+ }
+
+ // Locals bitmap information, scan just the pointers in locals.
+ if pcdata < 0 || pcdata >= stkmap.n {
+ // don't know where we are
+ print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", gofuncname(f), " (targetpc=", targetpc, ")\n")
+ gothrow("scanframe: bad symbol table")
+ }
+ bv := stackmapdata(stkmap, pcdata)
+ size = (uintptr(bv.n) * ptrSize) / bitsPerPointer
+ scanblock(frame.varp-size, uintptr(bv.n)/bitsPerPointer*ptrSize, bv.bytedata)
+ }
+
+ // Scan arguments.
+ if frame.arglen > 0 {
+ var bv bitvector
+ if frame.argmap != nil {
+ bv = *frame.argmap
+ } else {
+ stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
+ if stkmap == nil || stkmap.n <= 0 {
+ print("runtime: frame ", gofuncname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n")
+ gothrow("missing stackmap")
+ }
+ if pcdata < 0 || pcdata >= stkmap.n {
+ // don't know where we are
+ print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", gofuncname(f), " (targetpc=", targetpc, ")\n")
+ gothrow("scanframe: bad symbol table")
+ }
+ bv = stackmapdata(stkmap, pcdata)
+ }
+ scanblock(frame.argp, uintptr(bv.n)/bitsPerPointer*ptrSize, bv.bytedata)
+ }
+ return true
+}
+
+func scanstack(gp *g) {
+ // TODO(rsc): Due to a precedence error, this was never checked in the original C version.
+ // If you enable the check, the gothrow happens.
+ /*
+ if readgstatus(gp)&_Gscan == 0 {
+ print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ gothrow("mark - bad status")
+ }
+ */
+
+ switch readgstatus(gp) &^ _Gscan {
+ default:
+ print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ gothrow("mark - bad status")
+ case _Gdead:
+ return
+ case _Grunning:
+ print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ gothrow("scanstack: goroutine not stopped")
+ case _Grunnable, _Gsyscall, _Gwaiting:
+ // ok
+ }
+
+ if gp == getg() {
+ gothrow("can't scan our own stack")
+ }
+ mp := gp.m
+ if mp != nil && mp.helpgc != 0 {
+ gothrow("can't scan gchelper stack")
+ }
+
+ gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0)
+ tracebackdefers(gp, scanframe, nil)
+}
+
+// If the slot is grey or black return true, if white return false.
+// If the slot is not in the known heap and thus does not have a valid GC bitmap then
+// it is considered grey. Globals and stacks can hold such slots.
+// The slot is grey if its mark bit is set and it is enqueued to be scanned.
+// The slot is black if it has already been scanned.
+// It is white if it has a valid mark bit and the bit is not set.
+func shaded(slot uintptr) bool {
+ if !inheap(slot) { // non-heap slots considered grey
+ return true
+ }
+
+ var mbits markbits
+ valid := objectstart(slot, &mbits)
+ if valid == 0 {
+ return true
+ }
+
+ if checkmark {
+ return ischeckmarked(&mbits)
+ }
+
+ return mbits.bits&bitMarked != 0
+}
+
+// Shade the object if it isn't already.
+// The object is not nil and known to be in the heap.
+func shade(b uintptr) {
+ if !inheap(b) {
+ gothrow("shade: passed an address not in the heap")
+ }
+
+ wbuf := getpartialorempty()
+ // Mark the object, return some important bits.
+ // If we combine the following two rotines we don't have to pass mbits or obj around.
+ var mbits markbits
+ obj := objectstart(b, &mbits)
+ if obj != 0 {
+ wbuf = greyobject(obj, &mbits, wbuf) // augments the wbuf
+ }
+ putpartial(wbuf)
+}
+
+// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
+// The original Dijkstra barrier only shaded ptrs being placed in black slots.
+//
+// Shade indicates that it has seen a white pointer by adding the referent
+// to wbuf as well as marking it.
+//
+// slot is the destination (dst) in go code
+// ptr is the value that goes into the slot (src) in the go code
+//
+// Dijkstra pointed out that maintaining the no black to white
+// pointers means that white to white pointers not need
+// to be noted by the write barrier. Furthermore if either
+// white object dies before it is reached by the
+// GC then the object can be collected during this GC cycle
+// instead of waiting for the next cycle. Unfortunately the cost of
+// ensure that the object holding the slot doesn't concurrently
+// change to black without the mutator noticing seems prohibitive.
+//
+// Consider the following example where the mutator writes into
+// a slot and then loads the slot's mark bit while the GC thread
+// writes to the slot's mark bit and then as part of scanning reads
+// the slot.
+//
+// Initially both [slot] and [slotmark] are 0 (nil)
+// Mutator thread GC thread
+// st [slot], ptr st [slotmark], 1
+//
+// ld r1, [slotmark] ld r2, [slot]
+//
+// This is a classic example of independent reads of independent writes,
+// aka IRIW. The question is if r1==r2==0 is allowed and for most HW the
+// answer is yes without inserting a memory barriers between the st and the ld.
+// These barriers are expensive so we have decided that we will
+// always grey the ptr object regardless of the slot's color.
+func gcmarkwb_m(slot *uintptr, ptr uintptr) {
+ switch gcphase {
+ default:
+ gothrow("gcphasework in bad gcphase")
+
+ case _GCoff, _GCquiesce, _GCstw, _GCsweep, _GCscan:
+ // ok
+
+ case _GCmark, _GCmarktermination:
+ if ptr != 0 && inheap(ptr) {
+ shade(ptr)
+ }
+ }
+}
+
+// The gp has been moved to a GC safepoint. GC phase specific
+// work is done here.
+func gcphasework(gp *g) {
+ switch gcphase {
+ default:
+ gothrow("gcphasework in bad gcphase")
+ case _GCoff, _GCquiesce, _GCstw, _GCsweep:
+ // No work.
+ case _GCscan:
+ // scan the stack, mark the objects, put pointers in work buffers
+ // hanging off the P where this is being run.
+ scanstack(gp)
+ case _GCmark:
+ // No work.
+ case _GCmarktermination:
+ scanstack(gp)
+ // All available mark work will be emptied before returning.
+ }
+ gp.gcworkdone = true
+}
+
+var finalizer1 = [...]byte{
+ // Each Finalizer is 5 words, ptr ptr uintptr ptr ptr.
+ // Each byte describes 4 words.
+ // Need 4 Finalizers described by 5 bytes before pattern repeats:
+ // ptr ptr uintptr ptr ptr
+ // ptr ptr uintptr ptr ptr
+ // ptr ptr uintptr ptr ptr
+ // ptr ptr uintptr ptr ptr
+ // aka
+ // ptr ptr uintptr ptr
+ // ptr ptr ptr uintptr
+ // ptr ptr ptr ptr
+ // uintptr ptr ptr ptr
+ // ptr uintptr ptr ptr
+ // Assumptions about Finalizer layout checked below.
