// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // See malloc.h for overview. // // TODO(rsc): double-check stats. #include "runtime.h" #include "arch_GOARCH.h" #include "malloc.h" #include "type.h" #include "typekind.h" #include "race.h" #include "stack.h" #include "../../cmd/ld/textflag.h" // Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K. #pragma dataflag NOPTR MHeap runtime·mheap; #pragma dataflag NOPTR MStats runtime·memstats; Type* runtime·conservative; void runtime·cmallocgc(uintptr size, Type *typ, uint32 flag, void **ret); void runtime·gc_notype_ptr(Eface*); void* runtime·mallocgc(uintptr size, Type *typ, uint32 flag) { void *ret; // Call into the Go version of mallocgc. // TODO: maybe someday we can get rid of this. It is // probably the only location where we run Go code on the M stack. if((flag&FlagNoScan) == 0 && typ == nil) typ = runtime·conservative; runtime·cmallocgc(size, typ, flag, &ret); return ret; } int32 runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp) { uintptr n, i; byte *p; MSpan *s; g->m->mcache->local_nlookup++; if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) { // purge cache stats to prevent overflow runtime·lock(&runtime·mheap.lock); runtime·purgecachedstats(g->m->mcache); runtime·unlock(&runtime·mheap.lock); } s = runtime·MHeap_LookupMaybe(&runtime·mheap, v); if(sp) *sp = s; if(s == nil) { if(base) *base = nil; if(size) *size = 0; return 0; } p = (byte*)((uintptr)s->start<sizeclass == 0) { // Large object. if(base) *base = p; if(size) *size = s->npages<elemsize; if(base) { i = ((byte*)v - p)/n; *base = p + i*n; } if(size) *size = n; return 1; } void runtime·purgecachedstats(MCache *c) { MHeap *h; int32 i; // Protected by either heap or GC lock. h = &runtime·mheap; mstats.heap_alloc += c->local_cachealloc; c->local_cachealloc = 0; mstats.nlookup += c->local_nlookup; c->local_nlookup = 0; h->largefree += c->local_largefree; c->local_largefree = 0; h->nlargefree += c->local_nlargefree; c->local_nlargefree = 0; for(i=0; ilocal_nsmallfree); i++) { h->nsmallfree[i] += c->local_nsmallfree[i]; c->local_nsmallfree[i] = 0; } } // Size of the trailing by_size array differs between Go and C, // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. // sizeof_C_MStats is what C thinks about size of Go struct. uintptr runtime·sizeof_C_MStats = sizeof(MStats) - (NumSizeClasses - 61) * sizeof(mstats.by_size[0]); #define MaxArena32 (2U<<30) // For use by Go. It can't be a constant in Go, unfortunately, // because it depends on the OS. uintptr runtime·maxMem = MaxMem; void runtime·mallocinit(void) { byte *p, *p1; uintptr arena_size, bitmap_size, spans_size, p_size; extern byte runtime·end[]; uintptr limit; uint64 i; bool reserved; Eface notype_eface; p = nil; p_size = 0; arena_size = 0; bitmap_size = 0; spans_size = 0; reserved = false; // for 64-bit build USED(p); USED(p_size); USED(arena_size); USED(bitmap_size); USED(spans_size); runtime·InitSizes(); if(runtime·class_to_size[TinySizeClass] != TinySize) runtime·throw("bad TinySizeClass"); // limit = runtime·memlimit(); // See https://code.google.com/p/go/issues/detail?id=5049 // TODO(rsc): Fix after 1.1. limit = 0; // Set up the allocation arena, a contiguous area of memory where // allocated data will be found. The arena begins with a bitmap large // enough to hold 4 bits per allocated word. if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) { // On a 64-bit machine, allocate from a single contiguous reservation. // 128 GB (MaxMem) should be big enough for now. // // The code will work with the reservation at any address, but ask // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f). // Allocating a 128 GB region takes away 37 bits, and the amd64 // doesn't let us choose the top 17 bits, so that leaves the 11 bits // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df. // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid // UTF-8 sequences, and they are otherwise as far away from // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors // on OS X during thread allocations. 