// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // copy arguments forward on an even stack MOVL argc+0(FP), AX MOVL argv+4(FP), BX SUBL $128, SP // plenty of scratch ANDL $~15, SP MOVL AX, 120(SP) // save argc, argv away MOVL BX, 124(SP) // set default stack bounds. // _cgo_init may update stackguard. MOVL $runtime·g0(SB), BP LEAL (-64*1024+104)(SP), BX MOVL BX, g_stackguard0(BP) MOVL BX, g_stackguard1(BP) MOVL BX, (g_stack+stack_lo)(BP) MOVL SP, (g_stack+stack_hi)(BP) // find out information about the processor we're on MOVL $0, AX CPUID CMPL AX, $0 JE nocpuinfo MOVL $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it to let it // initialize and to set up GS. if not, // we set up GS ourselves. MOVL _cgo_init(SB), AX TESTL AX, AX JZ needtls MOVL $setg_gcc<>(SB), BX MOVL BX, 4(SP) MOVL BP, 0(SP) CALL AX // update stackguard after _cgo_init MOVL $runtime·g0(SB), CX MOVL (g_stack+stack_lo)(CX), AX ADDL $const_StackGuard, AX MOVL AX, g_stackguard0(CX) MOVL AX, g_stackguard1(CX) // skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows CMPL runtime·iswindows(SB), $0 JEQ ok needtls: // skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases CMPL runtime·isplan9(SB), $1 JEQ ok // set up %gs CALL runtime·ldt0setup(SB) // store through it, to make sure it works get_tls(BX) MOVL $0x123, g(BX) MOVL runtime·tls0(SB), AX CMPL AX, $0x123 JEQ ok MOVL AX, 0 // abort ok: // set up m and g "registers" get_tls(BX) LEAL runtime·g0(SB), CX MOVL CX, g(BX) LEAL runtime·m0(SB), AX // save m->g0 = g0 MOVL CX, m_g0(AX) // save g0->m = m0 MOVL AX, g_m(CX) CALL runtime·emptyfunc(SB) // fault if stack check is wrong // convention is D is always cleared CLD CALL runtime·check(SB) // saved argc, argv MOVL 120(SP), AX MOVL AX, 0(SP) MOVL 124(SP), AX MOVL AX, 4(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program PUSHL $runtime·main·f(SB) // entry PUSHL $0 // arg size CALL runtime·newproc(SB) POPL AX POPL AX // start this M CALL runtime·mstart(SB) INT $3 RET DATA runtime·main·f+0(SB)/4,$runtime·main(SB) GLOBL runtime·main·f(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 INT $3 RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // Linux and MinGW start the FPU in extended double precision. // Other operating systems use double precision. // Change to double precision to match them, // and to match other hardware that only has double. PUSHL $0x27F FLDCW 0(SP) POPL AX RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $0-4 MOVL buf+0(FP), AX // gobuf LEAL buf+0(FP), BX // caller's SP MOVL BX, gobuf_sp(AX) MOVL 0(SP), BX // caller's PC MOVL BX, gobuf_pc(AX) MOVL $0, gobuf_ret(AX) MOVL $0, gobuf_ctxt(AX) get_tls(CX) MOVL g(CX), BX MOVL BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $0-4 MOVL buf+0(FP), BX // gobuf MOVL gobuf_g(BX), DX MOVL 0(DX), CX // make sure g != nil get_tls(CX) MOVL DX, g(CX) MOVL gobuf_sp(BX), SP // restore SP MOVL gobuf_ret(BX), AX MOVL gobuf_ctxt(BX), DX MOVL $0, gobuf_sp(BX) // clear to help garbage collector MOVL $0, gobuf_ret(BX) MOVL $0, gobuf_ctxt(BX) MOVL gobuf_pc(BX), BX JMP BX // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI get_tls(CX) MOVL g(CX), AX // save state in g->sched MOVL 0(SP), BX // caller's PC MOVL BX, (g_sched+gobuf_pc)(AX) LEAL fn+0(FP), BX // caller's SP MOVL BX, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVL g(CX), BX MOVL g_m(BX), BX MOVL m_g0(BX), SI CMPL SI, AX // if g == m->g0 call badmcall JNE 3(PC) MOVL $runtime·badmcall(SB), AX