summaryrefslogtreecommitdiff
path: root/doc/gperf.html
blob: e48f22605b282777b013ee55d24e017376e8f33f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.51
     from gperf.texi on 31 March 2007 -->

<TITLE>Perfect Hash Function Generator</TITLE>
</HEAD>
<BODY>
<H1>User's Guide to <CODE>gperf</CODE> 3.0.3</H1>
<H2>The GNU Perfect Hash Function Generator</H2>
<H2>Edition 3.0.3, 31 March 2007</H2>
<ADDRESS>Douglas C. Schmidt</ADDRESS>
<ADDRESS>Bruno Haible</ADDRESS>
<P>
<P><HR><P>
<H1>Table of Contents</H1>
<UL>
<LI><A NAME="TOC1" HREF="gperf.html#SEC1">GNU GENERAL PUBLIC LICENSE</A>
<UL>
<LI><A NAME="TOC2" HREF="gperf.html#SEC2">Preamble</A>
<LI><A NAME="TOC3" HREF="gperf.html#SEC3">How to Apply These Terms to Your New Programs</A>
</UL>
<LI><A NAME="TOC4" HREF="gperf.html#SEC4">Contributors to GNU <CODE>gperf</CODE> Utility</A>
<LI><A NAME="TOC5" HREF="gperf.html#SEC5">1  Introduction</A>
<LI><A NAME="TOC6" HREF="gperf.html#SEC6">2  Static search structures and GNU <CODE>gperf</CODE></A>
<LI><A NAME="TOC7" HREF="gperf.html#SEC7">3  High-Level Description of GNU <CODE>gperf</CODE></A>
<UL>
<LI><A NAME="TOC8" HREF="gperf.html#SEC8">3.1  Input Format to <CODE>gperf</CODE></A>
<UL>
<LI><A NAME="TOC9" HREF="gperf.html#SEC9">3.1.1  Declarations</A>
<UL>
<LI><A NAME="TOC10" HREF="gperf.html#SEC10">3.1.1.1  User-supplied <CODE>struct</CODE></A>
<LI><A NAME="TOC11" HREF="gperf.html#SEC11">3.1.1.2  Gperf Declarations</A>
<LI><A NAME="TOC12" HREF="gperf.html#SEC12">3.1.1.3  C Code Inclusion</A>
</UL>
<LI><A NAME="TOC13" HREF="gperf.html#SEC13">3.1.2  Format for Keyword Entries</A>
<LI><A NAME="TOC14" HREF="gperf.html#SEC14">3.1.3  Including Additional C Functions</A>
<LI><A NAME="TOC15" HREF="gperf.html#SEC15">3.1.4  Where to place directives for GNU <CODE>indent</CODE>.</A>
</UL>
<LI><A NAME="TOC16" HREF="gperf.html#SEC16">3.2  Output Format for Generated C Code with <CODE>gperf</CODE></A>
<LI><A NAME="TOC17" HREF="gperf.html#SEC17">3.3  Use of NUL bytes</A>
</UL>
<LI><A NAME="TOC18" HREF="gperf.html#SEC18">4  Invoking <CODE>gperf</CODE></A>
<UL>
<LI><A NAME="TOC19" HREF="gperf.html#SEC19">4.1  Specifying the Location of the Output File</A>
<LI><A NAME="TOC20" HREF="gperf.html#SEC20">4.2  Options that affect Interpretation of the Input File</A>
<LI><A NAME="TOC21" HREF="gperf.html#SEC21">4.3  Options to specify the Language for the Output Code</A>
<LI><A NAME="TOC22" HREF="gperf.html#SEC22">4.4  Options for fine tuning Details in the Output Code</A>
<LI><A NAME="TOC23" HREF="gperf.html#SEC23">4.5  Options for changing the Algorithms employed by <CODE>gperf</CODE></A>
<LI><A NAME="TOC24" HREF="gperf.html#SEC24">4.6  Informative Output</A>
</UL>
<LI><A NAME="TOC25" HREF="gperf.html#SEC25">5  Known Bugs and Limitations with <CODE>gperf</CODE></A>
<LI><A NAME="TOC26" HREF="gperf.html#SEC26">6  Things Still Left to Do</A>
<LI><A NAME="TOC27" HREF="gperf.html#SEC27">7  Bibliography</A>
<LI><A NAME="TOC28" HREF="gperf.html#SEC28">Concept Index</A>
</UL>
<P><HR><P>


<H1><A NAME="SEC1" HREF="gperf.html#TOC1">GNU GENERAL PUBLIC LICENSE</A></H1>

<P>
Version 2, June 1991

</P>

<PRE>
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
</PRE>



<H2><A NAME="SEC2" HREF="gperf.html#TOC2">Preamble</A></H2>

<P>
  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.)  You can apply it to
your programs, too.

</P>
<P>
  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

</P>
<P>
  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

</P>
<P>
  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

</P>
<P>
  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

</P>
<P>
  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

</P>
<P>
  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

</P>
<P>
  The precise terms and conditions for copying, distribution and
modification follow.

</P>
<P>
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

</P>

<OL>
<LI>

This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

<LI>

You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

<LI>

You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:


<OL>
<LI>

You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

<LI>

You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

<LI>

If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License.  (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
</OL>

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

<LI>

You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:


<OL>
<LI>

Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

<LI>

Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

<LI>

Accompany it with the information you received as to the offer
to distribute corresponding source code.  (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
</OL>

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

<LI>

You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

<LI>

You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

<LI>

Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

<LI>

If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

<LI>

If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

<LI>

The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

<LI>

If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

<LI>

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

<LI>

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
</OL>

<P>
END OF TERMS AND CONDITIONS

</P>


<H2><A NAME="SEC3" HREF="gperf.html#TOC3">How to Apply These Terms to Your New Programs</A></H2>

<P>
  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

</P>
<P>
  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

</P>

<PRE>
<VAR>one line to give the program's name and an idea of what it does.</VAR>
Copyright (C) <VAR>year</VAR>  <VAR>name of author</VAR>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
</PRE>

<P>
Also add information on how to contact you by electronic and paper mail.

</P>
<P>
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

</P>

<PRE>
Gnomovision version 69, Copyright (C) <VAR>year</VAR>  <VAR>name of author</VAR>
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'.  This is free software, and you are welcome
to redistribute it under certain conditions; type `show c' 
for details.
</PRE>

<P>
The hypothetical commands <SAMP>`show w'</SAMP> and <SAMP>`show c'</SAMP> should show
the appropriate parts of the General Public License.  Of course, the
commands you use may be called something other than <SAMP>`show w'</SAMP> and
<SAMP>`show c'</SAMP>; they could even be mouse-clicks or menu items--whatever
suits your program.

</P>
<P>
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

</P>

<PRE>
Yoyodyne, Inc., hereby disclaims all copyright
interest in the program `Gnomovision'
(which makes passes at compilers) written 
by James Hacker.

<VAR>signature of Ty Coon</VAR>, 1 April 1989
Ty Coon, President of Vice
</PRE>

<P>
This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Library General
Public License instead of this License.

</P>


<H1><A NAME="SEC4" HREF="gperf.html#TOC4">Contributors to GNU <CODE>gperf</CODE> Utility</A></H1>


<UL>
<LI>

<A NAME="IDX1"></A>
The GNU <CODE>gperf</CODE> perfect hash function generator utility was
written in GNU C++ by Douglas C. Schmidt.  The general
idea for the perfect hash function generator was inspired by Keith
Bostic's algorithm written in C, and distributed to net.sources around
1984.  The current program is a heavily modified, enhanced, and extended
implementation of Keith's basic idea, created at the University of
California, Irvine.  Bugs, patches, and suggestions should be reported
to <CODE>&#60;bug-gnu-gperf@gnu.org&#62;</CODE>.

<LI>

Special thanks is extended to Michael Tiemann and Doug Lea, for
providing a useful compiler, and for giving me a forum to exhibit my
creation.

In addition, Adam de Boor and Nels Olson provided many tips and insights
that greatly helped improve the quality and functionality of <CODE>gperf</CODE>.

<LI>

Bruno Haible enhanced and optimized the search algorithm.  He also rewrote
the input routines and the output routines for better reliability, and
added a testsuite.
</UL>



<H1><A NAME="SEC5" HREF="gperf.html#TOC5">1  Introduction</A></H1>

<P>
<CODE>gperf</CODE> is a perfect hash function generator written in C++.  It
transforms an <VAR>n</VAR> element user-specified keyword set <VAR>W</VAR> into a
perfect hash function <VAR>F</VAR>.  <VAR>F</VAR> uniquely maps keywords in
<VAR>W</VAR> onto the range 0..<VAR>k</VAR>, where <VAR>k</VAR> &#62;= <VAR>n-1</VAR>.  If <VAR>k</VAR>
= <VAR>n-1</VAR> then <VAR>F</VAR> is a <EM>minimal</EM> perfect hash function.
<CODE>gperf</CODE> generates a 0..<VAR>k</VAR> element static lookup table and a
pair of C functions.  These functions determine whether a given
character string <VAR>s</VAR> occurs in <VAR>W</VAR>, using at most one probe into
the lookup table.

