summaryrefslogtreecommitdiff
path: root/include/gmock/gmock-matchers.h
blob: 9113d1787b2ac6cef4541a150fccb2a4855f07d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used argument matchers.  More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_

#include <algorithm>
#include <ostream>  // NOLINT
#include <sstream>
#include <string>
#include <vector>

#include <gmock/gmock-printers.h>
#include <gmock/internal/gmock-internal-utils.h>
#include <gmock/internal/gmock-port.h>
#include <gtest/gtest.h>

namespace testing {

// To implement a matcher Foo for type T, define:
//   1. a class FooMatcherImpl that implements the
//      MatcherInterface<T> interface, and
//   2. a factory function that creates a Matcher<T> object from a
//      FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers.  It also eases
// ownership management as Matcher objects can now be copied like
// plain values.

// The implementation of a matcher.
template <typename T>
class MatcherInterface {
 public:
  virtual ~MatcherInterface() {}

  // Returns true iff the matcher matches x.
  virtual bool Matches(T x) const = 0;

  // Describes this matcher to an ostream.
  virtual void DescribeTo(::std::ostream* os) const = 0;

  // Describes the negation of this matcher to an ostream.  For
  // example, if the description of this matcher is "is greater than
  // 7", the negated description could be "is not greater than 7".
  // You are not required to override this when implementing
  // MatcherInterface, but it is highly advised so that your matcher
  // can produce good error messages.
  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "not (";
    DescribeTo(os);
    *os << ")";
  }

  // Explains why x matches, or doesn't match, the matcher.  Override
  // this to provide any additional information that helps a user
  // understand the match result.
  virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
    // By default, nothing more needs to be explained, as Google Mock
    // has already printed the value of x when this function is
    // called.
  }
};

namespace internal {

// An internal class for implementing Matcher<T>, which will derive
// from it.  We put functionalities common to all Matcher<T>
// specializations here to avoid code duplication.
template <typename T>
class MatcherBase {
 public:
  // Returns true iff this matcher matches x.
  bool Matches(T x) const { return impl_->Matches(x); }

  // Describes this matcher to an ostream.
  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }

  // Describes the negation of this matcher to an ostream.
  void DescribeNegationTo(::std::ostream* os) const {
    impl_->DescribeNegationTo(os);
  }

  // Explains why x matches, or doesn't match, the matcher.
  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
    impl_->ExplainMatchResultTo(x, os);
  }
 protected:
  MatcherBase() {}

  // Constructs a matcher from its implementation.
  explicit MatcherBase(const MatcherInterface<T>* impl)
      : impl_(impl) {}

  virtual ~MatcherBase() {}
 private:
  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
  // interfaces.  The former dynamically allocates a chunk of memory
  // to hold the reference count, while the latter tracks all
  // references using a circular linked list without allocating
  // memory.  It has been observed that linked_ptr performs better in
  // typical scenarios.  However, shared_ptr can out-perform
  // linked_ptr when there are many more uses of the copy constructor
  // than the default constructor.
  //
  // If performance becomes a problem, we should see if using
  // shared_ptr helps.
  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
};

// The default implementation of ExplainMatchResultTo() for
// polymorphic matchers.
template <typename PolymorphicMatcherImpl, typename T>
inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& impl, const T& x,
                                 ::std::ostream* os) {
  // By default, nothing more needs to be said, as Google Mock already
  // prints the value of x elsewhere.
}

}  // namespace internal

// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
// object that can check whether a value of type T matches.  The
// implementation of Matcher<T> is just a linked_ptr to const
// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
// from Matcher!
template <typename T>
class Matcher : public internal::MatcherBase<T> {
 public:
  // Constructs a null matcher.  Needed for storing Matcher objects in
  // STL containers.
  Matcher() {}

  // Constructs a matcher from its implementation.
  explicit Matcher(const MatcherInterface<T>* impl)
      : internal::MatcherBase<T>(impl) {}

  // Implicit constructor here allows ipeople to write
  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
  Matcher(T value);  // NOLINT
};

// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
// matcher is expected.
template <>
class Matcher<const internal::string&>
    : public internal::MatcherBase<const internal::string&> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
      : internal::MatcherBase<const internal::string&>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT
};

template <>
class Matcher<internal::string>
    : public internal::MatcherBase<internal::string> {
 public:
  Matcher() {}

  explicit Matcher(const MatcherInterface<internal::string>* impl)
      : internal::MatcherBase<internal::string>(impl) {}

  // Allows the user to write str instead of Eq(str) sometimes, where
  // str is a string object.
  Matcher(const internal::string& s);  // NOLINT

  // Allows the user to write "foo" instead of Eq("foo") sometimes.
  Matcher(const char* s);  // NOLINT
};

// The PolymorphicMatcher class template makes it easy to implement a
// polymorphic matcher (i.e. a matcher that can match values of more
// than one type, e.g. Eq(n) and NotNull()).
//
// To define a polymorphic matcher, a user first provides a Impl class
// that has a Matches() method, a DescribeTo() method, and a
// DescribeNegationTo() method.  The Matches() method is usually a
// method template (such that it works with multiple types).  Then the
// user creates the polymorphic matcher using
// MakePolymorphicMatcher().  To provide additional explanation to the
// match result, define a FREE function (or function template)
//
//   void ExplainMatchResultTo(const Impl& matcher, const Value& value,
//                             ::std::ostream* os);
//
// in the SAME NAME SPACE where Impl is defined.  See the definition
// of NotNull() for a complete example.
template <class Impl>
class PolymorphicMatcher {
 public:
  explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}

  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new MonomorphicImpl<T>(impl_));
  }
 private:
  template <typename T>
  class MonomorphicImpl : public MatcherInterface<T> {
   public:
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}

    virtual bool Matches(T x) const { return impl_.Matches(x); }

    virtual void DescribeTo(::std::ostream* os) const {
      impl_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      impl_.DescribeNegationTo(os);
    }

    virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
      using ::testing::internal::ExplainMatchResultTo;

      // C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
      // resolve the call to ExplainMatchResultTo() here.  This
      // means that if there's a ExplainMatchResultTo() function
      // defined in the name space where class Impl is defined, it
      // will be picked by the compiler as the better match.
      // Otherwise the default implementation of it in
      // ::testing::internal will be picked.
      //
      // This look-up rule lets a writer of a polymorphic matcher
      // customize the behavior of ExplainMatchResultTo() when he
      // cares to.  Nothing needs to be done by the writer if he
      // doesn't need to customize it.
      ExplainMatchResultTo(impl_, x, os);
    }
   private:
    const Impl impl_;
  };

  const Impl impl_;
};

