summaryrefslogtreecommitdiff
path: root/src/runtime/mheap.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/mheap.c')
-rw-r--r--src/runtime/mheap.c889
1 files changed, 0 insertions, 889 deletions
diff --git a/src/runtime/mheap.c b/src/runtime/mheap.c
deleted file mode 100644
index bb203d5ce..000000000
--- a/src/runtime/mheap.c
+++ /dev/null
@@ -1,889 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Page heap.
-//
-// See malloc.h for overview.
-//
-// When a MSpan is in the heap free list, state == MSpanFree
-// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
-//
-// When a MSpan is allocated, state == MSpanInUse or MSpanStack
-// and heapmap(i) == span for all s->start <= i < s->start+s->npages.
-
-#include "runtime.h"
-#include "arch_GOARCH.h"
-#include "malloc.h"
-
-static MSpan *MHeap_AllocSpanLocked(MHeap*, uintptr);
-static void MHeap_FreeSpanLocked(MHeap*, MSpan*, bool, bool);
-static bool MHeap_Grow(MHeap*, uintptr);
-static MSpan *MHeap_AllocLarge(MHeap*, uintptr);
-static MSpan *BestFit(MSpan*, uintptr, MSpan*);
-
-static void
-RecordSpan(void *vh, byte *p)
-{
- MHeap *h;
- MSpan *s;
- MSpan **all;
- uint32 cap;
-
- h = vh;
- s = (MSpan*)p;
- if(h->nspan >= h->nspancap) {
- cap = 64*1024/sizeof(all[0]);
- if(cap < h->nspancap*3/2)
- cap = h->nspancap*3/2;
- all = (MSpan**)runtime·sysAlloc(cap*sizeof(all[0]), &mstats.other_sys);
- if(all == nil)
- runtime·throw("runtime: cannot allocate memory");
- if(h->allspans) {
- runtime·memmove(all, h->allspans, h->nspancap*sizeof(all[0]));
- // Don't free the old array if it's referenced by sweep.
- // See the comment in mgc0.c.
- if(h->allspans != runtime·mheap.gcspans)
- runtime·SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys);
- }
- h->allspans = all;
- h->nspancap = cap;
- }
- h->allspans[h->nspan++] = s;
-}
-
-// Initialize the heap; fetch memory using alloc.
-void
-runtime·MHeap_Init(MHeap *h)
-{
- uint32 i;
-
- runtime·FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys);
- runtime·FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys);
- runtime·FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys);
- runtime·FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys);
- // h->mapcache needs no init
- for(i=0; i<nelem(h->free); i++) {
- runtime·MSpanList_Init(&h->free[i]);
- runtime·MSpanList_Init(&h->busy[i]);
- }
- runtime·MSpanList_Init(&h->freelarge);
- runtime·MSpanList_Init(&h->busylarge);
- for(i=0; i<nelem(h->central); i++)
- runtime·MCentral_Init(&h->central[i].mcentral, i);
-}
-
-void
-runtime·MHeap_MapSpans(MHeap *h)
-{
- uintptr n;
-
- // Map spans array, PageSize at a time.
- n = (uintptr)h->arena_used;
- n -= (uintptr)h->arena_start;
- n = n / PageSize * sizeof(h->spans[0]);
- n = ROUND(n, PhysPageSize);
- if(h->spans_mapped >= n)
- return;
- runtime·SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys);
- h->spans_mapped = n;
-}
-
-// Sweeps spans in list until reclaims at least npages into heap.
-// Returns the actual number of pages reclaimed.
-static uintptr
-MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages)
-{
- MSpan *s;
- uintptr n;
- uint32 sg;
-
- n = 0;
- sg = runtime·mheap.sweepgen;
-retry:
- for(s = list->next; s != list; s = s->next) {
- if(s->sweepgen == sg-2 && runtime·cas(&s->sweepgen, sg-2, sg-1)) {
- runtime·MSpanList_Remove(s);
- // swept spans are at the end of the list
- runtime·MSpanList_InsertBack(list, s);
- runtime·unlock(&h->lock);
- n += runtime·MSpan_Sweep(s, false);
- runtime·lock(&h->lock);
- if(n >= npages)
- return n;
- // the span could have been moved elsewhere
- goto retry;
- }
- if(s->sweepgen == sg-1) {
- // the span is being sweept by background sweeper, skip
- continue;
- }
- // already swept empty span,
- // all subsequent ones must also be either swept or in process of sweeping
- break;
- }
- return n;
-}
-
-// Sweeps and reclaims at least npage pages into heap.
