#include "graph.h" #include "chm.h" #include "cmph_structs.h" #include "chm_structs.h" #include "hash.h" #include "bitbool.h" #include #include #include #include #include #include //#define DEBUG #include "debug.h" static int chm_gen_edges(cmph_config_t *mph); static void chm_traverse(chm_config_data_t *chm, cmph_uint8 *visited, cmph_uint32 v); chm_config_data_t *chm_config_new(void) { chm_config_data_t *chm = NULL; chm = (chm_config_data_t *)malloc(sizeof(chm_config_data_t)); assert(chm); memset(chm, 0, sizeof(chm_config_data_t)); chm->hashfuncs[0] = CMPH_HASH_JENKINS; chm->hashfuncs[1] = CMPH_HASH_JENKINS; chm->g = NULL; chm->graph = NULL; chm->hashes = NULL; return chm; } void chm_config_destroy(cmph_config_t *mph) { chm_config_data_t *data = (chm_config_data_t *)mph->data; DEBUGP("Destroying algorithm dependent data\n"); free(data); } void chm_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs) { chm_config_data_t *chm = (chm_config_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; cmph_uint32 i = 0; while(*hashptr != CMPH_HASH_COUNT) { if (i >= 2) break; //chm only uses two hash functions chm->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } cmph_t *chm_new(cmph_config_t *mph, double c) { cmph_t *mphf = NULL; chm_data_t *chmf = NULL; cmph_uint32 i; cmph_uint32 iterations = 20; cmph_uint8 *visited = NULL; chm_config_data_t *chm = (chm_config_data_t *)mph->data; chm->m = mph->key_source->nkeys; if (c == 0) c = 2.09; chm->n = (cmph_uint32)ceil(c * mph->key_source->nkeys); DEBUGP("m (edges): %u n (vertices): %u c: %f\n", chm->m, chm->n, c); chm->graph = graph_new(chm->n, chm->m); DEBUGP("Created graph\n"); chm->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3); for(i = 0; i < 3; ++i) chm->hashes[i] = NULL; //Mapping step if (mph->verbosity) { fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", chm->m, chm->n); } while(1) { int ok; chm->hashes[0] = hash_state_new(chm->hashfuncs[0], chm->n); chm->hashes[1] = hash_state_new(chm->hashfuncs[1], chm->n); ok = chm_gen_edges(mph); if (!ok) { --iterations; hash_state_destroy(chm->hashes[0]); chm->hashes[0] = NULL; hash_state_destroy(chm->hashes[1]); chm->hashes[1] = NULL; DEBUGP("%u iterations remaining\n", iterations); if (mph->verbosity) { fprintf(stderr, "Acyclic graph creation failure - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } if (iterations == 0) { graph_destroy(chm->graph); return NULL; } //Assignment step if (mph->verbosity) { fprintf(stderr, "Starting assignment step\n"); } DEBUGP("Assignment step\n"); visited = (cmph_uint8 *)malloc((size_t)(chm->n/8 + 1)); memset(visited, 0, (size_t)(chm->n/8 + 1)); free(chm->g); chm->g = (cmph_uint32 *)malloc(chm->n * sizeof(cmph_uint32)); assert(chm->g); for (i = 0; i < chm->n; ++i) { if (!GETBIT(visited,i)) { chm->g[i] = 0; chm_traverse(chm, visited, i); } } graph_destroy(chm->graph); free(visited); chm->graph = NULL; mphf = (cmph_t *)malloc(sizeof(cmph_t)); mphf->algo = mph->algo; chmf = (chm_data_t *)malloc(sizeof(chm_data_t)); chmf->g = chm->g; chm->g = NULL; //transfer memory ownership chmf->hashes = chm->hashes; chm->hashes = NULL; //transfer memory ownership chmf->n = chm->n; chmf->m = chm->m; mphf->data = chmf; mphf->size = chm->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static void chm_traverse(chm_config_data_t *chm, cmph_uint8 *visited, cmph_uint32 v) { graph_iterator_t it = graph_neighbors_it(chm->graph, v); cmph_uint32 neighbor = 0; SETBIT(visited,v); DEBUGP("Visiting vertex %u\n", v); while((neighbor = graph_next_neighbor(chm->graph, &it)) != GRAPH_NO_NEIGHBOR) { DEBUGP("Visiting neighbor %u\n", neighbor); if(GETBIT(visited,neighbor)) continue; DEBUGP("Visiting