</P>
<P>
<CODE>gperf</CODE> currently generates the reserved keyword recognizer for
lexical analyzers in several production and research compilers and
language processing tools, including GNU C, GNU C++, GNU Java, GNU Pascal,
GNU Modula 3, and GNU indent.  Complete C++ source code for <CODE>gperf</CODE> is
available from <CODE>http://ftp.gnu.org/pub/gnu/gperf/</CODE>.
A paper describing <CODE>gperf</CODE>'s design and implementation in greater
detail is available in the Second USENIX C++ Conference proceedings
or from <CODE>http://www.cs.wustl.edu/~schmidt/resume.html</CODE>.

</P>


<H1><A NAME="SEC6" HREF="gperf.html#TOC6">2  Static search structures and GNU <CODE>gperf</CODE></A></H1>
<P>
<A NAME="IDX2"></A>

</P>
<P>
A <STRONG>static search structure</STRONG> is an Abstract Data Type with certain
fundamental operations, e.g., <EM>initialize</EM>, <EM>insert</EM>,
and <EM>retrieve</EM>.  Conceptually, all insertions occur before any
retrievals.  In practice, <CODE>gperf</CODE> generates a <EM>static</EM> array
containing search set keywords and any associated attributes specified
by the user.  Thus, there is essentially no execution-time cost for the
insertions.  It is a useful data structure for representing <EM>static
search sets</EM>.  Static search sets occur frequently in software system
applications.  Typical static search sets include compiler reserved
words, assembler instruction opcodes, and built-in shell interpreter
commands.  Search set members, called <STRONG>keywords</STRONG>, are inserted into
the structure only once, usually during program initialization, and are
not generally modified at run-time.

</P>
<P>
Numerous static search structure implementations exist, e.g.,
arrays, linked lists, binary search trees, digital search tries, and
hash tables.  Different approaches offer trade-offs between space
utilization and search time efficiency.  For example, an <VAR>n</VAR> element
sorted array is space efficient, though the average-case time
complexity for retrieval operations using binary search is
proportional to log <VAR>n</VAR>.  Conversely, hash table implementations
often locate a table entry in constant time, but typically impose
additional memory overhead and exhibit poor worst case performance.

</P>
<P>
<A NAME="IDX3"></A>
<EM>Minimal perfect hash functions</EM> provide an optimal solution for a
particular class of static search sets.  A minimal perfect hash
function is defined by two properties:

</P>

<UL>
<LI>

It allows keyword recognition in a static search set using at most
<EM>one</EM> probe into the hash table.  This represents the "perfect"
property.
<LI>

The actual memory allocated to store the keywords is precisely large
enough for the keyword set, and <EM>no larger</EM>.  This is the
"minimal" property.
</UL>

<P>
For most applications it is far easier to generate <EM>perfect</EM> hash
functions than <EM>minimal perfect</EM> hash functions.  Moreover,
non-minimal perfect hash functions frequently execute faster than
minimal ones in practice.  This phenomena occurs since searching a
sparse keyword table increases the probability of locating a "null"
entry, thereby reducing string comparisons.  <CODE>gperf</CODE>'s default
behavior generates <EM>near-minimal</EM> perfect hash functions for
keyword sets.  However, <CODE>gperf</CODE> provides many options that permit
user control over the degree of minimality and perfection.

</P>
<P>
Static search sets often exhibit relative stability over time.  For
example, Ada's 63 reserved words have remained constant for nearly a
decade.  It is therefore frequently worthwhile to expend concerted
effort building an optimal search structure <EM>once</EM>, if it
subsequently receives heavy use multiple times.  <CODE>gperf</CODE> removes
the drudgery associated with constructing time- and space-efficient
search structures by hand.  It has proven a useful and practical tool
for serious programming projects.  Output from <CODE>gperf</CODE> is currently
used in several production and research compilers, including GNU C, GNU
C++, GNU Java, GNU Pascal, and GNU Modula 3.  The latter two compilers are
not yet part of the official GNU distribution.  Each compiler utilizes
<CODE>gperf</CODE> to automatically generate static search structures that
efficiently identify their respective reserved keywords.

</P>


<H1><A NAME="SEC7" HREF="gperf.html#TOC7">3  High-Level Description of GNU <CODE>gperf</CODE></A></H1>

<P>
The perfect hash function generator <CODE>gperf</CODE> reads a set of
"keywords" from an input file (or from the standard input by
default).  It attempts to derive a perfect hashing function that
recognizes a member of the <STRONG>static keyword set</STRONG> with at most a
single probe into the lookup table.  If <CODE>gperf</CODE> succeeds in
generating such a function it produces a pair of C source code routines
that perform hashing and table lookup recognition.  All generated C code
is directed to the standard output.  Command-line options described
below allow you to modify the input and output format to <CODE>gperf</CODE>.

</P>
<P>
By default, <CODE>gperf</CODE> attempts to produce time-efficient code, with
less emphasis on efficient space utilization.  However, several options
exist that permit trading-off execution time for storage space and vice
versa.  In particular, expanding the generated table size produces a
sparse search structure, generally yielding faster searches.
Conversely, you can direct <CODE>gperf</CODE> to utilize a C <CODE>switch</CODE>
statement scheme that minimizes data space storage size.  Furthermore,
using a C <CODE>switch</CODE> may actually speed up the keyword retrieval time
somewhat.  Actual results depend on your C compiler, of course.

</P>
<P>
In general, <CODE>gperf</CODE> assigns values to the bytes it is using
for hashing until some set of values gives each keyword a unique value.
A helpful heuristic is that the larger the hash value range, the easier
it is for <CODE>gperf</CODE> to find and generate a perfect hash function.
Experimentation is the key to getting the most from <CODE>gperf</CODE>.

</P>


<H2><A NAME="SEC8" HREF="gperf.html#TOC8">3.1  Input Format to <CODE>gperf</CODE></A></H2>
<P>
<A NAME="IDX4"></A>
<A NAME="IDX5"></A>
<A NAME="IDX6"></A>
<A NAME="IDX7"></A>
You can control the input file format by varying certain command-line
arguments, in particular the <SAMP>`-t'</SAMP> option.  The input's appearance
is similar to GNU utilities <CODE>flex</CODE> and <CODE>bison</CODE> (or UNIX
utilities <CODE>lex</CODE> and <CODE>yacc</CODE>).  Here's an outline of the general
format:

</P>

<PRE>
declarations
%%
keywords
%%
functions
</PRE>

<P>
<EM>Unlike</EM> <CODE>flex</CODE> or <CODE>bison</CODE>, the declarations section and
the functions section are optional.  The following sections describe the
input format for each section.

</P>

<P>
It is possible to omit the declaration section entirely, if the <SAMP>`-t'</SAMP>
option is not given.  In this case the input file begins directly with the
first keyword line, e.g.:

</P>

<PRE>
january
february
march
april
...
</PRE>



<H3><A NAME="SEC9" HREF="gperf.html#TOC9">3.1.1  Declarations</A></H3>

<P>
The keyword input file optionally contains a section for including
arbitrary C declarations and definitions, <CODE>gperf</CODE> declarations that
act like command-line options, as well as for providing a user-supplied
<CODE>struct</CODE>.

</P>



<H4><A NAME="SEC10" HREF="gperf.html#TOC10">3.1.1.1  User-supplied <CODE>struct</CODE></A></H4>

<P>
If the <SAMP>`-t'</SAMP> option (or, equivalently, the <SAMP>`%struct-type'</SAMP> declaration)
<EM>is</EM> enabled, you <EM>must</EM> provide a C <CODE>struct</CODE> as the last
component in the declaration section from the input file.  The first
field in this struct must be of type <CODE>char *</CODE> or <CODE>const char *</CODE>
if the <SAMP>`-P'</SAMP> option is not given, or of type <CODE>int</CODE> if the option
<SAMP>`-P'</SAMP> (or, equivalently, the <SAMP>`%pic'</SAMP> declaration) is enabled.
This first field must be called <SAMP>`name'</SAMP>, although it is possible to modify
its name with the <SAMP>`-K'</SAMP> option (or, equivalently, the
<SAMP>`%define slot-name'</SAMP> declaration) described below.

