// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "../../cmd/ld/textflag.h" TEXT _rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVQ DI, AX // argc MOVQ SI, BX // argv SUBQ $(4*8+7), SP // 2args 2auto ANDQ $~15, SP MOVQ AX, 16(SP) MOVQ BX, 24(SP) // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVQ $runtime·g0(SB), DI LEAQ (-64*1024+104)(SP), BX MOVQ BX, g_stackguard(DI) MOVQ BX, g_stackguard0(DI) MOVQ SP, g_stackbase(DI) // find out information about the processor we're on MOVQ $0, AX CPUID CMPQ AX, $0 JE nocpuinfo MOVQ $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it. MOVQ _cgo_init(SB), AX TESTQ AX, AX JZ needtls // g0 already in DI MOVQ DI, CX // Win64 uses CX for first parameter MOVQ $setmg_gcc<>(SB), SI CALL AX // update stackguard after _cgo_init MOVQ $runtime·g0(SB), CX MOVQ g_stackguard0(CX), AX MOVQ AX, g_stackguard(CX) CMPL runtime·iswindows(SB), $0 JEQ ok needtls: // skip TLS setup on Plan 9 CMPL runtime·isplan9(SB), $1 JEQ ok LEAQ runtime·tls0(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·tls0(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAQ runtime·g0(SB), CX MOVQ CX, g(BX) LEAQ runtime·m0(SB), AX MOVQ AX, m(BX) // save m->g0 = g0 MOVQ CX, m_g0(AX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVQ 24(SP), AX // copy argv MOVQ AX, 8(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·hashinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program PUSHQ $runtime·main·f(SB) // entry PUSHQ $0 // arg size ARGSIZE(16) CALL runtime·newproc(SB) ARGSIZE(-1) POPQ AX POPQ AX // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·main·f+0(SB)/8,$runtime·main(SB) GLOBL runtime·main·f(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 BYTE $0xcc RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-8 MOVQ 8(SP), AX // gobuf LEAQ 8(SP), BX // caller's SP MOVQ BX, gobuf_sp(AX) MOVQ 0(SP), BX // caller's PC MOVQ BX, gobuf_pc(AX) MOVQ $0, gobuf_ret(AX) MOVQ $0, gobuf_ctxt(AX) get_tls(CX) MOVQ g(CX), BX MOVQ BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-8 MOVQ 8(SP), BX // gobuf MOVQ gobuf_g(BX), DX MOVQ 0(DX), CX // make sure g != nil get_tls(CX) MOVQ DX, g(CX) MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_ret(BX), AX MOVQ gobuf_ctxt(BX), DX MOVQ $0, gobuf_sp(BX) // clear to help garbage collector MOVQ $0, gobuf_ret(BX) MOVQ $0, gobuf_ctxt(BX) MOVQ gobuf_pc(BX), BX JMP BX // void mcall(void (*fn)(G*)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-8 MOVQ fn+0(FP), DI get_tls(CX) MOVQ g(CX), AX // save state in g->sched MOVQ 0(SP), BX // caller's PC MOVQ BX, (g_sched+gobuf_pc)(AX) LEAQ 8(SP), BX // caller's SP MOVQ BX, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVQ m(CX), BX MOVQ m_g0(BX), SI CMPQ SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVQ $runtime·badmcall(SB), AX JMP AX MOVQ SI, g(CX) // g = m->g0 MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHQ AX ARGSIZE(8) CALL DI POPQ AX MOVQ $runtime·badmcall2(SB), AX JMP AX RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already done get_tls(CX); MOVQ m(CX), BX. