// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Software floating point interpretaton of ARM 7500 FP instructions. // The interpretation is not bit compatible with the 7500. // It uses true little-endian doubles, while the 7500 used mixed-endian. #include "runtime.h" #include "textflag.h" #define CPSR 14 #define FLAGS_N (1U << 31) #define FLAGS_Z (1U << 30) #define FLAGS_C (1U << 29) #define FLAGS_V (1U << 28) void runtime·abort(void); void runtime·sqrtC(uint64, uint64*); static uint32 trace = 0; static void fabort(void) { if (1) { runtime·printf("Unsupported floating point instruction\n"); runtime·abort(); } } static void putf(uint32 reg, uint32 val) { g->m->freglo[reg] = val; } static void putd(uint32 reg, uint64 val) { g->m->freglo[reg] = (uint32)val; g->m->freghi[reg] = (uint32)(val>>32); } static uint64 getd(uint32 reg) { return (uint64)g->m->freglo[reg] | ((uint64)g->m->freghi[reg]<<32); } static void fprint(void) { uint32 i; for (i = 0; i < 16; i++) { runtime·printf("\tf%d:\t%X %X\n", i, g->m->freghi[i], g->m->freglo[i]); } } static uint32 d2f(uint64 d) { uint32 x; runtime·f64to32c(d, &x); return x; } static uint64 f2d(uint32 f) { uint64 x; runtime·f32to64c(f, &x); return x; } static uint32 fstatus(bool nan, int32 cmp) { if(nan) return FLAGS_C | FLAGS_V; if(cmp == 0) return FLAGS_Z | FLAGS_C; if(cmp < 0) return FLAGS_N; return FLAGS_C; } // conditions array record the required CPSR cond field for the // first 5 pairs of conditional execution opcodes // higher 4 bits are must set, lower 4 bits are must clear #pragma dataflag NOPTR static const uint8 conditions[10/2] = { [0/2] = (FLAGS_Z >> 24) | 0, // 0: EQ (Z set), 1: NE (Z clear) [2/2] = (FLAGS_C >> 24) | 0, // 2: CS/HS (C set), 3: CC/LO (C clear) [4/2] = (FLAGS_N >> 24) | 0, // 4: MI (N set), 5: PL (N clear) [6/2] = (FLAGS_V >> 24) | 0, // 6: VS (V set), 7: VC (V clear) [8/2] = (FLAGS_C >> 24) | (FLAGS_Z >> 28), // 8: HI (C set and Z clear), 9: LS (C clear and Z set) }; #define FAULT (0x80000000U) // impossible PC offset // returns number of words that the fp instruction // is occupying, 0 if next instruction isn't float. static uint32 stepflt(uint32 *pc, uint32 *regs) { uint32 i, opc, regd, regm, regn, cpsr; int32 delta; uint32 *addr; uint64 uval; int64 sval; bool nan, ok; int32 cmp; M *m; // m is locked in vlop_arm.s, so g->m cannot change during this function call, // so caching it in a local variable is safe. m = g->m; i = *pc; if(trace) runtime·printf("stepflt %p %x (cpsr %x)\n", pc, i, regs[CPSR] >> 28); opc = i >> 28; if(opc == 14) // common case first goto execute; cpsr = regs[CPSR] >> 28; switch(opc) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: if(((cpsr & (conditions[opc/2] >> 4)) == (conditions[opc/2] >> 4)) && ((cpsr & (conditions[opc/2] & 0xf)) == 0)) { if(opc & 1) return 1; } else { if(!(opc & 1)) return 1; } break; case 10: // GE (N == V) case 11: // LT (N != V) if((cpsr & (FLAGS_N >> 28)) == (cpsr & (FLAGS_V >> 28))) { if(opc & 1) return 1; } else { if(!(opc & 1)) return 1; } break; case 12: // GT (N == V and Z == 0) case 13: // LE (N != V or Z == 1) if((cpsr & (FLAGS_N >> 28)) == (cpsr & (FLAGS_V >> 28)) && (cpsr & (FLAGS_Z >> 28)) == 0) { if(opc & 1) return 1; } else { if(!