// Creates a matcher from its implementation.  This is easier to use
// than the Matcher<T> constructor as it doesn't require you to
// explicitly write the template argument, e.g.
//
//   MakeMatcher(foo);
// vs
//   Matcher<const string&>(foo);
template <typename T>
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
  return Matcher<T>(impl);
};

// Creates a polymorphic matcher from its implementation.  This is
// easier to use than the PolymorphicMatcher<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
//   MakePolymorphicMatcher(foo);
// vs
//   PolymorphicMatcher<TypeOfFoo>(foo);
template <class Impl>
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
  return PolymorphicMatcher<Impl>(impl);
}

// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>.  It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M>
Matcher<T> MatcherCast(M m);

// A<T>() returns a matcher that matches any value of type T.
template <typename T>
Matcher<T> A();

// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {

// Appends the explanation on the result of matcher.Matches(value) to
// os iff the explanation is not empty.
template <typename T>
void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
                                  ::std::ostream* os) {
  ::std::stringstream reason;
  matcher.ExplainMatchResultTo(value, &reason);
  const internal::string s = reason.str();
  if (s != "") {
    *os << " (" << s << ")";
  }
}

// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N>
class TuplePrefix {
 public:
  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
  // iff the first N fields of matcher_tuple matches the first N
  // fields of value_tuple, respectively.
  template <typename MatcherTuple, typename ValueTuple>
  static bool Matches(const MatcherTuple& matcher_tuple,
                      const ValueTuple& value_tuple) {
    using ::std::tr1::get;
    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
  }

  // TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
  // describes failures in matching the first N fields of matchers
  // against the first N fields of values.  If there is no failure,
  // nothing will be streamed to os.
  template <typename MatcherTuple, typename ValueTuple>
  static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
                                      const ValueTuple& values,
                                      ::std::ostream* os) {
    using ::std::tr1::tuple_element;
    using ::std::tr1::get;

    // First, describes failures in the first N - 1 fields.
    TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);

    // Then describes the failure (if any) in the (N - 1)-th (0-based)
    // field.
    typename tuple_element<N - 1, MatcherTuple>::type matcher =
        get<N - 1>(matchers);
    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
    Value value = get<N - 1>(values);
    if (!matcher.Matches(value)) {
      // TODO(wan): include in the message the name of the parameter
      // as used in MOCK_METHOD*() when possible.
      *os << "  Expected arg #" << N - 1 << ": ";
      get<N - 1>(matchers).DescribeTo(os);
      *os << "\n           Actual: ";
      // We remove the reference in type Value to prevent the
      // universal printer from printing the address of value, which
      // isn't interesting to the user most of the time.  The
      // matcher's ExplainMatchResultTo() method handles the case when
      // the address is interesting.
      internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE(Value)>::
          Print(value, os);
      ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
      *os << "\n";
    }
  }
};

// The base case.
template <>
class TuplePrefix<0> {
 public:
  template <typename MatcherTuple, typename ValueTuple>
  static bool Matches(const MatcherTuple& matcher_tuple,
                      const ValueTuple& value_tuple) {
    return true;
  }

  template <typename MatcherTuple, typename ValueTuple>
  static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
                                      const ValueTuple& values,
                                      ::std::ostream* os) {}
};

// TupleMatches(matcher_tuple, value_tuple) returns true iff all
// matchers in matcher_tuple match the corresponding fields in
// value_tuple.  It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple>
bool TupleMatches(const MatcherTuple& matcher_tuple,
                  const ValueTuple& value_tuple) {
  using ::std::tr1::tuple_size;
  // Makes sure that matcher_tuple and value_tuple have the same
  // number of fields.
  GMOCK_COMPILE_ASSERT(tuple_size<MatcherTuple>::value ==
                       tuple_size<ValueTuple>::value,
                       matcher_and_value_have_different_numbers_of_fields);
  return TuplePrefix<tuple_size<ValueTuple>::value>::
      Matches(matcher_tuple, value_tuple);
}

// Describes failures in matching matchers against values.  If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
                                 const ValueTuple& values,
                                 ::std::ostream* os) {
  using ::std::tr1::tuple_size;
  TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
      matchers, values, os);
}

// The MatcherCastImpl class template is a helper for implementing
// MatcherCast().  We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).

// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)).
template <typename T, typename M>
class MatcherCastImpl {
 public:
  static Matcher<T> Cast(M polymorphic_matcher) {
    return Matcher<T>(polymorphic_matcher);
  }
};

// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher.  This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U>
class MatcherCastImpl<T, Matcher<U> > {
 public:
  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
    return Matcher<T>(new Impl(source_matcher));
  }
 private:
  class Impl : public MatcherInterface<T> {
   public:
    explicit Impl(const Matcher<U>& source_matcher)
        : source_matcher_(source_matcher) {}

    // We delegate the matching logic to the source matcher.
    virtual bool Matches(T x) const {
      return source_matcher_.Matches(static_cast<U>(x));
    }

    virtual void DescribeTo(::std::ostream* os) const {
      source_matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      source_matcher_.DescribeNegationTo(os);
    }

    virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
      source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
    }
   private:
    const Matcher<U> source_matcher_;
  };
};

// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T>
class MatcherCastImpl<T, Matcher<T> > {
 public:
  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
};

// Implements A<T>().
template <typename T>
class AnyMatcherImpl : public MatcherInterface<T> {
 public:
  virtual bool Matches(T x) const { return true; }
  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
  virtual void DescribeNegationTo(::std::ostream* os) const {
    // This is mostly for completeness' safe, as it's not very useful
    // to write Not(A<bool>()).  However we cannot completely rule out
    // such a possibility, and it doesn't hurt to be prepared.
    *os << "never matches";
  }
};

// Implements _, a matcher that matches any value of any
// type.  This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
 public:
  template <typename T>
  operator Matcher<T>() const { return A<T>(); }
};

