// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build power64 power64le #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" #include "textflag.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // initialize essential registers BL runtime·reginit(SB) SUB $24, R1 MOVW R3, 8(R1) // argc MOVD R4, 16(R1) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g MOVD $(-64*1024), R31 ADD R31, R1, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) MOVD R3, (g_stack+stack_lo)(g) MOVD R1, (g_stack+stack_hi)(g) // TODO: if there is a _cgo_init, call it. // TODO: add TLS // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R3 // save m->g0 = g0 MOVD g, m_g0(R3) // save m0 to g0->m MOVD R3, g_m(g) BL runtime·check(SB) // args are already prepared BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·main·f(SB), R3 // entry MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL runtime·newproc(SB) ADD $24, R1 // start this M BL runtime·mstart(SB) MOVD R0, 1(R0) RETURN DATA runtime·main·f+0(SB)/8,$runtime·main(SB) GLOBL runtime·main·f(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT,$-8-0 MOVD R0, 2(R0) // TODO: TD RETURN TEXT runtime·asminit(SB),NOSPLIT,$-8-0 RETURN TEXT runtime·reginit(SB),NOSPLIT,$-8-0 // set R0 to zero, it's expected by the toolchain XOR R0, R0 // initialize essential FP registers FMOVD $4503601774854144.0, F27 FMOVD $0.5, F29 FSUB F29, F29, F28 FADD F29, F29, F30 FADD F30, F30, F31 RETURN /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT, $-8-8 MOVD buf+0(FP), R3 MOVD R1, gobuf_sp(R3) MOVD LR, R31 MOVD R31, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD R0, gobuf_lr(R3) MOVD R0, gobuf_ret(R3) MOVD R0, gobuf_ctxt(R3) RETURN // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $-8-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g // make sure g is not nil MOVD 0(g), R4 MOVD gobuf_sp(R5), R1 MOVD gobuf_lr(R5), R31 MOVD R31, LR MOVD gobuf_ret(R5), R3 MOVD gobuf_ctxt(R5), R11 MOVD R0, gobuf_sp(R5) MOVD R0, gobuf_ret(R5) MOVD R0, gobuf_lr(R5) MOVD R0, gobuf_ctxt(R5) CMP R0, R0 // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R31 MOVD R31, CTR BR (CTR) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT, $-8-8 // Save caller state in g->sched MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g CMP g, R3 BNE 2(PC) BR runtime·badmcall(SB) MOVD fn+0(FP), R11 // context MOVD 0(R11), R4 // code pointer MOVD R4, CTR MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp MOVDU R3, -8(R1) MOVDU R0, -8(R1) BL (CTR) BR runtime·badmcall2(SB) // switchtoM is a dummy routine that onM leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the M stack because the one at the top of // the M stack terminates the stack walk (see topofstack()). TEXT runtime·switchtoM(SB), NOSPLIT, $0-0 UNDEF BL (LR) // make sure this function is not leaf RETURN // func onM_signalok(fn func()) TEXT runtime·onM_signalok(SB), NOSPLIT, $8-8 MOVD g, R3 // R3 = g MOVD g_m(R3), R4 // R4 = g->m MOVD m_gsignal(R4), R4 // R4 = g->m->gsignal MOVD fn+0(FP), R11 // context for call below CMP R3, R4 BEQ onsignal MOVD R11, 8(R1) BL runtime·onM(SB) RETURN onsignal: MOVD 0(R11), R3 // code pointer MOVD R3, CTR BL (CTR) RETURN // void onM(fn func()) TEXT runtime·onM(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R11 // context MOVD g_m(g), R4 // R4 = m MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ onm MOVD m_curg(R4), R6 CMP g, R6 BEQ oncurg // Not g0, not curg. Must be