JMP AX MOVL SI, g(CX) // g = m->g0 MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHL AX MOVL DI, DX MOVL 0(DI), DI CALL DI POPL AX MOVL $runtime·badmcall2(SB), AX JMP AX RET // switchtoM is a dummy routine that onM leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the M stack because the one at the top of // the M stack terminates the stack walk (see topofstack()). TEXT runtime·switchtoM(SB), NOSPLIT, $0-0 RET // func onM_signalok(fn func()) TEXT runtime·onM_signalok(SB), NOSPLIT, $0-4 get_tls(CX) MOVL g(CX), AX // AX = g MOVL g_m(AX), BX // BX = m MOVL m_gsignal(BX), DX // DX = gsignal CMPL AX, DX JEQ ongsignal JMP runtime·onM(SB) ongsignal: MOVL fn+0(FP), DI // DI = fn MOVL DI, DX MOVL 0(DI), DI CALL DI RET // func onM(fn func()) TEXT runtime·onM(SB), NOSPLIT, $0-4 MOVL fn+0(FP), DI // DI = fn get_tls(CX) MOVL g(CX), AX // AX = g MOVL g_m(AX), BX // BX = m MOVL m_g0(BX), DX // DX = g0 CMPL AX, DX JEQ onm MOVL m_curg(BX), BP CMPL AX, BP JEQ oncurg // Not g0, not curg. Must be gsignal, but that's not allowed. // Hide call from linker nosplit analysis. MOVL $runtime·badonm(SB), AX CALL AX oncurg: // save our state in g->sched. Pretend to // be switchtoM if the G stack is scanned. MOVL $runtime·switchtoM(SB), (g_sched+gobuf_pc)(AX) MOVL SP, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to g0 MOVL DX, g(CX) MOVL (g_sched+gobuf_sp)(DX), BX // make it look like mstart called onM on g0, to stop traceback SUBL $4, BX MOVL $runtime·mstart(SB), DX MOVL DX, 0(BX) MOVL BX, SP // call target function MOVL DI, DX MOVL 0(DI), DI CALL DI // switch back to g get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), BX MOVL m_curg(BX), AX MOVL AX, g(CX) MOVL (g_sched+gobuf_sp)(AX), SP MOVL $0, (g_sched+gobuf_sp)(AX) RET onm: // already on m stack, just call directly MOVL DI, DX MOVL 0(DI), DI CALL DI RET /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVL g(CX), BX MOVL g_m(BX), BX MOVL m_g0(BX), SI CMPL g(CX), SI JNE 2(PC) INT $3 // Cannot grow signal stack. MOVL m_gsignal(BX), SI CMPL g(CX), SI JNE 2(PC) INT $3 // Called from f. // Set m->morebuf to f's caller. MOVL 4(SP), DI // f's caller's PC MOVL DI, (m_morebuf+gobuf_pc)(BX) LEAL 8(SP), CX // f's caller's SP MOVL CX, (m_morebuf+gobuf_sp)(BX) get_tls(CX) MOVL g(CX), SI MOVL SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVL 0(SP), AX // f's PC MOVL AX, (g_sched+gobuf_pc)(SI) MOVL SI, (g_sched+gobuf_g)(SI) LEAL 4(SP), AX // f's SP MOVL AX, (g_sched+gobuf_sp)(SI) MOVL DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVL m_g0(BX), BP MOVL BP, g(CX) MOVL (g_sched+gobuf_sp)(BP), AX MOVL -4(AX), BX // fault if CALL would, before smashing SP MOVL AX, SP CALL runtime·newstack(SB) MOVL $0, 0x1003 // crash if newstack returns RET TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0 MOVL $0, DX JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMPL CX, $MAXSIZE; \ JA 3(PC); \ MOVL $NAME(SB), AX; \ JMP AX // Note: can't just "JMP NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT, $0-16 MOVL argsize+8(FP), CX DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVL $runtime·badreflectcall(SB), AX JMP AX #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-16; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVL argptr+4(FP), SI; \ MOVL argsize+8(FP), CX; \ MOVL SP, DI; \ REP;MOVSB; \ /* call function */ \ MOVL f+0(FP), DX; \ MOVL (DX), AX; \ PCDATA $PCDATA_StackMapIndex, $0; \ CALL AX; \ /* copy return values back */ \ MOVL