+ bitsPointer | bitsPointer<<2 | bitsScalar<<4 | bitsPointer<<6,
+ bitsPointer | bitsPointer<<2 | bitsPointer<<4 | bitsScalar<<6,
+ bitsPointer | bitsPointer<<2 | bitsPointer<<4 | bitsPointer<<6,
+ bitsScalar | bitsPointer<<2 | bitsPointer<<4 | bitsPointer<<6,
+ bitsPointer | bitsScalar<<2 | bitsPointer<<4 | bitsPointer<<6,
+}
+
+func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
+ lock(&finlock)
+ if finq == nil || finq.cnt == finq.cap {
+ if finc == nil {
+ finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys))
+ finc.cap = int32((_FinBlockSize-unsafe.Sizeof(finblock{}))/unsafe.Sizeof(finalizer{}) + 1)
+ finc.alllink = allfin
+ allfin = finc
+ if finptrmask[0] == 0 {
+ // Build pointer mask for Finalizer array in block.
+ // Check assumptions made in finalizer1 array above.
+ if (unsafe.Sizeof(finalizer{}) != 5*ptrSize ||
+ unsafe.Offsetof(finalizer{}.fn) != 0 ||
+ unsafe.Offsetof(finalizer{}.arg) != ptrSize ||
+ unsafe.Offsetof(finalizer{}.nret) != 2*ptrSize ||
+ unsafe.Offsetof(finalizer{}.fint) != 3*ptrSize ||
+ unsafe.Offsetof(finalizer{}.ot) != 4*ptrSize ||
+ bitsPerPointer != 2) {
+ gothrow("finalizer out of sync")
+ }
+ for i := range finptrmask {
+ finptrmask[i] = finalizer1[i%len(finalizer1)]
+ }
+ }
+ }
+ block := finc
+ finc = block.next
+ block.next = finq
+ finq = block
+ }
+ f := (*finalizer)(add(unsafe.Pointer(&finq.fin[0]), uintptr(finq.cnt)*unsafe.Sizeof(finq.fin[0])))
+ finq.cnt++
+ f.fn = fn
+ f.nret = nret
+ f.fint = fint
+ f.ot = ot
+ f.arg = p
+ fingwake = true
+ unlock(&finlock)
+}
+
+func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
+ for fb := allfin; fb != nil; fb = fb.alllink {
+ for i := int32(0); i < fb.cnt; i++ {
+ f := &fb.fin[i]
+ callback(f.fn, f.arg, f.nret, f.fint, f.ot)
+ }
+ }
+}
+
+// Returns only when span s has been swept.
+func mSpan_EnsureSwept(s *mspan) {
+ // Caller must disable preemption.
+ // Otherwise when this function returns the span can become unswept again
+ // (if GC is triggered on another goroutine).
+ _g_ := getg()
+ if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
+ gothrow("MSpan_EnsureSwept: m is not locked")
+ }
+
+ sg := mheap_.sweepgen
+ if atomicload(&s.sweepgen) == sg {
+ return
+ }
+ // The caller must be sure that the span is a MSpanInUse span.
+ if cas(&s.sweepgen, sg-2, sg-1) {
+ mSpan_Sweep(s, false)
+ return
+ }
+ // unfortunate condition, and we don't have efficient means to wait
+ for atomicload(&s.sweepgen) != sg {
+ osyield()
+ }
+}
+
+// Sweep frees or collects finalizers for blocks not marked in the mark phase.
+// It clears the mark bits in preparation for the next GC round.
+// Returns true if the span was returned to heap.
+// If preserve=true, don't return it to heap nor relink in MCentral lists;
+// caller takes care of it.
+func mSpan_Sweep(s *mspan, preserve bool) bool {
+ if checkmark {
+ gothrow("MSpan_Sweep: checkmark only runs in STW and after the sweep")
+ }
+
+ // It's critical that we enter this function with preemption disabled,
+ // GC must not start while we are in the middle of this function.
+ _g_ := getg()
+ if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
+ gothrow("MSpan_Sweep: m is not locked")
+ }
+ sweepgen := mheap_.sweepgen
+ if s.state != mSpanInUse || s.sweepgen != sweepgen-1 {
+ print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
+ gothrow("MSpan_Sweep: bad span state")
+ }
+ arena_start := mheap_.arena_start
+ cl := s.sizeclass
+ size := s.elemsize
+ var n int32
+ var npages int32
+ if cl == 0 {
+ n = 1
+ } else {
+ // Chunk full of small blocks.
+ npages = class_to_allocnpages[cl]
+ n = (npages << _PageShift) / int32(size)
+ }
+ res := false
+ nfree := 0
+ var head mlink
+ end := &head
+ c := _g_.m.mcache
+ sweepgenset := false
+
+ // Mark any free objects in this span so we don't collect them.
+ for link := s.freelist; link != nil; link = link.next {
+ off := (uintptr(unsafe.Pointer(link)) - arena_start) / ptrSize
+ bitp := arena_start - off/wordsPerBitmapByte - 1
+ shift := (off % wordsPerBitmapByte) * gcBits
+ *(*byte)(unsafe.Pointer(bitp)) |= bitMarked << shift
+ }
+
+ // Unlink & free special records for any objects we're about to free.
+ specialp := &s.specials
+ special := *specialp
+ for special != nil {
+ // A finalizer can be set for an inner byte of an object, find object beginning.
+ p := uintptr(s.start<<_PageShift) + uintptr(special.offset)/size*size
+ off := (p - arena_start) / ptrSize
+ bitp := arena_start - off/wordsPerBitmapByte - 1
+ shift := (off % wordsPerBitmapByte) * gcBits
+ bits := (*(*byte)(unsafe.Pointer(bitp)) >> shift) & bitMask
+ if bits&bitMarked == 0 {
+ // Find the exact byte for which the special was setup
+ // (as opposed to object beginning).
+ p := uintptr(s.start<<_PageShift) + uintptr(special.offset)
+ // about to free object: splice out special record
+ y := special
+ special = special.next
+ *specialp = special
+ if !freespecial(y, unsafe.Pointer(p), size, false) {
+ // stop freeing of object if it has a finalizer
+ *(*byte)(unsafe.Pointer(bitp)) |= bitMarked << shift
+ }
+ } else {
+ // object is still live: keep special record
+ specialp = &special.next
+ special = *specialp
+ }
+ }
+
+ // Sweep through n objects of given size starting at p.
+ // This thread owns the span now, so it can manipulate
+ // the block bitmap without atomic operations.
+ p := uintptr(s.start << _PageShift)
+ off := (p - arena_start) / ptrSize
+ bitp := arena_start - off/wordsPerBitmapByte - 1
+ shift := uint(0)
+ step := size / (ptrSize * wordsPerBitmapByte)
+ // Rewind to the previous quadruple as we move to the next
+ // in the beginning of the loop.
+ bitp += step
+ if step == 0 {
+ // 8-byte objects.
+ bitp++
+ shift = gcBits
+ }
+ for ; n > 0; n, p = n-1, p+size {
+ bitp -= step
+ if step == 0 {
+ if shift != 0 {
+ bitp--
+ }
+ shift = gcBits - shift
+ }
+
+ xbits := *(*byte)(unsafe.Pointer(bitp))
+ bits := (xbits >> shift) & bitMask
+
+ // Allocated and marked object, reset bits to allocated.