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). MOVQ m_g0(BX), SI CMPQ g(CX), SI JNE 2(PC) INT $3 // Called from f. // Set m->morebuf to f's caller. MOVQ 8(SP), AX // f's caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 16(SP), AX // f's caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) MOVQ AX, m_moreargp(BX) get_tls(CX) MOVQ g(CX), SI MOVQ SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVQ 0(SP), AX // f's PC MOVQ AX, (g_sched+gobuf_pc)(SI) MOVQ SI, (g_sched+gobuf_g)(SI) LEAQ 8(SP), AX // f's SP MOVQ AX, (g_sched+gobuf_sp)(SI) MOVQ DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVQ m_g0(BX), BP MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·newstack(SB) MOVQ $0, 0x1003 // crash if newstack returns RET // Called from panic. Mimics morestack, // reuses stack growth code to create a frame // with the desired args running the desired function. // // func call(fn *byte, arg *byte, argsize uint32). TEXT runtime·newstackcall(SB), NOSPLIT, $0-20 get_tls(CX) MOVQ m(CX), BX // Save our caller's state as the PC and SP to // restore when returning from f. MOVQ 0(SP), AX // our caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 8(SP), AX // our caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) MOVQ g(CX), AX MOVQ AX, (m_morebuf+gobuf_g)(BX) // Save our own state as the PC and SP to restore // if this goroutine needs to be restarted. MOVQ $runtime·newstackcall(SB), (g_sched+gobuf_pc)(AX) MOVQ SP, (g_sched+gobuf_sp)(AX) // Set up morestack arguments to call f on a new stack. // We set f's frame size to 1, as a hint to newstack // that this is a call from runtime·newstackcall. // If it turns out that f needs a larger frame than // the default stack, f's usual stack growth prolog will // allocate a new segment (and recopy the arguments). MOVQ 8(SP), AX // fn MOVQ 16(SP), DX // arg frame MOVL 24(SP), CX // arg size MOVQ AX, m_cret(BX) // f's PC MOVQ DX, m_moreargp(BX) // argument frame pointer MOVL CX, m_moreargsize(BX) // f's argument size MOVL $1, m_moreframesize(BX) // f's frame size // Call newstack on m->g0's stack. MOVQ m_g0(BX), BP get_tls(CX) MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·newstack(SB) MOVQ $0, 0x1103 // crash if newstack returns RET // reflect·call: call a function with the given argument list // func call(f *FuncVal, arg *byte, argsize uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPQ CX, $MAXSIZE; \ JA 3(PC); \ MOVQ $runtime·NAME(SB), AX; \ JMP AX // Note: can't just "JMP runtime·NAME(SB)" - bad inlining results. TEXT reflect·call(SB), NOSPLIT, $0-20 MOVLQZX argsize+16(FP), CX DISPATCH(call16, 16) DISPATCH(call32, 32) DISPATCH(call64, 64) DISPATCH(call128, 128) DISPATCH(call256, 256) DISPATCH(call512, 512) DISPATCH(call1024, 1024) DISPATCH(call2048, 2048) DISPATCH(call4096, 4096) DISPATCH(call8192, 8192) DISPATCH(call16384, 16384) DISPATCH(call32768, 32768) DISPATCH(call65536, 65536) DISPATCH(call131072, 131072) DISPATCH(call262144, 262144) DISPATCH(call524288, 524288) DISPATCH(call1048576, 1048576) DISPATCH(call2097152, 2097152) DISPATCH(call4194304, 4194304) DISPATCH(call8388608, 8388608) DISPATCH(call16777216, 16777216) DISPATCH(call33554432, 33554432) DISPATCH(call67108864, 67108864) DISPATCH(call134217728, 134217728) DISPATCH(call268435456, 268435456) DISPATCH(call536870912, 536870912) DISPATCH(call1073741824, 1073741824) MOVQ $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT runtime·NAME(SB), 0, $MAXSIZE-20; \ /* copy arguments to stack */ \ MOVQ argptr+8(FP), SI; \ MOVLQZX argsize+16(FP), CX; \ MOVQ SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVQ f+0(FP), DX; \ CALL (DX); \ /* copy return values back */ \ MOVQ argptr+8(FP), DI; \ MOVLQZX argsize+16(FP), CX; \ MOVQ SP, SI; \ REP;MOVSB; \ RET CALLFN(call16, 16) CALLFN(call32, 32) CALLFN(call64, 64) CALLFN(call128, 128) CALLFN(call256, 256) CALLFN(call512, 512) CALLFN(call1024, 1024) CALLFN(call2048, 2048) CALLFN(call4096, 4096) CALLFN(call8192, 8192) CALLFN(call16384, 16384) CALLFN(call32768, 32768) CALLFN(call65536, 65536) CALLFN(call131072, 