argptr+4(FP), DI; \ MOVL argsize+8(FP), CX; \ MOVL retoffset+12(FP), BX; \ MOVL SP, SI; \ ADDL BX, DI; \ ADDL BX, SI; \ SUBL BX, CX; \ REP;MOVSB; \ RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // }else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-13 MOVL ptr+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) JZ 4(PC) MOVL $0, AX MOVB AX, ret+12(FP) RET MOVL $1, AX MOVB AX, ret+12(FP) RET TEXT runtime·casuintptr(SB), NOSPLIT, $0-13 JMP runtime·cas(SB) TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $0-8 JMP runtime·atomicload(SB) TEXT runtime·atomicloaduint(SB), NOSPLIT, $0-8 JMP runtime·atomicload(SB) TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-8 JMP runtime·atomicstore(SB) // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-21 MOVL ptr+0(FP), BP MOVL old_lo+4(FP), AX MOVL old_hi+8(FP), DX MOVL new_lo+12(FP), BX MOVL new_hi+16(FP), CX LOCK CMPXCHG8B 0(BP) JNZ fail MOVL $1, AX MOVB AX, ret+20(FP) RET fail: MOVL $0, AX MOVB AX, ret+20(FP) RET // bool casp(void **p, void *old, void *new) // Atomically: // if(*p == old){ // *p = new; // return 1; // }else // return 0; TEXT runtime·casp(SB), NOSPLIT, $0-13 MOVL ptr+0(FP), BX MOVL old+4(FP), AX MOVL new+8(FP), CX LOCK CMPXCHGL CX, 0(BX) JZ 4(PC) MOVL $0, AX MOVB AX, ret+12(FP) RET MOVL $1, AX MOVB AX, ret+12(FP) RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), BX MOVL delta+4(FP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX MOVL AX, ret+8(FP) RET TEXT runtime·xchg(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), BX MOVL new+4(FP), AX XCHGL AX, 0(BX) MOVL AX, ret+8(FP) RET TEXT runtime·xchgp(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), BX MOVL new+4(FP), AX XCHGL AX, 0(BX) MOVL AX, ret+8(FP) RET TEXT runtime·xchguintptr(SB), NOSPLIT, $0-12 JMP runtime·xchg(SB) TEXT runtime·procyield(SB),NOSPLIT,$0-0 MOVL cycles+0(FP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore(SB), NOSPLIT, $0-8 MOVL ptr+0(FP), BX MOVL val+4(FP), AX XCHGL AX, 0(BX) RET // uint64 atomicload64(uint64 volatile* addr); TEXT runtime·atomicload64(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), AX LEAL ret_lo+4(FP), BX // MOVQ (%EAX), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x00 // MOVQ %MM0, 0(%EBX) BYTE $0x0f; BYTE $0x7f; BYTE $0x03 // EMMS BYTE $0x0F; BYTE $0x77 RET // void runtime·atomicstore64(uint64 volatile* addr, uint64 v); TEXT runtime·atomicstore64(SB), NOSPLIT, $0-12 MOVL ptr+0(FP), AX // MOVQ and EMMS were introduced on the Pentium MMX. // MOVQ 0x8(%ESP), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08 // MOVQ %MM0, (%EAX) BYTE $0x0f; BYTE $0x7f; BYTE $0x00 // EMMS BYTE $0x0F; BYTE $0x77 // This is essentially a no-op, but it provides required memory fencing. // It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2). MOVL $0, AX LOCK XADDL AX, (SP) RET // void runtime·atomicor8(byte volatile*, byte); TEXT runtime·atomicor8(SB), NOSPLIT, $0-5 MOVL ptr+0(FP), AX MOVB val+4(FP), BX LOCK ORB BX, (AX) RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), NOSPLIT, $0-8 MOVL fv+0(FP), DX // fn MOVL argp+4(FP), BX // caller sp LEAL -4(BX), SP // caller sp after CALL SUBL $5, (SP) // return to CALL again MOVL 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. TEXT gosave<>(SB),NOSPLIT,$0 PUSHL AX PUSHL BX get_tls(BX) MOVL g(BX), BX LEAL arg+0(FP), AX MOVL AX, (g_sched+gobuf_sp)(BX) MOVL -4(AX), AX MOVL AX, (g_sched+gobuf_pc)(BX) MOVL $0, (g_sched+gobuf_ret)(BX) MOVL $0, (g_sched+gobuf_ctxt)(BX) POPL BX POPL AX RET // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-8 MOVL fn+0(FP), AX MOVL arg+4(FP), BX CALL asmcgocall<>(SB) RET TEXT ·asmcgocall_errno(SB),NOSPLIT,$0-12 MOVL fn+0(FP), AX MOVL arg+4(FP), BX CALL asmcgocall<>(SB) MOVL AX, ret+8(FP) RET TEXT asmcgocall<>(SB),NOSPLIT,$0-0 // fn in AX, arg in BX MOVL SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVL g(CX), BP MOVL g_m(BP), BP MOVL m_g0(BP), SI MOVL g(CX), DI CMPL SI, DI JEQ 4(PC) CALL gosave<>(SB) MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). SUBL $32, SP ANDL $~15, SP // alignment, perhaps unnecessary MOVL DI, 8(SP) // save g MOVL (g_stack+stack_hi)(DI), DI SUBL DX, DI MOVL DI, 4(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) MOVL BX, 0(SP) // first argument in x86-32 ABI CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVL 8(SP), DI MOVL (g_stack+stack_hi)(DI), SI SUBL 4(SP), SI MOVL DI, g(CX) MOVL SI, SP RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$12-12 LEAL fn+0(FP), AX MOVL AX, 0(SP) MOVL frame+4(FP), AX MOVL AX, 4(SP) MOVL framesize+8(FP), AX MOVL AX, 8(SP) MOVL $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.c for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$12-12 NO_LOCAL_POINTERS // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BP CMPL CX, $0 JEQ 2(PC) // TODO #endif MOVL g(CX), BP CMPL BP, $0 JEQ needm MOVL g_m(BP), BP MOVL BP, DX // saved copy of oldm JMP havem needm: MOVL $0, 0(SP) MOVL $runtime·needm(SB), AX CALL AX MOVL 0(SP), DX get_tls(CX) MOVL g(CX), BP MOVL g_m(BP), BP // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then onM will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVL m_g0(BP), SI MOVL SP, (g_sched+gobuf_sp)(SI) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVL m_g0(BP), SI MOVL (g_sched+gobuf_sp)(SI), AX MOVL AX, 0(SP) MOVL SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 0(SP) holds the saved oldm (DX) register. // 4(SP) and 8(SP) are unused. MOVL m_curg(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVL (g_sched+gobuf_pc)(SI), BP MOVL BP, -4(DI) LEAL -(4+12)(DI), SP MOVL DX, 0(SP) CALL runtime·cgocallbackg(SB) MOVL 0(SP), DX // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVL g(CX), SI MOVL 12(SP), BP MOVL BP, (g_sched+gobuf_pc)(SI) LEAL (12+4)(SP), DI MOVL DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVL g(CX), BP MOVL g_m(BP), BP MOVL m_g0(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP MOVL 0(SP), AX MOVL AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. CMPL DX, $0 JNE 3(PC) MOVL $runtime·dropm(SB), AX CALL AX // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-4 MOVL gg+0(FP), BX #ifdef GOOS_windows CMPL BX, $0 JNE settls MOVL $0, 0x14(FS) RET settls: MOVL g_m(BX), AX LEAL m_tls(AX), AX MOVL AX, 0x14(FS) #endif get_tls(CX) MOVL BX, g(CX) RET // void setg_gcc(G*); set g. for use by gcc TEXT setg_gcc<>(SB), NOSPLIT, $0 get_tls(AX) MOVL gg+0(FP), DX MOVL DX, g(AX) RET // check that SP is in range [g->stack.lo, g->stack.hi) TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 get_tls(CX) MOVL g(CX), AX CMPL (g_stack+stack_hi)(AX), SP JHI 2(PC) INT $3 CMPL SP, (g_stack+stack_lo)(AX) JHI 2(PC) INT $3 RET TEXT runtime·getcallerpc(SB),NOSPLIT,$0-8 MOVL argp+0(FP),AX // addr of first arg MOVL -4(AX),AX // get calling pc MOVL AX, ret+4(FP) RET TEXT runtime·gogetcallerpc(SB),NOSPLIT,$0-8 MOVL p+0(FP),AX // addr of first arg MOVL -4(AX),AX // get calling pc MOVL