+ if bits&bitMarked != 0 {
+ *(*byte)(unsafe.Pointer(bitp)) &^= bitMarked << shift
+ continue
+ }
+
+ // At this point we know that we are looking at garbage object
+ // that needs to be collected.
+ if debug.allocfreetrace != 0 {
+ tracefree(unsafe.Pointer(p), size)
+ }
+
+ // Reset to allocated+noscan.
+ *(*byte)(unsafe.Pointer(bitp)) = uint8(uintptr(xbits&^((bitMarked|bitsMask<<2)<<shift)) | uintptr(bitsDead)<<(shift+2))
+ if cl == 0 {
+ // Free large span.
+ if preserve {
+ gothrow("can't preserve large span")
+ }
+ unmarkspan(p, s.npages<<_PageShift)
+ s.needzero = 1
+
+ // important to set sweepgen before returning it to heap
+ atomicstore(&s.sweepgen, sweepgen)
+ sweepgenset = true
+
+ // NOTE(rsc,dvyukov): The original implementation of efence
+ // in CL 22060046 used SysFree instead of SysFault, so that
+ // the operating system would eventually give the memory
+ // back to us again, so that an efence program could run
+ // longer without running out of memory. Unfortunately,
+ // calling SysFree here without any kind of adjustment of the
+ // heap data structures means that when the memory does
+ // come back to us, we have the wrong metadata for it, either in
+ // the MSpan structures or in the garbage collection bitmap.
+ // Using SysFault here means that the program will run out of
+ // memory fairly quickly in efence mode, but at least it won't
+ // have mysterious crashes due to confused memory reuse.
+ // It should be possible to switch back to SysFree if we also
+ // implement and then call some kind of MHeap_DeleteSpan.
+ if debug.efence > 0 {
+ s.limit = 0 // prevent mlookup from finding this span
+ sysFault(unsafe.Pointer(p), size)
+ } else {
+ mHeap_Free(&mheap_, s, 1)
+ }
+ c.local_nlargefree++
+ c.local_largefree += size
+ xadd64(&memstats.next_gc, -int64(size)*int64(gcpercent+100)/100)
+ res = true
+ } else {
+ // Free small object.
+ if size > 2*ptrSize {
+ *(*uintptr)(unsafe.Pointer(p + ptrSize)) = uintptrMask & 0xdeaddeaddeaddead // mark as "needs to be zeroed"
+ } else if size > ptrSize {
+ *(*uintptr)(unsafe.Pointer(p + ptrSize)) = 0
+ }
+ end.next = (*mlink)(unsafe.Pointer(p))
+ end = end.next
+ nfree++
+ }
+ }
+
+ // We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
+ // because of the potential for a concurrent free/SetFinalizer.
+ // But we need to set it before we make the span available for allocation
+ // (return it to heap or mcentral), because allocation code assumes that a
+ // span is already swept if available for allocation.
+ if !sweepgenset && nfree == 0 {
+ // The span must be in our exclusive ownership until we update sweepgen,
+ // check for potential races.
+ if s.state != mSpanInUse || s.sweepgen != sweepgen-1 {
+ print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
+ gothrow("MSpan_Sweep: bad span state after sweep")
+ }
+ atomicstore(&s.sweepgen, sweepgen)
+ }
+ if nfree > 0 {
+ c.local_nsmallfree[cl] += uintptr(nfree)
+ c.local_cachealloc -= intptr(uintptr(nfree) * size)
+ xadd64(&memstats.next_gc, -int64(nfree)*int64(size)*int64(gcpercent+100)/100)
+ res = mCentral_FreeSpan(&mheap_.central[cl].mcentral, s, int32(nfree), head.next, end, preserve)
+ // MCentral_FreeSpan updates sweepgen
+ }
+ return res
+}
+
+// State of background sweep.
+// Protected by gclock.
+type sweepdata struct {
+ g *g
+ parked bool
+ started bool
+
+ spanidx uint32 // background sweeper position
+
+ nbgsweep uint32
+ npausesweep uint32
+}
+
+var sweep sweepdata
+
+// sweeps one span
+// returns number of pages returned to heap, or ^uintptr(0) if there is nothing to sweep
+func sweepone() uintptr {
+ _g_ := getg()
+
+ // increment locks to ensure that the goroutine is not preempted
+ // in the middle of sweep thus leaving the span in an inconsistent state for next GC
+ _g_.m.locks++
+ sg := mheap_.sweepgen
+ for {
+ idx := xadd(&sweep.spanidx, 1) - 1
+ if idx >= uint32(len(work.spans)) {
+ mheap_.sweepdone = 1
+ _g_.m.locks--
+ return ^uintptr(0)
+ }
+ s := work.spans[idx]
+ if s.state != mSpanInUse {
+ s.sweepgen = sg
+ continue
+ }
+ if s.sweepgen != sg-2 || !cas(&s.sweepgen, sg-2, sg-1) {
+ continue
+ }
+ npages := s.npages
+ if !mSpan_Sweep(s, false) {
+ npages = 0
+ }
+ _g_.m.locks--
+ return npages
+ }
+}
+
+func gosweepone() uintptr {
+ var ret uintptr
+ systemstack(func() {
+ ret = sweepone()
+ })
+ return ret
+}
+
+func gosweepdone() bool {
+ return mheap_.sweepdone != 0
+}
+
+func gchelper() {
+ _g_ := getg()
+ _g_.m.traceback = 2
+ gchelperstart()
+
+ // parallel mark for over GC roots
+ parfordo(work.markfor)
+ if gcphase != _GCscan {
+ scanblock(0, 0, nil) // blocks in getfull
+ }
+
+ nproc := work.nproc // work.nproc can change right after we increment work.ndone
+ if xadd(&work.ndone, +1) == nproc-1 {
+ notewakeup(&work.alldone)
+ }
+ _g_.m.traceback = 0
+}
+
+func cachestats() {
+ for i := 0; ; i++ {
+ p := allp[i]
+ if p == nil {
+ break
+ }
+ c := p.mcache
+ if c == nil {
+ continue
+ }
+ purgecachedstats(c)
+ }
+}
+
+func flushallmcaches() {
+ for i := 0; ; i++ {
+ p := allp[i]
+ if p == nil {
+ break
+ }
+ c := p.mcache
+ if c == nil {
+ continue
+ }
+ mCache_ReleaseAll(c)
+ stackcache_clear(c)
+ }
+}
+
+func updatememstats(stats *gcstats) {
+ if stats != nil {
+ *stats = gcstats{}
+ }
+ for mp := allm; mp != nil; mp = mp.alllink {
+ if stats != nil {
+ src := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(&mp.gcstats))
+ dst := (*[unsafe.Sizeof(gcstats{}) / 8]uint64)(unsafe.Pointer(stats))
+ for i, v := range src {
+ dst[i] += v
+ }
+ mp.gcstats = gcstats{}
+ }
+ }
+
+ memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
+ memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
+ memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
+ memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
+
+ // Calculate memory allocator stats.
+ // During program execution we only count number of frees and amount of freed memory.
+ // Current number of alive object in the heap and amount of alive heap memory
+ // are calculated by scanning all spans.
+ // Total number of mallocs is calculated as number of frees plus number of alive objects.