-// Called before allocating npage pages.
-static void
-MHeap_Reclaim(MHeap *h, uintptr npage)
-{
- uintptr reclaimed, n;
-
- // First try to sweep busy spans with large objects of size >= npage,
- // this has good chances of reclaiming the necessary space.
- for(n=npage; n < nelem(h->busy); n++) {
- if(MHeap_ReclaimList(h, &h->busy[n], npage))
- return; // Bingo!
- }
-
- // Then -- even larger objects.
- if(MHeap_ReclaimList(h, &h->busylarge, npage))
- return; // Bingo!
-
- // Now try smaller objects.
- // One such object is not enough, so we need to reclaim several of them.
- reclaimed = 0;
- for(n=0; n < npage && n < nelem(h->busy); n++) {
- reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed);
- if(reclaimed >= npage)
- return;
- }
-
- // Now sweep everything that is not yet swept.
- runtime·unlock(&h->lock);
- for(;;) {
- n = runtime·sweepone();
- if(n == -1) // all spans are swept
- break;
- reclaimed += n;
- if(reclaimed >= npage)
- break;
- }
- runtime·lock(&h->lock);
-}
-
-// Allocate a new span of npage pages from the heap for GC'd memory
-// and record its size class in the HeapMap and HeapMapCache.
-static MSpan*
-mheap_alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large)
-{
- MSpan *s;
-
- if(g != g->m->g0)
- runtime·throw("mheap_alloc not on M stack");
- runtime·lock(&h->lock);
-
- // To prevent excessive heap growth, before allocating n pages
- // we need to sweep and reclaim at least n pages.
- if(!h->sweepdone)
- MHeap_Reclaim(h, npage);
-
- // transfer stats from cache to global
- mstats.heap_alloc += g->m->mcache->local_cachealloc;
- g->m->mcache->local_cachealloc = 0;
- mstats.tinyallocs += g->m->mcache->local_tinyallocs;
- g->m->mcache->local_tinyallocs = 0;
-
- s = MHeap_AllocSpanLocked(h, npage);
- if(s != nil) {
- // Record span info, because gc needs to be
- // able to map interior pointer to containing span.
- runtime·atomicstore(&s->sweepgen, h->sweepgen);
- s->state = MSpanInUse;
- s->freelist = nil;
- s->ref = 0;
- s->sizeclass = sizeclass;
- s->elemsize = (sizeclass==0 ? s->npages<<PageShift : runtime·class_to_size[sizeclass]);
-
- // update stats, sweep lists
- if(large) {
- mstats.heap_objects++;
- mstats.heap_alloc += npage<<PageShift;
- // Swept spans are at the end of lists.
- if(s->npages < nelem(h->free))
- runtime·MSpanList_InsertBack(&h->busy[s->npages], s);
- else
- runtime·MSpanList_InsertBack(&h->busylarge, s);
- }
- }
- runtime·unlock(&h->lock);
- return s;
-}
-
-static void
-mheap_alloc_m(G *gp)
-{
- MHeap *h;
- MSpan *s;
-
- h = g->m->ptrarg[0];
- g->m->ptrarg[0] = nil;
- s = mheap_alloc(h, g->m->scalararg[0], g->m->scalararg[1], g->m->scalararg[2]);
- g->m->ptrarg[0] = s;
-
- runtime·gogo(&gp->sched);
-}
-
-MSpan*
-runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero)
-{
- MSpan *s;
- void (*fn)(G*);
-
- // Don't do any operations that lock the heap on the G stack.
- // It might trigger stack growth, and the stack growth code needs
- // to be able to allocate heap.
