// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "signal_unix.h" #include "stack.h" #include "textflag.h" extern SigTab runtime·sigtab[]; static Sigset sigset_none; static Sigset sigset_all = ~(Sigset)0; static void unimplemented(int8 *name) { runtime·prints(name); runtime·prints(" not implemented\n"); *(int32*)1231 = 1231; } #pragma textflag NOSPLIT void runtime·semawakeup(M *mp) { runtime·mach_semrelease(mp->waitsema); } static void semacreate(void) { g->m->scalararg[0] = runtime·mach_semcreate(); } #pragma textflag NOSPLIT uintptr runtime·semacreate(void) { uintptr x; void (*fn)(void); fn = semacreate; runtime·onM(&fn); x = g->m->scalararg[0]; g->m->scalararg[0] = 0; return x; } // BSD interface for threading. void runtime·osinit(void) { // bsdthread_register delayed until end of goenvs so that we // can look at the environment first. // Use sysctl to fetch hw.ncpu. uint32 mib[2]; uint32 out; int32 ret; uintptr nout; mib[0] = 6; mib[1] = 3; nout = sizeof out; out = 0; ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); if(ret >= 0) runtime·ncpu = out; } #pragma textflag NOSPLIT void runtime·get_random_data(byte **rnd, int32 *rnd_len) { #pragma dataflag NOPTR static byte urandom_data[HashRandomBytes]; int32 fd; fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { *rnd = urandom_data; *rnd_len = HashRandomBytes; } else { *rnd = nil; *rnd_len = 0; } runtime·close(fd); } void runtime·goenvs(void) { runtime·goenvs_unix(); // Register our thread-creation callback (see sys_darwin_{amd64,386}.s) // but only if we're not using cgo. If we are using cgo we need // to let the C pthread library install its own thread-creation callback. if(!runtime·iscgo) { if(runtime·bsdthread_register() != 0) { if(runtime·getenv("DYLD_INSERT_LIBRARIES")) runtime·throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)"); runtime·throw("runtime: bsdthread_register error"); } } } void runtime·newosproc(M *mp, void *stk) { int32 errno; Sigset oset; mp->tls[0] = mp->id; // so 386 asm can find it if(0){ runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n", stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp); } runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset); errno = runtime·bsdthread_create(stk, mp, mp->g0, runtime·mstart); runtime·sigprocmask(SIG_SETMASK, &oset, nil); if(errno < 0) { runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno); runtime·throw("runtime.newosproc"); } } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. void runtime·mpreinit(M *mp) { mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K mp->gsignal->m = mp; } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. void runtime·minit(void) { // Initialize signal handling. runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024); runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil); } // Called from dropm to undo the effect of an minit. void runtime·unminit(void) { runtime·signalstack(nil, 0); } // Mach IPC, to get at semaphores // Definitions are in /usr/include/mach on a Mac. static void macherror(int32 r, int8 *fn) { runtime·prints("mach error "); runtime·prints(fn); runtime·prints(": "); runtime·printint(r); runtime·prints("\n"); runtime·throw("mach error"); } enum { DebugMach = 0 }; static MachNDR zerondr; #define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8)) static int32 mach_msg(MachHeader *h, int32 op, uint32 send_size, uint32 rcv_size, uint32 rcv_name, uint32 timeout, uint32 notify) { // TODO: Loop on interrupt. return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify); } // Mach RPC (MIG) enum { MinMachMsg = 48, Reply = 100, }; #pragma pack on typedef struct CodeMsg CodeMsg; struct CodeMsg { MachHeader