</P>
<P>
Here is a simple example, using months of the year and their attributes as
input:

</P>

<PRE>
struct month { char *name; int number; int days; int leap_days; };
%%
january,   1, 31, 31
february,  2, 28, 29
march,     3, 31, 31
april,     4, 30, 30
may,       5, 31, 31
june,      6, 30, 30
july,      7, 31, 31
august,    8, 31, 31
september, 9, 30, 30
october,  10, 31, 31
november, 11, 30, 30
december, 12, 31, 31
</PRE>

<P>
<A NAME="IDX8"></A>
Separating the <CODE>struct</CODE> declaration from the list of keywords and
other fields are a pair of consecutive percent signs, <SAMP>`%%'</SAMP>,
appearing left justified in the first column, as in the UNIX utility
<CODE>lex</CODE>.

</P>
<P>
If the <CODE>struct</CODE> has already been declared in an include file, it can
be mentioned in an abbreviated form, like this:

</P>

<PRE>
struct month;
%%
january,   1, 31, 31
...
</PRE>



<H4><A NAME="SEC11" HREF="gperf.html#TOC11">3.1.1.2  Gperf Declarations</A></H4>

<P>
The declaration section can contain <CODE>gperf</CODE> declarations.  They
influence the way <CODE>gperf</CODE> works, like command line options do.
In fact, every such declaration is equivalent to a command line option.
There are three forms of declarations:

</P>

<OL>
<LI>

Declarations without argument, like <SAMP>`%compare-lengths'</SAMP>.

<LI>

Declarations with an argument, like <SAMP>`%switch=<VAR>count</VAR>'</SAMP>.

<LI>

Declarations of names of entities in the output file, like
<SAMP>`%define lookup-function-name <VAR>name</VAR>'</SAMP>.
</OL>

<P>
When a declaration is given both in the input file and as a command line
option, the command-line option's value prevails.

</P>
<P>
The following <CODE>gperf</CODE> declarations are available.

</P>
<DL COMPACT>

<DT><SAMP>`%delimiters=<VAR>delimiter-list</VAR>'</SAMP>
<DD>
<A NAME="IDX9"></A>
Allows you to provide a string containing delimiters used to
separate keywords from their attributes.  The default is ",".  This
option is essential if you want to use keywords that have embedded
commas or newlines.

<DT><SAMP>`%struct-type'</SAMP>
<DD>
<A NAME="IDX10"></A>
Allows you to include a <CODE>struct</CODE> type declaration for generated
code; see above for an example.

<DT><SAMP>`%ignore-case'</SAMP>
<DD>
<A NAME="IDX11"></A>
Consider upper and lower case ASCII characters as equivalent.  The string
comparison will use a case insignificant character comparison.  Note that
locale dependent case mappings are ignored.

<DT><SAMP>`%language=<VAR>language-name</VAR>'</SAMP>
<DD>
<A NAME="IDX12"></A>
Instructs <CODE>gperf</CODE> to generate code in the language specified by the
option's argument.  Languages handled are currently:

<DL COMPACT>

<DT><SAMP>`KR-C'</SAMP>
<DD>
Old-style K&#38;R C.  This language is understood by old-style C compilers and
ANSI C compilers, but ANSI C compilers may flag warnings (or even errors)
because of lacking <SAMP>`const'</SAMP>.

<DT><SAMP>`C'</SAMP>
<DD>
Common C.  This language is understood by ANSI C compilers, and also by
old-style C compilers, provided that you <CODE>#define const</CODE> to empty
for compilers which don't know about this keyword.

<DT><SAMP>`ANSI-C'</SAMP>
<DD>
ANSI C.  This language is understood by ANSI C compilers and C++ compilers.

<DT><SAMP>`C++'</SAMP>
<DD>
C++.  This language is understood by C++ compilers.
</DL>

The default is C.

<DT><SAMP>`%define slot-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX13"></A>
This declaration is only useful when option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) has been given.
By default, the program assumes the structure component identifier for
the keyword is <SAMP>`name'</SAMP>.  This option allows an arbitrary choice of
identifier for this component, although it still must occur as the first
field in your supplied <CODE>struct</CODE>.

<DT><SAMP>`%define initializer-suffix <VAR>initializers</VAR>'</SAMP>
<DD>
<A NAME="IDX14"></A>
This declaration is only useful when option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) has been given.
It permits to specify initializers for the structure members following
<VAR>slot-name</VAR> in empty hash table entries.  The list of initializers
should start with a comma.  By default, the emitted code will
zero-initialize structure members following <VAR>slot-name</VAR>.

<DT><SAMP>`%define hash-function-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX15"></A>
Allows you to specify the name for the generated hash function.  Default
name is <SAMP>`hash'</SAMP>.  This option permits the use of two hash tables in
the same file.

<DT><SAMP>`%define lookup-function-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX16"></A>
Allows you to specify the name for the generated lookup function.
Default name is <SAMP>`in_word_set'</SAMP>.  This option permits multiple
generated hash functions to be used in the same application.

<DT><SAMP>`%define class-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX17"></A>
This option is only useful when option <SAMP>`-L C++'</SAMP> (or, equivalently,
the <SAMP>`%language=C++'</SAMP> declaration) has been given.  It
allows you to specify the name of generated C++ class.  Default name is
<CODE>Perfect_Hash</CODE>.

<DT><SAMP>`%7bit'</SAMP>
<DD>
<A NAME="IDX18"></A>
This option specifies that all strings that will be passed as arguments
to the generated hash function and the generated lookup function will
solely consist of 7-bit ASCII characters (bytes in the range 0..127).
(Note that the ANSI C functions <CODE>isalnum</CODE> and <CODE>isgraph</CODE> do
<EM>not</EM> guarantee that a byte is in this range.  Only an explicit
test like <SAMP>`c &#62;= 'A' &#38;&#38; c &#60;= 'Z''</SAMP> guarantees this.)

<DT><SAMP>`%compare-lengths'</SAMP>
<DD>
<A NAME="IDX19"></A>
Compare keyword lengths before trying a string comparison.  This option
is mandatory for binary comparisons (see section <A HREF="gperf.html#SEC17">3.3  Use of NUL bytes</A>).  It also might
cut down on the number of string comparisons made during the lookup, since
keywords with different lengths are never compared via <CODE>strcmp</CODE>.
However, using <SAMP>`%compare-lengths'</SAMP> might greatly increase the size of the
generated C code if the lookup table range is large (which implies that
the switch option <SAMP>`-S'</SAMP> or <SAMP>`%switch'</SAMP> is not enabled), since the length
table contains as many elements as there are entries in the lookup table.

<DT><SAMP>`%compare-strncmp'</SAMP>
<DD>
<A NAME="IDX20"></A>
Generates C code that uses the <CODE>strncmp</CODE> function to perform
string comparisons.  The default action is to use <CODE>strcmp</CODE>.

<DT><SAMP>`%readonly-tables'</SAMP>
<DD>
<A NAME="IDX21"></A>
Makes the contents of all generated lookup tables constant, i.e.,
"readonly".  Many compilers can generate more efficient code for this
by putting the tables in readonly memory.

<DT><SAMP>`%enum'</SAMP>
<DD>
<A NAME="IDX22"></A>
Define constant values using an enum local to the lookup function rather
than with #defines.  This also means that different lookup functions can
reside in the same file.  Thanks to James Clark <CODE>&#60;jjc@ai.mit.edu&#62;</CODE>.

<DT><SAMP>`%includes'</SAMP>
<DD>
<A NAME="IDX23"></A>
Include the necessary system include file, <CODE>&#60;string.h&#62;</CODE>, at the
beginning of the code.  By default, this is not done; the user must
include this header file himself to allow compilation of the code.

<DT><SAMP>`%global-table'</SAMP>
<DD>
<A NAME="IDX24"></A>
Generate the static table of keywords as a static global variable,
rather than hiding it inside of the lookup function (which is the
default behavior).

<DT><SAMP>`%pic'</SAMP>
<DD>
<A NAME="IDX25"></A>
Optimize the generated table for inclusion in shared libraries.  This
reduces the startup time of programs using a shared library containing
the generated code.  If the <SAMP>`%struct-type'</SAMP> declaration (or,
equivalently, the option <SAMP>`-t'</SAMP>) is also given, the first field of the
user-defined struct must be of type <SAMP>`int'</SAMP>, not <SAMP>`char *'</SAMP>, because
it will contain offsets into the string pool instead of actual strings.
To convert such an offset to a string, you can use the expression
<SAMP>`stringpool + <VAR>o</VAR>'</SAMP>, where <VAR>o</VAR> is the offset.  The string pool
name can be changed through the <SAMP>`%define string-pool-name'</SAMP> declaration.