- if(g == g->m->g0) {
- s = mheap_alloc(h, npage, sizeclass, large);
- } else {
- g->m->ptrarg[0] = h;
- g->m->scalararg[0] = npage;
- g->m->scalararg[1] = sizeclass;
- g->m->scalararg[2] = large;
- fn = mheap_alloc_m;
- runtime·mcall(&fn);
- s = g->m->ptrarg[0];
- g->m->ptrarg[0] = nil;
- }
- if(s != nil) {
- if(needzero && s->needzero)
- runtime·memclr((byte*)(s->start<<PageShift), s->npages<<PageShift);
- s->needzero = 0;
- }
- return s;
-}
-
-MSpan*
-runtime·MHeap_AllocStack(MHeap *h, uintptr npage)
-{
- MSpan *s;
-
- if(g != g->m->g0)
- runtime·throw("mheap_allocstack not on M stack");
- runtime·lock(&h->lock);
- s = MHeap_AllocSpanLocked(h, npage);
- if(s != nil) {
- s->state = MSpanStack;
- s->freelist = nil;
- s->ref = 0;
- mstats.stacks_inuse += s->npages<<PageShift;
- }
- runtime·unlock(&h->lock);
- return s;
-}
-
-// Allocates a span of the given size. h must be locked.
-// The returned span has been removed from the
-// free list, but its state is still MSpanFree.
-static MSpan*
-MHeap_AllocSpanLocked(MHeap *h, uintptr npage)
-{
- uintptr n;
- MSpan *s, *t;
- pageID p;
-
- // Try in fixed-size lists up to max.
- for(n=npage; n < nelem(h->free); n++) {
- if(!runtime·MSpanList_IsEmpty(&h->free[n])) {
- s = h->free[n].next;
- goto HaveSpan;
- }
- }
-
- // Best fit in list of large spans.
- if((s = MHeap_AllocLarge(h, npage)) == nil) {
- if(!MHeap_Grow(h, npage))
- return nil;
- if((s = MHeap_AllocLarge(h, npage)) == nil)
- return nil;
- }
-
-HaveSpan:
- // Mark span in use.
- if(s->state != MSpanFree)
- runtime·throw("MHeap_AllocLocked - MSpan not free");
- if(s->npages < npage)
- runtime·throw("MHeap_AllocLocked - bad npages");
- runtime·MSpanList_Remove(s);
- if(s->next != nil || s->prev != nil)
- runtime·throw("still in list");
- if(s->npreleased > 0) {
- runtime·SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift);
- mstats.heap_released -= s->npreleased<<PageShift;
- s->npreleased = 0;
- }
-
- if(s->npages > npage) {
- // Trim extra and put it back in the heap.
- t = runtime·FixAlloc_Alloc(&h->spanalloc);
- runtime·MSpan_Init(t, s->start + npage, s->npages - npage);
- s->npages = npage;
- p = t->start;
- p -= ((uintptr)h->arena_start>>PageShift);
- if(p > 0)
- h->spans[p-1] = s;
- h->spans[p] = t;
- h->spans[p+t->npages-1] = t;
- t->needzero = s->needzero;
- s->state = MSpanStack; // prevent coalescing with s
- t->state = MSpanStack;
- MHeap_FreeSpanLocked(h, t, false, false);
- t->unusedsince = s->unusedsince; // preserve age (TODO: wrong: t is possibly merged and/or deallocated at this point)
- s->state = MSpanFree;
- }
- s->unusedsince = 0;
-
- p = s->start;
- p -= ((uintptr)h->arena_start>>PageShift);
- for(n=0; n<npage; n++)
- h->spans[p+n] = s;
-
- mstats.heap_inuse += npage<<PageShift;
- mstats.heap_idle -= npage<<PageShift;
-
- //runtime·printf("spanalloc %p\n", s->start << PageShift);
- if(s->next != nil || s->prev != nil)
- runtime·throw("still in list");
- return s;
-}
-
-// Allocate a span of exactly npage pages from the list of large spans.
-static MSpan*
-MHeap_AllocLarge(MHeap *h, uintptr npage)
-{
- return BestFit(&h->freelarge, npage, nil);
-}
-
-// Search list for smallest span with >= npage pages.
-// If there are multiple smallest spans, take the one
-// with the earliest starting address.