neighbor %u\n", neighbor); DEBUGP("Visiting edge %u->%u with id %u\n", v, neighbor, graph_edge_id(chm->graph, v, neighbor)); chm->g[neighbor] = graph_edge_id(chm->graph, v, neighbor) - chm->g[v]; DEBUGP("g is %u (%u - %u mod %u)\n", chm->g[neighbor], graph_edge_id(chm->graph, v, neighbor), chm->g[v], chm->m); chm_traverse(chm, visited, neighbor); } } static int chm_gen_edges(cmph_config_t *mph) { cmph_uint32 e; chm_config_data_t *chm = (chm_config_data_t *)mph->data; int cycles = 0; DEBUGP("Generating edges for %u vertices with hash functions %s and %s\n", chm->n, cmph_hash_names[chm->hashfuncs[0]], cmph_hash_names[chm->hashfuncs[1]]); graph_clear_edges(chm->graph); mph->key_source->rewind(mph->key_source->data); for (e = 0; e < mph->key_source->nkeys; ++e) { cmph_uint32 h1, h2; cmph_uint32 keylen; char *key; mph->key_source->read(mph->key_source->data, &key, &keylen); h1 = hash(chm->hashes[0], key, keylen) % chm->n; h2 = hash(chm->hashes[1], key, keylen) % chm->n; if (h1 == h2) if (++h2 >= chm->n) h2 = 0; if (h1 == h2) { if (mph->verbosity) fprintf(stderr, "Self loop for key %u\n", e); mph->key_source->dispose(mph->key_source->data, key, keylen); return 0; } DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key); mph->key_source->dispose(mph->key_source->data, key, keylen); graph_add_edge(chm->graph, h1, h2); } cycles = graph_is_cyclic(chm->graph); if (mph->verbosity && cycles) fprintf(stderr, "Cyclic graph generated\n"); DEBUGP("Looking for cycles: %u\n", cycles); return ! cycles; } int chm_dump(cmph_t *mphf, FILE *fd) { char *buf = NULL; cmph_uint32 buflen; cmph_uint32 two = 2; //number of hash functions chm_data_t *data = (chm_data_t *)mphf->data; register size_t nbytes; __cmph_dump(mphf, fd); nbytes = fwrite(&two, sizeof(cmph_uint32), (size_t)1, fd); hash_state_dump(data->hashes[0], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd); nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd); free(buf); hash_state_dump(data->hashes[1], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); nbytes = fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd); nbytes = fwrite(buf, (size_t)buflen, (size_t)1, fd); free(buf); nbytes = fwrite(&(data->n), sizeof(cmph_uint32), (size_t)1, fd); nbytes = fwrite(&(data->m), sizeof(cmph_uint32), (size_t)1, fd); nbytes = fwrite(data->g, sizeof(cmph_uint32)*data->n, (size_t)1, fd); if (nbytes == 0 && ferror(fd)) { fprintf(stderr, "ERROR: %s\n", strerror(errno)); return 0; } /* #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]); fprintf(stderr, "\n"); #endif*/ return 1; } void chm_load(FILE *f, cmph_t *mphf) { cmph_uint32 nhashes; char *buf = NULL; cmph_uint32 buflen; cmph_uint32 i; chm_data_t *chm = (chm_data_t *)malloc(sizeof(chm_data_t)); register size_t nbytes; DEBUGP("Loading chm mphf\n"); mphf->data = chm; nbytes = fread(&nhashes, sizeof(cmph_uint32), (size_t)1, f); chm->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1)); chm->hashes[nhashes] = NULL; DEBUGP("Reading %u hashes\n", nhashes); for (i = 0; i < nhashes; ++i) { hash_state_t *state = NULL; nbytes = fread(&buflen, sizeof(cmph_uint32), (size_t)1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc((size_t)buflen); nbytes = fread(buf, (size_t)buflen, (size_t)1, f); state = hash_state_load(buf, buflen); chm->hashes[i] = state; free(buf); } DEBUGP("Reading m and n\n"); nbytes = fread(&(chm->n), sizeof(cmph_uint32), (size_t)1, f); nbytes = fread(&(chm->m), sizeof(cmph_uint32), (size_t)1, f); chm->g = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*chm->n); nbytes = fread(chm->g, chm->n*sizeof(cmph_uint32), (size_t)1, f); if (nbytes == 0 && ferror(f)) { fprintf(stderr, "ERROR: %s\n", strerror(errno)); return; } #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < chm->n; ++i) fprintf(stderr, "%u ", chm->g[i]); fprintf(stderr, "\n"); #endif return; } cmph_uint32 chm_search(cmph_t *mphf, const char *key, cmph_uint32 keylen) { chm_data_t *chm = mphf->data; cmph_uint32 h1 = hash(chm->hashes[0], key, keylen) % chm->n; cmph_uint32 h2 = hash(chm->hashes[1], key, keylen) % chm->n; DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2); if (h1 == h2 && ++h2 >= chm->n) h2 = 0; DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, chm->g[h1], chm->g[h2], chm->m); return (chm->g[h1] + chm->g[h2]) % chm->m; } void chm_destroy(cmph_t *mphf) { chm_data_t *data = (chm_data_t *)mphf->data; free(data->g); hash_state_destroy(data->hashes[0]); hash_state_destroy(data->hashes[1]); free(data->hashes); free(data); free(mphf); } /** \fn void chm_pack(cmph_t *mphf, void *packed_mphf); * \brief Support the ability to pack a perfect hash function into a preallocated contiguous memory space pointed by packed_mphf. * \param mphf pointer to the resulting mphf * \param packed_mphf pointer to the contiguous memory area used to store the resulting mphf. The size of packed_mphf must be at least cmph_packed_size() */ void chm_pack(cmph_t *mphf, void *packed_mphf) { chm_data_t *data = (chm_data_t *)mphf->data; cmph_uint8 * ptr = packed_mphf; CMPH_HASH h2_type; // packing h1 type CMPH_HASH h1_type = hash_get_type(data->hashes[0]); *((cmph_uint32 *) ptr) = h1_type; ptr += sizeof(cmph_uint32); // packing h1 hash_state_pack(data->hashes[0], ptr); ptr += hash_state_packed_size(h1_type); // packing h2 type h2_type = hash_get_type(data->hashes[1]); *((cmph_uint32 *) ptr) = h2_type; ptr += sizeof(cmph_uint32); // packing h2 hash_state_pack(data->hashes[1], ptr); ptr += hash_state_packed_size(h2_type); // packing n *((cmph_uint32 *) ptr) = data->n; ptr += sizeof(data->n); // packing m *((cmph_uint32 *) ptr) = data->m; ptr += sizeof(data->m); // packing g memcpy(ptr, data->g, sizeof(cmph_uint32)*data->n); } /** \fn cmph_uint32 chm_packed_size(cmph_t *mphf); * \brief Return the amount of space needed to pack mphf. * \param mphf pointer to a mphf * \return the size of the packed function or zero for failures */ cmph_uint32 chm_packed_size(cmph_t *mphf) { chm_data_t *data = (chm_data_t *)mphf->data; CMPH_HASH h1_type = hash_get_type(data->hashes[0]); CMPH_HASH h2_type = hash_get_type(data->hashes[1]); return (cmph_uint32)(sizeof(CMPH_ALGO) + hash_state_packed_size(h1_type) + hash_state_packed_size(h2_type) + 4*sizeof(cmph_uint32) + sizeof(cmph_uint32)*data->n); } /** cmph_uint32 chm_search(void *packed_mphf, const char *key, cmph_uint32 keylen); * \brief Use the packed mphf to do a search. * \param packed_mphf pointer to the packed mphf * \param key key to be hashed * \param keylen key legth in bytes * \return The mphf value */ cmph_uint32 chm_search_packed(void *packed_mphf, const char *key, cmph_uint32 keylen) { register cmph_uint8 *h1_ptr = packed_mphf; register CMPH_HASH h1_type = *((cmph_uint32 *)h1_ptr); register cmph_uint8 *h2_ptr; register CMPH_HASH h2_type; register cmph_uint32 *g_ptr; register cmph_uint32 n, m, h1, h2; h1_ptr += 4; h2_ptr = h1_ptr + hash_state_packed_size(h1_type); h2_type = *((cmph_uint32 *)h2_ptr); h2_ptr += 4; g_ptr = (cmph_uint32 *)(h2_ptr + hash_state_packed_size(h2_type)); n = *g_ptr++; m = *g_ptr++; h1 = hash_packed(h1_ptr, h1_type, key, keylen) % n; h2 = hash_packed(h2_ptr, h2_type, key, keylen) % n; DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2); if (h1 == h2 && ++h2 >= n) h2 = 0; DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, g_ptr[h1], g_ptr[h2], m); return (g_ptr[h1] + g_ptr[h2]) % m; }