<DT><SAMP>`%define string-pool-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX26"></A>
Allows you to specify the name of the generated string pool created by
the declaration <SAMP>`%pic'</SAMP> (or, equivalently, the option <SAMP>`-P'</SAMP>).
The default name is <SAMP>`stringpool'</SAMP>.  This declaration permits the use of
two hash tables in the same file, with <SAMP>`%pic'</SAMP> and even when the
<SAMP>`%global-table'</SAMP> declaration (or, equivalently, the option <SAMP>`-G'</SAMP>)
is given.

<DT><SAMP>`%null-strings'</SAMP>
<DD>
<A NAME="IDX27"></A>
Use NULL strings instead of empty strings for empty keyword table entries.
This reduces the startup time of programs using a shared library containing
the generated code (but not as much as the declaration <SAMP>`%pic'</SAMP>), at the
expense of one more test-and-branch instruction at run time.

<DT><SAMP>`%define word-array-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX28"></A>
Allows you to specify the name for the generated array containing the
hash table.  Default name is <SAMP>`wordlist'</SAMP>.  This option permits the
use of two hash tables in the same file, even when the option <SAMP>`-G'</SAMP>
(or, equivalently, the <SAMP>`%global-table'</SAMP> declaration) is given.

<DT><SAMP>`%define length-table-name <VAR>name</VAR>'</SAMP>
<DD>
<A NAME="IDX29"></A>
Allows you to specify the name for the generated array containing the
length table.  Default name is <SAMP>`lengthtable'</SAMP>.  This option permits the
use of two length tables in the same file, even when the option <SAMP>`-G'</SAMP>
(or, equivalently, the <SAMP>`%global-table'</SAMP> declaration) is given.

<DT><SAMP>`%switch=<VAR>count</VAR>'</SAMP>
<DD>
<A NAME="IDX30"></A>
Causes the generated C code to use a <CODE>switch</CODE> statement scheme,
rather than an array lookup table.  This can lead to a reduction in both
time and space requirements for some input files.  The argument to this
option determines how many <CODE>switch</CODE> statements are generated.  A
value of 1 generates 1 <CODE>switch</CODE> containing all the elements, a
value of 2 generates 2 tables with 1/2 the elements in each
<CODE>switch</CODE>, etc.  This is useful since many C compilers cannot
correctly generate code for large <CODE>switch</CODE> statements.  This option
was inspired in part by Keith Bostic's original C program.

<DT><SAMP>`%omit-struct-type'</SAMP>
<DD>
<A NAME="IDX31"></A>
Prevents the transfer of the type declaration to the output file.  Use
this option if the type is already defined elsewhere.
</DL>



<H4><A NAME="SEC12" HREF="gperf.html#TOC12">3.1.1.3  C Code Inclusion</A></H4>

<P>
<A NAME="IDX32"></A>
<A NAME="IDX33"></A>
Using a syntax similar to GNU utilities <CODE>flex</CODE> and <CODE>bison</CODE>, it
is possible to directly include C source text and comments verbatim into
the generated output file.  This is accomplished by enclosing the region
inside left-justified surrounding <SAMP>`%{'</SAMP>, <SAMP>`%}'</SAMP> pairs.  Here is
an input fragment based on the previous example that illustrates this
feature:

</P>

<PRE>
%{
#include &#60;assert.h&#62;
/* This section of code is inserted directly into the output. */
int return_month_days (struct month *months, int is_leap_year);
%}
struct month { char *name; int number; int days; int leap_days; };
%%
january,   1, 31, 31
february,  2, 28, 29
march,     3, 31, 31
...
</PRE>



<H3><A NAME="SEC13" HREF="gperf.html#TOC13">3.1.2  Format for Keyword Entries</A></H3>

<P>
The second input file format section contains lines of keywords and any
associated attributes you might supply.  A line beginning with <SAMP>`#'</SAMP>
in the first column is considered a comment.  Everything following the
<SAMP>`#'</SAMP> is ignored, up to and including the following newline.  A line
beginning with <SAMP>`%'</SAMP> in the first column is an option declaration and
must not occur within the keywords section.

</P>
<P>
The first field of each non-comment line is always the keyword itself.  It
can be given in two ways: as a simple name, i.e., without surrounding
string quotation marks, or as a string enclosed in double-quotes, in
C syntax, possibly with backslash escapes like <CODE>\"</CODE> or <CODE>\234</CODE>
or <CODE>\xa8</CODE>.  In either case, it must start right at the beginning
of the line, without leading whitespace.
In this context, a "field" is considered to extend up to, but
not include, the first blank, comma, or newline.  Here is a simple
example taken from a partial list of C reserved words:

</P>

<PRE>
# These are a few C reserved words, see the c.gperf file 
# for a complete list of ANSI C reserved words.
unsigned
sizeof
switch
signed
if
default
for
while
return
</PRE>

<P>
Note that unlike <CODE>flex</CODE> or <CODE>bison</CODE> the first <SAMP>`%%'</SAMP> marker
may be elided if the declaration section is empty.

</P>
<P>
Additional fields may optionally follow the leading keyword.  Fields
should be separated by commas, and terminate at the end of line.  What
these fields mean is entirely up to you; they are used to initialize the
elements of the user-defined <CODE>struct</CODE> provided by you in the
declaration section.  If the <SAMP>`-t'</SAMP> option (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) is <EM>not</EM> enabled
these fields are simply ignored.  All previous examples except the last
one contain keyword attributes.

</P>


<H3><A NAME="SEC14" HREF="gperf.html#TOC14">3.1.3  Including Additional C Functions</A></H3>

<P>
The optional third section also corresponds closely with conventions
found in <CODE>flex</CODE> and <CODE>bison</CODE>.  All text in this section,
starting at the final <SAMP>`%%'</SAMP> and extending to the end of the input
file, is included verbatim into the generated output file.  Naturally,
it is your responsibility to ensure that the code contained in this
section is valid C.

</P>


<H3><A NAME="SEC15" HREF="gperf.html#TOC15">3.1.4  Where to place directives for GNU <CODE>indent</CODE>.</A></H3>

<P>
If you want to invoke GNU <CODE>indent</CODE> on a <CODE>gperf</CODE> input file,
you will see that GNU <CODE>indent</CODE> doesn't understand the <SAMP>`%%'</SAMP>,
<SAMP>`%{'</SAMP> and <SAMP>`%}'</SAMP> directives that control <CODE>gperf</CODE>'s
interpretation of the input file.  Therefore you have to insert some
directives for GNU <CODE>indent</CODE>.  More precisely, assuming the most
general input file structure

</P>

<PRE>
declarations part 1
%{
verbatim code
%}
declarations part 2
%%
keywords
%%
functions
</PRE>

<P>
you would insert <SAMP>`*INDENT-OFF*'</SAMP> and <SAMP>`*INDENT-ON*'</SAMP> comments
as follows:

</P>

<PRE>
/* *INDENT-OFF* */
declarations part 1
%{
/* *INDENT-ON* */
verbatim code
/* *INDENT-OFF* */
%}
declarations part 2
%%
keywords
%%
/* *INDENT-ON* */
functions
</PRE>



<H2><A NAME="SEC16" HREF="gperf.html#TOC16">3.2  Output Format for Generated C Code with <CODE>gperf</CODE></A></H2>
<P>
<A NAME="IDX34"></A>

</P>
<P>
Several options control how the generated C code appears on the standard 
output.  Two C functions are generated.  They are called <CODE>hash</CODE> and 
<CODE>in_word_set</CODE>, although you may modify their names with a command-line 
option.  Both functions require two arguments, a string, <CODE>char *</CODE> 
<VAR>str</VAR>, and a length parameter, <CODE>int</CODE> <VAR>len</VAR>.  Their default 
function prototypes are as follows:

</P>
<P>
<DL>
<DT><U>Function:</U> unsigned int <B>hash</B> <I>(const char * <VAR>str</VAR>, unsigned int <VAR>len</VAR>)</I>
<DD><A NAME="IDX35"></A>
By default, the generated <CODE>hash</CODE> function returns an integer value
created by adding <VAR>len</VAR> to several user-specified <VAR>str</VAR> byte
positions indexed into an <STRONG>associated values</STRONG> table stored in a
local static array.  The associated values table is constructed
internally by <CODE>gperf</CODE> and later output as a static local C array
called <SAMP>`hash_table'</SAMP>.  The relevant selected positions (i.e. indices
into <VAR>str</VAR>) are specified via the <SAMP>`-k'</SAMP> option when running
<CODE>gperf</CODE>, as detailed in the <EM>Options</EM> section below (see section <A HREF="gperf.html#SEC18">4  Invoking <CODE>gperf</CODE></A>).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U>  <B>in_word_set</B> <I>(const char * <VAR>str</VAR>, unsigned int <VAR>len</VAR>)</I>
<DD><A NAME="IDX36"></A>
If <VAR>str</VAR> is in the keyword set, returns a pointer to that
keyword.  More exactly, if the option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) was given, it returns
a pointer to the matching keyword's structure.  Otherwise it returns
<CODE>NULL</CODE>.
</DL>

</P>
<P>
If the option <SAMP>`-c'</SAMP> (or, equivalently, the <SAMP>`%compare-strncmp'</SAMP>
declaration) is not used, <VAR>str</VAR> must be a NUL terminated
string of exactly length <VAR>len</VAR>.  If <SAMP>`-c'</SAMP> (or, equivalently, the
<SAMP>`%compare-strncmp'</SAMP> declaration) is used, <VAR>str</VAR> must
simply be an array of <VAR>len</VAR> bytes and does not need to be NUL
terminated.

