/* $Id$ */ /***************************************************************************** This is a decoder for RTCM-104 2.x, an obscure and complicated serial protocol used for broadcasting pseudorange corrections from differential-GPS reference stations. The applicable standard is RTCM RECOMMENDED STANDARDS FOR DIFFERENTIAL NAVSTAR GPS SERVICE, RTCM PAPER 194-93/SC 104-STD Ordering instructions are accessible from under "Publications". This describes version 2.1 of the RTCM specification. RTCM-104 was later incrementally revised up to a 2.3 level before being completely redesigned as level 3.0. Also applicable is ITU-R M.823: "Technical characteristics of differential transmissions for global navigation satellite systems from maritime radio beacons in the frequency band 283.5 - 315 kHz in region 1 and 285 - 325 kHz in regions 2 & 3." The RTCM 2.x protocol uses as a transport layer the GPS satellite downlink protocol described in IS-GPS-200, the Navstar GPS Interface Specification. This code relies on the lower-level packet-assembly code for that protocol in isgps.c. The lower layer's job is done when it has assembled a message of up to 33 words of clean parity-checked data. At this point this upper layer takes over. struct rtcm2_msg_t is overlaid on the buffer and the bitfields are used to extract pieces of it. Those pieces are copied and (where necessary) reassembled into a struct rtcm2_t. This code and the contents of isgps.c are evolved from code by Wolfgang Rupprecht. Wolfgang's decoder was loosely based on one written by John Sager in 1999 (in particular the dump function emits a close descendant of Sager's dump format). Here are John Sager's original notes: The RTCM decoder prints a legible representation of the input data. The RTCM SC-104 specification is copyrighted, so I cannot quote it - in fact, I have never read it! Most of the information used to develop the decoder came from publication ITU-R M.823. This is a specification of the data transmitted from LF DGPS beacons in the 300kHz band. M.823 contains most of those parts of RTCM SC-104 directly relevant to the air interface (there are one or two annoying and vital omissions!). Information about the serial interface format was gleaned from studying the output of a beacon receiver test program made available on Starlink's website. *****************************************************************************/ #include #include #include #include #include #include #include /* for round() */ #include "gpsd_config.h" #include "gpsd.h" #include "rtcm2.h" #ifdef RTCM104V2_ENABLE #define PREAMBLE_PATTERN 0x66 static unsigned int tx_speed[] = { 25, 50, 100, 110, 150, 200, 250, 300 }; #define DIMENSION(a) (unsigned)(sizeof(a)/sizeof(a[0])) void rtcm2_unpack(/*@out@*/struct rtcm2_t *tp, char *buf) /* break out the raw bits into the content fields */ { int len; unsigned int