// Implements a matcher that compares a given value with a
// pre-supplied value using one of the ==, <=, <, etc, operators.  The
// two values being compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq(5) can be
// used to match an int, a short, a double, etc).  Therefore we use
// a template type conversion operator in the implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
//
// The following template definition assumes that the Rhs parameter is
// a "bare" type (i.e. neither 'const T' nor 'T&').
#define GMOCK_IMPLEMENT_COMPARISON_MATCHER(name, op, relation) \
  template <typename Rhs> class name##Matcher { \
   public: \
    explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
    template <typename Lhs> \
    operator Matcher<Lhs>() const { \
      return MakeMatcher(new Impl<Lhs>(rhs_)); \
    } \
   private: \
    template <typename Lhs> \
    class Impl : public MatcherInterface<Lhs> { \
     public: \
      explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
      virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
      virtual void DescribeTo(::std::ostream* os) const { \
        *os << "is " relation  " "; \
        UniversalPrinter<Rhs>::Print(rhs_, os); \
      } \
      virtual void DescribeNegationTo(::std::ostream* os) const { \
        *os << "is not " relation  " "; \
        UniversalPrinter<Rhs>::Print(rhs_, os); \
      } \
     private: \
      Rhs rhs_; \
    }; \
    Rhs rhs_; \
  }

// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
// respectively.
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Eq, ==, "equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Ge, >=, "greater than or equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Gt, >, "greater than");
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Le, <=, "less than or equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Lt, <, "less than");
GMOCK_IMPLEMENT_COMPARISON_MATCHER(Ne, !=, "not equal to");

#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER

// Implements the polymorphic NotNull() matcher, which matches any
// pointer that is not NULL.
class NotNullMatcher {
 public:
  template <typename T>
  bool Matches(T* p) const { return p != NULL; }

  void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "is NULL";
  }
};

// Ref(variable) matches any argument that is a reference to
// 'variable'.  This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable).  It can
// only be instantiated with a reference type.  This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument.  For example, the following will righteously cause a
// compiler error:
//
//   int n;
//   Matcher<int> m1 = Ref(n);   // This won't compile.
//   Matcher<int&> m2 = Ref(n);  // This will compile.
template <typename T>
class RefMatcher;

template <typename T>
class RefMatcher<T&> {
  // Google Mock is a generic framework and thus needs to support
  // mocking any function types, including those that take non-const
  // reference arguments.  Therefore the template parameter T (and
  // Super below) can be instantiated to either a const type or a
  // non-const type.
 public:
  // RefMatcher() takes a T& instead of const T&, as we want the
  // compiler to catch using Ref(const_value) as a matcher for a
  // non-const reference.
  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT

  template <typename Super>
  operator Matcher<Super&>() const {
    // By passing object_ (type T&) to Impl(), which expects a Super&,
    // we make sure that Super is a super type of T.  In particular,
    // this catches using Ref(const_value) as a matcher for a
    // non-const reference, as you cannot implicitly convert a const
    // reference to a non-const reference.
    return MakeMatcher(new Impl<Super>(object_));
  }
 private:
  template <typename Super>
  class Impl : public MatcherInterface<Super&> {
   public:
    explicit Impl(Super& x) : object_(x) {}  // NOLINT

    // Matches() takes a Super& (as opposed to const Super&) in
    // order to match the interface MatcherInterface<Super&>.
    virtual bool Matches(Super& x) const { return &x == &object_; }  // NOLINT

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "references the variable ";
      UniversalPrinter<Super&>::Print(object_, os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "does not reference the variable ";
      UniversalPrinter<Super&>::Print(object_, os);
    }

    virtual void ExplainMatchResultTo(Super& x,  // NOLINT
                                      ::std::ostream* os) const {
      *os << "is located @" << static_cast<const void*>(&x);
    }
   private:
    const Super& object_;
  };

  T& object_;
};

// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
  return String::CaseInsensitiveCStringEquals(lhs, rhs);
}

inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
                                         const wchar_t* rhs) {
  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
}

// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType>
bool CaseInsensitiveStringEquals(const StringType& s1,
                                 const StringType& s2) {
  // Are the heads equal?
  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
    return false;
  }

  // Skip the equal heads.
  const typename StringType::value_type nul = 0;
  const size_t i1 = s1.find(nul), i2 = s2.find(nul);

  // Are we at the end of either s1 or s2?
  if (i1 == StringType::npos || i2 == StringType::npos) {
    return i1 == i2;
  }

  // Are the tails equal?
  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
}

// String matchers.

// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType>
class StrEqualityMatcher {
 public:
  typedef typename StringType::const_pointer ConstCharPointer;

  StrEqualityMatcher(const StringType& str, bool expect_eq,
                     bool case_sensitive)
      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}

  // When expect_eq_ is true, returns true iff s is equal to string_;
  // otherwise returns true iff s is not equal to string_.
  bool Matches(ConstCharPointer s) const {
    if (s == NULL) {
      return !expect_eq_;
    }
    return Matches(StringType(s));
  }

  bool Matches(const StringType& s) const {
    const bool eq = case_sensitive_ ? s == string_ :
        CaseInsensitiveStringEquals(s, string_);
    return expect_eq_ == eq;
  }

  void DescribeTo(::std::ostream* os) const {
    DescribeToHelper(expect_eq_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    DescribeToHelper(!expect_eq_, os);
  }
 private:
  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
    *os << "is ";
    if (!expect_eq) {
      *os << "not ";
    }
    *os << "equal to ";
    if (!case_sensitive_) {
      *os << "(ignoring case) ";
    }
    UniversalPrinter<StringType>::Print(string_, os);
  }

  const StringType string_;
  const bool expect_eq_;
  const bool case_sensitive_;
};

// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class HasSubstrMatcher {
 public:
  typedef typename StringType::const_pointer ConstCharPointer;

  explicit HasSubstrMatcher(const StringType& substring)
      : substring_(substring) {}

  // These overloaded methods allow HasSubstr(substring) to be used as a
  // Matcher<T> as long as T can be converted to string.  Returns true
  // iff s contains substring_ as a substring.
  bool Matches(ConstCharPointer s) const {
    return s != NULL && Matches(StringType(s));
  }

  bool Matches(const StringType& s) const {
    return s.find(substring_) != StringType::npos;
  }

  // Describes what this matcher matches.
  void DescribeTo(::std::ostream* os) const {
    *os << "has substring ";
    UniversalPrinter<StringType>::Print(substring_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "has no substring ";
    UniversalPrinter<StringType>::Print(substring_, os);
  }
 private:
  const StringType substring_;
};

// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class StartsWithMatcher {
 public:
  typedef typename StringType::const_pointer ConstCharPointer;