0x00c0 causes conflicts with // AddressSanitizer which reserves all memory up to 0x0100. // These choices are both for debuggability and to reduce the // odds of the conservative garbage collector not collecting memory // because some non-pointer block of memory had a bit pattern // that matched a memory address. // // Actually we reserve 136 GB (because the bitmap ends up being 8 GB) // but it hardly matters: e0 00 is not valid UTF-8 either. // // If this fails we fall back to the 32 bit memory mechanism arena_size = MaxMem; bitmap_size = arena_size / (sizeof(void*)*8/4); spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]); spans_size = ROUND(spans_size, PageSize); for(i = 0; i <= 0x7f; i++) { p = (void*)(i<<40 | 0x00c0ULL<<32); p_size = bitmap_size + spans_size + arena_size + PageSize; p = runtime·SysReserve(p, p_size, &reserved); if(p != nil) break; } } if (p == nil) { // On a 32-bit machine, we can't typically get away // with a giant virtual address space reservation. // Instead we map the memory information bitmap // immediately after the data segment, large enough // to handle another 2GB of mappings (256 MB), // along with a reservation for another 512 MB of memory. // When that gets used up, we'll start asking the kernel // for any memory anywhere and hope it's in the 2GB // following the bitmap (presumably the executable begins // near the bottom of memory, so we'll have to use up // most of memory before the kernel resorts to giving out // memory before the beginning of the text segment). // // Alternatively we could reserve 512 MB bitmap, enough // for 4GB of mappings, and then accept any memory the // kernel threw at us, but normally that's a waste of 512 MB // of address space, which is probably too much in a 32-bit world. bitmap_size = MaxArena32 / (sizeof(void*)*8/4); arena_size = 512<<20; spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]); if(limit > 0 && arena_size+bitmap_size+spans_size > limit) { bitmap_size = (limit / 9) & ~((1<m->mcache = runtime·allocmcache(); runtime·gc_notype_ptr(¬ype_eface); runtime·conservative = notype_eface.type; } void* runtime·MHeap_SysAlloc(MHeap *h, uintptr n) { byte *p, *p_end; uintptr p_size; bool reserved; if(n > h->arena_end - h->arena_used) { // We are in 32-bit mode, maybe we didn't use all possible address space yet. // Reserve some more space. byte *new_end; p_size = ROUND(n + PageSize, 256<<20); new_end = h->arena_end + p_size; if(new_end <= h->arena_start + MaxArena32) { // TODO: It would be bad if part of the arena // is reserved and part is not. p = runtime·SysReserve(h->arena_end, p_size, &reserved); if(p == h->arena_end) { h->arena_end = new_end; h->arena_reserved = reserved; } else if(p+p_size <= h->arena_start + MaxArena32) { // Keep everything page-aligned. // Our pages are bigger than hardware pages. h->arena_end = p+p_size; h->arena_used = p + (-(uintptr)p&(PageSize-1)); h->arena_reserved = reserved; } else { uint64 stat; stat = 0; runtime·SysFree(p, p_size, &stat); } } } if(n <= h->arena_end - h->arena_used) { // Keep taking from our reservation. p = h->arena_used; runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys); h->arena_used += n; runtime·MHeap_MapBits(h); runtime·MHeap_MapSpans(h); if(raceenabled) runtime·racemapshadow(p, n); if(((uintptr)p & (PageSize-1)) != 0) runtime·throw("misrounded allocation in MHeap_SysAlloc"); return p; } // If using 64-bit, our reservation is all we have. if(h->arena_end - h->arena_start >= MaxArena32) return nil; // On 32-bit, once the reservation is gone we can // try to get memory at a