h; MachNDR NDR; int32 code; }; #pragma pack off static int32 machcall(MachHeader *h, int32 maxsize, int32 rxsize) { uint32 *p; int32 i, ret, id; uint32 port; CodeMsg *c; if((port = g->m->machport) == 0){ port = runtime·mach_reply_port(); g->m->machport = port; } h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE); h->msgh_local_port = port; h->msgh_reserved = 0; id = h->msgh_id; if(DebugMach){ p = (uint32*)h; runtime·prints("send:\t"); for(i=0; imsgh_size/sizeof(p[0]); i++){ runtime·prints(" "); runtime·printpointer((void*)p[i]); if(i%8 == 7) runtime·prints("\n\t"); } if(i%8) runtime·prints("\n"); } ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG, h->msgh_size, maxsize, port, 0, 0); if(ret != 0){ if(DebugMach){ runtime·prints("mach_msg error "); runtime·printint(ret); runtime·prints("\n"); } return ret; } if(DebugMach){ p = (uint32*)h; runtime·prints("recv:\t"); for(i=0; imsgh_size/sizeof(p[0]); i++){ runtime·prints(" "); runtime·printpointer((void*)p[i]); if(i%8 == 7) runtime·prints("\n\t"); } if(i%8) runtime·prints("\n"); } if(h->msgh_id != id+Reply){ if(DebugMach){ runtime·prints("mach_msg reply id mismatch "); runtime·printint(h->msgh_id); runtime·prints(" != "); runtime·printint(id+Reply); runtime·prints("\n"); } return -303; // MIG_REPLY_MISMATCH } // Look for a response giving the return value. // Any call can send this back with an error, // and some calls only have return values so they // send it back on success too. I don't quite see how // you know it's one of these and not the full response // format, so just look if the message is right. c = (CodeMsg*)h; if(h->msgh_size == sizeof(CodeMsg) && !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){ if(DebugMach){ runtime·prints("mig result "); runtime·printint(c->code); runtime·prints("\n"); } return c->code; } if(h->msgh_size != rxsize){ if(DebugMach){ runtime·prints("mach_msg reply size mismatch "); runtime·printint(h->msgh_size); runtime·prints(" != "); runtime·printint(rxsize); runtime·prints("\n"); } return -307; // MIG_ARRAY_TOO_LARGE } return 0; } // Semaphores! enum { Tmach_semcreate = 3418, Rmach_semcreate = Tmach_semcreate + Reply, Tmach_semdestroy = 3419, Rmach_semdestroy = Tmach_semdestroy + Reply, // Mach calls that get interrupted by Unix signals // return this error code. We retry them. KERN_ABORTED = 14, KERN_OPERATION_TIMED_OUT = 49, }; typedef struct Tmach_semcreateMsg Tmach_semcreateMsg; typedef struct Rmach_semcreateMsg Rmach_semcreateMsg; typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg; // Rmach_semdestroyMsg = CodeMsg #pragma pack on struct Tmach_semcreateMsg { MachHeader h; MachNDR ndr; int32 policy; int32 value; }; struct Rmach_semcreateMsg { MachHeader h; MachBody body; MachPort semaphore; }; struct Tmach_semdestroyMsg { MachHeader h; MachBody body; MachPort semaphore; }; #pragma pack off uint32 runtime·mach_semcreate(void) { union { Tmach_semcreateMsg tx; Rmach_semcreateMsg rx; uint8 pad[MinMachMsg]; } m; int32 r; m.tx.h.msgh_bits = 0; m.tx.h.msgh_size = sizeof(m.tx); m.tx.h.msgh_remote_port = runtime·mach_task_self(); m.tx.h.msgh_id = Tmach_semcreate; m.tx.ndr = zerondr; m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO m.tx.value = 0; while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){ if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_create"); } if(m.rx.body.msgh_descriptor_count != 1) unimplemented("mach_semcreate desc count"); return m.rx.semaphore.name; } void runtime·mach_semdestroy(uint32 sem) { union { Tmach_semdestroyMsg tx; uint8 pad[MinMachMsg]; } m; int32 r; m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX; m.tx.h.msgh_size = sizeof(m.tx); m.tx.h.msgh_remote_port = runtime·mach_task_self(); m.tx.h.msgh_id = Tmach_semdestroy; m.tx.body.msgh_descriptor_count = 1; m.tx.semaphore.name = sem; m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND; m.tx.semaphore.type = 0; while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){ if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_destroy"); } } // The other calls have simple system call traps in sys_darwin_{amd64,386}.s int32 runtime·mach_semaphore_wait(uint32 sema); int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec); int32 runtime·mach_semaphore_signal(uint32 sema); int32 runtime·mach_semaphore_signal_all(uint32 sema); static void semasleep(void) { int32 r, secs, nsecs; int64 ns; ns = (int64)(uint32)g->m->scalararg[0] | (int64)(uint32)g->m->scalararg[1]<<32; g->m->scalararg[0] = 0; g->m->scalararg[1] = 0; if(ns >= 0) { secs = runtime·timediv(ns, 1000000000, &nsecs); r = runtime·mach_semaphore_timedwait(g->m->waitsema, secs, nsecs); if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT) { g->m->scalararg[0] = -1; return; } if(r != 0) macherror(r, "semaphore_wait"); g->m->scalararg[0] = 0; return; } while((r = runtime·mach_semaphore_wait(g->m->waitsema)) != 0) { if(r == KERN_ABORTED) // interrupted continue; macherror(r, "semaphore_wait"); } g->m->scalararg[0] = 0; return; } #pragma textflag NOSPLIT int32 runtime·semasleep(int64 ns) { int32 r; void (*fn)(void); g->m->scalararg[0] = (uint32)ns; g->m->scalararg[1] = (uint32)(ns>>32); fn = semasleep; runtime·onM(&fn); r = g->m->scalararg[0]; g->m->scalararg[0] = 0; return r; } static int32 mach_semrelease_errno; static void mach_semrelease_fail(void) { macherror(mach_semrelease_errno, "semaphore_signal"); } #pragma textflag NOSPLIT void runtime·mach_semrelease(uint32 sem) { int32 r; void (*fn)(void); while((r = runtime·mach_semaphore_signal(sem)) != 0) { if(r == KERN_ABORTED) // interrupted continue; // mach_semrelease must be completely nosplit, // because it is called from Go code. // If we're going to die, start that process on the m stack // to avoid a Go stack split. // Only do that if we're actually running on the g stack. // We might be on the gsignal stack, and if so, onM will abort. // We use the global variable instead of scalararg because // we might be on the gsignal stack, having interrupted a // normal call to onM. It doesn't quite matter, since the // program is about to die, but better to be clean. mach_semrelease_errno = r; fn = mach_semrelease_fail; if(g == g->m->curg) runtime·onM(&fn); else fn(); } } #pragma textflag NOSPLIT void runtime·osyield(void) { runtime·usleep(1); } uintptr runtime·memlimit(void) { // NOTE(rsc): Could use getrlimit here, // like on FreeBSD or Linux, but Darwin doesn't enforce // ulimit -v, so it's unclear why we'd try to stay within // the limit. return 0; } void runtime·setsig(int32 i, GoSighandler *fn, bool restart) { SigactionT sa; runtime·memclr((byte*)&sa, sizeof sa); sa.sa_flags = SA_SIGINFO|SA_ONSTACK; if(restart) sa.sa_flags |= SA_RESTART; sa.sa_mask = ~(uintptr)0; sa.sa_tramp = (void*)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler *(uintptr*)sa.__sigaction_u = (uintptr)fn; runtime·sigaction(i, &sa, nil); } GoSighandler* runtime·getsig(int32 i) { SigactionT sa; runtime·memclr((byte*)&sa, sizeof sa); runtime·sigaction(i, nil, &sa); return *(void**)sa.__sigaction_u; } void runtime·signalstack(byte *p, int32 n) { StackT st; st.ss_sp = (void*)p; st.ss_size = n; st.ss_flags = 0; if(p == nil) st.ss_flags = SS_DISABLE; runtime·sigaltstack(&st, nil); } void runtime·unblocksignals(void) { runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil); } #pragma textflag NOSPLIT int8* runtime·signame(int32 sig) { return runtime·sigtab[sig].name; }