+ // Similarly, total amount of allocated memory is calculated as amount of freed memory
+ // plus amount of alive heap memory.
+ memstats.alloc = 0
+ memstats.total_alloc = 0
+ memstats.nmalloc = 0
+ memstats.nfree = 0
+ for i := 0; i < len(memstats.by_size); i++ {
+ memstats.by_size[i].nmalloc = 0
+ memstats.by_size[i].nfree = 0
+ }
+
+ // Flush MCache's to MCentral.
+ systemstack(flushallmcaches)
+
+ // Aggregate local stats.
+ cachestats()
+
+ // Scan all spans and count number of alive objects.
+ lock(&mheap_.lock)
+ for i := uint32(0); i < mheap_.nspan; i++ {
+ s := h_allspans[i]
+ if s.state != mSpanInUse {
+ continue
+ }
+ if s.sizeclass == 0 {
+ memstats.nmalloc++
+ memstats.alloc += uint64(s.elemsize)
+ } else {
+ memstats.nmalloc += uint64(s.ref)
+ memstats.by_size[s.sizeclass].nmalloc += uint64(s.ref)
+ memstats.alloc += uint64(s.ref) * uint64(s.elemsize)
+ }
+ }
+ unlock(&mheap_.lock)
+
+ // Aggregate by size class.
+ smallfree := uint64(0)
+ memstats.nfree = mheap_.nlargefree
+ for i := 0; i < len(memstats.by_size); i++ {
+ memstats.nfree += mheap_.nsmallfree[i]
+ memstats.by_size[i].nfree = mheap_.nsmallfree[i]
+ memstats.by_size[i].nmalloc += mheap_.nsmallfree[i]
+ smallfree += uint64(mheap_.nsmallfree[i]) * uint64(class_to_size[i])
+ }
+ memstats.nfree += memstats.tinyallocs
+ memstats.nmalloc += memstats.nfree
+
+ // Calculate derived stats.
+ memstats.total_alloc = uint64(memstats.alloc) + uint64(mheap_.largefree) + smallfree
+ memstats.heap_alloc = memstats.alloc
+ memstats.heap_objects = memstats.nmalloc - memstats.nfree
+}
+
+func gcinit() {
+ if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
+ gothrow("runtime: size of Workbuf is suboptimal")
+ }
+
+ work.markfor = parforalloc(_MaxGcproc)
+ gcpercent = readgogc()
+ gcdatamask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcdata)), uintptr(unsafe.Pointer(&edata))-uintptr(unsafe.Pointer(&data)))
+ gcbssmask = unrollglobgcprog((*byte)(unsafe.Pointer(&gcbss)), uintptr(unsafe.Pointer(&ebss))-uintptr(unsafe.Pointer(&bss)))
+}
+
+// Called from malloc.go using onM, stopping and starting the world handled in caller.
+func gc_m(start_time int64, eagersweep bool) {
+ _g_ := getg()
+ gp := _g_.m.curg
+ casgstatus(gp, _Grunning, _Gwaiting)
+ gp.waitreason = "garbage collection"
+
+ gc(start_time, eagersweep)
+ casgstatus(gp, _Gwaiting, _Grunning)
+}
+
+// Similar to clearcheckmarkbits but works on a single span.
+// It preforms two tasks.
+// 1. When used before the checkmark phase it converts BitsDead (00) to bitsScalar (01)
+// for nibbles with the BoundaryBit set.
+// 2. When used after the checkmark phase it converts BitsPointerMark (11) to BitsPointer 10 and
+// BitsScalarMark (00) to BitsScalar (01), thus clearing the checkmark mark encoding.
+// For the second case it is possible to restore the BitsDead pattern but since
+// clearmark is a debug tool performance has a lower priority than simplicity.
+// The span is MSpanInUse and the world is stopped.
+func clearcheckmarkbitsspan(s *mspan) {
+ if s.state != _MSpanInUse {
+ print("runtime:clearcheckmarkbitsspan: state=", s.state, "\n")
+ gothrow("clearcheckmarkbitsspan: bad span state")
+ }
+
+ arena_start := mheap_.arena_start
+ cl := s.sizeclass
+ size := s.elemsize
+ var n int32
+ if cl == 0 {
+ n = 1
+ } else {
+ // Chunk full of small blocks
+ npages := class_to_allocnpages[cl]
+ n = npages << _PageShift / int32(size)
+ }
+
+ // MSpan_Sweep has similar code but instead of overloading and
+ // complicating that routine we do a simpler walk here.
+ // Sweep through n objects of given size starting at p.
+ // This thread owns the span now, so it can manipulate
+ // the block bitmap without atomic operations.
+ p := uintptr(s.start) << _PageShift
+
+ // Find bits for the beginning of the span.
+ off := (p - arena_start) / ptrSize
+ bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
+ step := size / (ptrSize * wordsPerBitmapByte)
+
+ // The type bit values are:
+ // 00 - BitsDead, for us BitsScalarMarked
+ // 01 - BitsScalar
+ // 10 - BitsPointer
+ // 11 - unused, for us BitsPointerMarked
+ //
+ // When called to prepare for the checkmark phase (checkmark==1),
+ // we change BitsDead to BitsScalar, so that there are no BitsScalarMarked
+ // type bits anywhere.
+ //
+ // The checkmark phase marks by changing BitsScalar to BitsScalarMarked
+ // and BitsPointer to BitsPointerMarked.
+ //
+ // When called to clean up after the checkmark phase (checkmark==0),
+ // we unmark by changing BitsScalarMarked back to BitsScalar and
+ // BitsPointerMarked back to BitsPointer.
+ //
+ // There are two problems with the scheme as just described.
+ // First, the setup rewrites BitsDead to BitsScalar, but the type bits
+ // following a BitsDead are uninitialized and must not be used.
+ // Second, objects that are free are expected to have their type
+ // bits zeroed (BitsDead), so in the cleanup we need to restore
+ // any BitsDeads that were there originally.
+ //
+ // In a one-word object (8-byte allocation on 64-bit system),
+ // there is no difference between BitsScalar and BitsDead, because
+ // neither is a pointer and there are no more words in the object,
+ // so using BitsScalar during the checkmark is safe and mapping
+ // both back to BitsDead during cleanup is also safe.
+ //
+ // In a larger object, we need to be more careful. During setup,
+ // if the type of the first word is BitsDead, we change it to BitsScalar
+ // (as we must) but also initialize the type of the second
+ // word to BitsDead, so that a scan during the checkmark phase
+ // will still stop before seeing the uninitialized type bits in the
+ // rest of the object. The sequence 'BitsScalar BitsDead' never
+ // happens in real type bitmaps - BitsDead is always as early
+ // as possible, so immediately after the last BitsPointer.
+ // During cleanup, if we see a BitsScalar, we can check to see if it
+ // is followed by BitsDead. If so, it was originally BitsDead and
+ // we can change it back.