  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
  }

  // These overloaded methods allow StartsWith(prefix) to be used as a
  // Matcher<T> as long as T can be converted to string.  Returns true
  // iff s starts with prefix_.
  bool Matches(ConstCharPointer s) const {
    return s != NULL && Matches(StringType(s));
  }

  bool Matches(const StringType& s) const {
    return s.length() >= prefix_.length() &&
        s.substr(0, prefix_.length()) == prefix_;
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "starts with ";
    UniversalPrinter<StringType>::Print(prefix_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't start with ";
    UniversalPrinter<StringType>::Print(prefix_, os);
  }
 private:
  const StringType prefix_;
};

// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class EndsWithMatcher {
 public:
  typedef typename StringType::const_pointer ConstCharPointer;

  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}

  // These overloaded methods allow EndsWith(suffix) to be used as a
  // Matcher<T> as long as T can be converted to string.  Returns true
  // iff s ends with suffix_.
  bool Matches(ConstCharPointer s) const {
    return s != NULL && Matches(StringType(s));
  }

  bool Matches(const StringType& s) const {
    return s.length() >= suffix_.length() &&
        s.substr(s.length() - suffix_.length()) == suffix_;
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "ends with ";
    UniversalPrinter<StringType>::Print(suffix_, os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't end with ";
    UniversalPrinter<StringType>::Print(suffix_, os);
  }
 private:
  const StringType suffix_;
};

#if GMOCK_HAS_REGEX

// Implements polymorphic matchers MatchesRegex(regex) and
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
// T can be converted to a string.
class MatchesRegexMatcher {
 public:
  MatchesRegexMatcher(const RE* regex, bool full_match)
      : regex_(regex), full_match_(full_match) {}

  // These overloaded methods allow MatchesRegex(regex) to be used as
  // a Matcher<T> as long as T can be converted to string.  Returns
  // true iff s matches regular expression regex.  When full_match_ is
  // true, a full match is done; otherwise a partial match is done.
  bool Matches(const char* s) const {
    return s != NULL && Matches(internal::string(s));
  }

  bool Matches(const internal::string& s) const {
    return full_match_ ? RE::FullMatch(s, *regex_) :
        RE::PartialMatch(s, *regex_);
  }

  void DescribeTo(::std::ostream* os) const {
    *os << (full_match_ ? "matches" : "contains")
        << " regular expression ";
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't " << (full_match_ ? "match" : "contain")
        << " regular expression ";
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
  }
 private:
  const internal::linked_ptr<const RE> regex_;
  const bool full_match_;
};

#endif  // GMOCK_HAS_REGEX

// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators.  The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a tuple<int, short>, a tuple<const long&, double>,
// etc).  Therefore we use a template type conversion operator in the
// implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER(name, op, relation) \
  class name##2Matcher { \
   public: \
    template <typename T1, typename T2> \
    operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
      return MakeMatcher(new Impl<T1, T2>); \
    } \
   private: \
    template <typename T1, typename T2> \
    class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
     public: \
      virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
        return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
      } \
      virtual void DescribeTo(::std::ostream* os) const { \
        *os << "argument #0 is " relation " argument #1"; \
      } \
      virtual void DescribeNegationTo(::std::ostream* os) const { \
        *os << "argument #0 is not " relation " argument #1"; \
      } \
    }; \
  }

// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Eq, ==, "equal to");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Ge, >=, "greater than or equal to");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Gt, >, "greater than");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Le, <=, "less than or equal to");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Lt, <, "less than");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER(Ne, !=, "not equal to");

#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER

// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher>
class NotMatcher {
 public:
  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}

  // This template type conversion operator allows Not(m) to be used
  // to match any type m can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new Impl<T>(matcher_));
  }
 private:
  // Implements the Not(...) matcher for a particular argument type T.
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    explicit Impl(const Matcher<T>& matcher) : matcher_(matcher) {}

    virtual bool Matches(T x) const {
      return !matcher_.Matches(x);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      matcher_.DescribeNegationTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      matcher_.DescribeTo(os);
    }

    virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
      matcher_.ExplainMatchResultTo(x, os);
    }
   private:
    const Matcher<T> matcher_;
  };

  InnerMatcher matcher_;
};

// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
// matches a value that matches all of the matchers m_1, ..., and m_n.
template <typename Matcher1, typename Matcher2>
class BothOfMatcher {
 public:
  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  // This template type conversion operator allows a
  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
  // both Matcher1 and Matcher2 can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new Impl<T>(matcher1_, matcher2_));
  }
 private:
  // Implements the AllOf(m1, m2) matcher for a particular argument
  // type T.
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
        : matcher1_(matcher1), matcher2_(matcher2) {}

    virtual bool Matches(T x) const {
      return matcher1_.Matches(x) && matcher2_.Matches(x);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "(";
      matcher1_.DescribeTo(os);
      *os << ") and (";
      matcher2_.DescribeTo(os);
      *os << ")";
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "not ";
      DescribeTo(os);
    }

    virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
      if (Matches(x)) {
        // When both matcher1_ and matcher2_ match x, we need to
        // explain why *both* of them match.
        ::std::stringstream ss1;
        matcher1_.ExplainMatchResultTo(x, &ss1);
        const internal::string s1 = ss1.str();

        ::std::stringstream ss2;
        matcher2_.ExplainMatchResultTo(x, &ss2);
        const internal::string s2 = ss2.str();

        if (s1 == "") {
          *os << s2;
        } else {
          *os << s1;
          if (s2 != "") {
            *os << "; " << s2;
          }
        }
      } else {
        // Otherwise we only need to explain why *one* of them fails
        // to match.
        if (!matcher1_.Matches(x)) {
          matcher1_.ExplainMatchResultTo(x, os);
        } else {
          matcher2_.ExplainMatchResultTo(x, os);
        }
      }
    }
   private:
    const Matcher<T> matcher1_;
    const Matcher<T> matcher2_;
  };

  Matcher1 matcher1_;
  Matcher2 matcher2_;
};

// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
// matches a value that matches at least one of the matchers m_1, ...,
// and m_n.
template <typename Matcher1, typename Matcher2>
class EitherOfMatcher {
 public:
  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
      : matcher1_(matcher1), matcher2_(matcher2) {}

