// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- // Copyright (c) 2011, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // ---- // Author: llib@google.com (Bill Clarke) #include "config_for_unittests.h" #include #include #ifdef HAVE_MMAP #include #endif #ifdef HAVE_UNISTD_H #include // for sleep() #endif #include #include #include #include #include "malloc_hook-inl.h" #include "base/logging.h" #include "base/simple_mutex.h" #include "base/sysinfo.h" #include "tests/testutil.h" // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old // form of the name instead. #ifndef MAP_ANONYMOUS # define MAP_ANONYMOUS MAP_ANON #endif namespace { using std::string; using std::vector; vector g_testlist; // the tests to run #define TEST(a, b) \ struct Test_##a##_##b { \ Test_##a##_##b() { g_testlist.push_back(&Run); } \ static void Run(); \ }; \ static Test_##a##_##b g_test_##a##_##b; \ void Test_##a##_##b::Run() static int RUN_ALL_TESTS() { vector::const_iterator it; for (it = g_testlist.begin(); it != g_testlist.end(); ++it) { (*it)(); // The test will error-exit if there's a problem. } fprintf(stderr, "\nPassed %d tests\n\nPASS\n", static_cast(g_testlist.size())); return 0; } void Sleep(int seconds) { #ifdef _MSC_VER _sleep(seconds * 1000); // Windows's _sleep takes milliseconds argument #else sleep(seconds); #endif } using std::min; using base::internal::kHookListMaxValues; // Since HookList is a template and is defined in malloc_hook.cc, we can only // use an instantiation of it from malloc_hook.cc. We then reinterpret those // values as integers for testing. typedef base::internal::HookList TestHookList; int TestHookList_Traverse(const TestHookList& list, uintptr_t* output_array, int n) { MallocHook::NewHook values_as_hooks[kHookListMaxValues]; int result = list.Traverse(values_as_hooks, min(n, kHookListMaxValues)); for (int i = 0; i < result; ++i) { output_array[i] = reinterpret_cast(*values_as_hooks[i]); } return result; } bool TestHookList_Add(TestHookList* list, int val) { return list->Add(reinterpret_cast(val)); } bool TestHookList_Remove(TestHookList* list, int val) { return list->Remove(reinterpret_cast(val)); } // Note that this is almost the same as INIT_HOOK_LIST in malloc_hook.cc without // the cast. #define INIT_HOOK_LIST(initial_value) { 1, { initial_value } } TEST(HookListTest, InitialValueExists) { TestHookList list = INIT_HOOK_LIST(69); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(1, TestHookList_Traverse(list, values, 2)); EXPECT_EQ(69, values[0]); EXPECT_EQ(1, list.priv_end); } TEST(HookListTest, CanRemoveInitialValue) { TestHookList list = INIT_HOOK_LIST(69); ASSERT_TRUE(TestHookList_Remove(&list, 69)); EXPECT_EQ(0, list.priv_end); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(0, TestHookList_Traverse(list, values, 2)); } TEST(HookListTest, AddAppends) { TestHookList list = INIT_HOOK_LIST(69); ASSERT_TRUE(TestHookList_Add(&list, 42)); EXPECT_EQ(2, list.priv_end); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(2, TestHookList_Traverse(list, values, 2)); EXPECT_EQ(69, values[0]); EXPECT_EQ(42, values[1]); } TEST(HookListTest, RemoveWorksAndWillClearSize) { TestHookList list = INIT_HOOK_LIST(69); ASSERT_TRUE(TestHookList_Add(&list, 42)); ASSERT_TRUE(TestHookList_Remove(&list, 69)); EXPECT_EQ(2, list.priv_end); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(1, TestHookList_Traverse(list, values, 2)); EXPECT_EQ(42, values[0]); ASSERT_TRUE(TestHookList_Remove(&list, 42)); EXPECT_EQ(0, list.priv_end); EXPECT_EQ(0, TestHookList_Traverse(list, values, 2)); } TEST(HookListTest, AddPrependsAfterRemove) { TestHookList list = INIT_HOOK_LIST(69); ASSERT_TRUE(TestHookList_Add(&list, 42)); ASSERT_TRUE(TestHookList_Remove(&list, 69)); EXPECT_EQ(2, list.priv_end); ASSERT_TRUE(TestHookList_Add(&list, 7)); EXPECT_EQ(2, list.priv_end); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(2, TestHookList_Traverse(list, values, 2)); EXPECT_EQ(7, values[0]); EXPECT_EQ(42, values[1]); } TEST(HookListTest, InvalidAddRejected) { TestHookList list = INIT_HOOK_LIST(69); EXPECT_FALSE(TestHookList_Add(&list, 0)); uintptr_t values[2] = { 0, 0 }; EXPECT_EQ(1, TestHookList_Traverse(list, values, 2)); EXPECT_EQ(69, values[0]); EXPECT_EQ(1, list.priv_end); } TEST(HookListTest, FillUpTheList) { TestHookList list = INIT_HOOK_LIST(69); int num_inserts = 0; while (TestHookList_Add(&list, ++num_inserts)) ; EXPECT_EQ(kHookListMaxValues, num_inserts); EXPECT_EQ(kHookListMaxValues, list.priv_end); uintptr_t values[kHookListMaxValues + 1]; EXPECT_EQ(kHookListMaxValues, TestHookList_Traverse(list, values, kHookListMaxValues)); EXPECT_EQ(69, values[0]); for (int i = 1; i < kHookListMaxValues; ++i) { EXPECT_EQ(i, values[i]); } } void