</P>
<P>
The code generated for these two functions is affected by the following
options:

</P>
<DL COMPACT>

<DT><SAMP>`-t'</SAMP>
<DD>
<DT><SAMP>`--struct-type'</SAMP>
<DD>
Make use of the user-defined <CODE>struct</CODE>.

<DT><SAMP>`-S <VAR>total-switch-statements</VAR>'</SAMP>
<DD>
<DT><SAMP>`--switch=<VAR>total-switch-statements</VAR>'</SAMP>
<DD>
<A NAME="IDX37"></A>
Generate 1 or more C <CODE>switch</CODE> statement rather than use a large,
(and potentially sparse) static array.  Although the exact time and
space savings of this approach vary according to your C compiler's
degree of optimization, this method often results in smaller and faster
code.
</DL>

<P>
If the <SAMP>`-t'</SAMP> and <SAMP>`-S'</SAMP> options (or, equivalently, the
<SAMP>`%struct-type'</SAMP> and <SAMP>`%switch'</SAMP> declarations) are omitted, the default
action
is to generate a <CODE>char *</CODE> array containing the keywords, together with
additional empty strings used for padding the array.  By experimenting
with the various input and output options, and timing the resulting C
code, you can determine the best option choices for different keyword
set characteristics.

</P>


<H2><A NAME="SEC17" HREF="gperf.html#TOC17">3.3  Use of NUL bytes</A></H2>
<P>
<A NAME="IDX38"></A>

</P>
<P>
By default, the code generated by <CODE>gperf</CODE> operates on zero
terminated strings, the usual representation of strings in C.  This means
that the keywords in the input file must not contain NUL bytes,
and the <VAR>str</VAR> argument passed to <CODE>hash</CODE> or <CODE>in_word_set</CODE>
must be NUL terminated and have exactly length <VAR>len</VAR>.

</P>
<P>
If option <SAMP>`-c'</SAMP> (or, equivalently, the <SAMP>`%compare-strncmp'</SAMP>
declaration) is used, then the <VAR>str</VAR> argument does not need
to be NUL terminated.  The code generated by <CODE>gperf</CODE> will only
access the first <VAR>len</VAR>, not <VAR>len+1</VAR>, bytes starting at <VAR>str</VAR>.
However, the keywords in the input file still must not contain NUL
bytes.

</P>
<P>
If option <SAMP>`-l'</SAMP> (or, equivalently, the <SAMP>`%compare-lengths'</SAMP>
declaration) is used, then the hash table performs binary
comparison.  The keywords in the input file may contain NUL bytes,
written in string syntax as <CODE>\000</CODE> or <CODE>\x00</CODE>, and the code
generated by <CODE>gperf</CODE> will treat NUL like any other byte.
Also, in this case the <SAMP>`-c'</SAMP> option (or, equivalently, the
<SAMP>`%compare-strncmp'</SAMP> declaration) is ignored.

</P>


<H1><A NAME="SEC18" HREF="gperf.html#TOC18">4  Invoking <CODE>gperf</CODE></A></H1>

<P>
There are <EM>many</EM> options to <CODE>gperf</CODE>.  They were added to make
the program more convenient for use with real applications.  "On-line"
help is readily available via the <SAMP>`--help'</SAMP> option.  Here is the
complete list of options.

</P>



<H2><A NAME="SEC19" HREF="gperf.html#TOC19">4.1  Specifying the Location of the Output File</A></H2>

<DL COMPACT>

<DT><SAMP>`--output-file=<VAR>file</VAR>'</SAMP>
<DD>
Allows you to specify the name of the file to which the output is written to.
</DL>

<P>
The results are written to standard output if no output file is specified
or if it is <SAMP>`-'</SAMP>.

</P>


<H2><A NAME="SEC20" HREF="gperf.html#TOC20">4.2  Options that affect Interpretation of the Input File</A></H2>

<P>
These options are also available as declarations in the input file
(see section <A HREF="gperf.html#SEC11">3.1.1.2  Gperf Declarations</A>).

</P>
<DL COMPACT>

<DT><SAMP>`-e <VAR>keyword-delimiter-list</VAR>'</SAMP>
<DD>
<DT><SAMP>`--delimiters=<VAR>keyword-delimiter-list</VAR>'</SAMP>
<DD>
<A NAME="IDX39"></A>
Allows you to provide a string containing delimiters used to
separate keywords from their attributes.  The default is ",".  This
option is essential if you want to use keywords that have embedded
commas or newlines.  One useful trick is to use -e'TAB', where TAB is
the literal tab character.

<DT><SAMP>`-t'</SAMP>
<DD>
<DT><SAMP>`--struct-type'</SAMP>
<DD>
Allows you to include a <CODE>struct</CODE> type declaration for generated
code.  Any text before a pair of consecutive <SAMP>`%%'</SAMP> is considered
part of the type declaration.  Keywords and additional fields may follow
this, one group of fields per line.  A set of examples for generating
perfect hash tables and functions for Ada, C, C++, Pascal, Modula 2,
Modula 3 and JavaScript reserved words are distributed with this release.

<DT><SAMP>`--ignore-case'</SAMP>
<DD>
Consider upper and lower case ASCII characters as equivalent.  The string
comparison will use a case insignificant character comparison.  Note that
locale dependent case mappings are ignored.  This option is therefore not
suitable if a properly internationalized or locale aware case mapping
should be used.  (For example, in a Turkish locale, the upper case equivalent
of the lowercase ASCII letter <SAMP>`i'</SAMP> is the non-ASCII character
<SAMP>`capital i with dot above'</SAMP>.)  For this case, it is better to apply
an uppercase or lowercase conversion on the string before passing it to
the <CODE>gperf</CODE> generated function.
</DL>



<H2><A NAME="SEC21" HREF="gperf.html#TOC21">4.3  Options to specify the Language for the Output Code</A></H2>

<P>
These options are also available as declarations in the input file
(see section <A HREF="gperf.html#SEC11">3.1.1.2  Gperf Declarations</A>).

</P>
<DL COMPACT>

<DT><SAMP>`-L <VAR>generated-language-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--language=<VAR>generated-language-name</VAR>'</SAMP>
<DD>
Instructs <CODE>gperf</CODE> to generate code in the language specified by the
option's argument.  Languages handled are currently:

<DL COMPACT>

<DT><SAMP>`KR-C'</SAMP>
<DD>
Old-style K&#38;R C.  This language is understood by old-style C compilers and
ANSI C compilers, but ANSI C compilers may flag warnings (or even errors)
because of lacking <SAMP>`const'</SAMP>.

<DT><SAMP>`C'</SAMP>
<DD>
Common C.  This language is understood by ANSI C compilers, and also by
old-style C compilers, provided that you <CODE>#define const</CODE> to empty
for compilers which don't know about this keyword.

<DT><SAMP>`ANSI-C'</SAMP>
<DD>
ANSI C.  This language is understood by ANSI C compilers and C++ compilers.

<DT><SAMP>`C++'</SAMP>
<DD>
C++.  This language is understood by C++ compilers.
</DL>

The default is C.

<DT><SAMP>`-a'</SAMP>
<DD>
This option is supported for compatibility with previous releases of
<CODE>gperf</CODE>.  It does not do anything.

<DT><SAMP>`-g'</SAMP>
<DD>
This option is supported for compatibility with previous releases of
<CODE>gperf</CODE>.  It does not do anything.
</DL>



<H2><A NAME="SEC22" HREF="gperf.html#TOC22">4.4  Options for fine tuning Details in the Output Code</A></H2>

<P>
Most of these options are also available as declarations in the input file
(see section <A HREF="gperf.html#SEC11">3.1.1.2  Gperf Declarations</A>).