location chosen by the OS // and hope that it is in the range we allocated bitmap for. p_size = ROUND(n, PageSize) + PageSize; p = runtime·sysAlloc(p_size, &mstats.heap_sys); if(p == nil) return nil; if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) { runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n", p, h->arena_start, h->arena_start+MaxArena32); runtime·SysFree(p, p_size, &mstats.heap_sys); return nil; } p_end = p + p_size; p += -(uintptr)p & (PageSize-1); if(p+n > h->arena_used) { h->arena_used = p+n; if(p_end > h->arena_end) h->arena_end = p_end; runtime·MHeap_MapBits(h); runtime·MHeap_MapSpans(h); if(raceenabled) runtime·racemapshadow(p, n); } if(((uintptr)p & (PageSize-1)) != 0) runtime·throw("misrounded allocation in MHeap_SysAlloc"); return p; } static struct { Mutex lock; byte* pos; byte* end; } persistent; enum { PersistentAllocChunk = 256<<10, PersistentAllocMaxBlock = 64<<10, // VM reservation granularity is 64K on windows }; // Wrapper around sysAlloc that can allocate small chunks. // There is no associated free operation. // Intended for things like function/type/debug-related persistent data. // If align is 0, uses default align (currently 8). void* runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat) { byte *p; if(align != 0) { if(align&(align-1)) runtime·throw("persistentalloc: align is not a power of 2"); if(align > PageSize) runtime·throw("persistentalloc: align is too large"); } else align = 8; if(size >= PersistentAllocMaxBlock) return runtime·sysAlloc(size, stat); runtime·lock(&persistent.lock); persistent.pos = (byte*)ROUND((uintptr)persistent.pos, align); if(persistent.pos + size > persistent.end) { persistent.pos = runtime·sysAlloc(PersistentAllocChunk, &mstats.other_sys); if(persistent.pos == nil) { runtime·unlock(&persistent.lock); runtime·throw("runtime: cannot allocate memory"); } persistent.end = persistent.pos + PersistentAllocChunk; } p = persistent.pos; persistent.pos += size; runtime·unlock(&persistent.lock); if(stat != &mstats.other_sys) { // reaccount the allocation against provided stat runtime·xadd64(stat, size); runtime·xadd64(&mstats.other_sys, -(uint64)size); } return p; } // Runtime stubs. static void* cnew(Type *typ, intgo n) { if(n < 0 || (typ->size > 0 && n > MaxMem/typ->size)) runtime·panicstring("runtime: allocation size out of range"); return runtime·mallocgc(typ->size*n, typ, typ->kind&KindNoPointers ? FlagNoScan : 0); } // same as runtime·new, but callable from C void* runtime·cnew(Type *typ) { return cnew(typ, 1); } void* runtime·cnewarray(Type *typ, intgo n) { return cnew(typ, n); } void runtime·setFinalizer_m(void) { FuncVal *fn; void *arg; uintptr nret; Type *fint; PtrType *ot; fn = g->m->ptrarg[0]; arg = g->m->ptrarg[1]; nret = g->m->scalararg[0]; fint = g->m->ptrarg[2]; ot = g->m->ptrarg[3]; g->m->ptrarg[0] = nil; g->m->ptrarg[1] = nil; g->m->ptrarg[2] = nil; g->m->ptrarg[3] = nil; g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot); } void runtime·removeFinalizer_m(void) { void *p; p = g->m->ptrarg[0]; g->m->ptrarg[0] = nil; runtime·removefinalizer(p); } // mcallable cache refill void runtime·mcacheRefill_m(void) { runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]); } void runtime·largeAlloc_m(void) { uintptr npages, size; MSpan *s; void *v; int32 flag; //runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]); // Allocate directly from heap. size = g->m->scalararg[0]; flag = (int32)g->m->scalararg[1]; if(size + PageSize < size) runtime·throw("out of memory"); npages = size >> PageShift; if((size & PageMask) != 0) npages++; s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero)); if(s == nil) runtime·throw("out of memory"); s->limit = (byte*)(s->start<start << PageShift); // setup for mark sweep runtime·markspan(v, 0, 0, true); g->m->ptrarg[0] = s; }