+
+ if step == 0 {
+ // updating top and bottom nibbles, all boundaries
+ for i := int32(0); i < n/2; i, bitp = i+1, addb(bitp, uintptrMask&-1) {
+ if *bitp&bitBoundary == 0 {
+ gothrow("missing bitBoundary")
+ }
+ b := (*bitp & bitPtrMask) >> 2
+ if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) {
+ *bitp &^= 0x0c // convert to _BitsDead
+ } else if b == _BitsScalarMarked || b == _BitsPointerMarked {
+ *bitp &^= _BitsCheckMarkXor << 2
+ }
+
+ if (*bitp>>gcBits)&bitBoundary == 0 {
+ gothrow("missing bitBoundary")
+ }
+ b = ((*bitp >> gcBits) & bitPtrMask) >> 2
+ if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) {
+ *bitp &^= 0xc0 // convert to _BitsDead
+ } else if b == _BitsScalarMarked || b == _BitsPointerMarked {
+ *bitp &^= _BitsCheckMarkXor << (2 + gcBits)
+ }
+ }
+ } else {
+ // updating bottom nibble for first word of each object
+ for i := int32(0); i < n; i, bitp = i+1, addb(bitp, -step) {
+ if *bitp&bitBoundary == 0 {
+ gothrow("missing bitBoundary")
+ }
+ b := (*bitp & bitPtrMask) >> 2
+
+ if checkmark && b == _BitsDead {
+ // move BitsDead into second word.
+ // set bits to BitsScalar in preparation for checkmark phase.
+ *bitp &^= 0xc0
+ *bitp |= _BitsScalar << 2
+ } else if !checkmark && (b == _BitsScalar || b == _BitsScalarMarked) && *bitp&0xc0 == 0 {
+ // Cleaning up after checkmark phase.
+ // First word is scalar or dead (we forgot)
+ // and second word is dead.
+ // First word might as well be dead too.
+ *bitp &^= 0x0c
+ } else if b == _BitsScalarMarked || b == _BitsPointerMarked {
+ *bitp ^= _BitsCheckMarkXor << 2
+ }
+ }
+ }
+}
+
+// clearcheckmarkbits preforms two tasks.
+// 1. When used before the checkmark phase it converts BitsDead (00) to bitsScalar (01)
+// for nibbles with the BoundaryBit set.
+// 2. When used after the checkmark phase it converts BitsPointerMark (11) to BitsPointer 10 and
+// BitsScalarMark (00) to BitsScalar (01), thus clearing the checkmark mark encoding.
+// This is a bit expensive but preserves the BitsDead encoding during the normal marking.
+// BitsDead remains valid for every nibble except the ones with BitsBoundary set.
+func clearcheckmarkbits() {
+ for _, s := range work.spans {
+ if s.state == _MSpanInUse {
+ clearcheckmarkbitsspan(s)
+ }
+ }
+}
+
+// Called from malloc.go using onM.
+// The world is stopped. Rerun the scan and mark phases
+// using the bitMarkedCheck bit instead of the
+// bitMarked bit. If the marking encounters an
+// bitMarked bit that is not set then we throw.
+func gccheckmark_m(startTime int64, eagersweep bool) {
+ if !gccheckmarkenable {
+ return
+ }
+
+ if checkmark {
+ gothrow("gccheckmark_m, entered with checkmark already true")
+ }
+
+ checkmark = true
+ clearcheckmarkbits() // Converts BitsDead to BitsScalar.
+ gc_m(startTime, eagersweep) // turns off checkmark
+ // Work done, fixed up the GC bitmap to remove the checkmark bits.
+ clearcheckmarkbits()
+}
+
+func gccheckmarkenable_m() {
+ gccheckmarkenable = true
+}
+
+func gccheckmarkdisable_m() {
+ gccheckmarkenable = false
+}
+
+func finishsweep_m() {
+ // The world is stopped so we should be able to complete the sweeps
+ // quickly.
+ for sweepone() != ^uintptr(0) {
+ sweep.npausesweep++
+ }
+
+ // There may be some other spans being swept concurrently that
+ // we need to wait for. If finishsweep_m is done with the world stopped
+ // this code is not required.
+ sg := mheap_.sweepgen
+ for _, s := range work.spans {
+ if s.sweepgen != sg && s.state == _MSpanInUse {
+ mSpan_EnsureSwept(s)
+ }
+ }
+}
+
+// Scan all of the stacks, greying (or graying if in America) the referents
+// but not blackening them since the mark write barrier isn't installed.
+func gcscan_m() {
+ _g_ := getg()
+
+ // Grab the g that called us and potentially allow rescheduling.
+ // This allows it to be scanned like other goroutines.
+ mastergp := _g_.m.curg
+ casgstatus(mastergp, _Grunning, _Gwaiting)
+ mastergp.waitreason = "garbage collection scan"
+
+ // Span sweeping has been done by finishsweep_m.
+ // Long term we will want to make this goroutine runnable
+ // by placing it onto a scanenqueue state and then calling
+ // runtimeĀ·restartg(mastergp) to make it Grunnable.
+ // At the bottom we will want to return this p back to the scheduler.
+ oldphase := gcphase
+
+ // Prepare flag indicating that the scan has not been completed.
+ lock(&allglock)
+ local_allglen := allglen
+ for i := uintptr(0); i < local_allglen; i++ {
+ gp := allgs[i]
+ gp.gcworkdone = false // set to true in gcphasework
+ }
+ unlock(&allglock)
+
+ work.nwait = 0
+ work.ndone = 0
+ work.nproc = 1 // For now do not do this in parallel.
+ gcphase = _GCscan
+ // ackgcphase is not needed since we are not scanning running goroutines.
+ parforsetup(work.markfor, work.nproc, uint32(_RootCount+local_allglen), nil, false, markroot)
+ parfordo(work.markfor)
+
+ lock(&allglock)
+ // Check that gc work is done.
+ for i := uintptr(0); i < local_allglen; i++ {
+ gp := allgs[i]
+ if !gp.gcworkdone {
+ gothrow("scan missed a g")
+ }
+ }
+ unlock(&allglock)
+
+ gcphase = oldphase
+ casgstatus(mastergp, _Gwaiting, _Grunning)
+ // Let the g that called us continue to run.
+}
+
+// Mark all objects that are known about.
+func gcmark_m() {
+ scanblock(0, 0, nil)
+}
+
+// For now this must be bracketed with a stoptheworld and a starttheworld to ensure
+// all go routines see the new barrier.
+func gcinstallmarkwb_m() {
+ gcphase = _GCmark
+}
+
+// For now this must be bracketed with a stoptheworld and a starttheworld to ensure
+// all go routines see the new barrier.
+func gcinstalloffwb_m() {
+ gcphase = _GCoff
+}
+
+func gc(start_time int64, eagersweep bool) {
+ if _DebugGCPtrs {
+ print("GC start\n")
+ }
+
+ if debug.allocfreetrace > 0 {
+ tracegc()
+ }
+
+ _g_ := getg()
+ _g_.m.traceback = 2
+ t0 := start_time
+ work.tstart = start_time
+
+ var t1 int64
+ if debug.gctrace > 0 {
+ t1 = nanotime()
+ }
+
+ if !checkmark {
+ finishsweep_m() // skip during checkmark debug phase.
+ }
+
+ // Cache runtime.mheap_.allspans in work.spans to avoid conflicts with
+ // resizing/freeing allspans.