-static MSpan*
-BestFit(MSpan *list, uintptr npage, MSpan *best)
-{
- MSpan *s;
-
- for(s=list->next; s != list; s=s->next) {
- if(s->npages < npage)
- continue;
- if(best == nil
- || s->npages < best->npages
- || (s->npages == best->npages && s->start < best->start))
- best = s;
- }
- return best;
-}
-
-// Try to add at least npage pages of memory to the heap,
-// returning whether it worked.
-static bool
-MHeap_Grow(MHeap *h, uintptr npage)
-{
- uintptr ask;
- void *v;
- MSpan *s;
- pageID p;
-
- // Ask for a big chunk, to reduce the number of mappings
- // the operating system needs to track; also amortizes
- // the overhead of an operating system mapping.
- // Allocate a multiple of 64kB.
- npage = ROUND(npage, (64<<10)/PageSize);
- ask = npage<<PageShift;
- if(ask < HeapAllocChunk)
- ask = HeapAllocChunk;
-
- v = runtime·MHeap_SysAlloc(h, ask);
- if(v == nil) {
- if(ask > (npage<<PageShift)) {
- ask = npage<<PageShift;
- v = runtime·MHeap_SysAlloc(h, ask);
- }
- if(v == nil) {
- runtime·printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys);
- return false;
- }
- }
-
- // Create a fake "in use" span and free it, so that the
- // right coalescing happens.
- s = runtime·FixAlloc_Alloc(&h->spanalloc);
- runtime·MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift);
- p = s->start;
- p -= ((uintptr)h->arena_start>>PageShift);
- h->spans[p] = s;
- h->spans[p + s->npages - 1] = s;
- runtime·atomicstore(&s->sweepgen, h->sweepgen);
- s->state = MSpanInUse;
- MHeap_FreeSpanLocked(h, s, false, true);
- return true;
-}
-
-// Look up the span at the given address.
-// Address is guaranteed to be in map
-// and is guaranteed to be start or end of span.
-MSpan*
-runtime·MHeap_Lookup(MHeap *h, void *v)
-{
- uintptr p;
-
- p = (uintptr)v;
- p -= (uintptr)h->arena_start;
- return h->spans[p >> PageShift];
-}
-
-// Look up the span at the given address.
-// Address is *not* guaranteed to be in map
-// and may be anywhere in the span.
-// Map entries for the middle of a span are only
-// valid for allocated spans. Free spans may have
-// other garbage in their middles, so we have to
-// check for that.
-MSpan*
-runtime·MHeap_LookupMaybe(MHeap *h, void *v)
-{
- MSpan *s;
- pageID p, q;
-
- if((byte*)v < h->arena_start || (byte*)v >= h->arena_used)
- return nil;
- p = (uintptr)v>>PageShift;
- q = p;
- q -= (uintptr)h->arena_start >> PageShift;
- s = h->spans[q];
- if(s == nil || p < s->start || v >= s->limit || s->state != MSpanInUse)
- return nil;
- return s;
-}
-
-// Free the span back into the heap.