gsignal, but that's not allowed. // Hide call from linker nosplit analysis. MOVD $runtime·badonm(SB), R3 MOVD R3, CTR BL (CTR) oncurg: // save our state in g->sched. Pretend to // be switchtoM if the G stack is scanned. MOVD $runtime·switchtoM(SB), R6 ADD $8, R6 // get past prologue MOVD R6, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called onM on g0, to stop traceback SUB $8, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, R1 // call target function MOVD 0(R11), R3 // code pointer MOVD R3, CTR BL (CTR) // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g MOVD (g_sched+gobuf_sp)(g), R1 MOVD R0, (g_sched+gobuf_sp)(g) RETURN onm: // already on m stack, just call directly MOVD 0(R11), R3 // code pointer MOVD R3, CTR BL (CTR) RETURN /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3: framesize, R4: argsize, R5: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT,$-8-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R7 MOVD m_g0(R7), R8 CMP g, R8 BNE 2(PC) BL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R7), R8 CMP g, R8 BNE 2(PC) BL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVD R11, (g_sched+gobuf_ctxt)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R8 MOVD R8, (g_sched+gobuf_pc)(g) MOVD R5, (g_sched+gobuf_lr)(g) // Called from f. // Set m->morebuf to f's caller. MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVD g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVD m_g0(R7), g MOVD (g_sched+gobuf_sp)(g), R1 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT,$-8-0 MOVD R0, R11 BR runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R31; \ CMP R3, R31; \ BGT 4(PC); \ MOVD $NAME(SB), R31; \ MOVD R31, CTR; \ BR (CTR) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT, $-8-24 MOVWZ n+16(FP), R3 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R31 MOVD R31, CTR BR (CTR) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+8(FP), R3; \ MOVWZ n+16(FP), R4; \ MOVD R1, R5; \ ADD $(8-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ CMP R5, R4; \ BEQ 4(PC); \ MOVBZU 1(R3), R6; \ MOVBZU R6, 1(R5); \ BR -4(PC); \ /* call function */ \ MOVD f+0(FP), R11; \ MOVD (R11), R31; \ MOVD R31, CTR; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (CTR); \ /* copy return values back */ \ MOVD arg+8(FP), R3; \ MOVWZ n+16(FP), R4; \ MOVWZ retoffset+20(FP), R6; \ MOVD R1, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ ADD $(8-1), R5; \ SUB $1, R3; \ ADD R5, R4; \ CMP R5, R4; \ BEQ 4(PC); \ MOVBZU 1(R5), R6; \ MOVBZU R6, 1(R3); \ BR -4(PC); \ RETURN CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // bool cas(uint32 *ptr, uint32 old, uint32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), NOSPLIT, $0-17 MOVD ptr+0(FP), R3 MOVWZ old+8(FP), R4 MOVWZ new+12(FP), R5 cas_again: SYNC LWAR (R3), R6 CMPW R6, R4 BNE cas_fail STWCCC R5, (R3) BNE cas_again MOVD $1, R3 SYNC ISYNC MOVB R3, ret+16(FP) RETURN cas_fail: MOVD $0, R3 BR -5(PC) // bool runtime·cas64(uint64 *ptr, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), NOSPLIT, $0-25 MOVD ptr+0(FP), R3 MOVD old+8(FP), R4 MOVD new+16(FP), R5 cas64_again: SYNC LDAR (R3), R6 CMP R6, R4 BNE cas64_fail STDCCC R5, (R3) BNE cas64_again MOVD $1, R3 SYNC ISYNC MOVB R3, ret+24(FP) RETURN cas64_fail: MOVD $0, R3 BR -5(PC) TEXT runtime·casuintptr(SB), NOSPLIT, $0-25 BR runtime·cas64(SB) TEXT runtime·atomicloaduintptr(SB), NOSPLIT, $-8-16 BR runtime·atomicload64(SB) TEXT