AX, ret+4(FP) RET TEXT runtime·setcallerpc(SB),NOSPLIT,$0-8 MOVL argp+0(FP),AX // addr of first arg MOVL pc+4(FP), BX MOVL BX, -4(AX) // set calling pc RET TEXT runtime·getcallersp(SB), NOSPLIT, $0-8 MOVL argp+0(FP), AX MOVL AX, ret+4(FP) RET // func gogetcallersp(p unsafe.Pointer) uintptr TEXT runtime·gogetcallersp(SB),NOSPLIT,$0-8 MOVL p+0(FP),AX // addr of first arg MOVL AX, ret+4(FP) RET // int64 runtime·cputicks(void), so really // void runtime·cputicks(int64 *ticks) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 RDTSC MOVL AX, ret_lo+0(FP) MOVL DX, ret_hi+4(FP) RET TEXT runtime·ldt0setup(SB),NOSPLIT,$16-0 // set up ldt 7 to point at tls0 // ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go. // the entry number is just a hint. setldt will set up GS with what it used. MOVL $7, 0(SP) LEAL runtime·tls0(SB), AX MOVL AX, 4(SP) MOVL $32, 8(SP) // sizeof(tls array) CALL runtime·setldt(SB) RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT,$0-0 INT $0x3 // hash function using AES hardware instructions TEXT runtime·aeshash(SB),NOSPLIT,$0-16 MOVL p+0(FP), AX // ptr to data MOVL s+4(FP), CX // size JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),NOSPLIT,$0-16 MOVL p+0(FP), AX // ptr to string object // s+4(FP) is ignored, it is always sizeof(String) MOVL 4(AX), CX // length of string MOVL (AX), AX // string data JMP runtime·aeshashbody(SB) // AX: data // CX: length TEXT runtime·aeshashbody(SB),NOSPLIT,$0-16 MOVL h+8(FP), X0 // seed to low 32 bits of xmm0 PINSRD $1, CX, X0 // size to next 32 bits of xmm0 MOVO runtime·aeskeysched+0(SB), X2 MOVO runtime·aeskeysched+16(SB), X3 CMPL CX, $16 JB aessmall aesloop: CMPL CX, $16 JBE aesloopend MOVOU (AX), X1 AESENC X2, X0 AESENC X1, X0 SUBL $16, CX ADDL $16, AX JMP aesloop // 1-16 bytes remaining aesloopend: // This load may overlap with the previous load above. // We'll hash some bytes twice, but that's ok. MOVOU -16(AX)(CX*1), X1 JMP partial // 0-15 bytes aessmall: TESTL CX, CX JE finalize // 0 bytes CMPB AX, $0xf0 JA highpartial // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU (AX), X1 ADDL CX, CX PAND masks<>(SB)(CX*8), X1 JMP partial highpartial: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -16(AX)(CX*1), X1 ADDL CX, CX PSHUFB shifts<>(SB)(CX*8), X1 partial: // incorporate partial block into hash AESENC X3, X0 AESENC X1, X0 finalize: // finalize hash AESENC X2, X0 AESENC X3, X0 AESENC X2, X0 MOVL X0, ret+12(FP) RET TEXT runtime·aeshash32(SB),NOSPLIT,$0-16 MOVL p+0(FP), AX // ptr to data // s+4(FP) is ignored, it is always sizeof(int32) MOVL h+8(FP), X0 // seed PINSRD $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVL X0, ret+12(FP) RET TEXT runtime·aeshash64(SB),NOSPLIT,$0-16 MOVL p+0(FP), AX // ptr to data // s+4(FP) is ignored, it is always sizeof(int64) MOVQ (AX), X0 // data PINSRD $2, h+8(FP), X0 // seed AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVL X0, ret+12(FP) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/4, $0x00000000 DATA masks<>+0x04(SB)/4, $0x00000000 DATA masks<>+0x08(SB)/4, $0x00000000 DATA masks<>+0x0c(SB)/4, $0x00000000 DATA masks<>+0x10(SB)/4, $0x000000ff DATA masks<>+0x14(SB)/4, $0x00000000 DATA masks<>+0x18(SB)/4, $0x00000000 DATA masks<>+0x1c(SB)/4, $0x00000000 DATA masks<>+0x20(SB)/4, $0x0000ffff DATA masks<>+0x24(SB)/4, $0x00000000 DATA masks<>+0x28(SB)/4, $0x00000000 DATA masks<>+0x2c(SB)/4, $0x00000000 DATA masks<>+0x30(SB)/4, $0x00ffffff DATA masks<>+0x34(SB)/4, $0x00000000 DATA