-static void
-mheap_free(MHeap *h, MSpan *s, int32 acct)
-{
- if(g != g->m->g0)
- runtime·throw("mheap_free not on M stack");
- runtime·lock(&h->lock);
- mstats.heap_alloc += g->m->mcache->local_cachealloc;
- g->m->mcache->local_cachealloc = 0;
- mstats.tinyallocs += g->m->mcache->local_tinyallocs;
- g->m->mcache->local_tinyallocs = 0;
- if(acct) {
- mstats.heap_alloc -= s->npages<<PageShift;
- mstats.heap_objects--;
- }
- MHeap_FreeSpanLocked(h, s, true, true);
- runtime·unlock(&h->lock);
-}
-
-static void
-mheap_free_m(G *gp)
-{
- MHeap *h;
- MSpan *s;
-
- h = g->m->ptrarg[0];
- s = g->m->ptrarg[1];
- g->m->ptrarg[0] = nil;
- g->m->ptrarg[1] = nil;
- mheap_free(h, s, g->m->scalararg[0]);
- runtime·gogo(&gp->sched);
-}
-
-void
-runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct)
-{
- void (*fn)(G*);
-
- if(g == g->m->g0) {
- mheap_free(h, s, acct);
- } else {
- g->m->ptrarg[0] = h;
- g->m->ptrarg[1] = s;
- g->m->scalararg[0] = acct;
- fn = mheap_free_m;
- runtime·mcall(&fn);
- }
-}
-
-void
-runtime·MHeap_FreeStack(MHeap *h, MSpan *s)
-{
- if(g != g->m->g0)
- runtime·throw("mheap_freestack not on M stack");
- s->needzero = 1;
- runtime·lock(&h->lock);
- mstats.stacks_inuse -= s->npages<<PageShift;
- MHeap_FreeSpanLocked(h, s, true, true);
- runtime·unlock(&h->lock);
-}
-
-static void
-MHeap_FreeSpanLocked(MHeap *h, MSpan *s, bool acctinuse, bool acctidle)
-{
- MSpan *t;
- pageID p;
-
- switch(s->state) {
- case MSpanStack:
- if(s->ref != 0)
- runtime·throw("MHeap_FreeSpanLocked - invalid stack free");
- break;
- case MSpanInUse:
- if(s->ref != 0 || s->sweepgen != h->sweepgen) {
- runtime·printf("MHeap_FreeSpanLocked - span %p ptr %p ref %d sweepgen %d/%d\n",
- s, s->start<<PageShift, s->ref, s->sweepgen, h->sweepgen);
- runtime·throw("MHeap_FreeSpanLocked - invalid free");
- }
- break;
- default:
- runtime·throw("MHeap_FreeSpanLocked - invalid span state");
- break;
- }
- if(acctinuse)
- mstats.heap_inuse -= s->npages<<PageShift;
- if(acctidle)
- mstats.heap_idle += s->npages<<PageShift;
- s->state = MSpanFree;
- runtime·MSpanList_Remove(s);
- // Stamp newly unused spans. The scavenger will use that
- // info to potentially give back some pages to the OS.
- s->unusedsince = runtime·nanotime();
- s->npreleased = 0;
-
- // Coalesce with earlier, later spans.
- p = s->start;
- p -= (uintptr)h->arena_start >> PageShift;
- if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse && t->state != MSpanStack) {
- s->start = t->start;
- s->npages += t->npages;
- s->npreleased = t->npreleased; // absorb released pages
- s->needzero |= t->needzero;
- p -= t->npages;
- h->spans[p] = s;
- runtime·MSpanList_Remove(t);
- t->state = MSpanDead;
- runtime·FixAlloc_Free(&h->spanalloc, t);
- }
- if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse && t->state != MSpanStack) {
- s->npages += t->npages;
- s->npreleased += t->npreleased;
- s->needzero |= t->needzero;
- h->spans[p + s->npages - 1] = s;
- runtime·MSpanList_Remove(t);
- t->state = MSpanDead;
- runtime·FixAlloc_Free(&h->spanalloc, t);
- }
-
- // Insert s into appropriate list.
- if(s->npages < nelem(h->free))
- runtime·MSpanList_Insert(&h->free[s->npages], s);
- else
- runtime·MSpanList_Insert(&h->freelarge, s);
-}
-
-static uintptr
-scavengelist(MSpan *list, uint64 now, uint64 limit)
-{
- uintptr released, sumreleased;
- MSpan *s;
-
- if(runtime·MSpanList_IsEmpty(list))
- return 0;
-
- sumreleased = 0;
- for(s=list->next; s != list; s=s->next) {
- if((now - s->unusedsince) > limit && s->npreleased != s->npages) {
- released = (s->npages - s->npreleased) << PageShift;
- mstats.heap_released += released;
- sumreleased += released;
- s->npreleased = s->npages;
- runtime·SysUnused((void*)(s->start << PageShift), s->npages << PageShift);
- }
- }
- return sumreleased;
-}
-
-void
-runtime·MHeap_Scavenge(int32 k, uint64 now, uint64 limit)
-{
- uint32 i;
- uintptr sumreleased;
- MHeap *h;
-
- h = &runtime·mheap;
- runtime·lock(&h->lock);
- sumreleased = 0;
- for(i=0; i < nelem(h->free); i++)
- sumreleased += scavengelist(&h->free[i], now, limit);
- sumreleased += scavengelist(&h->freelarge, now, limit);
- runtime·unlock(&h->lock);
-
- if(runtime·debug.gctrace > 0) {
- if(sumreleased > 0)
- runtime·printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20);
- // TODO(dvyukov): these stats are incorrect as we don't subtract stack usage from heap.
