summaryrefslogtreecommitdiff
path: root/include/gmock/gmock-generated-matchers.h.pump
blob: 653a2e87cd0717cfd784b101eff04c28c2c1337a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
$$ -*- mode: c++; -*-
$$ This is a Pump source file.  Please use Pump to convert it to
$$ gmock-generated-variadic-actions.h.
$$
$var n = 10  $$ The maximum arity we support.
$$ }} This line fixes auto-indentation of the following code in Emacs.
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic matchers.

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_

#include <sstream>
#include <string>
#include <vector>
#include <gmock/gmock-matchers.h>
#include <gmock/gmock-printers.h>

namespace testing {
namespace internal {

$range i 0..n-1

// The type of the i-th (0-based) field of Tuple.
#define GMOCK_FIELD_TYPE_(Tuple, i) \
    typename ::std::tr1::tuple_element<i, Tuple>::type

// TupleFields<Tuple, k0, ..., kn> is for selecting fields from a
// tuple of type Tuple.  It has two members:
//
//   type: a tuple type whose i-th field is the ki-th field of Tuple.
//   GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple.
//
// For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have:
//
//   type is tuple<int, bool>, and
//   GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true).

template <class Tuple$for i [[, int k$i = -1]]>
class TupleFields;

// This generic version is used when there are $n selectors.
template <class Tuple$for i [[, int k$i]]>
class TupleFields {
 public:
  typedef ::std::tr1::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type;
  static type GetSelectedFields(const Tuple& t) {
    using ::std::tr1::get;
    return type($for i, [[get<k$i>(t)]]);
  }
};

// The following specialization is used for 0 ~ $(n-1) selectors.

$for i [[
$$ }}}
$range j 0..i-1
$range k 0..n-1

template <class Tuple$for j [[, int k$j]]>
class TupleFields<Tuple, $for k, [[$if k < i [[k$k]] $else [[-1]]]]> {
 public:
  typedef ::std::tr1::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type;
  static type GetSelectedFields(const Tuple& t) {
    using ::std::tr1::get;
    return type($for j, [[get<k$j>(t)]]);
  }
};

]]

#undef GMOCK_FIELD_TYPE_

// Implements the Args() matcher.

$var ks = [[$for i, [[k$i]]]]
template <class ArgsTuple$for i [[, int k$i = -1]]>
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
 public:
  // ArgsTuple may have top-level const or reference modifiers.
  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(ArgsTuple)) RawArgsTuple;
  typedef typename internal::TupleFields<RawArgsTuple, $ks>::type SelectedArgs;
  typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher;

  template <typename InnerMatcher>
  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
      : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}

  virtual bool Matches(ArgsTuple args) const {
    return inner_matcher_.Matches(GetSelectedArgs(args));
  }

  virtual void DescribeTo(::std::ostream* os) const {
    PrintIndices(os);
    inner_matcher_.DescribeTo(os);
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    PrintIndices(os);
    inner_matcher_.DescribeNegationTo(os);
  }

  virtual void ExplainMatchResultTo(ArgsTuple args,
                                    ::std::ostream* os) const {
    inner_matcher_.ExplainMatchResultTo(GetSelectedArgs(args), os);
  }

 private:
  static SelectedArgs GetSelectedArgs(ArgsTuple args) {
    return TupleFields<RawArgsTuple, $ks>::GetSelectedFields(args);
  }

  // Prints the indices of the selected fields.
  static void PrintIndices(::std::ostream* os) {
    *os << "are a tuple whose fields (";
    const int indices[$n] = { $ks };
    for (int i = 0; i < $n; i++) {
      if (indices[i] < 0)
        break;

      if (i >= 1)
        *os << ", ";

      *os << "#" << indices[i];
    }
    *os << ") ";
  }

  const MonomorphicInnerMatcher inner_matcher_;
};

template <class InnerMatcher$for i [[, int k$i = -1]]>
class ArgsMatcher {
 public:
  explicit ArgsMatcher(const InnerMatcher& inner_matcher)
      : inner_matcher_(inner_matcher) {}

  template <typename ArgsTuple>
  operator Matcher<ArgsTuple>() const {
    return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, $ks>(inner_matcher_));
  }

  const InnerMatcher inner_matcher_;
};

// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
 public:
  typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
  typedef internal::StlContainerView<RawContainer> View;
  typedef typename View::type StlContainer;
  typedef typename View::const_reference StlContainerReference;
  typedef typename StlContainer::value_type Element;

  // Constructs the matcher from a sequence of element values or
  // element matchers.
  template <typename InputIter>
  ElementsAreMatcherImpl(InputIter first, size_t count) {
    matchers_.reserve(count);
    InputIter it = first;
    for (size_t i = 0; i != count; ++i, ++it) {
      matchers_.push_back(MatcherCast<const Element&>(*it));
    }
  }

  // Returns true iff 'container' matches.
  virtual bool Matches(Container container) const {
    StlContainerReference stl_container = View::ConstReference(container);
    if (stl_container.size() != count())
      return false;

    typename StlContainer::const_iterator it = stl_container.begin();
    for (size_t i = 0; i != count();  ++it, ++i) {
      if (!matchers_[i].Matches(*it))
        return false;
    }

    return true;
  }

  // Describes what this matcher does.
  virtual void DescribeTo(::std::ostream* os) const {
    if (count() == 0) {
      *os << "is empty";
    } else if (count() == 1) {
      *os << "has 1 element that ";
      matchers_[0].DescribeTo(os);
    } else {
      *os << "has " << Elements(count()) << " where\n";
      for (size_t i = 0; i != count(); ++i) {
        *os << "element " << i << " ";
        matchers_[i].DescribeTo(os);
        if (i + 1 < count()) {
          *os << ",\n";
        }
      }
    }
  }

  // Describes what the negation of this matcher does.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    if (count() == 0) {
      *os << "is not empty";
      return;
    }

    *os << "does not have " << Elements(count()) << ", or\n";
    for (size_t i = 0; i != count(); ++i) {
      *os << "element " << i << " ";
      matchers_[i].DescribeNegationTo(os);
      if (i + 1 < count()) {
        *os << ", or\n";
      }
    }
  }

  // Explains why 'container' matches, or doesn't match, this matcher.
  virtual void ExplainMatchResultTo(Container container,
                                    ::std::ostream* os) const {
    StlContainerReference stl_container = View::ConstReference(container);
    if (Matches(container)) {
      // We need to explain why *each* element matches (the obvious
      // ones can be skipped).

      bool reason_printed = false;
      typename StlContainer::const_iterator it = stl_container.begin();
      for (size_t i = 0; i != count(); ++it, ++i) {
        ::std::stringstream ss;
        matchers_[i].ExplainMatchResultTo(*it, &ss);

        const string s = ss.str();
        if (!s.empty()) {
          if (reason_printed) {
            *os << ",\n";
          }
          *os << "element " << i << " " << s;
          reason_printed = true;
        }
      }
    } else {
      // We need to explain why the container doesn't match.
      const size_t actual_count = stl_container.size();
      if (actual_count != count()) {
        // The element count doesn't match.  If the container is
        // empty, there's no need to explain anything as Google Mock
        // already prints the empty container.  Otherwise we just need
        // to show how many elements there actually are.
        if (actual_count != 0) {
          *os << "has " << Elements(actual_count);
        }
        return;
      }

      // The container has the right size but at least one element
      // doesn't match expectation.  We need to find this element and
      // explain why it doesn't match.
      typename StlContainer::const_iterator it = stl_container.begin();
      for (size_t i = 0; i != count(); ++it, ++i) {
        if (matchers_[i].Matches(*it)) {
          continue;
        }

        *os << "element " << i << " doesn't match";

        ::std::stringstream ss;
        matchers_[i].ExplainMatchResultTo(*it, &ss);
        const string s = ss.str();
        if (!s.empty()) {
          *os << " (" << s << ")";
        }
        return;
      }
    }
  }

 private:
  static Message Elements(size_t count) {
    return Message() << count << (count == 1 ? " element" : " elements");
  }

  size_t count() const { return matchers_.size(); }
  std::vector<Matcher<const Element&> > matchers_;
};

// Implements ElementsAre() of 0-10 arguments.

class ElementsAreMatcher0 {
 public:
  ElementsAreMatcher0() {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
        RawContainer;
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
        Element;

    const Matcher<const Element&>* const matchers = NULL;
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
  }
};