masks<>+0x38(SB)/4, $0x00000000 DATA masks<>+0x3c(SB)/4, $0x00000000 DATA masks<>+0x40(SB)/4, $0xffffffff DATA masks<>+0x44(SB)/4, $0x00000000 DATA masks<>+0x48(SB)/4, $0x00000000 DATA masks<>+0x4c(SB)/4, $0x00000000 DATA masks<>+0x50(SB)/4, $0xffffffff DATA masks<>+0x54(SB)/4, $0x000000ff DATA masks<>+0x58(SB)/4, $0x00000000 DATA masks<>+0x5c(SB)/4, $0x00000000 DATA masks<>+0x60(SB)/4, $0xffffffff DATA masks<>+0x64(SB)/4, $0x0000ffff DATA masks<>+0x68(SB)/4, $0x00000000 DATA masks<>+0x6c(SB)/4, $0x00000000 DATA masks<>+0x70(SB)/4, $0xffffffff DATA masks<>+0x74(SB)/4, $0x00ffffff DATA masks<>+0x78(SB)/4, $0x00000000 DATA masks<>+0x7c(SB)/4, $0x00000000 DATA masks<>+0x80(SB)/4, $0xffffffff DATA masks<>+0x84(SB)/4, $0xffffffff DATA masks<>+0x88(SB)/4, $0x00000000 DATA masks<>+0x8c(SB)/4, $0x00000000 DATA masks<>+0x90(SB)/4, $0xffffffff DATA masks<>+0x94(SB)/4, $0xffffffff DATA masks<>+0x98(SB)/4, $0x000000ff DATA masks<>+0x9c(SB)/4, $0x00000000 DATA masks<>+0xa0(SB)/4, $0xffffffff DATA masks<>+0xa4(SB)/4, $0xffffffff DATA masks<>+0xa8(SB)/4, $0x0000ffff DATA masks<>+0xac(SB)/4, $0x00000000 DATA masks<>+0xb0(SB)/4, $0xffffffff DATA masks<>+0xb4(SB)/4, $0xffffffff DATA masks<>+0xb8(SB)/4, $0x00ffffff DATA masks<>+0xbc(SB)/4, $0x00000000 DATA masks<>+0xc0(SB)/4, $0xffffffff DATA masks<>+0xc4(SB)/4, $0xffffffff DATA masks<>+0xc8(SB)/4, $0xffffffff DATA masks<>+0xcc(SB)/4, $0x00000000 DATA masks<>+0xd0(SB)/4, $0xffffffff DATA masks<>+0xd4(SB)/4, $0xffffffff DATA masks<>+0xd8(SB)/4, $0xffffffff DATA masks<>+0xdc(SB)/4, $0x000000ff DATA masks<>+0xe0(SB)/4, $0xffffffff DATA masks<>+0xe4(SB)/4, $0xffffffff DATA masks<>+0xe8(SB)/4, $0xffffffff DATA masks<>+0xec(SB)/4, $0x0000ffff DATA masks<>+0xf0(SB)/4, $0xffffffff DATA masks<>+0xf4(SB)/4, $0xffffffff DATA masks<>+0xf8(SB)/4, $0xffffffff DATA masks<>+0xfc(SB)/4, $0x00ffffff GLOBL masks<>(SB),RODATA,$256 // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/4, $0x00000000 DATA shifts<>+0x04(SB)/4, $0x00000000 DATA shifts<>+0x08(SB)/4, $0x00000000 DATA shifts<>+0x0c(SB)/4, $0x00000000 DATA shifts<>+0x10(SB)/4, $0xffffff0f DATA shifts<>+0x14(SB)/4, $0xffffffff DATA shifts<>+0x18(SB)/4, $0xffffffff DATA shifts<>+0x1c(SB)/4, $0xffffffff DATA shifts<>+0x20(SB)/4, $0xffff0f0e DATA shifts<>+0x24(SB)/4, $0xffffffff DATA shifts<>+0x28(SB)/4, $0xffffffff DATA shifts<>+0x2c(SB)/4, $0xffffffff DATA shifts<>+0x30(SB)/4, $0xff0f0e0d DATA shifts<>+0x34(SB)/4, $0xffffffff DATA shifts<>+0x38(SB)/4, $0xffffffff DATA shifts<>+0x3c(SB)/4, $0xffffffff DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c DATA shifts<>+0x44(SB)/4, $0xffffffff DATA shifts<>+0x48(SB)/4, $0xffffffff DATA shifts<>+0x4c(SB)/4, $0xffffffff DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b DATA shifts<>+0x54(SB)/4, $0xffffff0f DATA shifts<>+0x58(SB)/4, $0xffffffff DATA shifts<>+0x5c(SB)/4, $0xffffffff DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a DATA shifts<>+0x64(SB)/4, $0xffff0f0e DATA shifts<>+0x68(SB)/4, $0xffffffff DATA shifts<>+0x6c(SB)/4, $0xffffffff DATA shifts<>+0x70(SB)/4, $0x0c0b0a09 DATA shifts<>+0x74(SB)/4, $0xff0f0e0d DATA shifts<>+0x78(SB)/4, $0xffffffff DATA shifts<>+0x7c(SB)/4, $0xffffffff DATA shifts<>+0x80(SB)/4, $0x0b0a0908 DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c DATA shifts<>+0x88(SB)/4, $0xffffffff DATA shifts<>+0x8c(SB)/4, $0xffffffff DATA shifts<>+0x90(SB)/4, $0x0a090807 DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b DATA shifts<>+0x98(SB)/4, $0xffffff0f