- // But we can't call ReadMemStats on g0 holding locks.
- runtime·printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n",
- k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20,
- mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20);
- }
-}
-
-void
-runtime·scavenge_m(void)
-{
- runtime·MHeap_Scavenge(-1, ~(uintptr)0, 0);
-}
-
-// Initialize a new span with the given start and npages.
-void
-runtime·MSpan_Init(MSpan *span, pageID start, uintptr npages)
-{
- span->next = nil;
- span->prev = nil;
- span->start = start;
- span->npages = npages;
- span->freelist = nil;
- span->ref = 0;
- span->sizeclass = 0;
- span->incache = false;
- span->elemsize = 0;
- span->state = MSpanDead;
- span->unusedsince = 0;
- span->npreleased = 0;
- span->specialLock.key = 0;
- span->specials = nil;
- span->needzero = 0;
-}
-
-// Initialize an empty doubly-linked list.
-void
-runtime·MSpanList_Init(MSpan *list)
-{
- list->state = MSpanListHead;
- list->next = list;
- list->prev = list;
-}
-
-void
-runtime·MSpanList_Remove(MSpan *span)
-{
- if(span->prev == nil && span->next == nil)
- return;
- span->prev->next = span->next;
- span->next->prev = span->prev;
- span->prev = nil;
- span->next = nil;
-}
-
-bool
-runtime·MSpanList_IsEmpty(MSpan *list)
-{
- return list->next == list;
-}
-
-void
-runtime·MSpanList_Insert(MSpan *list, MSpan *span)
-{
- if(span->next != nil || span->prev != nil) {
- runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
- runtime·throw("MSpanList_Insert");
- }
- span->next = list->next;
- span->prev = list;
- span->next->prev = span;
- span->prev->next = span;
-}
-
-void
-runtime·MSpanList_InsertBack(MSpan *list, MSpan *span)
-{
- if(span->next != nil || span->prev != nil) {
- runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev);
- runtime·throw("MSpanList_Insert");
- }
- span->next = list;
- span->prev = list->prev;
- span->next->prev = span;
- span->prev->next = span;
-}
-
-// Adds the special record s to the list of special records for
-// the object p. All fields of s should be filled in except for
-// offset & next, which this routine will fill in.
-// Returns true if the special was successfully added, false otherwise.
-// (The add will fail only if a record with the same p and s->kind
-// already exists.)
-static bool
-addspecial(void *p, Special *s)
-{
- MSpan *span;
- Special **t, *x;
- uintptr offset;
- byte kind;
-
- span = runtime·MHeap_LookupMaybe(&runtime·mheap, p);
- if(span == nil)
- runtime·throw("addspecial on invalid pointer");
-
- // Ensure that the span is swept.
- // GC accesses specials list w/o locks. And it's just much safer.
- g->m->locks++;
- runtime·MSpan_EnsureSwept(span);
-
- offset = (uintptr)p - (span->start << PageShift);
- kind = s->kind;
-
- runtime·lock(&span->specialLock);
-
- // Find splice point, check for existing record.
- t = &span->specials;
- while((x = *t) != nil) {
- if(offset == x->offset && kind == x->kind) {
- runtime·unlock(&span->specialLock);
- g->m->locks--;
- return false; // already exists
- }
- if(offset < x->offset || (offset == x->offset && kind < x->kind))
- break;
- t = &x->next;
- }
- // Splice in record, fill in offset.
- s->offset = offset;
- s->next = x;
- *t = s;
- runtime·unlock(&span->specialLock);
- g->m->locks--;
- return true;
-}
-
-// Removes the Special record of the given kind for the object p.
-// Returns the record if the record existed, nil otherwise.
-// The caller must FixAlloc_Free the result.