  // This template type conversion operator allows a
  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
  // both Matcher1 and Matcher2 can match.
  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new Impl<T>(matcher1_, matcher2_));
  }
 private:
  // Implements the AnyOf(m1, m2) matcher for a particular argument
  // type T.
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
        : matcher1_(matcher1), matcher2_(matcher2) {}

    virtual bool Matches(T x) const {
      return matcher1_.Matches(x) || matcher2_.Matches(x);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "(";
      matcher1_.DescribeTo(os);
      *os << ") or (";
      matcher2_.DescribeTo(os);
      *os << ")";
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "not ";
      DescribeTo(os);
    }

    virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
      if (Matches(x)) {
        // If either matcher1_ or matcher2_ matches x, we just need
        // to explain why *one* of them matches.
        if (matcher1_.Matches(x)) {
          matcher1_.ExplainMatchResultTo(x, os);
        } else {
          matcher2_.ExplainMatchResultTo(x, os);
        }
      } else {
        // Otherwise we need to explain why *neither* matches.
        ::std::stringstream ss1;
        matcher1_.ExplainMatchResultTo(x, &ss1);
        const internal::string s1 = ss1.str();

        ::std::stringstream ss2;
        matcher2_.ExplainMatchResultTo(x, &ss2);
        const internal::string s2 = ss2.str();

        if (s1 == "") {
          *os << s2;
        } else {
          *os << s1;
          if (s2 != "") {
            *os << "; " << s2;
          }
        }
      }
    }
   private:
    const Matcher<T> matcher1_;
    const Matcher<T> matcher2_;
  };

  Matcher1 matcher1_;
  Matcher2 matcher2_;
};

// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate>
class TrulyMatcher {
 public:
  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}

  // This method template allows Truly(pred) to be used as a matcher
  // for type T where T is the argument type of predicate 'pred'.  The
  // argument is passed by reference as the predicate may be
  // interested in the address of the argument.
  template <typename T>
  bool Matches(T& x) const {
#ifdef GTEST_OS_WINDOWS
    // MSVC warns about converting a value into bool (warning 4800).
#pragma warning(push)          // Saves the current warning state.
#pragma warning(disable:4800)  // Temporarily disables warning 4800.
#endif  // GTEST_OS_WINDOWS
    return predicate_(x);
#ifdef GTEST_OS_WINDOWS
#pragma warning(pop)           // Restores the warning state.
#endif  // GTEST_OS_WINDOWS
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "satisfies the given predicate";
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "doesn't satisfy the given predicate";
  }
 private:
  Predicate predicate_;
};

// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M>
class MatcherAsPredicate {
 public:
  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}

  // This template operator() allows Matches(m) to be used as a
  // predicate on type T where m is a matcher on type T.
  //
  // The argument x is passed by reference instead of by value, as
  // some matcher may be interested in its address (e.g. as in
  // Matches(Ref(n))(x)).
  template <typename T>
  bool operator()(const T& x) const {
    // We let matcher_ commit to a particular type here instead of
    // when the MatcherAsPredicate object was constructed.  This
    // allows us to write Matches(m) where m is a polymorphic matcher
    // (e.g. Eq(5)).
    //
    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
    // compile when matcher_ has type Matcher<const T&>; if we write
    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
    // when matcher_ has type Matcher<T>; if we just write
    // matcher_.Matches(x), it won't compile when matcher_ is
    // polymorphic, e.g. Eq(5).
    //
    // MatcherCast<const T&>() is necessary for making the code work
    // in all of the above situations.
    return MatcherCast<const T&>(matcher_).Matches(x);
  }
 private:
  M matcher_;
};

// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
// argument M must be a type that can be converted to a matcher.
template <typename M>
class PredicateFormatterFromMatcher {
 public:
  explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}

  // This template () operator allows a PredicateFormatterFromMatcher
  // object to act as a predicate-formatter suitable for using with
  // Google Test's EXPECT_PRED_FORMAT1() macro.
  template <typename T>
  AssertionResult operator()(const char* value_text, const T& x) const {
    // We convert matcher_ to a Matcher<const T&> *now* instead of
    // when the PredicateFormatterFromMatcher object was constructed,
    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
    // know which type to instantiate it to until we actually see the
    // type of x here.
    //
    // We write MatcherCast<const T&>(matcher_) instead of
    // Matcher<const T&>(matcher_), as the latter won't compile when
    // matcher_ has type Matcher<T> (e.g. An<int>()).
    const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
    if (matcher.Matches(x)) {
      return AssertionSuccess();
    } else {
      ::std::stringstream ss;
      ss << "Value of: " << value_text << "\n"
         << "Expected: ";
      matcher.DescribeTo(&ss);
      ss << "\n  Actual: ";
      UniversalPrinter<T>::Print(x, &ss);
      ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
      return AssertionFailure(Message() << ss.str());
    }
  }
 private:
  const M matcher_;
};

// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type.  This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
template <typename M>
inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(const M& matcher) {
  return PredicateFormatterFromMatcher<M>(matcher);
}

// Implements the polymorphic floating point equality matcher, which
// matches two float values using ULP-based approximation.  The
// template is meant to be instantiated with FloatType being either
// float or double.
template <typename FloatType>
class FloatingEqMatcher {
 public:
  // Constructor for FloatingEqMatcher.
  // The matcher's input will be compared with rhs.  The matcher treats two
  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
  // equality comparisons between NANs will always return false.
  FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
    rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}

  // Implements floating point equality matcher as a Matcher<T>.
  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(FloatType rhs, bool nan_eq_nan) :
      rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}

    virtual bool Matches(T value) const {
      const FloatingPoint<FloatType> lhs(value), rhs(rhs_);

      // Compares NaNs first, if nan_eq_nan_ is true.
      if (nan_eq_nan_ && lhs.is_nan()) {
        return rhs.is_nan();
      }

      return lhs.AlmostEquals(rhs);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      // os->precision() returns the previously set precision, which we
      // store to restore the ostream to its original configuration
      // after outputting.
      const ::std::streamsize old_precision = os->precision(
          ::std::numeric_limits<FloatType>::digits10 + 2);
      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
        if (nan_eq_nan_) {
          *os << "is NaN";
        } else {
          *os << "never matches";
        }
      } else {
        *os << "is approximately " << rhs_;
      }
      os->precision(old_precision);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      // As before, get original precision.
      const ::std::streamsize old_precision = os->precision(
          ::std::numeric_limits<FloatType>::digits10 + 2);
      if (FloatingPoint<FloatType>(rhs_).is_nan()) {
        if (nan_eq_nan_) {
          *os << "is not NaN";
        } else {
          *os << "is anything";
        }
      } else {
        *os << "is not approximately " << rhs_;
      }
      // Restore original precision.
      os->precision(old_precision);
    }

   private:
    const FloatType rhs_;
    const bool nan_eq_nan_;
  };