131072) CALLFN(call262144, 262144) CALLFN(call524288, 524288) CALLFN(call1048576, 1048576) CALLFN(call2097152, 2097152) CALLFN(call4194304, 4194304) CALLFN(call8388608, 8388608) CALLFN(call16777216, 16777216) CALLFN(call33554432, 33554432) CALLFN(call67108864, 67108864) CALLFN(call134217728, 134217728) CALLFN(call268435456, 268435456) CALLFN(call536870912, 536870912) CALLFN(call1073741824, 1073741824) // Return point when leaving stack. // // Lessstack can appear in stack traces for the same reason // as morestack; in that context, it has 0 arguments. TEXT runtime·lessstack(SB), NOSPLIT, $0-0 // Save return value in m->cret get_tls(CX) MOVQ m(CX), BX MOVQ AX, m_cret(BX) // Call oldstack on m->g0's stack. MOVQ m_g0(BX), BP MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·oldstack(SB) MOVQ $0, 0x1004 // crash if oldstack returns RET // morestack trampolines TEXT runtime·morestack00(SB),NOSPLIT,$0 get_tls(CX) MOVQ m(CX), BX MOVQ $0, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack01(SB),NOSPLIT,$0 get_tls(CX) MOVQ m(CX), BX SHLQ $32, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack10(SB),NOSPLIT,$0 get_tls(CX) MOVQ m(CX), BX MOVLQZX AX, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack11(SB),NOSPLIT,$0 get_tls(CX) MOVQ m(CX), BX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX // subcases of morestack01 // with const of 8,16,...48 TEXT runtime·morestack8(SB),NOSPLIT,$0 MOVQ $1, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack16(SB),NOSPLIT,$0 MOVQ $2, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack24(SB),NOSPLIT,$0 MOVQ $3, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack32(SB),NOSPLIT,$0 MOVQ $4, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack40(SB),NOSPLIT,$0 MOVQ $5, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack48(SB),NOSPLIT,$0 MOVQ $6, R8 MOVQ $morestack<>(SB), AX JMP AX TEXT morestack<>(SB),NOSPLIT,$0 get_tls(CX) MOVQ m(CX), BX SHLQ $35, R8 MOVQ R8, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-16 MOVQ 8(SP), BX MOVL 16(SP), AX MOVL 20(SP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-24 MOVQ 8(SP), BX MOVQ 16(SP), AX MOVQ 24(SP), CX LOCK CMPXCHGQ CX, 0(BX) JNZ cas64_fail MOVL $1, AX RET cas64_fail: MOVL $0, AX RET // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp(SB), NOSPLIT, $0-24 MOVQ 8(SP), BX MOVQ 16(SP), AX MOVQ 24(SP), CX LOCK CMPXCHGQ CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-12 MOVQ 8(SP), BX MOVL 16(SP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX RET TEXT runtime·xadd64(SB), NOSPLIT, $0-16 MOVQ 8(SP), BX MOVQ 16(SP), AX MOVQ AX, CX LOCK XADDQ AX, 0(BX) ADDQ CX, AX RET TEXT runtime·xchg(SB), NOSPLIT, $0-12 MOVQ 8(SP), BX MOVL 16(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·xchg64(SB), NOSPLIT, $0-16 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL 8(SP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep(SB), NOSPLIT, $0-16 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET TEXT runtime·atomicstore(SB), NOSPLIT, $0-12 MOVQ 8(SP), BX MOVL 16(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 MOVQ 8(SP), DX // fn MOVQ 16(SP), BX // caller sp LEAQ -8(BX), SP // caller sp after CALL SUBQ $5, (SP) // return to CALL again MOVQ 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. Smashes R8, R9. TEXT gosave<>(SB),NOSPLIT,$0 get_tls(R8) MOVQ g(R8), R8 MOVQ 0(SP), R9 MOVQ R9, (g_sched+gobuf_pc)(R8) LEAQ 8(SP), R9 MOVQ R9, (g_sched+gobuf_sp)(R8) MOVQ $0, (g_sched+gobuf_ret)(R8) MOVQ $0, (g_sched+gobuf_ctxt)(R8) RET // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT runtime·asmcgocall(SB),NOSPLIT,$0-16 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVQ m(CX), BP MOVQ m_g0(BP), SI MOVQ g(CX), DI CMPQ SI, DI JEQ 4(PC) CALL gosave<>(SB) MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). // Make sure we have enough room for 4 stack-backed fast-call // registers as per windows amd64 calling convention. SUBQ $64, SP ANDQ $~15, SP // alignment for gcc ABI MOVQ DI, 48(SP) // save g MOVQ DX, 40(SP) // save SP MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVQ 48(SP), DI MOVQ DI, g(CX) MOVQ 40(SP), SP RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 LEAQ fn+0(FP), AX MOVQ AX, 0(SP) MOVQ frame+8(FP), AX MOVQ AX, 8(SP) MOVQ framesize+16(FP), AX MOVQ AX, 16(SP) MOVQ $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.c for more details. TEXT runtime·cgocallback_gofunc(SB),NOSPLIT,$8-24 // If m is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BP CMPQ CX, $0 JEQ 2(PC) #endif MOVQ m(CX), BP MOVQ BP, R8 // holds oldm until end of function CMPQ BP, $0 JNE havem needm: MOVQ R8, 0(SP) MOVQ $runtime·needm(SB), AX CALL AX MOVQ 0(SP), R8 get_tls(CX) MOVQ m(CX), BP havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVQ m_g0(BP), SI MOVQ (g_sched+gobuf_sp)(SI), AX MOVQ AX, 0(SP) MOVQ SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 0(SP) holds the saved R8. MOVQ m_curg(BP), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVQ (g_sched+gobuf_pc)(SI), BP MOVQ BP, -8(DI) LEAQ -(8+8)(DI), SP MOVQ R8, 0(SP) CALL runtime·cgocallbackg(SB) MOVQ 0(SP), R8 // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVQ g(CX), SI MOVQ 8(SP), BP MOVQ BP, (g_sched+gobuf_pc)(SI) LEAQ (8+8)(SP), DI MOVQ DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVQ m(CX), BP MOVQ m_g0(BP), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP MOVQ 0(SP), AX MOVQ AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. CMPQ R8, $0 JNE 3(PC) MOVQ $runtime·dropm(SB), AX CALL AX // Done! RET // void setmg(M*, G*); set m and g. for use by needm. TEXT runtime·setmg(SB), NOSPLIT, $0-16 MOVQ mm+0(FP), AX #ifdef GOOS_windows CMPQ AX, $0 JNE settls MOVQ $0, 0x28(GS) RET settls: LEAQ m_tls(AX), AX MOVQ AX, 0x28(GS) #endif get_tls(CX) MOVQ mm+0(FP), AX MOVQ AX, m(CX) MOVQ gg+8(FP), BX MOVQ BX, g(CX) RET // void setmg_gcc(M*, G*); set m and g called from gcc. TEXT setmg_gcc<>(SB),NOSPLIT,$0 get_tls(AX) MOVQ DI, m(AX) MOVQ SI, g(AX) RET // check that SP is in range [g->stackbase, g->stackguard) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVQ g(CX), AX CMPQ g_stackbase(AX), SP JHI 2(PC) INT $3 CMPQ SP, g_stackguard(AX) JHI 2(PC) INT $3 RET TEXT runtime·memclr(SB),NOSPLIT,$0-16 MOVQ 8(SP), DI // arg 1 addr MOVQ 16(SP), CX // arg 2 count MOVQ CX, BX ANDQ $7, BX SHRQ $3, CX MOVQ $0, AX CLD REP STOSQ MOVQ BX, CX REP STOSB RET TEXT runtime·getcallerpc(SB),NOSPLIT,$0-8 MOVQ x+0(FP),AX // addr of first arg MOVQ -8(AX),AX // get calling pc RET TEXT runtime·setcallerpc(SB),NOSPLIT,$0-16 MOVQ x+0(FP),AX // addr of first arg MOVQ x+8(FP), BX MOVQ BX, -8(AX) // set calling pc RET TEXT runtime·getcallersp(SB),NOSPLIT,$0-8 MOVQ sp+0(FP), AX RET // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-0 RDTSC SHLQ $32, DX ADDQ DX, AX RET TEXT runtime·stackguard(SB),NOSPLIT,$0-16 MOVQ SP, DX MOVQ DX, sp+0(FP) get_tls(CX) MOVQ g(CX), BX MOVQ g_stackguard(BX), DX MOVQ DX, limit+8(FP) RET GLOBL runtime·tls0(SB), $64 // hash function using AES hardware instructions TEXT runtime·aeshash(SB),NOSPLIT,$0-24 MOVQ 8(SP), DX // ptr to hash value MOVQ 16(SP), CX // size MOVQ 24(SP), AX // ptr