+ // New spans can be created while GC progresses, but they are not garbage for
+ // this round:
+ // - new stack spans can be created even while the world is stopped.
+ // - new malloc spans can be created during the concurrent sweep
+
+ // Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
+ lock(&mheap_.lock)
+ // Free the old cached sweep array if necessary.
+ if work.spans != nil && &work.spans[0] != &h_allspans[0] {
+ sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
+ }
+ // Cache the current array for marking.
+ mheap_.gcspans = mheap_.allspans
+ work.spans = h_allspans
+ unlock(&mheap_.lock)
+ oldphase := gcphase
+
+ work.nwait = 0
+ work.ndone = 0
+ work.nproc = uint32(gcprocs())
+ gcphase = _GCmarktermination
+
+ // World is stopped so allglen will not change.
+ for i := uintptr(0); i < allglen; i++ {
+ gp := allgs[i]
+ gp.gcworkdone = false // set to true in gcphasework
+ }
+
+ parforsetup(work.markfor, work.nproc, uint32(_RootCount+allglen), nil, false, markroot)
+ if work.nproc > 1 {
+ noteclear(&work.alldone)
+ helpgc(int32(work.nproc))
+ }
+
+ var t2 int64
+ if debug.gctrace > 0 {
+ t2 = nanotime()
+ }
+
+ gchelperstart()
+ parfordo(work.markfor)
+ scanblock(0, 0, nil)
+
+ if work.full != 0 {
+ gothrow("work.full != 0")
+ }
+ if work.partial != 0 {
+ gothrow("work.partial != 0")
+ }
+
+ gcphase = oldphase
+ var t3 int64
+ if debug.gctrace > 0 {
+ t3 = nanotime()
+ }
+
+ if work.nproc > 1 {
+ notesleep(&work.alldone)
+ }
+
+ shrinkfinish()
+
+ cachestats()
+ // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
+ // estimate what was live heap size after previous GC (for printing only)
+ heap0 := memstats.next_gc * 100 / (uint64(gcpercent) + 100)
+ // conservatively set next_gc to high value assuming that everything is live
+ // concurrent/lazy sweep will reduce this number while discovering new garbage
+ memstats.next_gc = memstats.heap_alloc + memstats.heap_alloc*uint64(gcpercent)/100
+
+ t4 := nanotime()
+ atomicstore64(&memstats.last_gc, uint64(unixnanotime())) // must be Unix time to make sense to user
+ memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(t4 - t0)
+ memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(t4)
+ memstats.pause_total_ns += uint64(t4 - t0)
+ memstats.numgc++
+ if memstats.debuggc {
+ print("pause ", t4-t0, "\n")
+ }
+
+ if debug.gctrace > 0 {
+ heap1 := memstats.heap_alloc
+ var stats gcstats
+ updatememstats(&stats)
+ if heap1 != memstats.heap_alloc {
+ print("runtime: mstats skew: heap=", heap1, "/", memstats.heap_alloc, "\n")
+ gothrow("mstats skew")
+ }
+ obj := memstats.nmalloc - memstats.nfree
+
+ stats.nprocyield += work.markfor.nprocyield
+ stats.nosyield += work.markfor.nosyield
+ stats.nsleep += work.markfor.nsleep
+
+ print("gc", memstats.numgc, "(", work.nproc, "): ",
+ (t1-t0)/1000, "+", (t2-t1)/1000, "+", (t3-t2)/1000, "+", (t4-t3)/1000, " us, ",
+ heap0>>20, " -> ", heap1>>20, " MB, ",
+ obj, " (", memstats.nmalloc, "-", memstats.nfree, ") objects, ",
+ gcount(), " goroutines, ",
+ len(work.spans), "/", sweep.nbgsweep, "/", sweep.npausesweep, " sweeps, ",
+ stats.nhandoff, "(", stats.nhandoffcnt, ") handoff, ",
+ work.markfor.nsteal, "(", work.markfor.nstealcnt, ") steal, ",
+ stats.nprocyield, "/", stats.nosyield, "/", stats.nsleep, " yields\n")
+ sweep.nbgsweep = 0
+ sweep.npausesweep = 0
+ }
+
+ // See the comment in the beginning of this function as to why we need the following.
+ // Even if this is still stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
+ lock(&mheap_.lock)
+ // Free the old cached mark array if necessary.
+ if work.spans != nil && &work.spans[0] != &h_allspans[0] {
+ sysFree(unsafe.Pointer(&work.spans[0]), uintptr(len(work.spans))*unsafe.Sizeof(work.spans[0]), &memstats.other_sys)
+ }
+
+ if gccheckmarkenable {
+ if !checkmark {
+ // first half of two-pass; don't set up sweep
+ unlock(&mheap_.lock)
+ return
+ }
+ checkmark = false // done checking marks
+ }
+
+ // Cache the current array for sweeping.
+ mheap_.gcspans = mheap_.allspans
+ mheap_.sweepgen += 2
+ mheap_.sweepdone = 0
+ work.spans = h_allspans
+ sweep.spanidx = 0
+ unlock(&mheap_.lock)
+
+ if _ConcurrentSweep && !eagersweep {
+ lock(&gclock)
+ if !sweep.started {
+ go bgsweep()
+ sweep.started = true
+ } else if sweep.parked {
+ sweep.parked = false
+ ready(sweep.g)
+ }
+ unlock(&gclock)
+ } else {
+ // Sweep all spans eagerly.
+ for sweepone() != ^uintptr(0) {
+ sweep.npausesweep++
+ }
+ // Do an additional mProf_GC, because all 'free' events are now real as well.
+ mProf_GC()
+ }
+
+ mProf_GC()
+ _g_.m.traceback = 0
+
+ if _DebugGCPtrs {
+ print("GC end\n")
+ }
+}
+
+func readmemstats_m(stats *MemStats) {
+ updatememstats(nil)
+
+ // Size of the trailing by_size array differs between Go and C,
+ // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
+ memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
+
+ // Stack numbers are part of the heap numbers, separate those out for user consumption
+ stats.StackSys = stats.StackInuse
+ stats.HeapInuse -= stats.StackInuse
+ stats.HeapSys -= stats.StackInuse
+}
+
+//go:linkname readGCStats runtime/debug.readGCStats
+func readGCStats(pauses *[]uint64) {
+ systemstack(func() {
+ readGCStats_m(pauses)
+ })
+}
+
+func readGCStats_m(pauses *[]uint64) {
+ p := *pauses
+ // Calling code in runtime/debug should make the slice large enough.
+ if cap(p) < len(memstats.pause_ns)+3 {
+ gothrow("runtime: short slice passed to readGCStats")
+ }
+
+ // Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
+ lock(&mheap_.lock)
+
+ n := memstats.numgc
+ if n > uint32(len(memstats.pause_ns)) {
+ n = uint32(len(memstats.pause_ns))
+ }
+
+ // The pause buffer is circular. The most recent pause is at
+ // pause_ns[(numgc-1)%len(pause_ns)], and then backward
+ // from there to go back farther in time. We deliver the times
+ // most recent first (in p[0]).