(opc & 1)) return 1; } break; case 14: // AL break; case 15: // shouldn't happen return 0; } if(trace) runtime·printf("conditional %x (cpsr %x) pass\n", opc, cpsr); i = (0xeU << 28) | (i & 0xfffffff); execute: // special cases if((i&0xfffff000) == 0xe59fb000) { // load r11 from pc-relative address. // might be part of a floating point move // (or might not, but no harm in simulating // one instruction too many). addr = (uint32*)((uint8*)pc + (i&0xfff) + 8); regs[11] = addr[0]; if(trace) runtime·printf("*** cpu R[%d] = *(%p) %x\n", 11, addr, regs[11]); return 1; } if(i == 0xe08bb00d) { // add sp to r11. // might be part of a large stack offset address // (or might not, but again no harm done). regs[11] += regs[13]; if(trace) runtime·printf("*** cpu R[%d] += R[%d] %x\n", 11, 13, regs[11]); return 1; } if(i == 0xeef1fa10) { regs[CPSR] = (regs[CPSR]&0x0fffffff) | m->fflag; if(trace) runtime·printf("*** fpsr R[CPSR] = F[CPSR] %x\n", regs[CPSR]); return 1; } if((i&0xff000000) == 0xea000000) { // unconditional branch // can happen in the middle of floating point // if the linker decides it is time to lay down // a sequence of instruction stream constants. delta = i&0xffffff; delta = (delta<<8) >> 8; // sign extend if(trace) runtime·printf("*** cpu PC += %x\n", (delta+2)*4); return delta+2; } goto stage1; stage1: // load/store regn is cpureg, regm is 8bit offset regd = i>>12 & 0xf; regn = i>>16 & 0xf; regm = (i & 0xff) << 2; // PLUS or MINUS ?? switch(i & 0xfff00f00) { default: goto stage2; case 0xed900a00: // single load addr = (uint32*)(regs[regn] + regm); if((uintptr)addr < 4096) { if(trace) runtime·printf("*** load @%p => fault\n", addr); return FAULT; } m->freglo[regd] = addr[0]; if(trace) runtime·printf("*** load F[%d] = %x\n", regd, m->freglo[regd]); break; case 0xed900b00: // double load addr = (uint32*)(regs[regn] + regm); if((uintptr)addr < 4096) { if(trace) runtime·printf("*** double load @%p => fault\n", addr); return FAULT; } m->freglo[regd] = addr[0]; m->freghi[regd] = addr[1]; if(trace) runtime·printf("*** load D[%d] = %x-%x\n", regd, m->freghi[regd], m->freglo[regd]); break; case 0xed800a00: // single store addr = (uint32*)(regs[regn] + regm); if((uintptr)addr < 4096) { if(trace) runtime·printf("*** store @%p => fault\n", addr); return FAULT; } addr[0] = m->freglo[regd]; if(trace) runtime·printf("*** *(%p) = %x\n", addr, addr[0]); break; case 0xed800b00: // double store addr = (uint32*)(regs[regn] + regm); if((uintptr)addr < 4096) { if(trace) runtime·printf("*** double store @%p => fault\n", addr); return FAULT; } addr[0] = m->freglo[regd]; addr[1] = m->freghi[regd]; if(trace) runtime·printf("*** *(%p) = %x-%x\n", addr, addr[1], addr[0]); break; } return 1; stage2: // regd, regm, regn are 4bit variables regm = i>>0 & 0xf; switch(i & 0xfff00ff0) { default: goto stage3; case 0xf3000110: // veor m->freglo[regd] = m->freglo[regm]^m->freglo[regn]; m->freghi[regd] = m->freghi[regm]^m->freghi[regn]; if(trace) runtime·printf("*** veor D[%d] = %x-%x\n", regd, m->freghi[regd], m->freglo[regd]); break; case 0xeeb00b00: // D[regd] = const(regn,regm) regn = (regn<<4) | regm; regm = 0x40000000UL; if(regn & 0x80) regm |= 0x80000000UL; if(regn & 0x40) regm ^= 0x7fc00000UL; regm |= (regn & 0x3f) << 16; m->freglo[regd] = 0; m->freghi[regd] = regm; if(trace) runtime·printf("*** immed D[%d] = %x-%x\n", regd, m->freghi[regd], m->freglo[regd]); break; case 0xeeb00a00: // F[regd] = const(regn,regm) regn = (regn<<4) | regm; regm = 0x40000000UL; if(regn & 0x80) regm |= 0x80000000UL; if(regn & 0x40) regm ^= 0x7e000000UL; regm |= (regn & 0x3f) << 19; m->freglo[regd] = regm; if(trace) runtime·printf("*** immed D[%d] = %x\n", regd, m->freglo[regd]); break; case 0xee300b00: // D[regd] = D[regn]+D[regm] runtime·fadd64c(getd(regn), getd(regm), &uval); putd(regd, uval); if(trace) runtime·printf("*** add D[%d] = D[%d]+D[%d] %x-%x\n", regd, regn, regm, m->freghi[regd], m->freglo[regd]); break; case 0xee300a00: // F[regd] = F[regn]+F[regm] runtime·fadd64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval); m->freglo[regd] = d2f(uval); if(trace) runtime·printf("*** add