DATA shifts<>+0x9c(SB)/4, $0xffffffff DATA shifts<>+0xa0(SB)/4, $0x09080706 DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a DATA shifts<>+0xa8(SB)/4, $0xffff0f0e DATA shifts<>+0xac(SB)/4, $0xffffffff DATA shifts<>+0xb0(SB)/4, $0x08070605 DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09 DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d DATA shifts<>+0xbc(SB)/4, $0xffffffff DATA shifts<>+0xc0(SB)/4, $0x07060504 DATA shifts<>+0xc4(SB)/4, $0x0b0a0908 DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c DATA shifts<>+0xcc(SB)/4, $0xffffffff DATA shifts<>+0xd0(SB)/4, $0x06050403 DATA shifts<>+0xd4(SB)/4, $0x0a090807 DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b DATA shifts<>+0xdc(SB)/4, $0xffffff0f DATA shifts<>+0xe0(SB)/4, $0x05040302 DATA shifts<>+0xe4(SB)/4, $0x09080706 DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a DATA shifts<>+0xec(SB)/4, $0xffff0f0e DATA shifts<>+0xf0(SB)/4, $0x04030201 DATA shifts<>+0xf4(SB)/4, $0x08070605 DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09 DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d GLOBL shifts<>(SB),RODATA,$256 TEXT runtime·memeq(SB),NOSPLIT,$0-13 MOVL a+0(FP), SI MOVL b+4(FP), DI MOVL size+8(FP), BX CALL runtime·memeqbody(SB) MOVB AX, ret+12(FP) RET // eqstring tests whether two strings are equal. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-17 MOVL s1len+4(FP), AX MOVL s2len+12(FP), BX CMPL AX, BX JNE different MOVL s1str+0(FP), SI MOVL s2str+8(FP), DI CMPL SI, DI JEQ same CALL runtime·memeqbody(SB) MOVB AX, v+16(FP) RET same: MOVB $1, v+16(FP) RET different: MOVB $0, v+16(FP) RET TEXT bytes·Equal(SB),NOSPLIT,$0-25 MOVL a_len+4(FP), BX MOVL b_len+16(FP), CX XORL AX, AX CMPL BX, CX JNE eqret MOVL a+0(FP), SI MOVL b+12(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+24(FP) RET // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 XORL AX, AX CMPL BX, $4 JB small // 64 bytes at a time using xmm registers hugeloop: CMPL BX, $64 JB bigloop TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDL $64, SI ADDL $64, DI SUBL $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 4 bytes at a time using 32-bit register bigloop: CMPL BX, $4 JBE leftover MOVL (SI), CX MOVL (DI), DX ADDL $4, SI ADDL $4, DI SUBL $4, BX CMPL CX, DX JEQ bigloop RET // remaining 0-4 bytes leftover: MOVL -4(SI)(BX*1), CX MOVL -4(DI)(BX*1), DX CMPL CX, DX SETEQ AX RET small: CMPL BX, $0 JEQ equal LEAL 0(BX*8), CX NEGL CX MOVL SI, DX CMPB DX, $0xfc JA si_high // load at SI won't cross a page boundary. MOVL (SI), SI JMP si_finish si_high: // address ends in 111111xx. Load up to bytes we want, move to correct position. MOVL -4(SI)(BX*1), SI SHRL CX, SI si_finish: // same for DI. MOVL DI, DX CMPB DX, $0xfc JA di_high MOVL (DI), DI JMP di_finish di_high: MOVL -4(DI)(BX*1), DI SHRL CX, DI di_finish: SUBL SI, DI SHLL CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),NOSPLIT,$0-20 MOVL s1_base+0(FP), SI MOVL s1_len+4(FP), BX MOVL s2_base+8(FP), DI MOVL s2_len+12(FP), DX CALL runtime·cmpbody(SB) MOVL AX, ret+16(FP) RET TEXT runtime·cmpbytes(SB),NOSPLIT,$0-28 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+12(FP), DI MOVL s2+16(FP), DX CALL runtime·cmpbody(SB) MOVL AX, ret+24(FP) RET TEXT bytes·IndexByte(SB),NOSPLIT,$0 MOVL s+0(FP), SI MOVL s_len+4(FP), CX MOVB c+12(FP), AL MOVL SI, DI CLD; REPN; SCASB JZ 3(PC) MOVL $-1, ret+16(FP) RET SUBL SI, DI SUBL $1, DI MOVL DI, ret+16(FP) RET TEXT strings·IndexByte(SB),NOSPLIT,$0 