to data JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to string struct MOVQ 8(AX), CX // length of string MOVQ (AX), AX // string data JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: ptr to seed input / hash output TEXT runtime·aeshashbody(SB),NOSPLIT,$0-24 MOVQ (DX), X0 // seed to low 64 bits of xmm0 PINSRQ $1, CX, X0 // size to high 64 bits of xmm0 MOVO runtime·aeskeysched+0(SB), X2 MOVO runtime·aeskeysched+16(SB), X3 CMPQ CX, $16 JB aessmall aesloop: CMPQ CX, $16 JBE aesloopend MOVOU (AX), X1 AESENC X2, X0 AESENC X1, X0 SUBQ $16, CX ADDQ $16, AX JMP aesloop // 1-16 bytes remaining aesloopend: // This load may overlap with the previous load above. // We'll hash some bytes twice, but that's ok. MOVOU -16(AX)(CX*1), X1 JMP partial // 0-15 bytes aessmall: TESTQ CX, CX JE finalize // 0 bytes CMPB AX, $0xf0 JA highpartial // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU (AX), X1 ADDQ CX, CX PAND masks<>(SB)(CX*8), X1 JMP partial highpartial: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -16(AX)(CX*1), X1 ADDQ CX, CX PSHUFB shifts<>(SB)(CX*8), X1 partial: // incorporate partial block into hash AESENC X3, X0 AESENC X1, X0 finalize: // finalize hash AESENC X2, X0 AESENC X3, X0 AESENC X2, X0 MOVQ X0, (DX) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to data MOVQ (DX), X0 // seed PINSRD $2, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVQ X0, (DX) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to data MOVQ (DX), X0 // seed PINSRQ $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVQ X0, (DX) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/8, $0x0000000000000000 DATA masks<>+0x08(SB)/8, $0x0000000000000000 DATA masks<>+0x10(SB)/8, $0x00000000000000ff DATA masks<>+0x18(SB)/8, $0x0000000000000000 DATA masks<>+0x20(SB)/8, $0x000000000000ffff DATA masks<>+0x28(SB)/8, $0x0000000000000000 DATA masks<>+0x30(SB)/8, $0x0000000000ffffff DATA masks<>+0x38(SB)/8, $0x0000000000000000 DATA masks<>+0x40(SB)/8, $0x00000000ffffffff DATA masks<>+0x48(SB)/8, $0x0000000000000000 DATA masks<>+0x50(SB)/8, $0x000000ffffffffff DATA masks<>+0x58(SB)/8, $0x0000000000000000 DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff DATA masks<>+0x68(SB)/8, $0x0000000000000000 DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff DATA masks<>+0x78(SB)/8, $0x0000000000000000 DATA masks<>+0x80(SB)/8, $0xffffffffffffffff DATA masks<>+0x88(SB)/8, $0x0000000000000000 DATA masks<>+0x90(SB)/8, $0xffffffffffffffff DATA masks<>+0x98(SB)/8, $0x00000000000000ff DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff DATA masks<>+0xa8(SB)/8, $0x000000000000ffff DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff GLOBL masks<>(SB),RODATA,$256 // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/8, $0x0000000000000000 DATA shifts<>+0x08(SB)/8, $0x0000000000000000 DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 GLOBL shifts<>(SB),RODATA,$256 TEXT runtime·memeq(SB),NOSPLIT,$0-24 MOVQ a+0(FP), SI MOVQ b+8(FP), DI MOVQ count+16(FP), BX JMP runtime·memeqbody(SB) // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 XORQ AX, AX CMPQ BX, $8 JB small // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop RET // remaining 0-8 bytes leftover: MOVQ -8(SI)(BX*1), CX MOVQ -8(DI)(BX*1), DX CMPQ CX, DX SETEQ AX RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ -8(SI)(BX*1), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(BX*1), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-40 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+16(FP), DI MOVQ s2+24(FP), DX CALL