F[%d] = F[%d]+F[%d] %x\n", regd, regn, regm, m->freglo[regd]); break; case 0xee300b40: // D[regd] = D[regn]-D[regm] runtime·fsub64c(getd(regn), getd(regm), &uval); putd(regd, uval); if(trace) runtime·printf("*** sub D[%d] = D[%d]-D[%d] %x-%x\n", regd, regn, regm, m->freghi[regd], m->freglo[regd]); break; case 0xee300a40: // F[regd] = F[regn]-F[regm] runtime·fsub64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval); m->freglo[regd] = d2f(uval); if(trace) runtime·printf("*** sub F[%d] = F[%d]-F[%d] %x\n", regd, regn, regm, m->freglo[regd]); break; case 0xee200b00: // D[regd] = D[regn]*D[regm] runtime·fmul64c(getd(regn), getd(regm), &uval); putd(regd, uval); if(trace) runtime·printf("*** mul D[%d] = D[%d]*D[%d] %x-%x\n", regd, regn, regm, m->freghi[regd], m->freglo[regd]); break; case 0xee200a00: // F[regd] = F[regn]*F[regm] runtime·fmul64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval); m->freglo[regd] = d2f(uval); if(trace) runtime·printf("*** mul F[%d] = F[%d]*F[%d] %x\n", regd, regn, regm, m->freglo[regd]); break; case 0xee800b00: // D[regd] = D[regn]/D[regm] runtime·fdiv64c(getd(regn), getd(regm), &uval); putd(regd, uval); if(trace) runtime·printf("*** div D[%d] = D[%d]/D[%d] %x-%x\n", regd, regn, regm, m->freghi[regd], m->freglo[regd]); break; case 0xee800a00: // F[regd] = F[regn]/F[regm] runtime·fdiv64c(f2d(m->freglo[regn]), f2d(m->freglo[regm]), &uval); m->freglo[regd] = d2f(uval); if(trace) runtime·printf("*** div F[%d] = F[%d]/F[%d] %x\n", regd, regn, regm, m->freglo[regd]); break; case 0xee000b10: // S[regn] = R[regd] (MOVW) (regm ignored) m->freglo[regn] = regs[regd]; if(trace) runtime·printf("*** cpy S[%d] = R[%d] %x\n", regn, regd, m->freglo[regn]); break; case 0xee100b10: // R[regd] = S[regn] (MOVW) (regm ignored) regs[regd] = m->freglo[regn]; if(trace) runtime·printf("*** cpy R[%d] = S[%d] %x\n", regd, regn, regs[regd]); break; } return 1; stage3: // regd, regm are 4bit variables switch(i & 0xffff0ff0) { default: goto done; case 0xeeb00a40: // F[regd] = F[regm] (MOVF) m->freglo[regd] = m->freglo[regm]; if(trace) runtime·printf("*** F[%d] = F[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeeb00b40: // D[regd] = D[regm] (MOVD) m->freglo[regd] = m->freglo[regm]; m->freghi[regd] = m->freghi[regm]; if(trace) runtime·printf("*** D[%d] = D[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb10bc0: // D[regd] = sqrt D[regm] runtime·sqrtC(getd(regm), &uval); putd(regd, uval); if(trace) runtime·printf("*** D[%d] = sqrt D[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb00bc0: // D[regd] = abs D[regm] m->freglo[regd] = m->freglo[regm]; m->freghi[regd] = m->freghi[regm] & ((1<<31)-1); if(trace) runtime·printf("*** D[%d] = abs D[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb00ac0: // F[regd] = abs F[regm] m->freglo[regd] = m->freglo[regm] & ((1<<31)-1); if(trace) runtime·printf("*** F[%d] = abs F[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeeb40bc0: // D[regd] :: D[regm] (CMPD) runtime·fcmp64c(getd(regd), getd(regm), &cmp, &nan); m->fflag = fstatus(nan, cmp); if(trace) runtime·printf("*** cmp D[%d]::D[%d] %x\n", regd, regm, m->fflag); break; case 0xeeb40ac0: // F[regd] :: F[regm] (CMPF) runtime·fcmp64c(f2d(m->freglo[regd]), f2d(m->freglo[regm]), &cmp, &nan); m->fflag = fstatus(nan, cmp); if(trace) runtime·printf("*** cmp F[%d]::F[%d] %x\n", regd, regm, m->fflag); break; case 0xeeb70ac0: // D[regd] = F[regm] (MOVFD) putd(regd, f2d(m->freglo[regm])); if(trace) runtime·printf("*** f2d D[%d]=F[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb70bc0: // F[regd] = D[regm] (MOVDF) m->freglo[regd] = d2f(getd(regm)); if(trace) runtime·printf("*** d2f