-static Special*
-removespecial(void *p, byte kind)
-{
- MSpan *span;
- Special *s, **t;
- uintptr offset;
-
- span = runtime·MHeap_LookupMaybe(&runtime·mheap, p);
- if(span == nil)
- runtime·throw("removespecial on invalid pointer");
-
- // Ensure that the span is swept.
- // GC accesses specials list w/o locks. And it's just much safer.
- g->m->locks++;
- runtime·MSpan_EnsureSwept(span);
-
- offset = (uintptr)p - (span->start << PageShift);
-
- runtime·lock(&span->specialLock);
- t = &span->specials;
- while((s = *t) != nil) {
- // This function is used for finalizers only, so we don't check for
- // "interior" specials (p must be exactly equal to s->offset).
- if(offset == s->offset && kind == s->kind) {
- *t = s->next;
- runtime·unlock(&span->specialLock);
- g->m->locks--;
- return s;
- }
- t = &s->next;
- }
- runtime·unlock(&span->specialLock);
- g->m->locks--;
- return nil;
-}
-
-// Adds a finalizer to the object p. Returns true if it succeeded.
-bool
-runtime·addfinalizer(void *p, FuncVal *f, uintptr nret, Type *fint, PtrType *ot)
-{
- SpecialFinalizer *s;
-
- runtime·lock(&runtime·mheap.speciallock);
- s = runtime·FixAlloc_Alloc(&runtime·mheap.specialfinalizeralloc);
- runtime·unlock(&runtime·mheap.speciallock);
- s->special.kind = KindSpecialFinalizer;
- s->fn = f;
- s->nret = nret;
- s->fint = fint;
- s->ot = ot;
- if(addspecial(p, &s->special))
- return true;
-
- // There was an old finalizer
- runtime·lock(&runtime·mheap.speciallock);
- runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s);
- runtime·unlock(&runtime·mheap.speciallock);
- return false;
-}
-
-// Removes the finalizer (if any) from the object p.
-void
-runtime·removefinalizer(void *p)
-{
- SpecialFinalizer *s;
-
- s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer);
- if(s == nil)
- return; // there wasn't a finalizer to remove
- runtime·lock(&runtime·mheap.speciallock);
- runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s);
- runtime·unlock(&runtime·mheap.speciallock);
-}
-
-// Set the heap profile bucket associated with addr to b.
-void
-runtime·setprofilebucket_m(void)
-{
- void *p;
- Bucket *b;
- SpecialProfile *s;
-
- p = g->m->ptrarg[0];
- b = g->m->ptrarg[1];
- g->m->ptrarg[0] = nil;
- g->m->ptrarg[1] = nil;
-
- runtime·lock(&runtime·mheap.speciallock);
- s = runtime·FixAlloc_Alloc(&runtime·mheap.specialprofilealloc);
- runtime·unlock(&runtime·mheap.speciallock);
- s->special.kind = KindSpecialProfile;
- s->b = b;
- if(!addspecial(p, &s->special))
- runtime·throw("setprofilebucket: profile already set");
-}
-
-// Do whatever cleanup needs to be done to deallocate s. It has
-// already been unlinked from the MSpan specials list.
-// Returns true if we should keep working on deallocating p.
-bool
-runtime·freespecial(Special *s, void *p, uintptr size, bool freed)
-{
- SpecialFinalizer *sf;
- SpecialProfile *sp;
-
- switch(s->kind) {
- case KindSpecialFinalizer:
- sf = (SpecialFinalizer*)s;
- runtime·queuefinalizer(p, sf->fn, sf->nret, sf->fint, sf->ot);
- runtime·lock(&runtime·mheap.speciallock);
- runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, sf);
- runtime·unlock(&runtime·mheap.speciallock);
- return false; // don't free p until finalizer is done
- case KindSpecialProfile:
- sp = (SpecialProfile*)s;
- runtime·mProf_Free(sp->b, size, freed);
- runtime·lock(&runtime·mheap.speciallock);
- runtime·FixAlloc_Free(&runtime·mheap.specialprofilealloc, sp);
- runtime·unlock(&runtime·mheap.speciallock);
- return true;
- default:
- runtime·throw("bad special kind");
- return true;
- }
-}