+ p = p[:cap(p)]
+ for i := uint32(0); i < n; i++ {
+ j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
+ p[i] = memstats.pause_ns[j]
+ p[n+i] = memstats.pause_end[j]
+ }
+
+ p[n+n] = memstats.last_gc
+ p[n+n+1] = uint64(memstats.numgc)
+ p[n+n+2] = memstats.pause_total_ns
+ unlock(&mheap_.lock)
+ *pauses = p[:n+n+3]
+}
+
+func setGCPercent(in int32) (out int32) {
+ lock(&mheap_.lock)
+ out = gcpercent
+ if in < 0 {
+ in = -1
+ }
+ gcpercent = in
+ unlock(&mheap_.lock)
+ return out
+}
+
+func gchelperstart() {
+ _g_ := getg()
+
+ if _g_.m.helpgc < 0 || _g_.m.helpgc >= _MaxGcproc {
+ gothrow("gchelperstart: bad m->helpgc")
+ }
+ if _g_ != _g_.m.g0 {
+ gothrow("gchelper not running on g0 stack")
+ }
+}
+
+func wakefing() *g {
+ var res *g
+ lock(&finlock)
+ if fingwait && fingwake {
+ fingwait = false
+ fingwake = false
+ res = fing
+ }
+ unlock(&finlock)
+ return res
+}
+
+func addb(p *byte, n uintptr) *byte {
+ return (*byte)(add(unsafe.Pointer(p), n))
+}
+
+// Recursively unrolls GC program in prog.
+// mask is where to store the result.
+// ppos is a pointer to position in mask, in bits.
+// sparse says to generate 4-bits per word mask for heap (2-bits for data/bss otherwise).
+func unrollgcprog1(maskp *byte, prog *byte, ppos *uintptr, inplace, sparse bool) *byte {
+ arena_start := mheap_.arena_start
+ pos := *ppos
+ mask := (*[1 << 30]byte)(unsafe.Pointer(maskp))
+ for {
+ switch *prog {
+ default:
+ gothrow("unrollgcprog: unknown instruction")
+
+ case insData:
+ prog = addb(prog, 1)
+ siz := int(*prog)
+ prog = addb(prog, 1)
+ p := (*[1 << 30]byte)(unsafe.Pointer(prog))
+ for i := 0; i < siz; i++ {
+ v := p[i/_PointersPerByte]
+ v >>= (uint(i) % _PointersPerByte) * _BitsPerPointer
+ v &= _BitsMask
+ if inplace {
+ // Store directly into GC bitmap.
+ off := (uintptr(unsafe.Pointer(&mask[pos])) - arena_start) / ptrSize
+ bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
+ shift := (off % wordsPerBitmapByte) * gcBits
+ if shift == 0 {
+ *bitp = 0
+ }
+ *bitp |= v << (shift + 2)
+ pos += ptrSize
+ } else if sparse {
+ // 4-bits per word
+ v <<= (pos % 8) + 2
+ mask[pos/8] |= v
+ pos += gcBits
+ } else {
+ // 2-bits per word
+ v <<= pos % 8
+ mask[pos/8] |= v
+ pos += _BitsPerPointer
+ }
+ }
+ prog = addb(prog, round(uintptr(siz)*_BitsPerPointer, 8)/8)
+
+ case insArray:
+ prog = (*byte)(add(unsafe.Pointer(prog), 1))
+ siz := uintptr(0)
+ for i := uintptr(0); i < ptrSize; i++ {
+ siz = (siz << 8) + uintptr(*(*byte)(add(unsafe.Pointer(prog), ptrSize-i-1)))
+ }
+ prog = (*byte)(add(unsafe.Pointer(prog), ptrSize))
+ var prog1 *byte
+ for i := uintptr(0); i < siz; i++ {
+ prog1 = unrollgcprog1(&mask[0], prog, &pos, inplace, sparse)
+ }
+ if *prog1 != insArrayEnd {
+ gothrow("unrollgcprog: array does not end with insArrayEnd")
+ }
+ prog = (*byte)(add(unsafe.Pointer(prog1), 1))
+
+ case insArrayEnd, insEnd:
+ *ppos = pos
+ return prog
+ }
+ }
+}
+
+// Unrolls GC program prog for data/bss, returns dense GC mask.
+func unrollglobgcprog(prog *byte, size uintptr) bitvector {
+ masksize := round(round(size, ptrSize)/ptrSize*bitsPerPointer, 8) / 8
+ mask := (*[1 << 30]byte)(persistentalloc(masksize+1, 0, &memstats.gc_sys))
+ mask[masksize] = 0xa1
+ pos := uintptr(0)
+ prog = unrollgcprog1(&mask[0], prog, &pos, false, false)
+ if pos != size/ptrSize*bitsPerPointer {
+ print("unrollglobgcprog: bad program size, got ", pos, ", expect ", size/ptrSize*bitsPerPointer, "\n")
+ gothrow("unrollglobgcprog: bad program size")
+ }
+ if *prog != insEnd {
+ gothrow("unrollglobgcprog: program does not end with insEnd")
+ }
+ if mask[masksize] != 0xa1 {
+ gothrow("unrollglobgcprog: overflow")
+ }
+ return bitvector{int32(masksize * 8), &mask[0]}
+}
+
+func unrollgcproginplace_m(v unsafe.Pointer, typ *_type, size, size0 uintptr) {
+ pos := uintptr(0)
+ prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
+ for pos != size0 {
+ unrollgcprog1((*byte)(v), prog, &pos, true, true)
+ }
+
+ // Mark first word as bitAllocated.
+ arena_start := mheap_.arena_start
+ off := (uintptr(v) - arena_start) / ptrSize
+ bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
+ shift := (off % wordsPerBitmapByte) * gcBits
+ *bitp |= bitBoundary << shift
+
+ // Mark word after last as BitsDead.
+ if size0 < size {
+ off := (uintptr(v) + size0 - arena_start) / ptrSize
+ bitp := (*byte)(unsafe.Pointer(arena_start - off/wordsPerBitmapByte - 1))
+ shift := (off % wordsPerBitmapByte) * gcBits
+ *bitp &= uint8(^(bitPtrMask << shift) | uintptr(bitsDead)<<(shift+2))
+ }
+}
+
+var unroll mutex
+
+// Unrolls GC program in typ.gc[1] into typ.gc[0]
+func unrollgcprog_m(typ *_type) {
+ lock(&unroll)
+ mask := (*byte)(unsafe.Pointer(uintptr(typ.gc[0])))
+ if *mask == 0 {
+ pos := uintptr(8) // skip the unroll flag
+ prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
+ prog = unrollgcprog1(mask, prog, &pos, false, true)
+ if *prog != insEnd {
+ gothrow("unrollgcprog: program does not end with insEnd")
+ }
+ if typ.size/ptrSize%2 != 0 {
+ // repeat the program
+ prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
+ unrollgcprog1(mask, prog, &pos, false, true)
+ }
+
+ // atomic way to say mask[0] = 1
+ atomicor8(mask, 1)
+ }
+ unlock(&unroll)
+}
+
+// mark the span of memory at v as having n blocks of the given size.
+// if leftover is true, there is left over space at the end of the span.