MultithreadedTestThread(TestHookList* list, int shift, int thread_num) { string message; char buf[64]; for (int i = 1; i < 1000; ++i) { // In each loop, we insert a unique value, check it exists, remove it, and // check it doesn't exist. We also record some stats to log at the end of // each thread. Each insertion location and the length of the list is // non-deterministic (except for the very first one, over all threads, and // after the very last one the list should be empty). int value = (i << shift) + thread_num; EXPECT_TRUE(TestHookList_Add(list, value)); sched_yield(); // Ensure some more interleaving. uintptr_t values[kHookListMaxValues + 1]; int num_values = TestHookList_Traverse(*list, values, kHookListMaxValues); EXPECT_LT(0, num_values); int value_index; for (value_index = 0; value_index < num_values && values[value_index] != value; ++value_index) ; EXPECT_LT(value_index, num_values); // Should have found value. snprintf(buf, sizeof(buf), "[%d/%d; ", value_index, num_values); message += buf; sched_yield(); EXPECT_TRUE(TestHookList_Remove(list, value)); sched_yield(); num_values = TestHookList_Traverse(*list, values, kHookListMaxValues); for (value_index = 0; value_index < num_values && values[value_index] != value; ++value_index) ; EXPECT_EQ(value_index, num_values); // Should not have found value. snprintf(buf, sizeof(buf), "%d]", num_values); message += buf; sched_yield(); } fprintf(stderr, "thread %d: %s\n", thread_num, message.c_str()); } static volatile int num_threads_remaining; static TestHookList list = INIT_HOOK_LIST(69); static Mutex threadcount_lock; void MultithreadedTestThreadRunner(int thread_num) { // Wait for all threads to start running. { MutexLock ml(&threadcount_lock); assert(num_threads_remaining > 0); --num_threads_remaining; // We should use condvars and the like, but for this test, we'll // go simple and busy-wait. while (num_threads_remaining > 0) { threadcount_lock.Unlock(); Sleep(1); threadcount_lock.Lock(); } } // shift is the smallest number such that (1< kHookListMaxValues int shift = 0; for (int i = kHookListMaxValues; i > 0; i >>= 1) shift += 1; MultithreadedTestThread(&list, shift, thread_num); } TEST(HookListTest, MultithreadedTest) { ASSERT_TRUE(TestHookList_Remove(&list, 69)); ASSERT_EQ(0, list.priv_end); // Run kHookListMaxValues thread, each running MultithreadedTestThread. // First, we need to set up the rest of the globals. num_threads_remaining = kHookListMaxValues; // a global var RunManyThreadsWithId(&MultithreadedTestThreadRunner, num_threads_remaining, 1 << 15); uintptr_t values[kHookListMaxValues + 1]; EXPECT_EQ(0, TestHookList_Traverse(list, values, kHookListMaxValues)); EXPECT_EQ(0, list.priv_end); } // We only do mmap-hooking on (some) linux systems. #if defined(HAVE_MMAP) && defined(__linux) && \ (defined(__i386__) || defined(__x86_64__) || defined(__PPC__)) int mmap_calls = 0; int mmap_matching_calls = 0; int munmap_calls = 0; int munmap_matching_calls = 0; const int kMmapMagicFd = 1; void* const kMmapMagicPointer = reinterpret_cast(1); int MmapReplacement(const void* start, size_t size, int protection, int flags, int fd, off_t offset, void** result) { ++mmap_calls; if (fd == kMmapMagicFd) { ++mmap_matching_calls; *result = kMmapMagicPointer; return true; } return false; } int MunmapReplacement(const void* ptr, size_t size, int* result) { ++munmap_calls; if (ptr == kMmapMagicPointer) { ++munmap_matching_calls; *result = 0; return true; } return false; } TEST(MallocMookTest, MmapReplacements) { mmap_calls = mmap_matching_calls = munmap_calls = munmap_matching_calls = 0; MallocHook::SetMmapReplacement(&MmapReplacement); MallocHook::SetMunmapReplacement(&MunmapReplacement); EXPECT_EQ(kMmapMagicPointer, mmap(NULL, 1, PROT_READ, MAP_PRIVATE, kMmapMagicFd, 0)); EXPECT_EQ(1, mmap_matching_calls); char* ptr = reinterpret_cast( mmap(NULL, 1, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); EXPECT_EQ(2, mmap_calls); EXPECT_EQ(1, mmap_matching_calls); ASSERT_NE(MAP_FAILED, ptr); *ptr = 'a'; EXPECT_EQ(0, munmap(kMmapMagicPointer, 1)); EXPECT_EQ(1, munmap_calls); EXPECT_EQ(1, munmap_matching_calls); EXPECT_EQ(0, munmap(ptr, 1)); EXPECT_EQ(2, munmap_calls); EXPECT_EQ(1, munmap_matching_calls); // The DEATH test below is flaky, because we've just munmapped the memory, // making it available for mmap()ing again. There is no guarantee that it // will stay unmapped, and in fact it gets reused ~10% of the time. // It the area is reused, then not only we don't die, but we also corrupt // whoever owns that memory now. // EXPECT_DEATH(*ptr = 'a', "SIGSEGV"); } #endif // #ifdef HAVE_MMAP && linux && ... } // namespace int main(int argc, char** argv) { return RUN_ALL_TESTS(); }