</P>
<DL COMPACT>

<DT><SAMP>`-K <VAR>slot-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--slot-name=<VAR>slot-name</VAR>'</SAMP>
<DD>
<A NAME="IDX40"></A>
This option is only useful when option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) has been given.
By default, the program assumes the structure component identifier for
the keyword is <SAMP>`name'</SAMP>.  This option allows an arbitrary choice of
identifier for this component, although it still must occur as the first
field in your supplied <CODE>struct</CODE>.

<DT><SAMP>`-F <VAR>initializers</VAR>'</SAMP>
<DD>
<DT><SAMP>`--initializer-suffix=<VAR>initializers</VAR>'</SAMP>
<DD>
<A NAME="IDX41"></A>
This option is only useful when option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) has been given.
It permits to specify initializers for the structure members following
<VAR>slot-name</VAR> in empty hash table entries.  The list of initializers
should start with a comma.  By default, the emitted code will
zero-initialize structure members following <VAR>slot-name</VAR>.

<DT><SAMP>`-H <VAR>hash-function-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--hash-function-name=<VAR>hash-function-name</VAR>'</SAMP>
<DD>
Allows you to specify the name for the generated hash function.  Default
name is <SAMP>`hash'</SAMP>.  This option permits the use of two hash tables in
the same file.

<DT><SAMP>`-N <VAR>lookup-function-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--lookup-function-name=<VAR>lookup-function-name</VAR>'</SAMP>
<DD>
Allows you to specify the name for the generated lookup function.
Default name is <SAMP>`in_word_set'</SAMP>.  This option permits multiple
generated hash functions to be used in the same application.

<DT><SAMP>`-Z <VAR>class-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--class-name=<VAR>class-name</VAR>'</SAMP>
<DD>
<A NAME="IDX42"></A>
This option is only useful when option <SAMP>`-L C++'</SAMP> (or, equivalently,
the <SAMP>`%language=C++'</SAMP> declaration) has been given.  It
allows you to specify the name of generated C++ class.  Default name is
<CODE>Perfect_Hash</CODE>.

<DT><SAMP>`-7'</SAMP>
<DD>
<DT><SAMP>`--seven-bit'</SAMP>
<DD>
This option specifies that all strings that will be passed as arguments
to the generated hash function and the generated lookup function will
solely consist of 7-bit ASCII characters (bytes in the range 0..127).
(Note that the ANSI C functions <CODE>isalnum</CODE> and <CODE>isgraph</CODE> do
<EM>not</EM> guarantee that a byte is in this range.  Only an explicit
test like <SAMP>`c &#62;= 'A' &#38;&#38; c &#60;= 'Z''</SAMP> guarantees this.) This was the
default in versions of <CODE>gperf</CODE> earlier than 2.7; now the default is
to support 8-bit and multibyte characters.

<DT><SAMP>`-l'</SAMP>
<DD>
<DT><SAMP>`--compare-lengths'</SAMP>
<DD>
Compare keyword lengths before trying a string comparison.  This option
is mandatory for binary comparisons (see section <A HREF="gperf.html#SEC17">3.3  Use of NUL bytes</A>).  It also might
cut down on the number of string comparisons made during the lookup, since
keywords with different lengths are never compared via <CODE>strcmp</CODE>.
However, using <SAMP>`-l'</SAMP> might greatly increase the size of the
generated C code if the lookup table range is large (which implies that
the switch option <SAMP>`-S'</SAMP> or <SAMP>`%switch'</SAMP> is not enabled), since the length
table contains as many elements as there are entries in the lookup table.

<DT><SAMP>`-c'</SAMP>
<DD>
<DT><SAMP>`--compare-strncmp'</SAMP>
<DD>
Generates C code that uses the <CODE>strncmp</CODE> function to perform
string comparisons.  The default action is to use <CODE>strcmp</CODE>.

<DT><SAMP>`-C'</SAMP>
<DD>
<DT><SAMP>`--readonly-tables'</SAMP>
<DD>
Makes the contents of all generated lookup tables constant, i.e.,
"readonly".  Many compilers can generate more efficient code for this
by putting the tables in readonly memory.

<DT><SAMP>`-E'</SAMP>
<DD>
<DT><SAMP>`--enum'</SAMP>
<DD>
Define constant values using an enum local to the lookup function rather
than with #defines.  This also means that different lookup functions can
reside in the same file.  Thanks to James Clark <CODE>&#60;jjc@ai.mit.edu&#62;</CODE>.

<DT><SAMP>`-I'</SAMP>
<DD>
<DT><SAMP>`--includes'</SAMP>
<DD>
Include the necessary system include file, <CODE>&#60;string.h&#62;</CODE>, at the
beginning of the code.  By default, this is not done; the user must
include this header file himself to allow compilation of the code.

<DT><SAMP>`-G'</SAMP>
<DD>
<DT><SAMP>`--global-table'</SAMP>
<DD>
Generate the static table of keywords as a static global variable,
rather than hiding it inside of the lookup function (which is the
default behavior).

<DT><SAMP>`-P'</SAMP>
<DD>
<DT><SAMP>`--pic'</SAMP>
<DD>
Optimize the generated table for inclusion in shared libraries.  This
reduces the startup time of programs using a shared library containing
the generated code.  If the option <SAMP>`-t'</SAMP> (or, equivalently, the
<SAMP>`%struct-type'</SAMP> declaration) is also given, the first field of the
user-defined struct must be of type <SAMP>`int'</SAMP>, not <SAMP>`char *'</SAMP>, because
it will contain offsets into the string pool instead of actual strings.
To convert such an offset to a string, you can use the expression
<SAMP>`stringpool + <VAR>o</VAR>'</SAMP>, where <VAR>o</VAR> is the offset.  The string pool
name can be changed through the option <SAMP>`--string-pool-name'</SAMP>.

<DT><SAMP>`-Q <VAR>string-pool-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--string-pool-name=<VAR>string-pool-name</VAR>'</SAMP>
<DD>
Allows you to specify the name of the generated string pool created by
option <SAMP>`-P'</SAMP>.  The default name is <SAMP>`stringpool'</SAMP>.  This option
permits the use of two hash tables in the same file, with <SAMP>`-P'</SAMP> and
even when the option <SAMP>`-G'</SAMP> (or, equivalently, the <SAMP>`%global-table'</SAMP>
declaration) is given.

<DT><SAMP>`--null-strings'</SAMP>
<DD>
Use NULL strings instead of empty strings for empty keyword table entries.
This reduces the startup time of programs using a shared library containing
the generated code (but not as much as option <SAMP>`-P'</SAMP>), at the expense
of one more test-and-branch instruction at run time.

<DT><SAMP>`-W <VAR>hash-table-array-name</VAR>'</SAMP>
<DD>
<DT><SAMP>`--word-array-name=<VAR>hash-table-array-name</VAR>'</SAMP>
<DD>
<A NAME="IDX43"></A>
Allows you to specify the name for the generated array containing the
hash table.  Default name is <SAMP>`wordlist'</SAMP>.  This option permits the
use of two hash tables in the same file, even when the option <SAMP>`-G'</SAMP>
(or, equivalently, the <SAMP>`%global-table'</SAMP> declaration) is given.

<DT><SAMP>`--length-table-name=<VAR>length-table-array-name</VAR>'</SAMP>
<DD>
<A NAME="IDX44"></A>
Allows you to specify the name for the generated array containing the
length table.  Default name is <SAMP>`lengthtable'</SAMP>.  This option permits the
use of two length tables in the same file, even when the option <SAMP>`-G'</SAMP>
(or, equivalently, the <SAMP>`%global-table'</SAMP> declaration) is given.

<DT><SAMP>`-S <VAR>total-switch-statements</VAR>'</SAMP>
<DD>
<DT><SAMP>`--switch=<VAR>total-switch-statements</VAR>'</SAMP>
<DD>
<A NAME="IDX45"></A>
Causes the generated C code to use a <CODE>switch</CODE> statement scheme,
rather than an array lookup table.  This can lead to a reduction in both
time and space requirements for some input files.  The argument to this
option determines how many <CODE>switch</CODE> statements are generated.  A
value of 1 generates 1 <CODE>switch</CODE> containing all the elements, a
value of 2 generates 2 tables with 1/2 the elements in each
<CODE>switch</CODE>, etc.  This is useful since many C compilers cannot
correctly generate code for large <CODE>switch</CODE> statements.  This option
was inspired in part by Keith Bostic's original C program.