$range i 1..n
$for i [[
$range j 1..i
template <$for j, [[typename T$j]]>
class ElementsAreMatcher$i {
 public:
  $if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]]
      $for j, [[e$j[[]]_(e$j)]] {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
        RawContainer;
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
        Element;

    const Matcher<const Element&> matchers[] = {

$for j [[
      MatcherCast<const Element&>(e$j[[]]_),

]]
    };

    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
  }

 private:

$for j [[
  const T$j& e$j[[]]_;

]]
};


]]
// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
 public:
  ElementsAreArrayMatcher(const T* first, size_t count) :
      first_(first), count_(count) {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
        RawContainer;
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
        Element;

    return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
  }

 private:
  const T* const first_;
  const size_t count_;
};

}  // namespace internal

// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher.  C++ doesn't support default
// arguments for function templates, so we have to overload it.

$range i 0..n
$for i [[
$range j 1..i
template <$for j [[int k$j, ]]typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>
Args(const InnerMatcher& matcher) {
  return internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>(matcher);
}


]]
// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with
// (n + 1) elements, where the i-th element in the container must
// match the i-th argument in the list.  Each argument of
// ElementsAre() can be either a value or a matcher.  We support up to
// $n arguments.
//
// NOTE: Since ElementsAre() cares about the order of the elements, it
// must not be used with containers whose elements's order is
// undefined (e.g. hash_map).

inline internal::ElementsAreMatcher0 ElementsAre() {
  return internal::ElementsAreMatcher0();
}

$range i 1..n
$for i [[
$range j 1..i

template <$for j, [[typename T$j]]>
inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) {
  return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]);
}

]]

// ElementsAreArray(array) and ElementAreArray(array, count) are like
// ElementsAre(), except that they take an array of values or
// matchers.  The former form infers the size of 'array', which must
// be a static C-style array.  In the latter form, 'array' can either
// be a static array or a pointer to a dynamically created array.

template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
    const T* first, size_t count) {
  return internal::ElementsAreArrayMatcher<T>(first, count);
}

template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(const T (&array)[N]) {
  return internal::ElementsAreArrayMatcher<T>(array, N);
}

}  // namespace testing
$$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not
$$   // show up in the generated code.


// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.  The syntax:
//
//   MATCHER(name, description_string) { statements; }
//
// will define a matcher with the given name that executes the
// statements, which must return a bool to indicate if the match
// succeeds.  Inside the statements, you can refer to the value being
// matched by 'arg', and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails.  Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects.  It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
//   MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
//   // Expects mock_foo.Bar(n) to be called where n is even.
//   EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
//   // Verifies that the value of some_expression is even.
//   EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
//   Value of: some_expression
//   Expected: is even
//     Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you).  This allows the matcher to be
// polymorphic.  For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool.  In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Sometimes you'll want to parameterize the matcher.  For that you
// can use another macro:
//
//   MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
//   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
//   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
//   Value of: Blah("a")
//   Expected: has absolute value 10
//     Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'.  For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// When defining a parameterized matcher, you can use Python-style
// interpolations in the description string to refer to the parameter
// values.  We support the following syntax currently:
//
//   %%       a single '%' character
//   %(*)s    all parameters of the matcher printed as a tuple
//   %(foo)s  value of the matcher parameter named 'foo'
//
// For example,
//
//   MATCHER_P2(InClosedRange, low, hi, "is in range [%(low)s, %(hi)s]") {
//     return low <= arg && arg <= hi;
//   }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//
// would generate a failure that contains the message:
//
//   Expected: is in range [4, 6]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple.  For example,
//
//   MATCHER_P2(InClosedRange, low, hi, "") { ... }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//
// would generate a failure that contains the text:
//
//   Expected: in closed range (4, 6)
//
// For the purpose of typing, you can view
//
//   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
//   template <typename p1_type, ..., typename pk_type>
//   FooMatcherPk<p1_type, ..., pk_type>
//   Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you.  If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false).  As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used.  You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable.  If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// You can overload matchers with different numbers of parameters:
//
//   MATCHER_P(Blah, a, description_string1) { ... }
//   MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// While it's tempting to always use the MATCHER* macros when defining
// a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher() instead,
// especially if you need to use the matcher a lot.  While these
// approaches require more work, they give you more control on the
// types of the value being matched and the matcher parameters, which
// in general leads to better compiler error messages that pay off in
// the long run.  They also allow overloading matchers based on
// parameter types (as opposed to just based on the number of
// parameters).
//
// CAVEAT:
//
// MATCHER*() can only be used in a namespace scope.  The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates.  The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using MATCHER*() inside
// a function.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'MATCHER'
// on http://code.google.com/p/googlemock/wiki/CookBook.

