// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package suffixarray implements substring search in logarithmic time using // an in-memory suffix array. // // Example use: // // // create index for some data // index := suffixarray.New(data) // // // lookup byte slice s // offsets1 := index.Lookup(s, -1) // the list of all indices where s occurs in data // offsets2 := index.Lookup(s, 3) // the list of at most 3 indices where s occurs in data // package suffixarray import ( "bytes" "encoding/binary" "io" "regexp" "sort" ) // Index implements a suffix array for fast substring search. type Index struct { data []byte sa []int // suffix array for data; len(sa) == len(data) } // New creates a new Index for data. // Index creation time is O(N*log(N)) for N = len(data). func New(data []byte) *Index { return &Index{data, qsufsort(data)} } // writeInt writes an int x to w using buf to buffer the write. func writeInt(w io.Writer, buf []byte, x int) error { binary.PutVarint(buf, int64(x)) _, err := w.Write(buf[0:binary.MaxVarintLen64]) return err } // readInt reads an int x from r using buf to buffer the read and returns x. func readInt(r io.Reader, buf []byte) (int, error) { _, err := io.ReadFull(r, buf[0:binary.MaxVarintLen64]) // ok to continue with error x, _ := binary.Varint(buf) return int(x), err } // writeSlice writes data[:n] to w and returns n. // It uses buf to buffer the write. func writeSlice(w io.Writer, buf []byte, data []int) (n int, err error) { // encode as many elements as fit into buf p := binary.MaxVarintLen64 for ; n < len(data) && p+binary.MaxVarintLen64 <= len(buf); n++ { p += binary.PutUvarint(buf[p:], uint64(data[n])) } // update buffer size binary.PutVarint(buf, int64(p)) // write buffer _, err = w.Write(buf[0:p]) return } // readSlice reads data[:n] from r and returns n. // It uses buf to buffer the read. func readSlice(r io.Reader, buf []byte, data []int) (n int, err error) { // read buffer size var size int size, err = readInt(r, buf) if err != nil { return } // read buffer w/o the size if _, err = io.ReadFull(r, buf[binary.MaxVarintLen64:size]); err != nil { return } // decode as many elements as present in buf for p := binary.MaxVarintLen64; p < size; n++ { x, w := binary.Uvarint(buf[p:]) data[n] = int(x) p += w } return } const bufSize = 16 << 10 // reasonable for BenchmarkSaveRestore // Read reads the index from r into x; x must not be nil. func (x *Index) Read(r io.Reader) error { // buffer for all reads buf := make([]byte, bufSize) // read length n, err := readInt(r, buf) if err != nil { return err } // allocate space if 2*n < cap(x.data) || cap(x.data) < n { // new data is significantly smaller or larger then // existing buffers - allocate new ones x.data = make([]byte, n) x.sa = make([]int, n) } else { // re-use existing buffers x.data = x.data[0:n] x.sa = x.sa[0:n] } // read data if _, err := io.ReadFull(r, x.data); err != nil { return err } // read index for sa := x.sa; len(sa) > 0; { n, err := readSlice(r, buf, sa) if err != nil { return err } sa = sa[n:] } return nil } // Write writes the index x to w. func (x *Index) Write(w io.Writer) error { // buffer for all writes buf := make([]byte, bufSize) // write length if err := writeInt(w, buf, len(x.data)); err != nil { return err } // write data if _, err := w.Write(x.data); err != nil { return err } // write index for sa := x.sa; len(sa) > 0; { n, err := writeSlice(w, buf, sa) if err != nil { return err } sa = sa[n:] } return nil } // Bytes returns the data over which the index was created. // It must not be modified. // func (x *Index) Bytes() []byte { return x.data } func (x *Index) at(i int) []byte { return x.data[x.sa[i]:] } // lookupAll returns a slice into the matching region of the index. // The runtime is O(log(N)*len(s)). func (x *Index) lookupAll(s []byte) []int { // find matching suffix index range [i:j] // find the first index where s would be the prefix i := sort.Search(len(x.sa), func(i int) bool { return bytes.Compare(x.at(i), s) >= 0 }) // starting at i, find the first index at which s is not a prefix j := i + sort.Search(len(x.sa)-i, func(j int) bool { return !bytes.HasPrefix(x.at(j+i), s) }) return x.sa[i:j] } // Lookup returns an unsorted list of at most n indices where the byte string s // occurs in the indexed data. If n < 0, all occurrences are returned. // The result is nil if s is empty, s is not found, or n == 0. // Lookup time is O(log(N)*len(s) + len(result)) where N is the // size of the indexed data. // func (x *Index) Lookup(s []byte, n int) (result []int) { if len(s) > 0 && n != 0 { matches := x.lookupAll(s) if n < 0 || len(matches) < n { n = len(matches) } // 0 <= n <= len(matches) if n > 0 { result = make([]int, n) copy(result, matches) } } return } // FindAllIndex returns a sorted list of non-overlapping matches of the // regular expression r, where a match is a pair of indices specifying // the matched slice of x.Bytes(). If n < 0, all matches are returned // in successive order. Otherwise, at most n matches are returned and // they may not be successive. The result is nil if there are no matches, // or if n == 0. // func (x *Index) FindAllIndex(r *regexp.Regexp, n int) (result [][]int) { // a non-empty literal prefix is used to determine possible // match start indices with Lookup prefix, complete := r.LiteralPrefix() lit := []byte(prefix) // worst-case scenario: no literal prefix if prefix == "" { return r.FindAllIndex(x.data, n) } // if regexp is a literal just use Lookup and convert its // result into match pairs if complete { // Lookup returns indices that may belong to overlapping matches. // After eliminating them, we may end up with fewer than n matches. // If we don't have enough at the end, redo the search with an // increased value n1, but only if Lookup returned all the requested // indices in the first place (if it returned fewer than that then // there cannot be more). for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { indices := x.Lookup(lit, n1) if len(indices) == 0 { return } sort.Ints(indices) pairs := make([]int, 2*len(indices)) result = make([][]int, len(indices)) count := 0 prev := 0 for _, i := range indices { if count == n { break } // ignore indices leading to overlapping matches if prev <= i { j := 2 * count pairs[j+0] = i pairs[j+1] = i + len(lit) result[count] = pairs[j : j+2] count++ prev = i + len(lit) } } result = result[0:count] if len(result) >= n || len(indices) != n1 { // found all matches or there's no chance to find more // (n and n1 can be negative) break } } if len(result) == 0 { result = nil } return } // regexp has a non-empty literal prefix; Lookup(lit) computes // the indices of possible complete matches; use these as starting // points for anchored searches // (regexp "^" matches beginning of input, not beginning of line) r = regexp.MustCompile("^" + r.String()) // compiles because r compiled // same comment about Lookup applies here as in the loop above for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ { indices := x.Lookup(lit, n1) if len(indices) == 0 { return } sort.Ints(indices) result = result[0:0] prev := 0 for _, i := range indices { if len(result) == n { break } m := r.FindIndex(x.data[i:]) // anchored search - will not run off // ignore indices leading to overlapping matches if m != nil && prev <= i { m[0] = i // correct m m[1] += i result = append(result, m) prev = m[1] } } if len(result) >= n || len(indices) != n1 { // found all matches or there's no chance to find more // (n and n1 can be negative) break } } if len(result) == 0 { result = nil } return }