#include "graph.h" #include "hashtree.h" #include "cmph_structs.h" #include "hastree_structs.h" #include "hash.h" #include "bitbool.h" #include #include #include #include #include //#define DEBUG #include "debug.h" hashtree_config_data_t *hashtree_config_new() { hashtree_config_data_t *hashtree; hashtree = (hashtree_config_data_t *)malloc(sizeof(hashtree_config_data_t)); if (!hashtree) return NULL; memset(hashtree, 0, sizeof(hashtree_config_data_t)); hashtree->hashfuncs[0] = CMPH_HASH_JENKINS; hashtree->hashfuncs[1] = CMPH_HASH_JENKINS; hashtree->hashfuncs[2] = CMPH_HASH_JENKINS; hashtree->memory = 32 * 1024 * 1024; return hashtree; } void hashtree_config_destroy(cmph_config_t *mph) { hashtree_config_data_t *data = (hashtree_config_data_t *)mph->data; DEBUGP("Destroying algorithm dependent data\n"); free(data); } void hashtree_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs) { hashtree_config_data_t *hashtree = (hashtree_config_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; cmph_uint32 i = 0; while(*hashptr != CMPH_HASH_COUNT) { if (i >= 3) break; //hashtree only uses three hash functions hashtree->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } cmph_t *hashtree_new(cmph_config_t *mph, double c) { cmph_t *mphf = NULL; hashtree_data_t *hashtreef = NULL; cmph_uint32 i; cmph_uint32 iterations = 20; cmph_uint8 *visited = NULL; hashtree_config_data_t *hashtree = (hashtree_config_data_t *)mph->data; hashtree->m = mph->key_source->nkeys; hashtree->n = ceil(c * mph->key_source->nkeys); DEBUGP("m (edges): %u n (vertices): %u c: %f\n", hashtree->m, hashtree->n, c); hashtree->graph = graph_new(hashtree->n, hashtree->m); DEBUGP("Created graph\n"); hashtree->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3); for(i = 0; i < 3; ++i) hashtree->hashes[i] = NULL; //Mapping step if (mph->verbosity) { fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", hashtree->m, hashtree->n); } while(1) { int ok; hashtree->hashes[0] = hash_state_new(hashtree->hashfuncs[0], hashtree->n); hashtree->hashes[1] = hash_state_new(hashtree->hashfuncs[1], hashtree->n); ok = hashtree_gen_edges(mph); if (!ok) { --iterations; hash_state_destroy(hashtree->hashes[0]); hashtree->hashes[0] = NULL; hash_state_destroy(hashtree->hashes[1]); hashtree->hashes[1] = NULL; DEBUGP("%u iterations remaining\n", iterations); if (mph->verbosity) { fprintf(stderr, "Acyclic graph creation failure - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } if (iterations == 0) { graph_destroy(hashtree->graph); return NULL; } //Assignment step if (mph->verbosity) { fprintf(stderr, "Starting assignment step\n"); } DEBUGP("Assignment step\n"); visited = (char *)malloc(hashtree->n/8 + 1); memset(visited, 0, hashtree->n/8 + 1); free(hashtree->g); hashtree->g = (cmph_uint32 *)malloc(hashtree->n * sizeof(cmph_uint32)); assert(hashtree->g); for (i = 0; i < hashtree->n; ++i) { if (!GETBIT(visited,i)) { hashtree->g[i] = 0; hashtree_traverse(hashtree, visited, i); } } graph_destroy(hashtree->graph); free(visited); hashtree->graph = NULL; mphf = (cmph_t *)malloc(sizeof(cmph_t)); mphf->algo = mph->algo; hashtreef = (hashtree_data_t *)malloc(sizeof(hashtree_data_t)); hashtreef->g = hashtree->g; hashtree->g = NULL; //transfer memory ownership hashtreef->hashes = hashtree->hashes; hashtree->hashes = NULL; //transfer memory ownership hashtreef->n = hashtree->n; hashtreef->m = hashtree->m; mphf->data = hashtreef; mphf->size = hashtree->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static void hashtree_traverse(hashtree_config_data_t *hashtree, cmph_uint8 *visited, cmph_uint32 v) { graph_iterator_t it = graph_neighbors_it(hashtree->graph, v); cmph_uint32 neighbor = 0; SETBIT(visited,v); DEBUGP("Visiting vertex %u\n", v); while((neighbor = graph_next_neighbor(hashtree->graph, &it)) != GRAPH_NO_NEIGHBOR) { DEBUGP("Visiting neighbor %u\n", neighbor); if(GETBIT(visited,neighbor)) continue; DEBUGP("Visiting neighbor %u\n", neighbor); DEBUGP("Visiting edge %u->%u with id %u\n", v, neighbor, graph_edge_id(hashtree->graph, v, neighbor)); hashtree->g[neighbor] = graph_edge_id(hashtree->graph, v, neighbor) - hashtree->g[v]; DEBUGP("g is %u (%u - %u mod %u)\n", hashtree->g[neighbor], graph_edge_id(hashtree->graph, v, neighbor), hashtree->g[v], hashtree->m); hashtree_traverse(hashtree, visited, neighbor); } } static int hashtree_gen_edges(cmph_config_t *mph) { cmph_uint32 e; hashtree_config_data_t *hashtree = (hashtree_config_data_t *)mph->data; int cycles = 0; DEBUGP("Generating edges for %u vertices with hash functions %s and %s\n", hashtree->n, cmph_hash_names[hashtree->hashfuncs[0]], cmph_hash_names[hashtree->hashfuncs[1]]); graph_clear_edges(hashtree->graph); mph->key_source->rewind(mph->key_source->data); for (e = 0; e < mph->key_source->nkeys; ++e) { cmph_uint32 h1, h2; cmph_uint32 keylen; char *key; mph->key_source->read(mph->key_source->data, &key, &keylen); h1 = hash(hashtree->hashes[0], key, keylen) % hashtree->n; h2 = hash(hashtree->hashes[1], key, keylen) % hashtree->n; if (h1 == h2) if (++h2 >= hashtree->n) h2 = 0; if (h1 == h2) { if (mph->verbosity) fprintf(stderr, "Self loop for key %u\n", e); mph->key_source->dispose(mph->key_source->data, key, keylen); return 0; } DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key); mph->key_source->dispose(mph->key_source->data, key, keylen); graph_add_edge(hashtree->graph, h1, h2); } cycles = graph_is_cyclic(hashtree->graph); if (mph->verbosity && cycles) fprintf(stderr, "Cyclic graph generated\n"); DEBUGP("Looking for cycles: %u\n", cycles); return ! cycles; } int hashtree_dump(cmph_t *mphf, FILE *fd) { char *buf = NULL; cmph_uint32 buflen; cmph_uint32 two = 2; //number of hash functions hashtree_data_t *data = (hashtree_data_t *)mphf->data; __cmph_dump(mphf, fd); fwrite(&two, sizeof(cmph_uint32), 1, fd); hash_state_dump(data->hashes[0], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); hash_state_dump(data->hashes[1], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); fwrite(&(data->n), sizeof(cmph_uint32), 1, fd); fwrite(&(data->m), sizeof(cmph_uint32), 1, fd); fwrite(data->g, sizeof(cmph_uint32)*data->n, 1, fd); #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]); fprintf(stderr, "\n"); #endif return 1; } void hashtree_load(FILE *f, cmph_t *mphf) { cmph_uint32 nhashes; char *buf = NULL; cmph_uint32 buflen; cmph_uint32 i; hashtree_data_t *hashtree = (hashtree_data_t *)malloc(sizeof(hashtree_data_t)); DEBUGP("Loading hashtree mphf\n"); mphf->data = hashtree; fread(&nhashes, sizeof(cmph_uint32), 1, f); hashtree->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1)); hashtree->hashes[nhashes] = NULL; DEBUGP("Reading %u hashes\n", nhashes); for (i = 0; i < nhashes; ++i) { hash_state_t *state = NULL; fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); state = hash_state_load(buf, buflen); hashtree->hashes[i] = state; free(buf); } DEBUGP("Reading m and n\n"); fread(&(hashtree->n), sizeof(cmph_uint32), 1, f); fread(&(hashtree->m), sizeof(cmph_uint32), 1, f); hashtree->g = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*hashtree->n); fread(hashtree->g, hashtree->n*sizeof(cmph_uint32), 1, f); #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < hashtree->n; ++i) fprintf(stderr, "%u ", hashtree->g[i]); fprintf(stderr, "\n"); #endif return; } cmph_uint32 hashtree_search(cmph_t *mphf, const char *key, cmph_uint32 keylen) { hashtree_data_t *hashtree = mphf->data; cmph_uint32 h1 = hash(hashtree->hashes[0], key, keylen) % hashtree->n; cmph_uint32 h2 = hash(hashtree->hashes[1], key, keylen) % hashtree->n; DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2); if (h1 == h2 && ++h2 >= hashtree->n) h2 = 0; DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, hashtree->g[h1], hashtree->g[h2], hashtree->m); return (hashtree->g[h1] + hashtree->g[h2]) % hashtree->m; } void hashtree_destroy(cmph_t *mphf) { hashtree_data_t *data = (hashtree_data_t *)mphf->data; free(data->g); hash_state_destroy(data->hashes[0]); hash_state_destroy(data->hashes[1]); free(data->hashes); free(data); free(mphf); }