n, w; struct rtcm2_msg_t *msg = (struct rtcm2_msg_t *)buf; tp->type = msg->w1.msgtype; tp->length = msg->w2.frmlen; tp->zcount = msg->w2.zcnt * ZCOUNT_SCALE; tp->refstaid = msg->w1.refstaid; tp->seqnum = msg->w2.sqnum; tp->stathlth = msg->w2.stathlth; len = (int)tp->length; n = 0; switch (tp->type) { case 1: case 9: { struct b_correction_t *m = &msg->msg_type.type1.corrections[0]; while (len >= 0) { if (len >= 2) { tp->msg_data.ranges.sat[n].ident = m->w3.satident1; tp->msg_data.ranges.sat[n].udre = m->w3.udre1; tp->msg_data.ranges.sat[n].issuedata = m->w4.issuedata1; tp->msg_data.ranges.sat[n].rangerr = m->w3.pc1 * (m->w3.scale1 ? PCLARGE : PCSMALL); tp->msg_data.ranges.sat[n].rangerate = m->w4.rangerate1 * (m->w3.scale1 ? RRLARGE : RRSMALL); n++; } if (len >= 4) { tp->msg_data.ranges.sat[n].ident = m->w4.satident2; tp->msg_data.ranges.sat[n].udre = m->w4.udre2; tp->msg_data.ranges.sat[n].issuedata = m->w6.issuedata2; tp->msg_data.ranges.sat[n].rangerr = m->w5.pc2 * (m->w4.scale2 ? PCLARGE : PCSMALL); tp->msg_data.ranges.sat[n].rangerate = m->w5.rangerate2 * (m->w4.scale2 ? RRLARGE : RRSMALL); n++; } if (len >= 5) { tp->msg_data.ranges.sat[n].ident = m->w6.satident3; tp->msg_data.ranges.sat[n].udre = m->w6.udre3; tp->msg_data.ranges.sat[n].issuedata = m->w7.issuedata3; /*@ -shiftimplementation @*/ tp->msg_data.ranges.sat[n].rangerr = ((m->w6.pc3_h<<8)|(m->w7.pc3_l)) * (m->w6.scale3 ? PCLARGE : PCSMALL); tp->msg_data.ranges.sat[n].rangerate = m->w7.rangerate3 * (m->w6.scale3 ? RRLARGE : RRSMALL); /*@ +shiftimplementation @*/ n++; } len -= 5; m++; } tp->msg_data.ranges.nentries = n; } break; case 3: { struct rtcm2_msg3 *m = &msg->msg_type.type3; if ((tp->msg_data.ecef.valid = len >= 4)) { tp->msg_data.ecef.x = ((m->w3.x_h<<8)|(m->w4.x_l))*XYZ_SCALE; tp->msg_data.ecef.y = ((m->w4.y_h<<16)|(m->w5.y_l))*XYZ_SCALE; tp->msg_data.ecef.z = ((m->w5.z_h<<24)|(m->w6.z_l))*XYZ_SCALE; } } break; case 4: if ((tp->msg_data.reference.valid = len >= 2)){ struct rtcm2_msg4 *m = &msg->msg_type.type4; tp->msg_data.reference.system = (m->w3.dgnss==0) ? gps : ((m->w3.dgnss==1) ? glonass : unknown); tp->msg_data.reference.sense = (m->w3.dat != 0) ? global : local; if (m->w3.datum_alpha_char1){ tp->msg_data.reference.datum[n++] = (char)(m->w3.datum_alpha_char1); } if (m->w3.datum_alpha_char2){ tp->msg_data.reference.datum[n++] = (char)(m->w3.datum_alpha_char2); } if (m->w4.datum_sub_div_char1){ tp->msg_data.reference.datum[n++] = (char)(m->w4.datum_sub_div_char1); } if (m->w4.datum_sub_div_char2){ tp->msg_data.reference.datum[n++] = (char)(m->w4.datum_sub_div_char2); } if (m->w4.datum_sub_div_char3){ tp->msg_data.reference.datum[n++] = (char)(m->w4.datum_sub_div_char3); } tp->msg_data.reference.datum[n++] = '\0'; if (len >= 4) { tp->msg_data.reference.dx = m->w5.dx * DXYZ_SCALE; tp->msg_data.reference.dy = ((m->w5.dy_h << 8) | m->w6.dy_l) * DXYZ_SCALE; tp->msg_data.reference.dz = m->w6.dz * DXYZ_SCALE; } else tp->msg_data.reference.sense = invalid; } break; case 5: for (n = 0; n < (unsigned)len; n++) { struct consat_t *csp = &tp->msg_data.conhealth.sat[n]; struct b_health_t *m = &msg->msg_type.type5.health[n]; csp->ident = m->sat_id; csp->iodl = m->issue_of_data_link!