// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Fork, exec, wait, etc. package syscall import ( "runtime" "sync" "unsafe" ) // Lock synchronizing creation of new file descriptors with fork. // // We want the child in a fork/exec sequence to inherit only the // file descriptors we intend. To do that, we mark all file // descriptors close-on-exec and then, in the child, explicitly // unmark the ones we want the exec'ed program to keep. // Unix doesn't make this easy: there is, in general, no way to // allocate a new file descriptor close-on-exec. Instead you // have to allocate the descriptor and then mark it close-on-exec. // If a fork happens between those two events, the child's exec // will inherit an unwanted file descriptor. // // This lock solves that race: the create new fd/mark close-on-exec // operation is done holding ForkLock for reading, and the fork itself // is done holding ForkLock for writing. At least, that's the idea. // There are some complications. // // Some system calls that create new file descriptors can block // for arbitrarily long times: open on a hung NFS server or named // pipe, accept on a socket, and so on. We can't reasonably grab // the lock across those operations. // // It is worse to inherit some file descriptors than others. // If a non-malicious child accidentally inherits an open ordinary file, // that's not a big deal. On the other hand, if a long-lived child // accidentally inherits the write end of a pipe, then the reader // of that pipe will not see EOF until that child exits, potentially // causing the parent program to hang. This is a common problem // in threaded C programs that use popen. // // Luckily, the file descriptors that are most important not to // inherit are not the ones that can take an arbitrarily long time // to create: pipe returns instantly, and the net package uses // non-blocking I/O to accept on a listening socket. // The rules for which file descriptor-creating operations use the // ForkLock are as follows: // // 1) Pipe. Does not block. Use the ForkLock. // 2) Socket. Does not block. Use the ForkLock. // 3) Accept. If using non-blocking mode, use the ForkLock. // Otherwise, live with the race. // 4) Open. Can block. Use O_CLOEXEC if available (Linux). // Otherwise, live with the race. // 5) Dup. Does not block. Use the ForkLock. // On Linux, could use fcntl F_DUPFD_CLOEXEC // instead of the ForkLock, but only for dup(fd, -1). var ForkLock sync.RWMutex // StringSlicePtr is deprecated. Use SlicePtrFromStrings instead. // If any string contains a NUL byte this function panics instead // of returning an error. func StringSlicePtr(ss []string) []*byte { bb := make([]*byte, len(ss)+1) for i := 0; i < len(ss); i++ { bb[i] = StringBytePtr(ss[i]) } bb[len(ss)] = nil return bb } // SlicePtrFromStrings converts a slice of strings to a slice of // pointers to NUL-terminated byte slices. If any string contains // a NUL byte, it returns (nil, EINVAL). func SlicePtrFromStrings(ss []string) ([]*byte, error) { var err error bb := make([]*byte, len(ss)+1) for i := 0; i < len(ss); i++ { bb[i], err = BytePtrFromString(ss[i]) if err != nil { return nil, err } } bb[len(ss)] = nil return bb, nil } // readdirnames returns the names of files inside the directory represented by dirfd. func readdirnames(dirfd int) (names []string, err error) { names = make([]string, 0, 100) var buf [STATMAX]byte for { n, e := Read(dirfd, buf[:]) if e != nil { return nil, e } if n == 0 { break } for i := 0; i < n; { m, _ := gbit16(buf[i:]) m += 2 if m < STATFIXLEN { return nil, ErrBadStat } s, _, ok := gstring(buf[i+41:]) if !ok { return nil, ErrBadStat } names = append(names, s) i += int(m) } } return } // readdupdevice returns a list of currently opened fds (excluding stdin, stdout, stderr) from the dup device #d. // ForkLock should be write locked before calling, so that no new fds would be created while the fd list is being read. func readdupdevice() (fds []int, err error) { dupdevfd, err := Open("#d", O_RDONLY) if err != nil { return } defer Close(dupdevfd) names, err := readdirnames(dupdevfd) if err != nil { return } fds = make([]int, 0, len(names)/2) for _, name := range names { if n := len(name); n > 3 && name[n-3:n] == "ctl" { continue } fd := int(atoi([]byte(name))) switch fd { case 0, 1, 2, dupdevfd: continue } fds = append(fds, fd) } return } var startupFds []int // Plan 9 does not allow clearing the OCEXEC flag // from the underlying channel backing an open file descriptor, // therefore we store a list of already opened file descriptors // inside startupFds and skip them when manually closing descriptors // not meant to be passed to a child exec. func init() { startupFds, _ = readdupdevice() } // forkAndExecInChild forks the process, calling dup onto 0..len(fd) // and finally invoking exec(argv0, argvv, envv) in the child. // If a dup or exec fails, it writes the error string to pipe. // (The pipe write end is close-on-exec so if exec succeeds, it will be closed.) // // In the child, this function must not acquire any locks, because // they might have been locked at the time of the fork. This means // no rescheduling, no malloc calls, and no new stack segments. // The calls to RawSyscall are okay because they are assembly // functions that do not grow the stack. func forkAndExecInChild(argv0 *byte, argv []*byte, envv []envItem, dir *byte, attr *ProcAttr, fdsToClose []int, pipe int, rflag int) (pid int, err error) { // Declare all variables at top in case any // declarations require heap allocation (e.g., errbuf). var ( r1 uintptr nextfd int i int clearenv int envfd int errbuf [ERRMAX]byte ) // Guard against side effects of shuffling fds below. // Make sure that nextfd is beyond any currently open files so // that we can't run the risk of overwriting any of them. fd := make([]int, len(attr.Files)) nextfd = len(attr.Files) for i, ufd := range attr.Files { if nextfd < int(ufd) { nextfd = int(ufd) } fd[i] = int(ufd) } nextfd++ if envv != nil { clearenv = RFCENVG } // About to call fork. // No more allocation or calls of non-assembly functions. r1, _, _ = RawSyscall(SYS_RFORK, uintptr(RFPROC|RFFDG|RFREND|clearenv|rflag), 0, 0) if r1 != 0 { if int32(r1) == -1 { return 0, NewError(errstr()) } // parent; return PID return int(r1), nil } // Fork succeeded, now in child. // Close fds we don't need. for i = 0; i < len(fdsToClose); i++ { r1, _, _ = RawSyscall(SYS_CLOSE, uintptr(fdsToClose[i]), 0, 0) if int32(r1) == -1 { goto childerror } } if envv != nil { // Write new environment variables. for i = 0; i < len(envv); i++ { r1, _, _ = RawSyscall(SYS_CREATE, uintptr(unsafe.Pointer(envv[i].name)), uintptr(O_WRONLY), uintptr(0666)) if int32(r1) == -1 { goto childerror } envfd = int(r1) r1, _, _ = RawSyscall6(SYS_PWRITE, uintptr(envfd), uintptr(unsafe.Pointer(envv[i].value)), uintptr(envv[i].nvalue), ^uintptr(0), ^uintptr(0), 0) if int32(r1) == -1 || int(r1) != envv[i].nvalue { goto childerror } r1, _, _ = RawSyscall(SYS_CLOSE, uintptr(envfd), 0, 0) if int32(r1) == -1 { goto childerror } } } // Chdir if dir != nil { r1, _, _ = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0) if int32(r1) == -1 { goto childerror } } // Pass 1: look for fd[i] < i and move those up above len(fd) // so that pass 2 won't stomp on an fd it needs later. if