runtime·atomicloaduint(SB), NOSPLIT, $-8-16 BR runtime·atomicload64(SB) TEXT runtime·atomicstoreuintptr(SB), NOSPLIT, $0-16 BR runtime·atomicstore64(SB) // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp1(SB), NOSPLIT, $0-25 BR runtime·cas64(SB) // uint32 xadd(uint32 volatile *ptr, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), NOSPLIT, $0-20 MOVD ptr+0(FP), R4 MOVW delta+8(FP), R5 SYNC LWAR (R4), R3 ADD R5, R3 STWCCC R3, (R4) BNE -4(PC) SYNC ISYNC MOVW R3, ret+16(FP) RETURN TEXT runtime·xadd64(SB), NOSPLIT, $0-24 MOVD ptr+0(FP), R4 MOVD delta+8(FP), R5 SYNC LDAR (R4), R3 ADD R5, R3 STDCCC R3, (R4) BNE -4(PC) SYNC ISYNC MOVD R3, ret+16(FP) RETURN TEXT runtime·xchg(SB), NOSPLIT, $0-20 MOVD ptr+0(FP), R4 MOVW new+8(FP), R5 SYNC LWAR (R4), R3 STWCCC R5, (R4) BNE -3(PC) SYNC ISYNC MOVW R3, ret+16(FP) RETURN TEXT runtime·xchg64(SB), NOSPLIT, $0-24 MOVD ptr+0(FP), R4 MOVD new+8(FP), R5 SYNC LDAR (R4), R3 STDCCC R5, (R4) BNE -3(PC) SYNC ISYNC MOVD R3, ret+16(FP) RETURN TEXT runtime·xchgp1(SB), NOSPLIT, $0-24 BR runtime·xchg64(SB) TEXT runtime·xchguintptr(SB), NOSPLIT, $0-24 BR runtime·xchg64(SB) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RETURN TEXT runtime·atomicstorep1(SB), NOSPLIT, $0-16 BR runtime·atomicstore64(SB) TEXT runtime·atomicstore(SB), NOSPLIT, $0-12 MOVD ptr+0(FP), R3 MOVW val+8(FP), R4 SYNC MOVW R4, 0(R3) RETURN TEXT runtime·atomicstore64(SB), NOSPLIT, $0-16 MOVD ptr+0(FP), R3 MOVD val+8(FP), R4 SYNC MOVD R4, 0(R3) RETURN // void runtime·atomicor8(byte volatile*, byte); TEXT runtime·atomicor8(SB), NOSPLIT, $0-9 MOVD ptr+0(FP), R3 MOVBZ val+8(FP), R4 // Align ptr down to 4 bytes so we can use 32-bit load/store. // R5 = (R3 << 0) & ~3 RLDCR $0, R3, $~3, R5 // Compute val shift. #ifdef GOARCH_power64 // Big endian. ptr = ptr ^ 3 XOR $3, R3 #endif // R6 = ((ptr & 3) * 8) = (ptr << 3) & (3*8) RLDC $3, R3, $(3*8), R6 // Shift val for aligned ptr. R4 = val << R6 SLD R6, R4, R4 atomicor8_again: SYNC LWAR (R5), R6 OR R4, R6 STWCCC R6, (R5) BNE atomicor8_again SYNC ISYNC RETURN // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. BR to fn TEXT runtime·jmpdefer(SB), NOSPLIT, $-8-16 MOVD 0(R1), R31 SUB $4, R31 MOVD R31, LR MOVD fv+0(FP), R11 MOVD argp+8(FP), R1 SUB $8, R1 MOVD 0(R11), R3 MOVD R3, CTR BR (CTR) // Save state of caller into g->sched. Smashes R31. TEXT gosave<>(SB),NOSPLIT,$-8 MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD R0, (g_sched+gobuf_ret)(g) MOVD R0, (g_sched+gobuf_ctxt)(g) RETURN // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-16 MOVD R0, 21(R0) // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$24-24 MOVD R0, 22(R0) // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.c for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-24 MOVD R0, 23(R0) // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD R0, 24(R0) // void setg_gcc(G*); set g called from gcc. TEXT setg_gcc<>(SB),NOSPLIT,$0 MOVD R0, 25(R0) TEXT runtime·getcallerpc(SB),NOSPLIT,$-8-16 MOVD 0(R1), R3 MOVD R3, ret+8(FP) RETURN TEXT runtime·gogetcallerpc(SB),NOSPLIT,$-8-16 MOVD 0(R1), R3 MOVD R3,ret+8(FP) RETURN TEXT runtime·setcallerpc(SB),NOSPLIT,$-8-16 MOVD pc+8(FP), R3 MOVD R3, 0(R1) // set calling pc RETURN TEXT runtime·getcallersp(SB),NOSPLIT,$0-16 MOVD argp+0(FP), R3 SUB $8, R3 MOVD R3, ret+8(FP) RETURN // func gogetcallersp(p unsafe.Pointer) uintptr TEXT runtime·gogetcallersp(SB),NOSPLIT,$0-16 MOVD sp+0(FP), R3 SUB $8, R3 MOVD R3,ret+8(FP) RETURN TEXT runtime·abort(SB),NOSPLIT,$-8-0 