runtime·cmpbody(SB) MOVQ AX, res+32(FP) RET TEXT bytes·Compare(SB),NOSPLIT,$0-56 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+24(FP), DI MOVQ s2+32(FP), DX CALL runtime·cmpbody(SB) MOVQ AX, res+48(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPQ SI, DI JEQ cmp_allsame CMPQ BX, DX MOVQ DX, BP CMOVQLT BX, BP // BP = min(alen, blen) = # of bytes to compare CMPQ BP, $8 JB cmp_small cmp_loop: CMPQ BP, $16 JBE cmp_0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE cmp_diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, BP JMP cmp_loop // AX = bit mask of differences cmp_diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 RET // 0 through 16 bytes left, alen>=8, blen>=8 cmp_0through16: CMPQ BP, $8 JBE cmp_0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE cmp_diff8 cmp_0through8: MOVQ -8(SI)(BP*1), AX MOVQ -8(DI)(BP*1), CX CMPQ AX, CX JEQ cmp_allsame // AX and CX contain parts of a and b that differ. cmp_diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 RET // 0-7 bytes in common cmp_small: LEAQ (BP*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ cmp_allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA cmp_si_high MOVQ (SI), SI JMP cmp_si_finish cmp_si_high: MOVQ -8(SI)(BP*1), SI SHRQ CX, SI cmp_si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA cmp_di_high MOVQ (DI), DI JMP cmp_di_finish cmp_di_high: MOVQ -8(DI)(BP*1), DI SHRQ CX, DI cmp_di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ cmp_allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 RET cmp_allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result RET TEXT bytes·IndexByte(SB),NOSPLIT,$0 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+24(FP), AL CALL runtime·indexbytebody(SB) MOVQ AX, ret+32(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0 MOVQ s+0(FP), SI MOVQ s_len+8(FP), BX MOVB c+16(FP), AL CALL runtime·indexbytebody(SB) MOVQ AX, ret+24(FP) RET // input: // SI: data // BX: data len // AL: byte sought // output: // AX TEXT runtime·indexbytebody(SB),NOSPLIT,$0 MOVQ SI, DI CMPQ BX, $16 JLT indexbyte_small // round up to first 16-byte boundary TESTQ $15, SI JZ aligned MOVQ SI, CX ANDQ $~15, CX ADDQ $16, CX // search the beginning SUBQ SI, CX REPN; SCASB JZ success // DI is 16-byte aligned; get ready to search using SSE instructions aligned: // round down to last 16-byte boundary MOVQ BX, R11 ADDQ SI, R11 ANDQ $~15, R11 // shuffle X0 around so that each byte contains c MOVD AX, X0 PUNPCKLBW X0, X0 PUNPCKLBW X0, X0 PSHUFL $0, X0, X0 JMP condition sse: // move the next 16-byte chunk of the buffer into X1 MOVO (DI), X1 // compare bytes in X0 to X1 PCMPEQB X0, X1 // take the top bit of each byte in X1 and put the result in DX PMOVMSKB X1, DX TESTL DX, DX JNZ ssesuccess ADDQ $16, DI condition: CMPQ DI, R11 JLT sse // search the end MOVQ SI, CX ADDQ BX, CX SUBQ R11, CX // if CX == 0, the zero flag will be set and we'll end up // returning a false success JZ failure REPN; SCASB JZ success failure: MOVQ $-1, AX RET // handle for lengths < 16 indexbyte_small: MOVQ BX, CX REPN; SCASB JZ success MOVQ $-1, AX RET // we've found the chunk containing the byte // now just figure out which specific byte it is ssesuccess: // get the index of the least significant set bit BSFW DX, DX SUBQ SI, DI ADDQ DI, DX MOVQ DX, AX RET success: SUBQ SI, DI SUBL $1, DI MOVQ DI, AX RET TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVQ a_len+8(FP), BX MOVQ b_len+32(FP), CX XORQ AX, AX CMPQ BX, CX JNE eqret MOVQ a+0(FP), SI MOVQ b+24(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+48(FP) RET