// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" const ( ESRCH = 3 EAGAIN = 35 EWOULDBLOCK = EAGAIN ENOTSUP = 91 // From OpenBSD's sys/time.h CLOCK_REALTIME = 0 CLOCK_VIRTUAL = 1 CLOCK_PROF = 2 CLOCK_MONOTONIC = 3 ) var sigset_none = uint32(0) var sigset_all = ^sigset_none // From OpenBSD's const ( CTL_HW = 6 HW_NCPU = 3 ) func getncpu() int32 { mib := [2]uint32{CTL_HW, HW_NCPU} out := uint32(0) nout := unsafe.Sizeof(out) // Fetch hw.ncpu via sysctl. ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return int32(out) } return 1 } //go:nosplit func semacreate() uintptr { return 1 } //go:nosplit func semasleep(ns int64) int32 { _g_ := getg() // Compute sleep deadline. var tsp *timespec if ns >= 0 { var ts timespec var nsec int32 ns += nanotime() ts.set_sec(int64(timediv(ns, 1000000000, &nsec))) ts.set_nsec(nsec) tsp = &ts } for { // spin-mutex lock for { if xchg(&_g_.m.waitsemalock, 1) == 0 { break } osyield() } if _g_.m.waitsemacount != 0 { // semaphore is available. _g_.m.waitsemacount-- // spin-mutex unlock atomicstore(&_g_.m.waitsemalock, 0) return 0 // semaphore acquired } // sleep until semaphore != 0 or timeout. // thrsleep unlocks m.waitsemalock. ret := thrsleep((uintptr)(unsafe.Pointer(&_g_.m.waitsemacount)), CLOCK_MONOTONIC, tsp, (uintptr)(unsafe.Pointer(&_g_.m.waitsemalock)), (*int32)(unsafe.Pointer(&_g_.m.waitsemacount))) if ret == EWOULDBLOCK { return -1 } } } //go:nosplit func semawakeup(mp *m) { // spin-mutex lock for { if xchg(&mp.waitsemalock, 1) == 0 { break } osyield() } mp.waitsemacount++ ret := thrwakeup(uintptr(unsafe.Pointer(&mp.waitsemacount)), 1) if ret != 0 && ret != ESRCH { // semawakeup can be called on signal stack. systemstack(func() { print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n") }) } // spin-mutex unlock atomicstore(&mp.waitsemalock, 0) } func newosproc(mp *m, stk unsafe.Pointer) { if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int32(mp.tls[0]), " ostk=", &mp, "\n") } mp.tls[0] = uintptr(mp.id) // so 386 asm can find it param := tforkt{ tf_tcb: unsafe.Pointer(&mp.tls[0]), tf_tid: (*int32)(unsafe.Pointer(&mp.procid)), tf_stack: uintptr(stk), } oset := sigprocmask(_SIG_SETMASK, sigset_all) ret := tfork(¶m, unsafe.Sizeof(param), mp, mp.g0, funcPC(mstart)) sigprocmask(_SIG_SETMASK, oset) if ret < 0 { print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n") if ret == -ENOTSUP { print("runtime: is kern.rthreads disabled?\n") } gothrow("runtime.newosproc") } } func osinit() { ncpu = getncpu() } var urandom_data [_HashRandomBytes]byte var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func get_random_data(rnd *unsafe.Pointer, rnd_len *int32) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) if read(fd, unsafe.Pointer(&urandom_data), _HashRandomBytes) == _HashRandomBytes { *rnd = unsafe.Pointer(&urandom_data[0]) *rnd_len = _HashRandomBytes } else { *rnd = nil *rnd_len = 0 } close(fd) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { _g_ := getg() // m.procid is a uint64, but tfork writes an int32. Fix it up. _g_.m.procid = uint64(*(*int32)(unsafe.Pointer(&_g_.m.procid))) // Initialize signal handling signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024) sigprocmask(_SIG_SETMASK, sigset_none) } // Called from dropm to undo the effect of an minit. func unminit() { signalstack(nil, 0) } func memlimit() uintptr { return 0 } func sigtramp() type sigactiont struct { sa_sigaction uintptr sa_mask uint32 sa_flags int32 } func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = sigset_all if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_sigaction = fn sigaction(i, &sa, nil) } func getsig(i int32) uintptr { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_sigaction == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_sigaction } func signalstack(p *byte, n int32) { var st stackt st.ss_sp = uintptr(unsafe.Pointer(p)) st.ss_size = uintptr(n) st.ss_flags = 0 if p == nil { st.ss_flags = _SS_DISABLE } sigaltstack(&st, nil) } func unblocksignals() { sigprocmask(_SIG_SETMASK, sigset_none) }