MOVW (R0), R0 UNDEF #define TBRL 268 #define TBRU 269 /* Time base Upper/Lower */ // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 MOVW SPR(TBRU), R4 MOVW SPR(TBRL), R3 MOVW SPR(TBRU), R5 CMPW R4, R5 BNE -4(PC) SLD $32, R5 OR R5, R3 MOVD R3, ret+0(FP) RETURN // AES hashing not implemented for Power TEXT runtime·aeshash(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT,$-8-0 MOVW (R0), R1 TEXT runtime·memeq(SB),NOSPLIT,$-8-25 MOVD a+0(FP), R3 MOVD b+8(FP), R4 MOVD size+16(FP), R5 SUB $1, R3 SUB $1, R4 ADD R3, R5, R8 loop: CMP R3, R8 BNE test MOVD $1, R3 MOVB R3, ret+24(FP) RETURN test: MOVBZU 1(R3), R6 MOVBZU 1(R4), R7 CMP R6, R7 BEQ loop MOVB R0, ret+24(FP) RETURN // eqstring tests whether two strings are equal. // See runtime_test.go:eqstring_generic for // equivalent Go code. TEXT runtime·eqstring(SB),NOSPLIT,$0-33 MOVD s1len+8(FP), R4 MOVD s2len+24(FP), R5 CMP R4, R5 BNE noteq MOVD s1str+0(FP), R3 MOVD s2str+16(FP), R4 SUB $1, R3 SUB $1, R4 ADD R3, R5, R8 loop: CMP R3, R8 BNE 4(PC) MOVD $1, R3 MOVB R3, ret+32(FP) RETURN MOVBZU 1(R3), R6 MOVBZU 1(R4), R7 CMP R6, R7 BEQ loop noteq: MOVB R0, ret+32(FP) RETURN // TODO: share code with memeq? TEXT bytes·Equal(SB),NOSPLIT,$0-49 MOVD a_len+8(FP), R3 MOVD b_len+32(FP), R4 CMP R3, R4 // unequal lengths are not equal BNE noteq MOVD a+0(FP), R5 MOVD b+24(FP), R6 SUB $1, R5 SUB $1, R6 ADD R5, R3 // end-1 loop: CMP R5, R3 BEQ equal // reached the end MOVBZU 1(R5), R4 MOVBZU 1(R6), R7 CMP R4, R7 BEQ loop noteq: MOVBZ R0, ret+48(FP) RETURN equal: MOVD $1, R3 MOVBZ R3, ret+48(FP) RETURN TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 MOVD s+0(FP), R3 MOVD s_len+8(FP), R4 MOVBZ c+24(FP), R5 // byte to find MOVD R3, R6 // store base for later SUB $1, R3 ADD R3, R4 // end-1 loop: CMP R3, R4 BEQ notfound MOVBZU 1(R3), R7 CMP R7, R5 BNE loop SUB R6, R3 // remove base MOVD R3, ret+32(FP) RETURN notfound: MOVD $-1, R3 MOVD R3, ret+32(FP) RETURN TEXT strings·IndexByte(SB),NOSPLIT,$0 MOVD p+0(FP), R3 MOVD b_len+8(FP), R4 MOVBZ c+16(FP), R5 // byte to find MOVD R3, R6 // store base for later SUB $1, R3 ADD R3, R4 // end-1 loop: CMP R3, R4 BEQ notfound MOVBZU 1(R3), R7 CMP R7, R5 BNE loop SUB R6, R3 // remove base MOVD R3, ret+24(FP) RETURN notfound: MOVD $-1, R3 MOVD R3, ret+24(FP) RETURN // A Duff's device for zeroing memory. // The compiler jumps to computed addresses within // this routine to zero chunks of memory. Do not // change this code without also changing the code // in ../../cmd/9g/ggen.c:/^clearfat. // R0: always zero // R3 (aka REGRT1): ptr to memory to be zeroed - 8 // On return, R3 points to the last zeroed dword. TEXT runtime·duffzero(SB), NOSPLIT, $-8-0 MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) MOVDU R0, 8(R3) RETURN TEXT runtime·fastrand1(SB), NOSPLIT, $0-4 MOVD g_m(g), R4 MOVWZ m_fastrand(R4), R3 ADD R3, R3 CMPW R3, $0 BGE 2(PC) XOR $0x88888eef, R3 MOVW R3, m_fastrand(R4) MOVW R3, ret+0(FP) RETURN TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R3 RETURN // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$0 MOVD R0, 26(R0) // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT,$-8-0 MOVD R0, R0 // NOP BL runtime·goexit1(SB) // does not return TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8 RETURN TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8 RETURN TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8 RETURN TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8 RETURN