=0; csp->health = m->data_health; /*@i@*/csp->snr = (m->cn0?(m->cn0+CNR_OFFSET):SNR_BAD); csp->health_en = m->health_enable; csp->new_data = m->new_nav_data!=0; csp->los_warning = m->loss_warn!=0; csp->tou = m->time_unhealthy*TU_SCALE; } tp->msg_data.conhealth.nentries = n; break; case 7: for (w = 0; w < (unsigned)len; w++) { struct station_t *np = &tp->msg_data.almanac.station[n]; struct b_station_t *mp = &msg->msg_type.type7.almanac[w]; np->latitude = mp->w3.lat * LA_SCALE; /*@i@*/np->longitude = ((mp->w3.lon_h << 8) | mp->w4.lon_l) * LO_SCALE; np->range = mp->w4.range; np->frequency = (((mp->w4.freq_h << 6) | mp->w5.freq_l) * FREQ_SCALE) + FREQ_OFFSET; np->health = mp->w5.health; np->station_id = mp->w5.station_id, np->bitrate = tx_speed[mp->w5.bit_rate]; n++; } tp->msg_data.almanac.nentries = (unsigned)(len/3); break; case 16: /*@ -boolops @*/ for (w = 0; w < (unsigned)len; w++){ if (!msg->msg_type.type16.txt[w].byte1) { break; } tp->msg_data.message[n++] = (char)(msg->msg_type.type16.txt[w].byte1); if (!msg->msg_type.type16.txt[w].byte2) { break; } tp->msg_data.message[n++] = (char)(msg->msg_type.type16.txt[w].byte2); if (!msg->msg_type.type16.txt[w].byte3) { break; } tp->msg_data.message[n++] = (char)(msg->msg_type.type16.txt[w].byte3); } /*@ +boolops @*/ tp->msg_data.message[n++] = '\0'; break; default: memcpy(tp->msg_data.words, msg->msg_type.rtcm2_msgunk, (RTCM2_WORDS_MAX-2)*sizeof(isgps30bits_t)); break; } } bool rtcm2_repack(struct rtcm2_t *tp, isgps30bits_t *buf) /* repack the content fields into the raw bits */ { int len, sval; unsigned int n, w, uval; struct rtcm2_msg_t *msg = (struct rtcm2_msg_t *)buf; struct rtcm2_msghw1 *wp = (struct rtcm2_msghw1 *)buf; msg->w1.msgtype = tp->type; msg->w2.frmlen = tp->length; msg->w2.zcnt = (unsigned) round(tp->zcount / ZCOUNT_SCALE); msg->w1.refstaid = tp->refstaid; msg->w2.sqnum = tp->seqnum; msg->w2.stathlth = tp->stathlth; len = (int)tp->length; n = 0; switch (tp->type) { case 1: /* S */ case 9: { struct b_correction_t *m = &msg->msg_type.type1.corrections[0]; while (len >= 0) { if (len >= 2) { struct rangesat_t *ssp = &tp->msg_data.ranges.sat[n]; m->w3.satident1 = ssp->ident; m->w3.udre1 = ssp->udre; m->w4.issuedata1 = ssp->issuedata; m->w3.scale1 = (unsigned)((ssp->rangerr > MAXPCSMALL) || (ssp->rangerr < (-MAXPCSMALL)) || (ssp->rangerate > MAXRRSMALL) || (ssp->rangerate < (-MAXRRSMALL))); m->w3.pc1 = (int) round(ssp->rangerr / (m->w3.scale1 ? PCLARGE : PCSMALL)); m->w4.rangerate1 = (int) round(ssp->rangerate / (m->w3.scale1 ? RRLARGE : RRSMALL)); n++; } if (len >= 4) { struct rangesat_t *ssp = &tp->msg_data.ranges.sat[n]; m->w4.satident2 = ssp->ident; m->w4.udre2 = ssp->udre; m->w6.issuedata2 = ssp->issuedata; m->w4.scale2 = (unsigned)((ssp->rangerr > MAXPCSMALL) || (ssp->rangerr < (-MAXPCSMALL)) || (ssp->rangerate > MAXRRSMALL) || (ssp->rangerate < (-MAXRRSMALL))); m->w5.pc2 = (int) round(ssp->rangerr / (m->w4.scale2 ? PCLARGE : PCSMALL)); m->w5.rangerate2 = (int) round(ssp->rangerate / (m->w4.scale2 ? RRLARGE : RRSMALL)); n++; } if (len >= 5) { struct rangesat_t *ssp = &tp->msg_data.ranges.sat[n]; m->w6.satident3 = ssp->ident; m->w6.udre3 = ssp->udre; m->w7.issuedata3 = ssp->issuedata; m->w6.scale3 = (unsigned)((ssp->rangerr > MAXPCSMALL) || (ssp->rangerr < (-MAXPCSMALL)) || (ssp->rangerate > MAXRRSMALL) || (ssp->rangerate < (-MAXRRSMALL))); sval = (int) round(ssp->rangerr / (m->w6.scale3 ? PCLARGE : PCSMALL)); /*@ -shiftimplementation @*/ m->w6.pc3_h = sval >> 8; /*@ +shiftimplementation @*/ m->w7.pc3_l = (unsigned)sval & 0xff; m->w7.rangerate3 = (int) round(ssp->rangerate / (m->w6.scale3 ? RRLARGE : RRSMALL)); n++; } len -= 5; m++; } tp->msg_data.ranges.nentries = n; } break; case 3: /* R */ if (tp->msg_data.ecef.valid) { struct rtcm2_msg3 *m = &msg->msg_type.type3; unsigned x = (unsigned) round(tp->msg_data.ecef.x / XYZ_SCALE); unsigned y = (unsigned) round(tp->msg_data.ecef.y / XYZ_SCALE); unsigned z = (unsigned) round(tp->msg_data.ecef.z / XYZ_SCALE); m->w4.x_l = x & 0xff; m->w3.x_h = x >> 8; m->w5.y_l = y & 0xffff; m->w4.y_h = y >> 16; m->w6.z_l = z & 0xffffff; m->w5.z_h = z >> 24; } break; case 4: /* D */ if (tp->msg_data.reference.valid) { struct rtcm2_msg4 *m = &msg->msg_type.type4; m->w3.dgnss = tp->msg_data.reference.system; m->w3.dat = (unsigned)(tp->msg_data.reference.sense == global); /*@ -predboolothers -type @*/ if (tp->msg_data.reference.datum[0]) m->w3.datum_alpha_char1 = tp->msg_data.reference.datum[0]; else m->w3.datum_alpha_char1 = 0; if (tp->msg_data.reference.datum[1]) m->w3.datum_alpha_char2 = tp->msg_data.reference.datum[1]; else m->w3.datum_alpha_char2 = 0; if (tp->msg_data.reference.datum[2]) m->w4.datum_sub_div_char1 = tp->msg_data.reference.datum[2]; else m->w4.datum_sub_div_char1 = 0; if (tp->msg_data.reference.datum[3]) m->w4.datum_sub_div_char2 = tp->msg_data.reference.datum[3]; else m->w4.datum_sub_div_char2 = 0; if (tp->msg_data.reference.datum[4]) m->w4.datum_sub_div_char3 = tp->msg_data.reference.datum[4]; else m->w4.datum_sub_div_char3 = 0; /*@ +predboolothers +type @*/ if (tp->msg_data.reference.system != unknown) { m->w5.dx = (uint)round(tp->msg_data.reference.dx / DXYZ_SCALE); uval = (uint)round(tp->msg_data.reference.dy / DXYZ_SCALE); m->w5.dy_h = uval >> 8; m->w6.dy_l = uval & 0xff; m->w6.dz = (uint)round(tp->msg_data.reference.dz / DXYZ_SCALE); } } break; case 5: /* C */ for (n = 0; n < (unsigned)len; n++) { struct consat_t *csp = &tp->msg_data.conhealth.sat[n]; struct b_health_t *m = &msg->msg_type.type5.health[n]; m->sat_id = csp->ident; m->issue_of_data_link = (unsigned)csp->iodl; m->data_health = csp->health; m->cn0 = (csp->snr == SNR_BAD) ? 