F[%d]=D[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeebd0ac0: // S[regd] = F[regm] (MOVFW) runtime·f64tointc(f2d(m->freglo[regm]), &sval, &ok); if(!ok || (int32)sval != sval) sval = 0; m->freglo[regd] = sval; if(trace) runtime·printf("*** fix S[%d]=F[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeebc0ac0: // S[regd] = F[regm] (MOVFW.U) runtime·f64tointc(f2d(m->freglo[regm]), &sval, &ok); if(!ok || (uint32)sval != sval) sval = 0; m->freglo[regd] = sval; if(trace) runtime·printf("*** fix unsigned S[%d]=F[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeebd0bc0: // S[regd] = D[regm] (MOVDW) runtime·f64tointc(getd(regm), &sval, &ok); if(!ok || (int32)sval != sval) sval = 0; m->freglo[regd] = sval; if(trace) runtime·printf("*** fix S[%d]=D[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeebc0bc0: // S[regd] = D[regm] (MOVDW.U) runtime·f64tointc(getd(regm), &sval, &ok); if(!ok || (uint32)sval != sval) sval = 0; m->freglo[regd] = sval; if(trace) runtime·printf("*** fix unsigned S[%d]=D[%d] %x\n", regd, regm, m->freglo[regd]); break; case 0xeeb80ac0: // D[regd] = S[regm] (MOVWF) cmp = m->freglo[regm]; if(cmp < 0) { runtime·fintto64c(-cmp, &uval); putf(regd, d2f(uval)); m->freglo[regd] ^= 0x80000000; } else { runtime·fintto64c(cmp, &uval); putf(regd, d2f(uval)); } if(trace) runtime·printf("*** float D[%d]=S[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb80a40: // D[regd] = S[regm] (MOVWF.U) runtime·fintto64c(m->freglo[regm], &uval); putf(regd, d2f(uval)); if(trace) runtime·printf("*** float unsigned D[%d]=S[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb80bc0: // D[regd] = S[regm] (MOVWD) cmp = m->freglo[regm]; if(cmp < 0) { runtime·fintto64c(-cmp, &uval); putd(regd, uval); m->freghi[regd] ^= 0x80000000; } else { runtime·fintto64c(cmp, &uval); putd(regd, uval); } if(trace) runtime·printf("*** float D[%d]=S[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; case 0xeeb80b40: // D[regd] = S[regm] (MOVWD.U) runtime·fintto64c(m->freglo[regm], &uval); putd(regd, uval); if(trace) runtime·printf("*** float unsigned D[%d]=S[%d] %x-%x\n", regd, regm, m->freghi[regd], m->freglo[regd]); break; } return 1; done: if((i&0xff000000) == 0xee000000 || (i&0xff000000) == 0xed000000) { runtime·printf("stepflt %p %x\n", pc, i); fabort(); } return 0; } typedef struct Sfregs Sfregs; // NOTE: These are all recorded as pointers because they are possibly live registers, // and we don't know what they contain. Recording them as pointers should be // safer than not. struct Sfregs { uint32 *r0; uint32 *r1; uint32 *r2; uint32 *r3; uint32 *r4; uint32 *r5; uint32 *r6; uint32 *r7; uint32 *r8; uint32 *r9; uint32 *r10; uint32 *r11; uint32 *r12; uint32 *r13; uint32 cspr; }; static void sfloat2(void); void _sfloatpanic(void); #pragma textflag NOSPLIT uint32* runtime·_sfloat2(uint32 *pc, Sfregs regs) { void (*fn)(void); g->m->ptrarg[0] = pc; g->m->ptrarg[1] = ®s; fn = sfloat2; runtime·onM(&fn); pc = g->m->ptrarg[0]; g->m->ptrarg[0] = nil; return pc; } static void sfloat2(void) { uint32 *pc; G *curg; Sfregs *regs; int32 skip; bool first; pc = g->m->ptrarg[0]; regs = g->m->ptrarg[1]; g->m->ptrarg[0] = nil; g->m->ptrarg[1] = nil; first = true; while(skip = stepflt(pc, (uint32*)®s->r0)) { first = false; if(skip == FAULT) { // Encountered bad address in store/load. // Record signal information and return to assembly // trampoline that fakes the call. enum { SIGSEGV = 11 }; curg = g->m->curg; curg->sig = SIGSEGV; curg->sigcode0 = 0; curg->sigcode1 = 0; curg->sigpc = (uint32)pc; pc = (uint32*)_sfloatpanic; break; } pc += skip; } if(first) { runtime·printf("sfloat2 %p %x\n", pc, *pc); fabort(); // not ok to fail first instruction } g->m->ptrarg[0] = pc; }