pipe < nextfd { r1, _, _ = RawSyscall(SYS_DUP, uintptr(pipe), uintptr(nextfd), 0) if int32(r1) == -1 { goto childerror } pipe = nextfd nextfd++ } for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] < int(i) { r1, _, _ = RawSyscall(SYS_DUP, uintptr(fd[i]), uintptr(nextfd), 0) if int32(r1) == -1 { goto childerror } fd[i] = nextfd nextfd++ if nextfd == pipe { // don't stomp on pipe nextfd++ } } } // Pass 2: dup fd[i] down onto i. for i = 0; i < len(fd); i++ { if fd[i] == -1 { RawSyscall(SYS_CLOSE, uintptr(i), 0, 0) continue } if fd[i] == int(i) { continue } r1, _, _ = RawSyscall(SYS_DUP, uintptr(fd[i]), uintptr(i), 0) if int32(r1) == -1 { goto childerror } } // Pass 3: close fd[i] if it was moved in the previous pass. for i = 0; i < len(fd); i++ { if fd[i] >= 0 && fd[i] != int(i) { RawSyscall(SYS_CLOSE, uintptr(fd[i]), 0, 0) } } // Time to exec. r1, _, _ = RawSyscall(SYS_EXEC, uintptr(unsafe.Pointer(argv0)), uintptr(unsafe.Pointer(&argv[0])), 0) childerror: // send error string on pipe RawSyscall(SYS_ERRSTR, uintptr(unsafe.Pointer(&errbuf[0])), uintptr(len(errbuf)), 0) errbuf[len(errbuf)-1] = 0 i = 0 for i < len(errbuf) && errbuf[i] != 0 { i++ } RawSyscall6(SYS_PWRITE, uintptr(pipe), uintptr(unsafe.Pointer(&errbuf[0])), uintptr(i), ^uintptr(0), ^uintptr(0), 0) for { RawSyscall(SYS_EXITS, 0, 0, 0) } // Calling panic is not actually safe, // but the for loop above won't break // and this shuts up the compiler. panic("unreached") } func cexecPipe(p []int) error { e := Pipe(p) if e != nil { return e } fd, e := Open("#d/"+itoa(p[1]), O_CLOEXEC) if e != nil { Close(p[0]) Close(p[1]) return e } Close(fd) return nil } type envItem struct { name *byte value *byte nvalue int } type ProcAttr struct { Dir string // Current working directory. Env []string // Environment. Files []uintptr // File descriptors. Sys *SysProcAttr } type SysProcAttr struct { Rfork int // additional flags to pass to rfork } var zeroProcAttr ProcAttr var zeroSysProcAttr SysProcAttr func forkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { var ( p [2]int n int errbuf [ERRMAX]byte wmsg Waitmsg ) if attr == nil { attr = &zeroProcAttr } sys := attr.Sys if sys == nil { sys = &zeroSysProcAttr } p[0] = -1 p[1] = -1 // Convert args to C form. argv0p, err := BytePtrFromString(argv0) if err != nil { return 0, err } argvp, err := SlicePtrFromStrings(argv) if err != nil { return 0, err } var dir *byte if attr.Dir != "" { dir, err = BytePtrFromString(attr.Dir) if err != nil { return 0, err } } var envvParsed []envItem if attr.Env != nil { envvParsed = make([]envItem, 0, len(attr.Env)) for _, v := range attr.Env { i := 0 for i < len(v) && v[i] != '=' { i++ } envname, err := BytePtrFromString("/env/" + v[:i]) if err != nil { return 0, err } envvalue := make([]byte, len(v)-i) copy(envvalue, v[i+1:]) envvParsed = append(envvParsed, envItem{envname, &envvalue[0], len(v) - i}) } } // Acquire the fork lock to prevent other threads from creating new fds before we fork. ForkLock.Lock() // get a list of open fds, excluding stdin,stdout and stderr that need to be closed in the child. // no new fds can be created while we hold the ForkLock for writing. openFds, e := readdupdevice() if e != nil { ForkLock.Unlock() return 0, e } fdsToClose := make([]int, 0, len(openFds)) for _, fd := range openFds { doClose := true // exclude files opened at startup. for _, sfd := range startupFds { if fd == sfd { doClose = false break } } // exclude files explicitly requested by the caller. for _, rfd := range attr.Files { if fd == int(rfd) { doClose = false break } } if doClose { fdsToClose = append(fdsToClose, fd) } } // Allocate child status pipe close