namespace testing {
namespace internal {

// Constants denoting interpolations in a matcher description string.
const int kTupleInterpolation = -1;    // "%(*)s"
const int kPercentInterpolation = -2;  // "%%"
const int kInvalidInterpolation = -3;  // "%" followed by invalid text

// Records the location and content of an interpolation.
struct Interpolation {
  Interpolation(const char* start, const char* end, int param)
      : start_pos(start), end_pos(end), param_index(param) {}

  // Points to the start of the interpolation (the '%' character).
  const char* start_pos;
  // Points to the first character after the interpolation.
  const char* end_pos;
  // 0-based index of the interpolated matcher parameter;
  // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
  int param_index;
};

typedef ::std::vector<Interpolation> Interpolations;

// Parses a matcher description string and returns a vector of
// interpolations that appear in the string; generates non-fatal
// failures iff 'description' is an invalid matcher description.
// 'param_names' is a NULL-terminated array of parameter names in the
// order they appear in the MATCHER_P*() parameter list.
Interpolations ValidateMatcherDescription(
    const char* param_names[], const char* description);

// Returns the actual matcher description, given the matcher name,
// user-supplied description template string, interpolations in the
// string, and the printed values of the matcher parameters.
string FormatMatcherDescription(
    const char* matcher_name, const char* description,
    const Interpolations& interp, const Strings& param_values);

}  // namespace internal
}  // namespace testing

$range i 0..n
$for i

[[
$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
                                         $else [[MATCHER_P$i]]]]
$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
                                                 $else [[P$i]]]]]]
$range j 0..i-1
$var template = [[$if i==0 [[]] $else [[

  template <$for j, [[typename p$j##_type]]>\
]]]]
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
$var impl_ctor_param_list = [[$for j [[p$j##_type gmock_p$j, ]]
const ::testing::internal::Interpolations& gmock_interp]]
$var impl_inits = [[ : $for j [[p$j(gmock_p$j), ]]gmock_interp_(gmock_interp)]]
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
$var params_and_interp = [[$for j [[p$j, ]]gmock_interp_]]
$var params = [[$for j, [[p$j]]]]
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
$var param_field_decls = [[$for j
[[

      p$j##_type p$j;\
]]]]
$var param_field_decls2 = [[$for j
[[

    p$j##_type p$j;\
]]]]

#define $macro_name(name$for j [[, p$j]], description)\$template
  class $class_name {\
   public:\
    template <typename arg_type>\
    class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
     public:\
      [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\
          $impl_inits {}\
      virtual bool Matches(arg_type arg) const;\
      virtual void DescribeTo(::std::ostream* gmock_os) const {\
        const ::testing::internal::Strings& gmock_printed_params = \
            ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
                ::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]]));\
        *gmock_os << ::testing::internal::FormatMatcherDescription(\
                     #name, description, gmock_interp_, gmock_printed_params);\
      }\$param_field_decls
      const ::testing::internal::Interpolations gmock_interp_;\
    };\
    template <typename arg_type>\
    operator ::testing::Matcher<arg_type>() const {\
      return ::testing::Matcher<arg_type>(\
          new gmock_Impl<arg_type>($params_and_interp));\
    }\
    $class_name($ctor_param_list)$inits {\
      const char* gmock_param_names[] = { $for j [[#p$j, ]]NULL };\
      gmock_interp_ = ::testing::internal::ValidateMatcherDescription(\
          gmock_param_names, ("" description ""));\
    }\$param_field_decls2
    ::testing::internal::Interpolations gmock_interp_;\
  };\$template
  inline $class_name$param_types name($param_types_and_names) {\
    return $class_name$param_types($params);\
  }\$template
  template <typename arg_type>\
  bool $class_name$param_types::\
      gmock_Impl<arg_type>::Matches(arg_type arg) const
]]


#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_