<DT><SAMP>`-T'</SAMP>
<DD>
<DT><SAMP>`--omit-struct-type'</SAMP>
<DD>
Prevents the transfer of the type declaration to the output file.  Use
this option if the type is already defined elsewhere.

<DT><SAMP>`-p'</SAMP>
<DD>
This option is supported for compatibility with previous releases of
<CODE>gperf</CODE>.  It does not do anything.
</DL>



<H2><A NAME="SEC23" HREF="gperf.html#TOC23">4.5  Options for changing the Algorithms employed by <CODE>gperf</CODE></A></H2>

<DL COMPACT>

<DT><SAMP>`-k <VAR>selected-byte-positions</VAR>'</SAMP>
<DD>
<DT><SAMP>`--key-positions=<VAR>selected-byte-positions</VAR>'</SAMP>
<DD>
Allows selection of the byte positions used in the keywords'
hash function.  The allowable choices range between 1-255, inclusive.
The positions are separated by commas, e.g., <SAMP>`-k 9,4,13,14'</SAMP>;
ranges may be used, e.g., <SAMP>`-k 2-7'</SAMP>; and positions may occur
in any order.  Furthermore, the wildcard '*' causes the generated
hash function to consider <STRONG>all</STRONG> byte positions in each keyword,
whereas '$' instructs the hash function to use the "final byte"
of a keyword (this is the only way to use a byte position greater than
255, incidentally).

For instance, the option <SAMP>`-k 1,2,4,6-10,'$''</SAMP> generates a hash
function that considers positions 1,2,4,6,7,8,9,10, plus the last
byte in each keyword (which may be at a different position for each
keyword, obviously).  Keywords
with length less than the indicated byte positions work properly, since
selected byte positions exceeding the keyword length are simply not
referenced in the hash function.

This option is not normally needed since version 2.8 of <CODE>gperf</CODE>;
the default byte positions are computed depending on the keyword set,
through a search that minimizes the number of byte positions.

<DT><SAMP>`-D'</SAMP>
<DD>
<DT><SAMP>`--duplicates'</SAMP>
<DD>
<A NAME="IDX46"></A>
Handle keywords whose selected byte sets hash to duplicate values.
Duplicate hash values can occur if a set of keywords has the same names, but
possesses different attributes, or if the selected byte positions are not well
chosen.  With the -D option <CODE>gperf</CODE> treats all these keywords as
part of an equivalence class and generates a perfect hash function with
multiple comparisons for duplicate keywords.  It is up to you to completely
disambiguate the keywords by modifying the generated C code.  However,
<CODE>gperf</CODE> helps you out by organizing the output.

Using this option usually means that the generated hash function is no
longer perfect.  On the other hand, it permits <CODE>gperf</CODE> to work on
keyword sets that it otherwise could not handle.

<DT><SAMP>`-m <VAR>iterations</VAR>'</SAMP>
<DD>
<DT><SAMP>`--multiple-iterations=<VAR>iterations</VAR>'</SAMP>
<DD>
Perform multiple choices of the <SAMP>`-i'</SAMP> and <SAMP>`-j'</SAMP> values, and
choose the best results.  This increases the running time by a factor of
<VAR>iterations</VAR> but does a good job minimizing the generated table size.

<DT><SAMP>`-i <VAR>initial-value</VAR>'</SAMP>
<DD>
<DT><SAMP>`--initial-asso=<VAR>initial-value</VAR>'</SAMP>
<DD>
Provides an initial <VAR>value</VAR> for the associate values array.  Default
is 0.  Increasing the initial value helps inflate the final table size,
possibly leading to more time efficient keyword lookups.  Note that this
option is not particularly useful when <SAMP>`-S'</SAMP> (or, equivalently,
<SAMP>`%switch'</SAMP>) is used.  Also,
<SAMP>`-i'</SAMP> is overridden when the <SAMP>`-r'</SAMP> option is used.

<DT><SAMP>`-j <VAR>jump-value</VAR>'</SAMP>
<DD>
<DT><SAMP>`--jump=<VAR>jump-value</VAR>'</SAMP>
<DD>
<A NAME="IDX47"></A>
Affects the "jump value", i.e., how far to advance the associated
byte value upon collisions.  <VAR>Jump-value</VAR> is rounded up to an
odd number, the default is 5.  If the <VAR>jump-value</VAR> is 0 <CODE>gperf</CODE>
jumps by random amounts.

<DT><SAMP>`-n'</SAMP>
<DD>
<DT><SAMP>`--no-strlen'</SAMP>
<DD>
Instructs the generator not to include the length of a keyword when
computing its hash value.  This may save a few assembly instructions in
the generated lookup table.

<DT><SAMP>`-r'</SAMP>
<DD>
<DT><SAMP>`--random'</SAMP>
<DD>
Utilizes randomness to initialize the associated values table.  This
frequently generates solutions faster than using deterministic
initialization (which starts all associated values at 0).  Furthermore,
using the randomization option generally increases the size of the
table.

<DT><SAMP>`-s <VAR>size-multiple</VAR>'</SAMP>
<DD>
<DT><SAMP>`--size-multiple=<VAR>size-multiple</VAR>'</SAMP>
<DD>
Affects the size of the generated hash table.  The numeric argument for
this option indicates "how many times larger or smaller" the maximum
associated value range should be, in relationship to the number of keywords.
It can be written as an integer, a floating-point number or a fraction.
For example, a value of 3 means "allow the maximum associated value to be
about 3 times larger than the number of input keywords".
Conversely, a value of 1/3 means "allow the maximum associated value to
be about 3 times smaller than the number of input keywords".  Values
smaller than 1 are useful for limiting the overall size of the generated hash
table, though the option <SAMP>`-m'</SAMP> is better at this purpose.

If `generate switch' option <SAMP>`-S'</SAMP> (or, equivalently, <SAMP>`%switch'</SAMP>) is
<EM>not</EM> enabled, the maximum
associated value influences the static array table size, and a larger
table should decrease the time required for an unsuccessful search, at
the expense of extra table space.

The default value is 1, thus the default maximum associated value about
the same size as the number of keywords (for efficiency, the maximum
associated value is always rounded up to a power of 2).  The actual
table size may vary somewhat, since this technique is essentially a
heuristic.
</DL>



<H2><A NAME="SEC24" HREF="gperf.html#TOC24">4.6  Informative Output</A></H2>

<DL COMPACT>

<DT><SAMP>`-h'</SAMP>
<DD>
<DT><SAMP>`--help'</SAMP>
<DD>
Prints a short summary on the meaning of each program option.  Aborts
further program execution.

<DT><SAMP>`-v'</SAMP>
<DD>
<DT><SAMP>`--version'</SAMP>
<DD>
Prints out the current version number.

<DT><SAMP>`-d'</SAMP>
<DD>
<DT><SAMP>`--debug'</SAMP>
<DD>
Enables the debugging option.  This produces verbose diagnostics to
"standard error" when <CODE>gperf</CODE> is executing.  It is useful both for
maintaining the program and for determining whether a given set of
options is actually speeding up the search for a solution.  Some useful
information is dumped at the end of the program when the <SAMP>`-d'</SAMP>
option is enabled.
</DL>



<H1><A NAME="SEC25" HREF="gperf.html#TOC25">5  Known Bugs and Limitations with <CODE>gperf</CODE></A></H1>

<P>
The following are some limitations with the current release of
<CODE>gperf</CODE>:

</P>

<UL>
<LI>

The <CODE>gperf</CODE> utility is tuned to execute quickly, and works quickly
for small to medium size data sets (around 1000 keywords).  It is
extremely useful for maintaining perfect hash functions for compiler
keyword sets.  Several recent enhancements now enable <CODE>gperf</CODE> to
work efficiently on much larger keyword sets (over 15,000 keywords).
When processing large keyword sets it helps greatly to have over 8 megs
of RAM.

<LI>

The size of the generate static keyword array can get <EM>extremely</EM>
large if the input keyword file is large or if the keywords are quite
similar.  This tends to slow down the compilation of the generated C
code, and <EM>greatly</EM> inflates the object code size.  If this
situation occurs, consider using the <SAMP>`-S'</SAMP> option to reduce data
size, potentially increasing keyword recognition time a negligible
amount.  Since many C compilers cannot correctly generate code for
large switch statements it is important to qualify the <VAR>-S</VAR> option
with an appropriate numerical argument that controls the number of
switch statements generated.