MOVL s+0(FP), SI MOVL s_len+4(FP), CX MOVB c+8(FP), AL MOVL SI, DI CLD; REPN; SCASB JZ 3(PC) MOVL $-1, ret+12(FP) RET SUBL SI, DI SUBL $1, DI MOVL DI, ret+12(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 CMPL SI, DI JEQ allsame CMPL BX, DX MOVL DX, BP CMOVLLT BX, BP // BP = min(alen, blen) CMPL BP, $4 JB small TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE mediumloop largeloop: CMPL BP, $16 JB mediumloop MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORL $0xffff, AX // convert EQ to NE JNE diff16 // branch if at least one byte is not equal ADDL $16, SI ADDL $16, DI SUBL $16, BP JMP largeloop diff16: BSFL AX, BX // index of first byte that differs XORL AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAL -1(AX*2), AX // convert 1/0 to +1/-1 RET mediumloop: CMPL BP, $4 JBE _0through4 MOVL (SI), AX MOVL (DI), CX CMPL AX, CX JNE diff4 ADDL $4, SI ADDL $4, DI SUBL $4, BP JMP mediumloop _0through4: MOVL -4(SI)(BP*1), AX MOVL -4(DI)(BP*1), CX CMPL AX, CX JEQ allsame diff4: BSWAPL AX // reverse order of bytes BSWAPL CX XORL AX, CX // find bit differences BSRL CX, CX // index of highest bit difference SHRL CX, AX // move a's bit to bottom ANDL $1, AX // mask bit LEAL -1(AX*2), AX // 1/0 => +1/-1 RET // 0-3 bytes in common small: LEAL (BP*8), CX NEGL CX JEQ allsame // load si CMPB SI, $0xfc JA si_high MOVL (SI), SI JMP si_finish si_high: MOVL -4(SI)(BP*1), SI SHRL CX, SI si_finish: SHLL CX, SI // same for di CMPB DI, $0xfc JA di_high MOVL (DI), DI JMP di_finish di_high: MOVL -4(DI)(BP*1), DI SHRL CX, DI di_finish: SHLL CX, DI BSWAPL SI // reverse order of bytes BSWAPL DI XORL SI, DI // find bit differences JEQ allsame BSRL DI, CX // index of highest bit difference SHRL CX, SI // move a's bit to bottom ANDL $1, SI // mask bit LEAL -1(SI*2), AX // 1/0 => +1/-1 RET // all the bytes in common are the same, so we just need // to compare the lengths. allsame: XORL AX, AX XORL CX, CX CMPL BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAL -1(CX)(AX*2), AX // 1,0,-1 result RET // A Duff's device for zeroing memory. // The compiler jumps to computed addresses within // this routine to zero chunks of memory. Do not // change this code without also changing the code // in ../../cmd/8g/ggen.c:clearfat. // AX: zero // DI: ptr to memory to be zeroed // DI is updated as a side effect. TEXT runtime·duffzero(SB), NOSPLIT, $0-0 STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL STOSL RET // A Duff's device for copying memory. // The compiler jumps to computed addresses within // this routine to copy chunks of memory. Source // and destination must not overlap. Do not // change this code without also changing the code // in ../../cmd/6g/cgen.c:sgen. // SI: ptr to source memory // DI: ptr to destination memory // SI and DI are updated as a side effect. // NOTE: this is equivalent to a sequence of MOVSL but // for some reason MOVSL is really slow. TEXT runtime·duffcopy(SB), NOSPLIT, $0-0 MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI MOVL (SI),CX ADDL $4,SI MOVL CX,(DI) ADDL $4,DI RET TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), AX MOVL m_fastrand(AX), DX ADDL DX, DX MOVL DX, BX XORL $0x88888eef, DX CMOVLMI BX, DX MOVL DX, m_fastrand(AX) MOVL DX, ret+0(FP) RET TEXT runtime·return0(SB), NOSPLIT, $0 MOVL $0, AX RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 get_tls(CX) MOVL g(CX), AX MOVL g_m(AX), AX MOVL m_curg(AX), AX MOVL (g_stack+stack_hi)(AX), AX RET