+func markspan(v unsafe.Pointer, size uintptr, n uintptr, leftover bool) {
+ if uintptr(v)+size*n > mheap_.arena_used || uintptr(v) < mheap_.arena_start {
+ gothrow("markspan: bad pointer")
+ }
+
+ // Find bits of the beginning of the span.
+ off := (uintptr(v) - uintptr(mheap_.arena_start)) / ptrSize
+ if off%wordsPerBitmapByte != 0 {
+ gothrow("markspan: unaligned length")
+ }
+ b := mheap_.arena_start - off/wordsPerBitmapByte - 1
+
+ // Okay to use non-atomic ops here, because we control
+ // the entire span, and each bitmap byte has bits for only
+ // one span, so no other goroutines are changing these bitmap words.
+
+ if size == ptrSize {
+ // Possible only on 64-bits (minimal size class is 8 bytes).
+ // Set memory to 0x11.
+ if (bitBoundary|bitsDead)<<gcBits|bitBoundary|bitsDead != 0x11 {
+ gothrow("markspan: bad bits")
+ }
+ if n%(wordsPerBitmapByte*ptrSize) != 0 {
+ gothrow("markspan: unaligned length")
+ }
+ b = b - n/wordsPerBitmapByte + 1 // find first byte
+ if b%ptrSize != 0 {
+ gothrow("markspan: unaligned pointer")
+ }
+ for i := uintptr(0); i < n; i, b = i+wordsPerBitmapByte*ptrSize, b+ptrSize {
+ *(*uintptr)(unsafe.Pointer(b)) = uintptrMask & 0x1111111111111111 // bitBoundary | bitsDead, repeated
+ }
+ return
+ }
+
+ if leftover {
+ n++ // mark a boundary just past end of last block too
+ }
+ step := size / (ptrSize * wordsPerBitmapByte)
+ for i := uintptr(0); i < n; i, b = i+1, b-step {
+ *(*byte)(unsafe.Pointer(b)) = bitBoundary | bitsDead<<2
+ }
+}
+
+// unmark the span of memory at v of length n bytes.
+func unmarkspan(v, n uintptr) {
+ if v+n > mheap_.arena_used || v < mheap_.arena_start {
+ gothrow("markspan: bad pointer")
+ }
+
+ off := (v - mheap_.arena_start) / ptrSize // word offset
+ if off%(ptrSize*wordsPerBitmapByte) != 0 {
+ gothrow("markspan: unaligned pointer")
+ }
+
+ b := mheap_.arena_start - off/wordsPerBitmapByte - 1
+ n /= ptrSize
+ if n%(ptrSize*wordsPerBitmapByte) != 0 {
+ gothrow("unmarkspan: unaligned length")
+ }
+
+ // Okay to use non-atomic ops here, because we control
+ // the entire span, and each bitmap word has bits for only
+ // one span, so no other goroutines are changing these
+ // bitmap words.
+ n /= wordsPerBitmapByte
+ memclr(unsafe.Pointer(b-n+1), n)
+}
+
+func mHeap_MapBits(h *mheap) {
+ // Caller has added extra mappings to the arena.
+ // Add extra mappings of bitmap words as needed.
+ // We allocate extra bitmap pieces in chunks of bitmapChunk.
+ const bitmapChunk = 8192
+
+ n := (h.arena_used - h.arena_start) / (ptrSize * wordsPerBitmapByte)
+ n = round(n, bitmapChunk)
+ n = round(n, _PhysPageSize)
+ if h.bitmap_mapped >= n {
+ return
+ }
+
+ sysMap(unsafe.Pointer(h.arena_start-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
+ h.bitmap_mapped = n
+}
+
+func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
+ target := (*stkframe)(ctxt)
+ if frame.sp <= target.sp && target.sp < frame.varp {
+ *target = *frame
+ return false
+ }
+ return true
+}
+
+// Returns GC type info for object p for testing.
+func getgcmask(p unsafe.Pointer, t *_type, mask **byte, len *uintptr) {
+ *mask = nil
+ *len = 0
+
+ // data
+ if uintptr(unsafe.Pointer(&data)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&edata)) {
+ n := (*ptrtype)(unsafe.Pointer(t)).elem.size
+ *len = n / ptrSize
+ *mask = &make([]byte, *len)[0]
+ for i := uintptr(0); i < n; i += ptrSize {
+ off := (uintptr(p) + i - uintptr(unsafe.Pointer(&data))) / ptrSize
+ bits := (*(*byte)(add(unsafe.Pointer(gcdatamask.bytedata), off/pointersPerByte)) >> ((off % pointersPerByte) * bitsPerPointer)) & bitsMask
+ *(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
+ }
+ return
+ }
+
+ // bss
+ if uintptr(unsafe.Pointer(&bss)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&ebss)) {
+ n := (*ptrtype)(unsafe.Pointer(t)).elem.size
+ *len = n / ptrSize
+ *mask = &make([]byte, *len)[0]
+ for i := uintptr(0); i < n; i += ptrSize {
+ off := (uintptr(p) + i - uintptr(unsafe.Pointer(&bss))) / ptrSize
+ bits := (*(*byte)(add(unsafe.Pointer(gcbssmask.bytedata), off/pointersPerByte)) >> ((off % pointersPerByte) * bitsPerPointer)) & bitsMask
+ *(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
+ }
+ return
+ }
+
+ // heap
+ var n uintptr
+ var base uintptr
+ if mlookup(uintptr(p), &base, &n, nil) != 0 {
+ *len = n / ptrSize
+ *mask = &make([]byte, *len)[0]
+ for i := uintptr(0); i < n; i += ptrSize {
+ off := (uintptr(base) + i - mheap_.arena_start) / ptrSize
+ b := mheap_.arena_start - off/wordsPerBitmapByte - 1
+ shift := (off % wordsPerBitmapByte) * gcBits
+ bits := (*(*byte)(unsafe.Pointer(b)) >> (shift + 2)) & bitsMask
+ *(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
+ }
+ return
+ }
+
+ // stack
+ var frame stkframe
+ frame.sp = uintptr(p)
+ _g_ := getg()
+ gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
+ if frame.fn != nil {
+ f := frame.fn
+ targetpc := frame.continpc
+ if targetpc == 0 {
+ return
+ }
+ if targetpc != f.entry {
+ targetpc--
+ }
+ pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
+ if pcdata == -1 {
+ return
+ }
+ stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
+ if stkmap == nil || stkmap.n <= 0 {
+ return
+ }
+ bv := stackmapdata(stkmap, pcdata)
+ size := uintptr(bv.n) / bitsPerPointer * ptrSize
+ n := (*ptrtype)(unsafe.Pointer(t)).elem.size
+ *len = n / ptrSize
+ *mask = &make([]byte, *len)[0]
+ for i := uintptr(0); i < n; i += ptrSize {
+ off := (uintptr(p) + i - frame.varp + size) / ptrSize
+ bits := ((*(*byte)(add(unsafe.Pointer(bv.bytedata), off*bitsPerPointer/8))) >> ((off * bitsPerPointer) % 8)) & bitsMask
+ *(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
+ }
+ }
+}
+
+func unixnanotime() int64 {
+ var now int64
+ gc_unixnanotime(&now)
+ return now
+}