  // The following 3 type conversion operators allow FloatEq(rhs) and
  // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
  // (While Google's C++ coding style doesn't allow arguments passed
  // by non-const reference, we may see them in code not conforming to
  // the style.  Therefore Google Mock needs to support them.)
  operator Matcher<FloatType>() const {
    return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
  }

  operator Matcher<const FloatType&>() const {
    return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
  }

  operator Matcher<FloatType&>() const {
    return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
  }
 private:
  const FloatType rhs_;
  const bool nan_eq_nan_;
};

// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m.  The pointer can be either raw or smart.
template <typename InnerMatcher>
class PointeeMatcher {
 public:
  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}

  // This type conversion operator template allows Pointee(m) to be
  // used as a matcher for any pointer type whose pointee type is
  // compatible with the inner matcher, where type Pointer can be
  // either a raw pointer or a smart pointer.
  //
  // The reason we do this instead of relying on
  // MakePolymorphicMatcher() is that the latter is not flexible
  // enough for implementing the DescribeTo() method of Pointee().
  template <typename Pointer>
  operator Matcher<Pointer>() const {
    return MakeMatcher(new Impl<Pointer>(matcher_));
  }
 private:
  // The monomorphic implementation that works for a particular pointer type.
  template <typename Pointer>
  class Impl : public MatcherInterface<Pointer> {
   public:
    typedef typename PointeeOf<GMOCK_REMOVE_CONST(  // NOLINT
        GMOCK_REMOVE_REFERENCE(Pointer))>::type Pointee;

    explicit Impl(const InnerMatcher& matcher)
        : matcher_(MatcherCast<const Pointee&>(matcher)) {}

    virtual bool Matches(Pointer p) const {
      return GetRawPointer(p) != NULL && matcher_.Matches(*p);
    }

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "points to a value that ";
      matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "does not point to a value that ";
      matcher_.DescribeTo(os);
    }

    virtual void ExplainMatchResultTo(Pointer pointer,
                                      ::std::ostream* os) const {
      if (GetRawPointer(pointer) == NULL)
        return;

      ::std::stringstream ss;
      matcher_.ExplainMatchResultTo(*pointer, &ss);
      const internal::string s = ss.str();
      if (s != "") {
        *os << "points to a value that " << s;
      }
    }
   private:
    const Matcher<const Pointee&> matcher_;
  };

  const InnerMatcher matcher_;
};

// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType>
class FieldMatcher {
 public:
  FieldMatcher(FieldType Class::*field,
               const Matcher<const FieldType&>& matcher)
      : field_(field), matcher_(matcher) {}

  // Returns true iff the inner matcher matches obj.field.
  bool Matches(const Class& obj) const {
    return matcher_.Matches(obj.*field_);
  }

  // Returns true iff the inner matcher matches obj->field.
  bool Matches(const Class* p) const {
    return (p != NULL) && matcher_.Matches(p->*field_);
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "the given field ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "the given field ";
    matcher_.DescribeNegationTo(os);
  }

  void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const {
    ::std::stringstream ss;
    matcher_.ExplainMatchResultTo(obj.*field_, &ss);
    const internal::string s = ss.str();
    if (s != "") {
      *os << "the given field " << s;
    }
  }

  void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const {
    if (p != NULL) {
      ExplainMatchResultTo(*p, os);
    }
  }
 private:
  const FieldType Class::*field_;
  const Matcher<const FieldType&> matcher_;
};

// Explains the result of matching an object against a field matcher.
template <typename Class, typename FieldType>
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
                          const Class& obj, ::std::ostream* os) {
  matcher.ExplainMatchResultTo(obj, os);
}

// Explains the result of matching a pointer against a field matcher.
template <typename Class, typename FieldType>
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
                          const Class* p, ::std::ostream* os) {
  matcher.ExplainMatchResultTo(p, os);
}

// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
template <typename Class, typename PropertyType>
class PropertyMatcher {
 public:
  // The property may have a reference type, so 'const PropertyType&'
  // may cause double references and fail to compile.  That's why we
  // need GMOCK_REFERENCE_TO_CONST, which works regardless of
  // PropertyType being a reference or not.
  typedef GMOCK_REFERENCE_TO_CONST(PropertyType) RefToConstProperty;

  PropertyMatcher(PropertyType (Class::*property)() const,
                  const Matcher<RefToConstProperty>& matcher)
      : property_(property), matcher_(matcher) {}

  // Returns true iff obj.property() matches the inner matcher.
  bool Matches(const Class& obj) const {
    return matcher_.Matches((obj.*property_)());
  }

  // Returns true iff p->property() matches the inner matcher.
  bool Matches(const Class* p) const {
    return (p != NULL) && matcher_.Matches((p->*property_)());
  }

  void DescribeTo(::std::ostream* os) const {
    *os << "the given property ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const {
    *os << "the given property ";
    matcher_.DescribeNegationTo(os);
  }

  void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const {
    ::std::stringstream ss;
    matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
    const internal::string s = ss.str();
    if (s != "") {
      *os << "the given property " << s;
    }
  }

  void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const {
    if (p != NULL) {
      ExplainMatchResultTo(*p, os);
    }
  }
 private:
  PropertyType (Class::*property_)() const;
  const Matcher<RefToConstProperty> matcher_;
};

// Explains the result of matching an object against a property matcher.
template <typename Class, typename PropertyType>
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
                          const Class& obj, ::std::ostream* os) {
  matcher.ExplainMatchResultTo(obj, os);
}

// Explains the result of matching a pointer against a property matcher.
template <typename Class, typename PropertyType>
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
                          const Class* p, ::std::ostream* os) {
  matcher.ExplainMatchResultTo(p, os);
}

// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
// Functor classes have to typedef argument_type and result_type
// to be compatible with ResultOf.
template <typename Functor>
struct CallableTraits {
  typedef typename Functor::result_type ResultType;
  typedef Functor StorageType;

  static void CheckIsValid(Functor functor) {}
  template <typename T>
  static ResultType Invoke(Functor f, T arg) { return f(arg); }
};

// Specialization for function pointers.
template <typename ArgType, typename ResType>
struct CallableTraits<ResType(*)(ArgType)> {
  typedef ResType ResultType;
  typedef ResType(*StorageType)(ArgType);

  static void CheckIsValid(ResType(*f)(ArgType)) {
    GMOCK_CHECK_(f != NULL)
        << "NULL function pointer is passed into ResultOf().";
  }
  template <typename T>
  static ResType Invoke(ResType(*f)(ArgType), T arg) {
    return (*f)(arg);
  }
};

// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable>
class ResultOfMatcher {
 public:
  typedef typename CallableTraits<Callable>::ResultType ResultType;

  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
      : callable_(callable), matcher_(matcher) {
    CallableTraits<Callable>::CheckIsValid(callable_);
  }

  template <typename T>
  operator Matcher<T>() const {
    return Matcher<T>(new Impl<T>(callable_, matcher_));
  }

 private:
  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;

  template <typename T>
  class Impl : public MatcherInterface<T> {
   public:
    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
        : callable_(callable), matcher_(matcher) {}
    // Returns true iff callable_(obj) matches the inner matcher.
    // The calling syntax is different for different types of callables
    // so we abstract it in CallableTraits<Callable>::Invoke().
    virtual bool Matches(T obj) const {
      return matcher_.Matches(
          CallableTraits<Callable>::template Invoke<T>(callable_, obj));
    }

    virtual void DescribeTo(::std::ostream* os) const {
      *os << "result of the given callable ";
      matcher_.DescribeTo(os);
    }

    virtual void DescribeNegationTo(::std::ostream* os) const {
      *os << "result of the given callable ";
      matcher_.DescribeNegationTo(os);
    }

    virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
      ::std::stringstream ss;
      matcher_.ExplainMatchResultTo(
          CallableTraits<Callable>::template Invoke<T>(callable_, obj),
          &ss);
      const internal::string s = ss.str();
      if (s != "")
        *os << "result of the given callable " << s;
    }
   private:
    // Functors often define operator() as non-const method even though
    // they are actualy stateless. But we need to use them even when
    // 'this' is a const pointer. It's the user's responsibility not to
    // use stateful callables with ResultOf(), which does't guarantee
    // how many times the callable will be invoked.
    mutable CallableStorageType callable_;
    const Matcher<ResultType> matcher_;
  };  // class Impl

  const CallableStorageType callable_;
  const Matcher<ResultType> matcher_;
};

// Explains the result of matching a value against a functor matcher.
template <typename T, typename Callable>
void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
                          T obj, ::std::ostream* os) {
  matcher.ExplainMatchResultTo(obj, os);
}

// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container>
class ContainerEqMatcher {
 public:
  explicit ContainerEqMatcher(const Container& rhs) : rhs_(rhs) {}
  bool Matches(const Container& lhs) const { return lhs == rhs_; }
  void DescribeTo(::std::ostream* os) const {
    *os << "equals ";
    UniversalPrinter<Container>::Print(rhs_, os);
  }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "does not equal ";
    UniversalPrinter<Container>::Print(rhs_, os);
  }

  void ExplainMatchResultTo(const Container& lhs,
                            ::std::ostream* os) const {
    // Something is different. Check for missing values first.
    bool printed_header = false;
    for (typename Container::const_iterator it = lhs.begin();
         it != lhs.end(); ++it) {
      if (std::find(rhs_.begin(), rhs_.end(), *it) == rhs_.end()) {
        if (printed_header) {
          *os << ", ";
        } else {
          *os << "Only in actual: ";
          printed_header = true;
        }
        UniversalPrinter<typename Container::value_type>::Print(*it, os);
      }
    }

    // Now check for extra values.
    bool printed_header2 = false;
    for (typename Container::const_iterator it = rhs_.begin();
         it != rhs_.end(); ++it) {
      if (std::find(lhs.begin(), lhs.end(), *it) == lhs.end()) {
        if (printed_header2) {
          *os << ", ";
        } else {
          *os << (printed_header ? "; not" : "Not") << " in actual: ";
          printed_header2 = true;
        }
        UniversalPrinter<typename Container::value_type>::Print(*it, os);
      }
    }
  }
 private:
  const Container rhs_;
};

template <typename Container>
void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
                          const Container& lhs,
                          ::std::ostream* os) {
  matcher.ExplainMatchResultTo(lhs, os);
}

}  // namespace internal

// Implements MatcherCast().
template <typename T, typename M>
inline Matcher<T> MatcherCast(M matcher) {
  return internal::MatcherCastImpl<T, M>::Cast(matcher);
}

// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
//   1. The C++ standard permits using the name _ in a namespace that
//      is not the global namespace or ::std.
//   2. The AnythingMatcher class has no data member or constructor,
//      so it's OK to create global variables of this type.
//   3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {};
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }

// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> An() { return A<T>(); }

// Creates a polymorphic matcher that matches anything equal to x.
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
// wouldn't compile.
template <typename T>
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }

// Constructs a Matcher<T> from a 'value' of type T.  The constructed
// matcher matches any value that's equal to 'value'.
template <typename T>
Matcher<T>::Matcher(T value) { *this = Eq(value); }

// Creates a monomorphic matcher that matches anything with type Lhs
// and equal to rhs.  A user may need to use this instead of Eq(...)
// in order to resolve an overloading ambiguity.
//
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
// or Matcher<T>(x), but more readable than the latter.
//
// We could define similar monomorphic matchers for other comparison
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
// it yet as those are used much less than Eq() in practice.  A user
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
// for example.
template <typename Lhs, typename Rhs>
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }

// Creates a polymorphic matcher that matches anything >= x.
template <typename Rhs>
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
  return internal::GeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything > x.
template <typename Rhs>
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
  return internal::GtMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything <= x.
template <typename Rhs>
inline internal::LeMatcher<Rhs> Le(Rhs x) {
  return internal::LeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything < x.
template <typename Rhs>
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
  return internal::LtMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches anything != x.
template <typename Rhs>
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
  return internal::NeMatcher<Rhs>(x);
}

// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
  return MakePolymorphicMatcher(internal::NotNullMatcher());
}

// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T>
inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
  return internal::RefMatcher<T&>(x);
}

// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
  return internal::FloatingEqMatcher<double>(rhs, false);
}

// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
  return internal::FloatingEqMatcher<double>(rhs, true);
}

// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
  return internal::FloatingEqMatcher<float>(rhs, false);
}

// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
  return internal::FloatingEqMatcher<float>(rhs, true);
}

// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher>
inline internal::PointeeMatcher<InnerMatcher> Pointee(
    const InnerMatcher& inner_matcher) {
  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
}

// Creates a matcher that matches an object whose given field matches
// 'matcher'.  For example,
//   Field(&Foo::number, Ge(5))
// matches a Foo object x iff x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<
  internal::FieldMatcher<Class, FieldType> > Field(
    FieldType Class::*field, const FieldMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::FieldMatcher<Class, FieldType>(
          field, MatcherCast<const FieldType&>(matcher)));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   Field(&Foo::bar, m)
  // to compile where bar is an int32 and m is a matcher for int64.
}