on exec. e = cexecPipe(p[:]) if e != nil { return 0, e } fdsToClose = append(fdsToClose, p[0]) // Kick off child. pid, err = forkAndExecInChild(argv0p, argvp, envvParsed, dir, attr, fdsToClose, p[1], sys.Rfork) if err != nil { if p[0] >= 0 { Close(p[0]) Close(p[1]) } ForkLock.Unlock() return 0, err } ForkLock.Unlock() // Read child error status from pipe. Close(p[1]) n, err = Read(p[0], errbuf[:]) Close(p[0]) if err != nil || n != 0 { if n != 0 { err = NewError(string(errbuf[:n])) } // Child failed; wait for it to exit, to make sure // the zombies don't accumulate. for wmsg.Pid != pid { Await(&wmsg) } return 0, err } // Read got EOF, so pipe closed on exec, so exec succeeded. return pid, nil } type waitErr struct { Waitmsg err error } var procs struct { sync.Mutex waits map[int]chan *waitErr } // startProcess starts a new goroutine, tied to the OS // thread, which runs the process and subsequently waits // for it to finish, communicating the process stats back // to any goroutines that may have been waiting on it. // // Such a dedicated goroutine is needed because on // Plan 9, only the parent thread can wait for a child, // whereas goroutines tend to jump OS threads (e.g., // between starting a process and running Wait(), the // goroutine may have been rescheduled). func startProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { type forkRet struct { pid int err error } forkc := make(chan forkRet, 1) go func() { runtime.LockOSThread() var ret forkRet ret.pid, ret.err = forkExec(argv0, argv, attr) // If fork fails there is nothing to wait for. if ret.err != nil || ret.pid == 0 { forkc <- ret return } waitc := make(chan *waitErr, 1) // Mark that the process is running. procs.Lock() if procs.waits == nil { procs.waits = make(map[int]chan *waitErr) } procs.waits[ret.pid] = waitc procs.Unlock() forkc <- ret var w waitErr for w.err == nil && w.Pid != ret.pid { w.err = Await(&w.Waitmsg) } waitc <- &w close(waitc) }() ret := <-forkc return ret.pid, ret.err } // Combination of fork and exec, careful to be thread safe. func ForkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { return startProcess(argv0, argv, attr) } // StartProcess wraps ForkExec for package os. func StartProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, handle uintptr, err error) { pid, err = startProcess(argv0, argv, attr) return pid, 0, err } // Ordinary exec. func Exec(argv0 string, argv []string, envv []string) (err error) { if envv != nil { r1, _, _ := RawSyscall(SYS_RFORK, RFCENVG, 0, 0) if int32(r1) == -1 { return NewError(errstr()) } for _, v := range envv { i := 0 for i < len(v) && v[i] != '=' { i++ } fd, e := Create("/env/"+v[:i], O_WRONLY, 0666) if e != nil { return e } _, e = Write(fd, []byte(v[i+1:])) if e != nil { Close(fd) return e } Close(fd) } } argv0p, err := BytePtrFromString(argv0) if err != nil { return err } argvp, err := SlicePtrFromStrings(argv) if err != nil { return err } _, _, e1 := Syscall(SYS_EXEC, uintptr(unsafe.Pointer(argv0p)), uintptr(unsafe.Pointer(&argvp[0])), 0) return e1 } // WaitProcess waits until the pid of a // running process is found in the queue of // wait messages. It is used in conjunction // with ForkExec/StartProcess to wait for a // running process to exit. func WaitProcess(pid int, w *Waitmsg) (err error) { procs.Lock() ch := procs.waits[pid] procs.Unlock() var wmsg *waitErr if ch != nil { wmsg = <-ch procs.Lock() if procs.waits[pid] == ch { delete(procs.waits, pid) } procs.Unlock() } if wmsg == nil { // ch was missing or ch is closed return NewError("process not found") } if wmsg.err != nil { return wmsg.err } if w != nil { *w = wmsg.Waitmsg } return nil }