0 : (unsigned)csp->snr-CNR_OFFSET; m->health_enable = csp->health_en; m->new_nav_data = (unsigned)csp->new_data; m->loss_warn = (unsigned)csp->los_warning; m->time_unhealthy = (unsigned)(csp->tou / TU_SCALE); } break; case 7: /* A */ for (w = 0; w < (RTCM2_WORDS_MAX - 2)/ 3; w++) { struct station_t *np = &tp->msg_data.almanac.station[n++]; struct b_station_t *mp = &msg->msg_type.type7.almanac[w]; mp->w3.lat = (int) round(np->latitude / LA_SCALE); sval = (int) round(np->longitude / LO_SCALE); /*@ -shiftimplementation @*/ mp->w3.lon_h = sval >> 8; /*@ +shiftimplementation @*/ mp->w4.lon_l = (unsigned)sval & 0xff; mp->w4.range = np->range; uval = (unsigned) round(((np->frequency-FREQ_OFFSET) / FREQ_SCALE)); mp->w4.freq_h = uval >> 6; mp->w5.freq_l = uval & 0x3f; mp->w5.health = np->health; mp->w5.station_id = np->station_id; mp->w5.bit_rate = 0; for (uval = 0; uval < (unsigned)(sizeof(tx_speed)/sizeof(tx_speed[0])); uval++) if (tx_speed[uval] == np->bitrate) { mp->w5.bit_rate = uval; break; } if (mp->w5.bit_rate == 0) return false; } tp->msg_data.almanac.nentries = n; break; case 16: /* T */ /*@ -boolops @*/ for (w = 0; w < RTCM2_WORDS_MAX - 2; w++){ if (!tp->msg_data.message[n]) { break; } msg->msg_type.type16.txt[w].byte1 = (unsigned)tp->msg_data.message[n++]; if (!tp->msg_data.message[n]) { break; } msg->msg_type.type16.txt[w].byte2 = (unsigned)tp->msg_data.message[n++]; if (!tp->msg_data.message[n]) { break; } msg->msg_type.type16.txt[w].byte3 = (unsigned)tp->msg_data.message[n++]; } msg->w2.frmlen = w+1; /*@ +boolops @*/ break; default: /* U */ memcpy(msg->msg_type.rtcm2_msgunk, tp->msg_data.words, (RTCM2_WORDS_MAX-2)*sizeof(isgps30bits_t)); break; } /* compute parity for each word in the message */ for (w = 0; w < tp->length; w++) wp[w].parity = isgps_parity(buf[w]); /* FIXME: must do inversion here */ return true; } static bool preamble_match(isgps30bits_t *w) { return (((struct rtcm2_msghw1 *)w)->preamble == PREAMBLE_PATTERN); } static bool length_check(struct gps_packet_t *lexer) { return lexer->isgps.bufindex >= 2 && lexer->isgps.bufindex >= ((struct rtcm2_msg_t *)lexer->isgps.buf)->w2.frmlen + 2u; } enum isgpsstat_t rtcm2_decode(struct gps_packet_t *lexer, unsigned int c) { return isgps_decode(lexer, preamble_match, length_check, RTCM2_WORDS_MAX, c); } void rtcm2_dump(struct rtcm2_t *rtcm, /*@out@*/char buf[], size_t buflen) /* dump the contents of a parsed RTCM104 message */ { unsigned int n; (void)snprintf(buf, buflen, "H\t%u\t%u\t%0.1f\t%u\t%u\t%u\n", rtcm->type, rtcm->refstaid, rtcm->zcount, rtcm->seqnum, rtcm->length, rtcm->stathlth); switch (rtcm->type) { case 1: case 9: for (n = 0; n < rtcm->msg_data.ranges.nentries; n++) { struct rangesat_t *rsp = &rtcm->msg_data.ranges.sat[n]; (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "S\t%u\t%u\t%u\t%0.1f\t%0.3f\t%0.3f\n", rsp->ident, rsp->udre, rsp->issuedata, rtcm->zcount, rsp->rangerr, rsp->rangerate); } break; case 3: if (rtcm->msg_data.ecef.valid) (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "R\t%.2f\t%.2f\t%.2f\n", rtcm->msg_data.ecef.x, rtcm->msg_data.ecef.y, rtcm->msg_data.ecef.z); break; case 4: if (rtcm->msg_data.reference.valid) (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "D\t%s\t%1d\t%s\t%.1f\t%.1f\t%.1f\n", (rtcm->msg_data.reference.system==gps) ? "GPS" : ((rtcm->msg_data.reference.system==glonass) ? "GLONASS" : "UNKNOWN"), rtcm->msg_data.reference.sense, rtcm->msg_data.reference.datum, rtcm->msg_data.reference.dx, rtcm->msg_data.reference.dy, rtcm->msg_data.reference.dz); break; case 5: for (n = 0; n < rtcm->msg_data.conhealth.nentries; n++) { struct consat_t *csp = &rtcm->msg_data.conhealth.sat[n]; (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "C\t%2u\t%1u\t%1u\t%2d\t%1u\t%1u\t%1u\t%2u\n", csp->ident, (unsigned)csp->iodl, (unsigned)csp->health, csp->snr, (unsigned)csp->health_en, (unsigned)csp->new_data, (unsigned)csp->los_warning, csp->tou); } break; case 6: /* NOP msg */ (void)strlcat(buf, "N\n", buflen); break; case 7: for (n = 0; n < rtcm->msg_data.almanac.nentries; n++) { struct station_t *ssp = &rtcm->msg_data.almanac.station[n]; (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "A\t%.4f\t%.4f\t%u\t%.1f\t%u\t%u\t%u\n", ssp->latitude, ssp->longitude, ssp->range, ssp->frequency, ssp->health, ssp->station_id, ssp->bitrate); } break; case 16: (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "T\t\"%s\"\n", rtcm->msg_data.message); break; default: for (n = 0; n < rtcm->length; n++) (void)snprintf(buf + strlen(buf), buflen - strlen(buf), "U\t0x%08x\n", rtcm->msg_data.words[n]); break; } } int rtcm2_undump(/*@out@*/struct rtcm2_t *rtcmp, char *buf) /* merge a line of data into an RTCM structure, return 0 if done */ { int fldcount, v; unsigned n; char buf2[BUFSIZ]; /* stdio.h says BUFSIZ=1024. True everywhere? */ /*@ -usedef @*/ switch (rtcmp->type) { case 0: fldcount = sscanf(buf, "H\t%u\t%u\t%lf\t%u\t%u\t%u\n", &rtcmp->type, &rtcmp->refstaid, &rtcmp->zcount, &rtcmp->seqnum, &rtcmp->length, &rtcmp->stathlth); if (fldcount != 6) return -1; else return 1; //break; case 1: case 9: { struct rangesat_t *rsp = &rtcmp->msg_data.ranges.sat[rtcmp->msg_data.ranges.nentries++]; /* we ignore the third (zcount) field, it's in the parent */ fldcount = sscanf(buf, "S\t%u\t%u\t%u\t%*f\t%lf\t%lf\n", &rsp->ident, &rsp->udre, &rsp->issuedata, &rsp->rangerr, &rsp->rangerate); if (fldcount != 5 || (rtcmp->type != 1 && rtcmp->type != 9)) return (int)(-rtcmp->type-1); else if (rtcmp->msg_data.ranges.nentries != rtcmp->length*3/5) return (int)(rtcmp->type+1); else return 0; } //break; case 3: fldcount = sscanf(buf, "R\t%lf\t%lf\t%lf\n", &rtcmp->msg_data.ecef.x, &rtcmp->msg_data.ecef.y, &rtcmp->msg_data.ecef.z); if (fldcount != 3 || rtcmp->type != 3) return -4; else { rtcmp->msg_data.ecef.valid = true; return 0; } //break; case 4: fldcount = sscanf(buf, "D\t%1023s\t%1d\t%5s\t%lf\t%lf\t%lf\n", buf2, &v, (char *)&rtcmp->msg_data.reference.datum, &rtcmp->msg_data.reference.dx, &rtcmp->msg_data.reference.dy, &rtcmp->msg_data.reference.dz); if (fldcount != 6 || rtcmp->type != 4) return -5; else { if (strcmp(buf2, "GPS") == 0) rtcmp->msg_data.reference.system = gps; else if (strcmp(buf2, "GLONASS") == 0) rtcmp->msg_data.reference.system = glonass; else rtcmp->msg_data.reference.system = unknown; rtcmp->msg_data.reference.sense = (v == 1) ? global : ((v == 0) ? local : invalid); rtcmp->msg_data.reference.valid = true; return 0; } //break; case 5: { struct consat_t *csp = &rtcmp->msg_data.conhealth.sat[rtcmp->msg_data.conhealth.nentries++]; unsigned int iodl, new_data, los_warning; fldcount = sscanf(buf, "C\t%2u\t%1u\t%1u\t%2d\t%1u\t%1u\t%1u\t%2u\n", &csp->ident, &iodl, &csp->health, &csp->snr, &csp->health_en, &new_data, &los_warning, &csp->tou); csp->iodl = iodl > 0; csp->new_data = new_data > 0; csp->los_warning = los_warning > 0; if (fldcount != 8 || rtcmp->type != 5) return -6; else if (rtcmp->msg_data.conhealth.nentries < rtcmp->length) return 6; else return 0; } //break; case 6: /* NOP msg */ if (buf[0] != 'N') return -7; else return 0; //break; case 7: { struct station_t *ssp = &rtcmp->msg_data.almanac.station[rtcmp->msg_data.almanac.nentries++]; fldcount = sscanf(buf, "A\t%lf\t%lf\t%u\t%lf\t%u\t%u\t%u\n", &ssp->latitude, &ssp->longitude, &ssp->range, &ssp->frequency, &ssp->health, &ssp->station_id, &ssp->bitrate); if (fldcount != 7 || rtcmp->type != 7) return 8; else if (rtcmp->msg_data.almanac.nentries < rtcmp->length/3) return 8; else return 0; } //break; case 16: fldcount = sscanf(buf, "T\t\"%[^\"]\"\n", rtcmp->msg_data.message); if (fldcount != 1) return 16; else return 0; //break; default: for (n = 0; n < DIMENSION(rtcmp->msg_data.words); n++) if (rtcmp->msg_data.words[n] == 0) break; if (n >= DIMENSION(rtcmp->msg_data.words)) return 0; else { unsigned int u; fldcount = sscanf(buf, "U\t0x%08x\n", &u); if (fldcount != 1) return (int)(-rtcmp->type-1); else { rtcmp->msg_data.words[n] = (isgps30bits_t)u; if (n == rtcmp->length-1) return 0; else return (int)(rtcmp->type+1); } } //break; } /*@ +usedef @*/ } #ifdef __UNUSED__ void rtcm2_output_magnavox(isgps30bits_t *ip, FILE *fp) /* ship an RTCM message in the format emitted by Magnavox DGPS receivers */ { static uint sqnum = 0; ((struct rtcm2_msg_t *) ip)->w2.sqnum = sqnum++; sqnum &= 0x7; isgps_output_magnavox(ip, ((struct rtcm2_msg_t *) ip)->w2.frmlen + 2, fp); } #endif /* __UNUSED__ */ #endif /* RTCM104V2_ENABLE */