// Creates a matcher that matches an object whose given property
// matches 'matcher'.  For example,
//   Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x iff x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<
  internal::PropertyMatcher<Class, PropertyType> > Property(
    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::PropertyMatcher<Class, PropertyType>(
          property,
          MatcherCast<GMOCK_REFERENCE_TO_CONST(PropertyType)>(matcher)));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   Property(&Foo::bar, m)
  // to compile where bar() returns an int32 and m is a matcher for int64.
}

// Creates a matcher that matches an object iff the result of applying
// a callable to x matches 'matcher'.
// For example,
//   ResultOf(f, StartsWith("hi"))
// matches a Foo object x iff f(x) starts with "hi".
// callable parameter can be a function, function pointer, or a functor.
// Callable has to satisfy the following conditions:
//   * It is required to keep no state affecting the results of
//     the calls on it and make no assumptions about how many calls
//     will be made. Any state it keeps must be protected from the
//     concurrent access.
//   * If it is a function object, it has to define type result_type.
//     We recommend deriving your functor classes from std::unary_function.
template <typename Callable, typename ResultOfMatcher>
internal::ResultOfMatcher<Callable> ResultOf(
    Callable callable, const ResultOfMatcher& matcher) {
  return internal::ResultOfMatcher<Callable>(
          callable,
          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
              matcher));
  // The call to MatcherCast() is required for supporting inner
  // matchers of compatible types.  For example, it allows
  //   ResultOf(Function, m)
  // to compile where Function() returns an int32 and m is a matcher for int64.
}

// String matchers.

// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrEq(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, true, true));
}

// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrNe(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, false, true));
}

// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrCaseEq(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, true, false));
}

// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
    StrCaseNe(const internal::string& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
      str, false, false));
}

// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
    HasSubstr(const internal::string& substring) {
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
      substring));
}

// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
    StartsWith(const internal::string& prefix) {
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
      prefix));
}

// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
    EndsWith(const internal::string& suffix) {
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
      suffix));
}

#ifdef GMOCK_HAS_REGEX

// Matches a string that fully matches regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
    const internal::RE* regex) {
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
    const internal::string& regex) {
  return MatchesRegex(new internal::RE(regex));
}

// Matches a string that contains regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
    const internal::RE* regex) {
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
    const internal::string& regex) {
  return ContainsRegex(new internal::RE(regex));
}

#endif  // GMOCK_HAS_REGEX

#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Wide string matchers.

// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrEq(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, true, true));
}

// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrNe(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, false, true));
}

// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrCaseEq(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, true, false));
}

// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
    StrCaseNe(const internal::wstring& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
      str, false, false));
}

// Creates a matcher that matches any wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
    HasSubstr(const internal::wstring& substring) {
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
      substring));
}

// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
    StartsWith(const internal::wstring& prefix) {
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
      prefix));
}

// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
    EndsWith(const internal::wstring& suffix) {
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
      suffix));
}

#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }

// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }

// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher>
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
  return internal::NotMatcher<InnerMatcher>(m);
}

// Creates a matcher that matches any value that matches all of the
// given matchers.
//
// For now we only support up to 5 matchers.  Support for more
// matchers can be added as needed, or the user can use nested
// AllOf()s.
template <typename Matcher1, typename Matcher2>
inline internal::BothOfMatcher<Matcher1, Matcher2>
AllOf(Matcher1 m1, Matcher2 m2) {
  return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
}

template <typename Matcher1, typename Matcher2, typename Matcher3>
inline internal::BothOfMatcher<Matcher1,
           internal::BothOfMatcher<Matcher2, Matcher3> >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
  return AllOf(m1, AllOf(m2, m3));
}

template <typename Matcher1, typename Matcher2, typename Matcher3,
          typename Matcher4>
inline internal::BothOfMatcher<Matcher1,
           internal::BothOfMatcher<Matcher2,
               internal::BothOfMatcher<Matcher3, Matcher4> > >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
  return AllOf(m1, AllOf(m2, m3, m4));
}

template <typename Matcher1, typename Matcher2, typename Matcher3,
          typename Matcher4, typename Matcher5>
inline internal::BothOfMatcher<Matcher1,
           internal::BothOfMatcher<Matcher2,
               internal::BothOfMatcher<Matcher3,
                   internal::BothOfMatcher<Matcher4, Matcher5> > > >
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
  return AllOf(m1, AllOf(m2, m3, m4, m5));
}

// Creates a matcher that matches any value that matches at least one
// of the given matchers.
//
// For now we only support up to 5 matchers.  Support for more
// matchers can be added as needed, or the user can use nested
// AnyOf()s.
template <typename Matcher1, typename Matcher2>
inline internal::EitherOfMatcher<Matcher1, Matcher2>
AnyOf(Matcher1 m1, Matcher2 m2) {
  return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
}

template <typename Matcher1, typename Matcher2, typename Matcher3>
inline internal::EitherOfMatcher<Matcher1,
           internal::EitherOfMatcher<Matcher2, Matcher3> >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
  return AnyOf(m1, AnyOf(m2, m3));
}

template <typename Matcher1, typename Matcher2, typename Matcher3,
          typename Matcher4>
inline internal::EitherOfMatcher<Matcher1,
           internal::EitherOfMatcher<Matcher2,
               internal::EitherOfMatcher<Matcher3, Matcher4> > >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
  return AnyOf(m1, AnyOf(m2, m3, m4));
}

template <typename Matcher1, typename Matcher2, typename Matcher3,
          typename Matcher4, typename Matcher5>
inline internal::EitherOfMatcher<Matcher1,
           internal::EitherOfMatcher<Matcher2,
               internal::EitherOfMatcher<Matcher3,
                   internal::EitherOfMatcher<Matcher4, Matcher5> > > >
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
  return AnyOf(m1, AnyOf(m2, m3, m4, m5));
}

// Returns a matcher that matches anything that satisfies the given
// predicate.  The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate>
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
Truly(Predicate pred) {
  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
}

// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container>
inline PolymorphicMatcher<internal::ContainerEqMatcher<Container> >
    ContainerEq(const Container& rhs) {
  return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
}

// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M>
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
  return internal::MatcherAsPredicate<M>(matcher);
}

// These macros allow using matchers to check values in Google Test
// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed iff the value matches the matcher.  If the assertion fails,
// the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)

}  // namespace testing

#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_