<LI>

The maximum number of selected byte positions has an
arbitrary limit of 255.  This restriction should be removed, and if
anyone considers this a problem write me and let me know so I can remove
the constraint.
</UL>



<H1><A NAME="SEC26" HREF="gperf.html#TOC26">6  Things Still Left to Do</A></H1>

<P>
It should be "relatively" easy to replace the current perfect hash
function algorithm with a more exhaustive approach; the perfect hash
module is essential independent from other program modules.  Additional
worthwhile improvements include:

</P>

<UL>
<LI>

Another useful extension involves modifying the program to generate
"minimal" perfect hash functions (under certain circumstances, the
current version can be rather extravagant in the generated table size).
This is mostly of theoretical interest, since a sparse table
often produces faster lookups, and use of the <SAMP>`-S'</SAMP> <CODE>switch</CODE>
option can minimize the data size, at the expense of slightly longer
lookups (note that the gcc compiler generally produces good code for
<CODE>switch</CODE> statements, reducing the need for more complex schemes).

<LI>

In addition to improving the algorithm, it would also be useful to
generate an Ada package as the code output, in addition to the current
C and C++ routines.
</UL>



<H1><A NAME="SEC27" HREF="gperf.html#TOC27">7  Bibliography</A></H1>

<P>
[1] Chang, C.C.: <I>A Scheme for Constructing Ordered Minimal Perfect
Hashing Functions</I> Information Sciences 39(1986), 187-195.

</P>
<P>
[2] Cichelli, Richard J. <I>Author's Response to "On Cichelli's Minimal Perfect Hash
Functions Method"</I> Communications of the ACM, 23, 12(December 1980), 729.

</P>
<P>
[3] Cichelli, Richard J. <I>Minimal Perfect Hash Functions Made Simple</I>
Communications of the ACM, 23, 1(January 1980), 17-19.

</P>
<P>
[4] Cook, C. R. and Oldehoeft, R.R. <I>A Letter Oriented Minimal
Perfect Hashing Function</I> SIGPLAN Notices, 17, 9(September 1982), 18-27.

</P>
<P>
[5] Cormack, G. V. and Horspool, R. N. S. and Kaiserwerth, M.
<I>Practical Perfect Hashing</I> Computer Journal, 28, 1(January 1985), 54-58.

</P>
<P>
[6] Jaeschke, G. <I>Reciprocal Hashing: A Method for Generating Minimal
Perfect Hashing Functions</I> Communications of the ACM, 24, 12(December
1981), 829-833.

</P>
<P>
[7] Jaeschke, G. and Osterburg, G. <I>On Cichelli's Minimal Perfect
Hash Functions Method</I> Communications of the ACM, 23, 12(December 1980),
728-729.

</P>
<P>
[8] Sager, Thomas J. <I>A Polynomial Time Generator for Minimal Perfect
Hash Functions</I> Communications of the ACM, 28, 5(December 1985), 523-532

</P>
<P>
[9] Schmidt, Douglas C. <I>GPERF: A Perfect Hash Function Generator</I>
Second USENIX C++ Conference Proceedings, April 1990.

</P>
<P>
[10] Schmidt, Douglas C. <I>GPERF: A Perfect Hash Function Generator</I>
C++ Report, SIGS 10 10 (November/December 1998).

</P>
<P>
[11] Sebesta, R.W. and Taylor, M.A. <I>Minimal Perfect Hash Functions
for Reserved Word Lists</I>  SIGPLAN Notices, 20, 12(September 1985), 47-53.

</P>
<P>
[12] Sprugnoli, R. <I>Perfect Hashing Functions: A Single Probe
Retrieving Method for Static Sets</I> Communications of the ACM, 20
11(November 1977), 841-850.

</P>
<P>
[13] Stallman, Richard M. <I>Using and Porting GNU CC</I> Free Software Foundation,
1988.

</P>
<P>
[14] Stroustrup, Bjarne <I>The C++ Programming Language.</I> Addison-Wesley, 1986.

</P>
<P>
[15] Tiemann, Michael D. <I>User's Guide to GNU C++</I> Free Software
Foundation, 1989.

</P>


<H1><A NAME="SEC28" HREF="gperf.html#TOC28">Concept Index</A></H1>

<P>
<H2>%</H2>
<DIR>
<LI><A HREF="gperf.html#IDX8"><SAMP>`%%'</SAMP></A>
<LI><A HREF="gperf.html#IDX18"><SAMP>`%7bit'</SAMP></A>
<LI><A HREF="gperf.html#IDX19"><SAMP>`%compare-lengths'</SAMP></A>
<LI><A HREF="gperf.html#IDX20"><SAMP>`%compare-strncmp'</SAMP></A>
<LI><A HREF="gperf.html#IDX17"><SAMP>`%define class-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX15"><SAMP>`%define hash-function-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX14"><SAMP>`%define initializer-suffix'</SAMP></A>
<LI><A HREF="gperf.html#IDX29"><SAMP>`%define length-table-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX16"><SAMP>`%define lookup-function-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX13"><SAMP>`%define slot-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX26"><SAMP>`%define string-pool-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX28"><SAMP>`%define word-array-name'</SAMP></A>
<LI><A HREF="gperf.html#IDX9"><SAMP>`%delimiters'</SAMP></A>
<LI><A HREF="gperf.html#IDX22"><SAMP>`%enum'</SAMP></A>
<LI><A HREF="gperf.html#IDX24"><SAMP>`%global-table'</SAMP></A>
<LI><A HREF="gperf.html#IDX11"><SAMP>`%ignore-case'</SAMP></A>
<LI><A HREF="gperf.html#IDX23"><SAMP>`%includes'</SAMP></A>
<LI><A HREF="gperf.html#IDX12"><SAMP>`%language'</SAMP></A>
<LI><A HREF="gperf.html#IDX27"><SAMP>`%null-strings'</SAMP></A>
<LI><A HREF="gperf.html#IDX31"><SAMP>`%omit-struct-type'</SAMP></A>
<LI><A HREF="gperf.html#IDX25"><SAMP>`%pic'</SAMP></A>
<LI><A HREF="gperf.html#IDX21"><SAMP>`%readonly-tables'</SAMP></A>
<LI><A HREF="gperf.html#IDX10"><SAMP>`%struct-type'</SAMP></A>
<LI><A HREF="gperf.html#IDX30"><SAMP>`%switch'</SAMP></A>
<LI><A HREF="gperf.html#IDX32"><SAMP>`%{'</SAMP></A>
<LI><A HREF="gperf.html#IDX33"><SAMP>`%}'</SAMP></A>
</DIR>
<H2>a</H2>
<DIR>
<LI><A HREF="gperf.html#IDX43">Array name</A>, <A HREF="gperf.html#IDX44">Array name</A>
</DIR>
<H2>b</H2>
<DIR>
<LI><A HREF="gperf.html#IDX1">Bugs</A>
</DIR>
<H2>c</H2>
<DIR>
<LI><A HREF="gperf.html#IDX42">Class name</A>
</DIR>
<H2>d</H2>
<DIR>
<LI><A HREF="gperf.html#IDX5">Declaration section</A>
<LI><A HREF="gperf.html#IDX39">Delimiters</A>
<LI><A HREF="gperf.html#IDX46">Duplicates</A>
</DIR>
<H2>f</H2>
<DIR>
<LI><A HREF="gperf.html#IDX4">Format</A>
<LI><A HREF="gperf.html#IDX7">Functions section</A>
</DIR>
<H2>h</H2>
<DIR>
<LI><A HREF="gperf.html#IDX35">hash</A>
<LI><A HREF="gperf.html#IDX34">hash table</A>
</DIR>
<H2>i</H2>
<DIR>
<LI><A HREF="gperf.html#IDX36">in_word_set</A>
<LI><A HREF="gperf.html#IDX41">Initializers</A>
</DIR>
<H2>j</H2>
<DIR>
<LI><A HREF="gperf.html#IDX47">Jump value</A>
</DIR>
<H2>k</H2>
<DIR>
<LI><A HREF="gperf.html#IDX6">Keywords section</A>
</DIR>
<H2>m</H2>
<DIR>
<LI><A HREF="gperf.html#IDX3">Minimal perfect hash functions</A>
</DIR>
<H2>n</H2>
<DIR>
<LI><A HREF="gperf.html#IDX38">NUL</A>
</DIR>
<H2>s</H2>
<DIR>
<LI><A HREF="gperf.html#IDX40">Slot name</A>
<LI><A HREF="gperf.html#IDX2">Static search structure</A>
<LI><A HREF="gperf.html#IDX37"><CODE>switch</CODE></A>, <A HREF="gperf.html#IDX45"><CODE>switch</CODE></A>
</DIR>

</P>
<P><HR><P>
This document was generated on 31 March 2007 using the
<A HREF="http://wwwcn.cern.ch/dci/texi2html/">texi2html</A>
translator version 1.51.</P>
</BODY>
</HTML>